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A. K. Bousfield [1], [2] introduced the notion of the localization of spaces
and spectra with respect to homology. In this note, we introduce the notion of
the injective hull of spaces and spectra with respect to homology. We also
prove that the class A(Ho®) of Bousfield equivalence classes of spectra [2]
becomes a set i.e., has a cardinality.

1. Statement of results

%, &, €, & denote the categories of CW-complexes, CW-spectra, and their
homotopy categories respectively.

DEerFINITION 1. Let o/, # be categories and & :./ - % a functor.

i) AeOb() is F-local (resp. F -injective) if for any B, Ce Ob (/) and
any f:B— C with Z(f):iso (resp. mono), f*:/(C, A) - /(B, A) is an iso
(resp. epi).

i) A map f:A— B is an %-localization map of A if B is &-local and
F(f) is an iso.

iii) A map f: A — B is an & -injective enveloping map of A if f satisfies the
following two conditions:

a) B is Z-injective and Z(f) is a mono.

b) For any CeOb(«) and any g:B — C, F(g) is monic if F(gof) is
monic.

iv) B is an % -injective hull of A if there is an & -injective enveloping map
f:A— B of A.

Then we can prove the following:

THEOREM 1. Let h = (h,|n€Z): D > %14t (De{8, F}) be a generalized
homology functor which is representable by a spectrum where %1546 is the
category of Z-graded abelian groups. Then it follows that:

i) Any object Ae Ob(9D) has an h-injective enveloping map.

i) Let f:A— B and g:A — C be h-injective enveloping maps of A. then
there exists a map k: B — C such that keof = g. Moreover, such a k is always an
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isomorphism in the category 2.

DErFINITION 2. Let E, FeOb(Y). Then E and F are Bousfield equivalent
(resp. B*-equivalent) if for any X eOb(¥) (resp. for any feMor(¥)) the
following two conditions on X (resp. f) are equivalent;

a) E/(X) =0 (resp. E,(f) is monic) for any neZ.

b) F,(X)=O0 (resp. F,(f) is monic) for any neZ.

Then we can prove

THEOREM 2. i) The class of Bousfield equivalence classes of spectra
becomes a set. i) The class of B*-equivalence classes of spectra becomes a set.

Let E be a spectrum with finite stable cells i.e., (so-called) finite spectra and
R =(R,=[E, E],IneZ) the graded ring of operations of the generalized
homology functor E,(—). Then this functor E( —) becomes a functor from
& or Z to the category .#y of R-modules.

Then we can prove

THEOREM 3. Let A, B be spectra. Then:

i) Ais E (— )-injective iff A is E,(— )-local and E (A) is injective over R.

ii) For any injective R-module I, there is an E . ( — )-injective spectruma X
with E(X) = I.

iii) If B is E.(—)-injective, then the map E,(—):[A, B],
— Homg(E,(A), E(B)) is bijective.

Let f:A— B be a map of spectra. Then:

iv) fis an E,(— )-injective enveloping map iff B is E,( — )-injective and
E,(f): E,(A) = E,(B) is an injective enveloping map over R, i.e., E (f) is monic,
E,(B) is injective over R, and E (f)(E,(A)) is an essential submodule of E.(B) (a
submodule N of M is called essential if for any submodule N' of M with Nn N’
= {0}, N’ vanishes i.e., N' = {0}).

v) Any injective enveloping map 1: E, (A) — I of R-module is realized by an
E.( — )-injective enveloping map from A.

2. Proof of Theorem 1

We shall prove Theorem 1 only for the case of CW-complexes. The case
of CW-spectra can be proved similarly. Moreover we can give a slightly more
clear proof by using the additive and triangulable properties of the category
P. 1t is left for the reader. #X denotes the cardinality of a set X. Let o
=Y, #m,(E) where E is a spectrum representing the generalized homology
functor h in Theorem 1. c¢(X) denotes the set of cells of a CW-complex X.

