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1. Introduction

A variety of propagating phenomena for reaction-diffusion systems have
been investigated in physics, chemistry, biology and other fields. Among these
phenomena, there are traveling waves in bistable reaction media which
correspond to propagating transition from one stable state to the other. See
e.g. Ortoleva et al [29], [30], Fife[8], [9] and their references therein. These
waves are basically modeled by a two-component system of the form

(1.1)
τut = ε2uxx + f(u, v)

vt = vxx + g(u, v)

with the nonlinearities of/and g in Fig. 1. It is shown that there are three
spatially constant steady states (E±9 Eo): two of them (E±) are stable, while one
(Eo) is unstable. One simple but very substantial nonlinearities of/and g is the
Bonhoeffer-Van der Pol kinetics

V m a χ

f (U, V) = 0

Fig. 1: Functional forms o f / = 0 and g = 0 in (1.1).
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(1.2)
' f(u9 v) = u{\ - u)(u - a) - v

^ g(u, v) = u-yv

with positive constants a and γ. The system (1.1) includes two physical

parameters ε and τ. ετ is the ratio of the reaction rates of u, v and ε/τ is the

ratio of the diffusion rates. Here we assume that one of the parameters ε is

small, so that there appear internal and/or boundary layers of width O(ε) in

u. For this reason, we call ε a layer parameter. When τ = 0(1) as εjO, our

system (1.1) indicates that u diffuses much slower than υ, while u reacts much

faster than v.

In the previous papers [13] and [16], we have studied the existence of

traveling wave solutions of (1.1) connecting £_ to E+ by using singular

perturbation techniques. By the traveling coordinate z = x + ct, a traveling

wave solution with velocity c corresponds to a solution of the following

equations with a parameter c:

(1.3)

ε2uzz - εcτuz +f(u, v) = 0

vzz ~ cvz + g(u, v) = 0

(u9v)(± oo) = £ ± .

, Z G R

For the system (1.3), it is shown that there exist at least three solutions with a

suitable parameter c when τ is small, while there exists a unique solution when τ

is large (see [16] for the details). For the special nonlinearities of (1.2), Fig. 2

shows a global structure of traveling wave solutions with respect to τ e R. This

picture clearly shows the appearance of critical value τ = τc such that there is

only one solution for τc < τ, while there are three solutions for 0 < τ < τc.

Fig. 2: Global bifurcation diagram of traveling wave solutions in (τ, c)-plane.
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The stability of these traveling wave solutions can be studied by examining
the spectrum of the linearized operator corresponding to (1.3) at the concerned
solution (see Henry [12], for example):

^. _ Q _ -i- _ fε fε

τ dz2 dz ετ u ετ

dz2 dz

For the distribution of eigenvalues, there are two different methods: One is an
analytical method of treating directly the eigenvalue problem of the linearized
operator S£ (see Nishiura [25], Nishiura et al [26], [27], [28], I to [19] and
Sakamoto [31]), the other is an geometrical method of treating an equivalent
four-dimensional dynamical system with a parameter c, for which eigenvalues
can be found by using the geometrical properties of the orbit corresponding
to the traveling wave solution in the four-dimensional phase space
(see Evans [3], [4], [5], [6], Jones [20], Yanagida [33], Maginu [23], [24],
Ikeda et al [15], [17], [18] and Yanagida et al [34]).

In [28], we have already discussed the stability of traveling wave solutions
of (1.1) using the former method. In that place, we found that there are two
critical eigenvalues: One is zero which corresponds to translation invariance, the
other is real which essentially determines stability. The interesting point is that
the sign of the latter corresponds exactly to that of the Jacobian of the
matching condition (see 2.24)). That is, the sign of the Jacobian of the
matching condition gives essential information about stability property.