PROPOSITION 1. Let A be a subcomplex of a CW-complex B and 1:A — B
the inclusion map, and suppose that h(i) is monic. Then for any subcomplex C of
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B there is a subcomplex D of B with the properties:
i) DoC.
ii) h(j) is monic where j:AND — D is the inclusion map.
ili) #c(D) < max(#c(C), o).
iv) h(k) is monic where k: AUD — B is the inclusion map.

Proor. a) Construction of D satisfying the properties i), ii), iii). Let C,
=C, and suppose that C, is defined. Let aeM = {belJ,E,(ANC,)|b
vanishes in E,(C,} where U means disjoint union, R(a), S(a), d be
mathematical objects satisfying that R(a) is a finite subcomplex of AnC,,
deE,(R(a)) is an element which coincides with a in E(ANnC), S(a) is a finite
subcomplex of A, containing R(a), in which 4 vanishes. Such mathematical
objects in fact exist since h(:) is monic. Let C,+y = C,U({JaenrS(@). Then
any element be E,(C,NA) which vanishes in E,(C,) vanishes in E (C,,,;NA),
and #¢(C,.,) < max(a, #c(C,)). Hence D = ( J,C, is the required subcomplex.

b) Construction of D satisfying all the conditions of the proposition. We
define C,, D,, inductively on n as follows. Let C, = C, and assume that C, is
defined. By the above construction, we give D, satisfying the conditions i), ii),
iii) of the proposition in which the letters C, D are changed to C,, D,
respectively. Let M = {(a, b)e E,(A) x E,(D,)\meZ, 1,(a) = l,(b) where I:D,
< B is the inclusion map}. Then #M < max(x, #c(D,)) since above a is
uniquely determined by b if it exists because k(z) is monic. For (a, b)e M, let
R(a, b), S(a, b), T(a, b), a, b be mathematical objects such that R(a, b), S(a, b)
are finite subcomplexes of 4 and D, respectively, de E,(R(a, b)), be E (S(a, b))
are elements which coincide with a, b in E, (A4), E,(D,) respectively, T(a, b) is a
finite subcomplex of B containing R(a, b)US(a, b), and 4 and b become the
same elements in E,(T(a, b)). Such mathematical objects indeed exist. Let
Co+1=D,U(Uwpen T(a, b)). Then #c(C,.,) < max(a, #c(C)). Considering
the following Mayer-Veitoris exact sequence for A and D,:

— E,(4nD,) — E,(A) &® E,D,) > E(AUD,) —,

we see that ¢ is monic and A is epic since h(j,) is monic where j,:AnD, < D, is
the inclusion map. Let ceE,(AUD,) be an element which vanishes in E,(B)
and (a, b)eE,(4A) x E,(D,) be an element with A(a@ b) =c. Then a and b
coincide with each other in E,(B). Hence by the construction of C,.,, ¢
vanishes in E,(4UC, ), and therefore D = U,,C,, satisfies the conditions 1), ii),
iv), and also satisfies iii) since D = ( J,D,.

DEerFINITION 3. Let h be a generalized homology functor. Then a map
f:A— B is a versal h-mono if h(f) is monic and for any CW-complex C, C is h-
injective iff f*:[B, C] — [4, C] is epic.

ProPOSITION 2. For any generalized homology functor h = E,(—), there
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exists a versal h-mono.

Proor. For a map f:A— B, Dom(f) or Domf, and Ran(f) or Ranf
denote the domain A and range B of f respectively. Let X be a set satisfying
the properties that i) any fe X is an inclusion map f: 4 < B of CW-complexes
such that h(f) is monic and #c(B) < « and ii) for any inclusion map g:C < D
such that h(g) is monic and #c(D) < a, there is an fe X which is isomorphic to g
as a map. Such an X indeed exists. Let g =) xf:P — Q be the disjoint
union where P =), xDomf and Q =|J,xRanf. Then g is a versal h-
mono. To prove this, it suffices since h(g) is monic to show that any CW-
complex R satisfying that g*:[Q, R] — [P, R] is epic is h-injective. Let 1: A4
— B be a map between CW-complexes with h(7) is monic. We may assume that
1 is an inclusion for the aim below. From here we work in the category ¥
instead of #. Let f: A — R be a map where R satisfies the above condition, and
C be a finite subcomplex of B. Then there is a subcomplex D of B satisfying
the conditions i), ii), iii), iv) of Proposition 1. Then map f extends to AUD
since there is a map ke X which is isomorphic to the inclusion AnD < D (as
maps in the category 4). Hence f extends to B by the transfinite induction and
therefore R is h-injective.

The following proposition is obtained from the definitions.

PRrOPOSITION 3. i) An h-injective complex is h-local.
i) Let X and Y be h-local CW-complexes. Then any map f:X — Y with
h(f) iso is a homotopy equivalence.

ProOF. i) Let X be an h-injective complex, f: Y— Z a map which induces
an iso of h(—), and g: Y—> X a map. Then there is a map k:Z — X with g
~ kof. We assume that f is an inclusion map. Let [:Z — X be a map such
that g ~leof, V=Yx[0,1JUZ x {0, 1} in W=Z x [0, 1] and m:V— W an
inclusion map, and let p: V— X be a map such that p(x, 0) = k(x) and p(x, 1) =
I(x). Such a map indeed exists. Since h(m) is monic, p extends to W i.e.,
k ~ 1. Therefore X is h-local. ii) is easy.

Let us fix a versal h-mono p: P — Q which is an inclusion map, and let §
denote the smallest infinite cardinal greater than #c(P).

ProposITION 4.  For any CW-complex X, there are a CW-complex Y and a
map f: X — Y satisfying that h(f) is monic and y is h-injective.

Proor. We define a tower of CW-complexes (X,|¢:ordinal) by the
transfinite induction as follows. Let X,= X and suppose that X, is
defind. Let M,= CMap(P, X,) where CMap(K, L) denotes the set of all
cellular maps from K to L, and define X,,, as the push out in the following
push out square diagram in the category -
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/ \ -
\ /

UmeM P

UmeM Q

where ¢ is the composition of the disjont union UmeM m and the codiagonal
map UmeMEX = X, and ¥ is the disjoint union UmeMé p. For the limit ordinal
¢, define X, = U:< ¢X; Note that for any ordinals ¢, { with & <{(, the
inclusion map X, = X, induces a mono of h( —). Let x be the smallest ordinal
with cardinality §. Then X, is h-injective, because any map k: P — X, passes
X, for some ¢ < «, hence k extends to a map from Q which passes X, , and
therefore X, is h-injective since p is a versal h-mono.

PrOOF OF i) OF THEOREM 1. Let X be a CW-complex. Then we define a
tower of CW-complexes (X,|¢:ordinals) by the transfinite induction as
follows. Let X, = X, and suppose that X, is defined and let Y, be a CW-
complex containing X, such that Y, is h-injective and the inclusion map X, < Y,
induces a monomorphism of A(—). Such a complex indeed exists by
Proposition 4. Let T, = {Kerh(g)|Z is a complex, g: Y; = Z is a map such that
h(g°f,) is monic}, where f, is the inclusion map X, Y, be a set of submodules
of h(Y;). Then we see that T, has a maximal element with respet to inclusion
relation as follows. Let U be a linearly orderd subset of T, and for M e U, let
ky and Z,, be mathematical objects such that Z,, is a complex and ky,: Y, » Z,,
is an inclusion map with M = Kerh(k,) (note that then h(ky-°f,) is
monic). We may assume that ZynZ,, =Y, for any M, M'eU with
M #M'. Let Z=\)yecwZu, k: Y: = Z be the inclusion map. Then we can see
that Kerh(k) = | JyucuM €T, (and then h(kof,) is monic). Thus T, has a
maximal element M, by Zorn’s Lemma. Let k, and Z, be mathematical
objects such that Z, is a complex, ky: Y; = Z, is an inclusion map satisfying
that M, = Kerh(k,) (and then h(k,°f;) is a mono) where f, and M, are as
above. Such objects indeed exist. Define X,,, by X,,; = Z,, and for the
limit ordinal &, define as X, = Uc< ¢X, Let k be the smallest ordinal with
cardinality 8, and f: X — X, be the inclusion map. Then h(f) is monic, and X,
is h-injective by the same reason as in the proof of Proposition 4. We show
that f is an h-injective enveloping map. Let Wbe a complex, g: X, —» W a map
with h(gef) mono and aeKerh(g). Then a is represented by some a’ € h(Y,) for
some ¢ < k. Hence by considering glx_H, we can show that a =0. This
completes the proof of i) of Theorem 1.