The latter method was firstly proposed by Evans [3], [4], [5], [6] to show
stability of traveling pulse solutions of generalized nerve axon equations which
include the FitzHugh-Nagumo (FHN) equations and the Hodgkin-Huxley (HH)
equations. He rewrites these as equivalent dynamical systems with velocity c,
and then defines the index (which takes one of the three values { + 1, 0, — 1})
of the homoclinic orbit corresponding to a traveling pulse solution with velocity
c*, by the direction in which the one-dimensional unstable manifold crosses the
multi-dimensional stable one with respect to the unique resting state, when the
parameter c increases through c*. It is shown that when the index takes — 1,
the solution is unstable, while when the index takes 1, it gives a nesessary
condition for the solution to be stable. Using his method, Jones [20] and
Yanagida [33] proved that the fast traveling pulse solution of the FHN
equations is stable. Recently, Ikeda et al [17] and [18] have proved that the
fast traveling pulse solution of the HH equations is stable, while the slow one is
unstable. In Evans' index theory, it is essential that the dimension of the
unstable manifold is equal to one. Maginu [241 extended Evans' index theory
to a more general reaction-diffusion systems including (1.1), that is, he extended
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the definition of the index to the crossing manner of the multi-dimensional

stable manifold and the multi-dimensional unstable one when the parameter c

increases through c*, and showed that when the index takes — 1, the traveling

pulse solution is unstable.

Lately, by using a distance-like function of the stable and unstable

manifolds (which is different from the index theory), Kokubu et al [21] have

shown that stability of traveling wave solutions is determined by a direction of

strictly crossing of the stable and unstable manifolds with respect to c.

The aim of this paper is to calculate the index of the corresponding

heteroclinic orbit, which gives essential information about stability

property. The index can be determined as a by-product when we construct a

traveling wave solution by using singular perturbation techniques. We apply it

to the results obtained by Maginu [24] and show stability of traveling wave

solutions connecting £_ to E + . We shall state this more precisely. The

system (1.3) can be rewritten as an equivalent four-dimensional dynamical

system

(1.4)
-^V = F(V; ε; τ; c), z ε R
az

V( ± oo) = P ±

%( du dυ\
for V = I M, ε—, v, — (see (3.1), (3.2)). Here P± are stationary points of (1.4),

\ az az j
corresponding to E±9 in the four-dimensional phase space. (1.1) has a traveling

wave solution (w, v)(z; ε; τ) connecting £_ to E+ with velocity c = c(ε; τ) if and

only if (1.4) has a heteroclinic solution i^(z; ε; τ) = ( u, ε —, v, — )(z; ε; τ) for
\ az az J

c = c(ε; τ). Let y(ε; τ) is the heteroclinic orbit of (1.4) corresponding to

Ψ*(z\ ε; τ). In the four-dimensional phase space, it holds that

for c = c(ε; τ), where S+tfC is the two-dimensional stable manifold of (1.4) with

respect to P+ and (7~ttC is the two-dimensional unstable manifold of (1.4) with

respect to P_. In this situation, we can define the index of the heteroclinic

orbit y(ε; τ), say Ind[y(ε; τ)], by the direction in which the stable manifold S^ t c

passes through the unstable one U~XyC when the parameter c increases through

c(ε; τ). In general, the calculation of the index is rather difficult. However

there are a few examples in nerve axon equations, for which one can calculate

the index (see Langer [22] and Ikeda et al [17], [18]).

An outline of this paper is as follows: in Section 2 we give a brief summary

of the existence results of traveling wave solutions studied in [13], [16]; in

Section 3 we define the index of the heteroclinic orbit which corresponds to the

traveling wave solution of (1.1), and show that the index corresponds in a one-
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to-one manner to the sign of the Jacobian of the matching condition

(see Theorem 3.1); in Section 4, we conclude that when Ind[y(ε; τ)] = — 1, the

traveling wave solution corresponding to y(ε; τ) is unstable, while Ind[y(ε; τ)]

= 1 is a necessary condition to be stable; finally in Section 5, we remark that

under the additional discussion to the condition Ind[y(ε; τ)] = 1, the traveling

wave solution is stable.

We first impose the following assumptions on the nonlinearities of/and g

(see Fig. 1):

(A-l) / = 0 is S-shaped and consists of three branches u = /i_(f), ho(v) and
h+(v)(h-.(v) < ho(v) < h+(v)), while g = 0 intersects each branch at once.
That is, there is only one intersection point on each branch u = h±(v).
We denote these points by (u±, v±)(υ_ < v+), respectively. The signs of
/ and g are both negative in the upper region of the curves / = 0 and

(A-2) J(υ) = f(u, v) du has a unique isolated zero at v*e(vmin, vmax);
Jh-(v)

(A-3) f u ( h ± (υ), v)<0 for i>e[i;_, i>+],

g(h-(v), v) < 0 < g(h + (v), v) for ve(v_, υ+)

and

d

(A-4) fjμ, v)<0 for (u, v)e{(u, v)\h_(v) <u< h + (υ), v.<v< v + },

gu{u, v)>0 and gv(u, v) < 0 at (u, i;) = (w±, υ±).