ProOOF OF ii). Let f:4A—-B and g:4 - C be h-injective enveloping
maps. Then there is a map k:B — C such that g = kof (in %) since C is h-
injective and h(f) is monic. Then h(k) is monic since f is an h-injective
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enveloping map. Then there is a map [:C —» B with I~k = idg since B is h-
injective. Then h(l) is monic since locg =Ickof=f and g is an h-injective
enveloping map. Hence h(]) is an iso and therefore ! is a homotopy
equivalence by Proposition 3, and thus k is also a homotopy equivalence.

3. Proof of Theorem 2

Let U, V, d, T be mathematical objects satisfying the following conditions:
i) U is a set of finite spectra.

ii) For any finite spectrum A, there is a unique element Be U such that
A~B.

iii) Vis a set of maps between finite spectra.

iv) For any A€ U, any finite spectrum B and any map f: 4 — B, there is a
unique g € Vsuch that there is an iso h: B —» Rang with g = hof (in the category
2).

v) d:V->U is a map and d(f) = Domf for any feV.

vi) Tis the set of all sections of the bundle over U whose fiber of 4€ U is
P(P(d~1(A))) where P(X) denotes the set of all subsets of X, and topologies
are discrete.

Such mathematical objects in fact exist, and let us fix one 4-tuple of such
objects U, V, d, T.

DEFINITION 4. Let E be a spectrum, Ae U, and f: 4 — E a map. Then the
elementary type t(f) is the set {geV|d(g) = 4, and f extends to Rang in the
category #} e B(d~!(4)), and the elementary type t(E) of E is the element se T
defined by s(4) = {t(f)|f: A — E}. Spectra E and F are elementarily equivalent
if t(E) = t(F).

i) of Theorem 2 is directly obtained from ii) and ii) is a corollary of the
next proposition since the class of elementary equivalence classes of spectra
becomes a set.

PROPOSITION 5. Let E and F be elementarily equivalent spectra and f: X
— Y be a map between spectra. Then F,(f) is monic if E(f) is monic.

PrROOF. Let aeF,(X) and suppose f,(a) =0. Let A, B be finite spectra,
p:A—> X, q:B-> Y, r:A— B be maps and deF,(A) such that fop=gqor in Z,
Ps(@ =a and r,(4) =0. Such objects indeed exist. Let g:2"(A)—>C be a
homotopy cofiber of X"(r'): 2"(B') -» 2™(A’) where K', I' are (one of) the Spanier-
Whitehead dual of a spectrum K and map [, and X is the suspension
functor. We can assume that ge V. Let h:2"(4') —» F be a map corresponding
to 4. Since t(E) = t(F), there is a map k:2"(4') —» E with t(h) = t(k) and let
beE,(A) be the corresponding element to k. Then r,(d) =0 implies that
ho Z"r) = 0 i.e., h extends to C in the category .#, hence k extends to C since
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t(h) = t(k) and this implies r (b) =0. Then from the assumption of the
proposition, we can construct a finite spectrum D, maps m: A - D and n:D —» X
such that nom =p and m,(b) =0. Then we can show a =0 by the similar
argument to the above. Therefore F,(f) is monic.

4. Proof of Theorem 3

Let E be a finite spectrum, E’ its Spanier-Whitehead dual, h = E,( — ), and
R =[E, E],. Let us fix these expressions. Note that h and [E’, — ], are
canonically naturally equivalent as .#g-valued functors.

PROPOSITION 6. Let I be an injective R-module. Then there is a spectrum
U such that [ —, U], and Homg(h( — ), I) are naturally equivalent to each other
as functors from P to Grslé. Such a U is unique up to homotopy type, and is h-
local. Moreover h(U) = I as R-modules.