Throughout this paper, we shall use the following function spaces. Let /

= R_, R + or R, σ and μ be positive numbers, and n be an integer. Let

XnuAI) = UeCn(I)\ IM|;p, ( / ) ==y? = 1 sup eμlxl σ — ) u(x) < + oo V,
I w\ ' ^ χel \ dxj J

BC(R) = {the set of the bounded and uniformly continuous functions

defined on R}.

Acknowledgments. I am very grateful to Professor M. Mimura for his

continuous encouragement and his inspiring conversation with me throughout

the course of this work.
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2. Construction of traveling wave solutions

In this section, we give a short summary of the existence results of traveling
wave solutions studied in the previous paper [16]. Introducing the traveling
coordinate z = x + ct, we find that a traveling wave solution with velocity c
satisfies the following equations

\vzz - cvz + g(u, v) = 0

with boundary conditions

(2.2) M( ± oo) = M±, v( ± oo) = υ±,

where 0 < ε « 1. Since any solution of (2.1) has translation in variance, we can
normalize u by

(2.3) iι(0) = α,

where α is arbitrarily fixed in some interval (see Subsection 2.2). Moreover we
put

(2.4) 0(0) = j8e(t?_, v+).

β will be determined later.

First, we shall separate the whole interval R into two subintervals, say R_

and R + , and consider the following boundary value problem on each

subinterval:

ε2(u±)zz — εcτ(w±)z + / ( M ± , ι;±) = 0

(v*)a-φ% + g(u*,υ*) = 0 ' Z 6 K ±

M±( it OO) = M±, 1^(0) = α

v±( ± oo) = v±9 v±(0) = β.

In Subsection 2.1, we construct outer solutions which approximate (2.5)± in the

outside of a boundary layer region. In Subsection 2.2, we construct inner

solutions which approximate (2.5)± in a boundary layer region. Second in

Subsection 2.3, using these approximate solutions we construct singular limit

traveling wave solutions of (2.1), (2.2) and (2.3), which give important

information to construct exact solutions. Finally, in Subsection 2.4, we obtain

an exact solution (u, v)(z; ε; τ) of (2.1), (2.2) and (2.3) for an appropriate c

= Φ; τ).

2.1. Outer solutions

By putting formally ε = 0 in (2.5)±, we consider the following problems:
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/(«*, »*) = 0
ZGR

(v%z - φ% + g{μ\ »*) = 0 '
»*( ± oo) = v±, r*(0) = )?.

By (A-l), we replace /(M*, t;±) = 0 with M± = Jz±(O Thus, (2.6)± can be

reduced to

'%z ~ c(V% + g(h±(V% V*) = 0, ZER±

LEMMA 2.1. For any fixed c e R α«rf /Je(ι>_, υ+), ίΛere ejc/jί unique strictly

monotone increasing solutions Vξ{z; c, β)(zeR±) of (2.7)± satisfying

where μ(c) = min{μ_(c), μ+(c)} and μ±(c) are positive roots of μ± — cμ±

+ ^~^(^±(^±)> ^±) = 0. Moreover VQ(Z; C, β) are continuous with respect to
dv

(c, β)eR x (t?_, v+) in the X^c)ί(R±)-topology and satisfy

(2 8) l[τz

v^°>c'β)-
and

(2 9) lβ[ίv°(0; c>β) - έ F o + ( 0 ; c> Λ ] > °
By this lemma, we directly obtain the following result which is useful for

the discussion in Subsection 2.3.

LEMMA 2.2. For any ceR, there uniquely exists β = j8o(c)eC1(R) satisfying

j - z Vo (0; c, βo(c)) - j - z Fo

+ (0; c, j5β(c)) = 0.

function βo(c) is strictly monotone decreasing and converges to v± as c

=F oo, respectively. Moreover for v*e(v_, v+),

/(»*) | 0 jT and only if βo(0) 0 v*,

vhere f(β) = ί g(h-(v), υ) dv + \ g{h+(υ), v) dv.
Jv- Jβ

Using the functions Vξ(z; c, β), we define UQ (Z; C, )S) by

Uξ(z;cβ) = h±(Vf(z;c,β)), zeR±.