Proor. Since I is R-injective, Homg(h( — ), I) becomes a generalized
cohomology functor and then there are a spectrum U and a natural equivalence
¢(—):Homg(h(—), I) > [ —, U], by the representation theorem. Uniqueness
up to homotopy of U is also implied from the representation theorem. The
localness of U follows from the fact that a spectrum V'is h-local iff for any h-
acyclic spectrum X (i.e., h(X) = 0), [X, V] = 0. Finally by putting — = E’, we
obtain a required isomophism ¢@(E’) of modules.

PROPOSITION 7. A spectrum U is E ( — )-injective iff the map ry:[X, U],
— Homg(E,(X), E,(U)) defined by ry(f) = E,(f) is monomorphic for all
spectrum X.

PrROOF. Assume that U is E ( — )-injective and let f: X — U be a map with
E.(f)=0 and g:U — Y be a homotopy cofiber of f. Then id, extends to Y
because U is E,(—)-injective and E,(g9) is monic. Thus f=idy°f
= 0. Conversely suppose that ry is monic for all X and let f: Y— Z be a map
with E (f) mono, g:W—Y be a homotopy fiber of f and k:Y—>U be a
map. Then from the assumption ke g = 0 since E,(g) = 0. This implies that k
extends to Z, and therefore U is E,( — )-injective.

PROPOSITION 8. Let I be an injective R-module and U be a spectrum
representing the generalized cohomology functor Homg(E,(—), I). Then:

i) The map ry:[X, U] - Homg(E (X), E,(U)) defined by rx(f) = E,(f) is
bijective for all X,

i) U is E,(— )-injective.

ProOOF. i) Let @x:Homg(E (X), E,(U))—[X, U] be a natural equival-
ence obtained from the condition on U and f:U — U be a map realizing the
natural transformation ¢@y°ry. Then E,(f) is an iso since rg is a
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bijection. Then f is a homotopy equivalence from the spectrum version of
Proposition 3 since U is E,( — )-local from Proposition 6, thus ry is a bijection
for all X. ii) follows directly from Proposition 7.

PROPOSITION 9. Let A be a spectrum and f:E. (A)— 1 be an injective
enveloping map of R-modules. Then f is realized by an E,(— )-injective
enveloping map of spectra from A.

ProoF. From Proposition 8, fis realized by a map g: A —» U from A to an
E,(— )-injective spectrum U. Let k:U — V be a map between spectra with
E,(kog) mono. Then E,(k) is monic since E (g) = f is an injective enveloping
map over R. Thus g is an E,( — )-injective enveloping map.

ProrosITION 10.

i) If a spectrum U is E ( — )-injective, then E (U) is an injective R-module.

ii) If a spectrum U is E,( — )-local and E,(U) is an injective R-module, then
U is E( — )-injective.

Proor. i) From Proposition 9, there is an E_( — )-injective enveloping
map f: U — Vrealizing an injective enveloping map g = E,(f): E(U) > E (V) of
R-modules. Since U is E,( — )-injective, there is a map k:V— U with kef
=1idy. Then E,(U) becomes a direct summand of the injective R-module
E.(V), and therefore E_(U) is also injective over R. ii) Also let f:U — V be an
E,(— )-injective enveloping map realizing an injective enveloping map g
= E (f): E,(U) — E (V) of R-modules, then fis a homotopy equivalence because
g is an iso and U and V are E( — )-local. Thus U is E,( — )-injective.

The following proposition is easily obtained from Proposition 9 and
Theorem 1.

ProrosiTioON 11. Let f:A—-U be an E(— )-injective enveloping
map. Then g = E,(f) is an injective enveloping map of R-modules.

Theorem 3 is proved by Propositions 6, 7,...,11. Finally we can also get
the following:

PROPOSITION 12. Let U be an E,(— )-injective spectrum and E,(U)
=M@ N be a direct sum decomposition by R-submodules of E(U). Then
there is a corresponding direct sum decomposition of U in the category &.

The proof of this propositon is not difficult. As a corollary we obtain that
if U is E,(— )-injective, E_(U) is indecomposable as an R-module iff U is
indecomposable in the category 2.
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