We thus find that (UQ , Vξ)(z; c, β) satisfy (2.5)± approximately in the outside of
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a neighborhood of z = 0, however Uo(z;c,β) do not satisfy the boundary

conditions UQ (0; c, β) = oc.

2.2. Inner solutions

As being stated above, (UQ , t^Mz; c> /0 do n o t satisfy (2.5)± approximately
in a neighborhood of z = 0. That is, solutions M± of (2.5)± have steep
gradients. Therefore we must remedy this defect by supplementing (UQ , VQ)
with inner solutions WQ

± in a neighborhood of z = 0, so that (UQ + W f̂, J^f)
will satisfy (2.5)± approximately for all z e R ± .

For this purpose, we introduce the stretched variable ξ = z/ε in a

neighborhood of z = 0. Substituting (l/£ + W f̂, P f̂) into (2.5)± and putting ε

= 0, we obtain the following problems:

(2.10),

£ ) ί 4 - cτ(Wo)t +f(b±{β) + W?, « = 0, ξ e R±

where β and α are fixed constants satisfying /?e(ι>_, υ+) and oce(h-(β), h+(β)),

respectively. We first state the following lemma.

LEMMA 2.3 (Fife et al [11]). For any fixed βe[v-,v+], consider the
following problem:

Wξξ-cWξ+f(W,β) = 0, £ E R

Then there exists c = co(β)eC1([v-, r + ] ) such that (2.11) has a unique strictly

monotone increasing solution W{ξ; β) satisfying

where

σ±(β) = [ =F co(β) + ((co(β))2 - 4fu(h±(β), β)Y'2y2.

Furthermore

co(β) i 0 if and only if J(β) g 0.

LEMMA 2.4. For any fixed /?e[ι?_, t?+], /̂ r c7(j9; τ) = co(β)/τ. Then there

exists δo>0 such that for any fixed (c, β)eΛδo = {(<*, β)\ \c - Cj(β; τ)| + |j9

— ĵ l < <50}, (2.10)± have unique strictly monotone increasing solutions

W0

±(ξ;τ;dJ) satisfying

\Wf(ξ;τ;69fa\eXl±iτ)Λ(R±)9
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where σ±(τ) = inf(^)eΛ(5o σ±(τ; c, β) and ^ σ±(τ; c, β) = [ T cτ + ((cτ)2

- 4/M(/ι±(β), β))1/2]/2. Furthermore Wo(ξ;τ;c,β) are continuous with respect

to (c, /OeΛ^ '« '** X^(τ),i(R±)-^/^to^ and satisfy

(2.12) ^ Wζ" (0; τ; Cl(j8; τ), j8) - j - ξ W+ (0; τ; Cj(β; τ), 0) = 0,

(2.13) ^ [ ^ o " ( 0 ; τ; c/jS; τ), β)--^Wj(0; τ; c7(/?; τ), )5)J > 0,

:), P)--τz ^o + (0; τ; cjφ\ τ), β)\>0.

REMARK 2.1. It follows from (2.12), (2.13) and (2.14) that 4^ci(βl τ ) i s

dβ

strictly negative for βe\y_, i?+]. Then there exists an inverse function of c

= Cj(β; τ), say β = βj(c;τ)9 which is strictly decreasing for c e [ φ + ; τ) ,

2.3. Singular limit solutions

In the preceding subsections, we constructed the lowest order approxim-

ations (l/£(z; c, j?) + W£(z/ε; τ; c, j8), ^ ( z ; c, jS)) of the problems (2.5)±. It is

clear that these approximations are matched at z = 0 in the C°-sense. But in

order that these become an approximation of (2.1), (2.2) and (2.3) uniformly in

R, their derivatives have to be matched at z = 0 in the C°-sense. That is, we

impose the following conditions on (WQ , VQ)\

Φo(τ; c, β) = - ^ Wo (0; τ;c,β)-j- Wo

+ (0; τ; c, « = 0

(2.15) / ξ d ξ

Ψ0(c, β) = — Fo- (0; c, /?) - — Ko

+ (0; c, β) = 0.

By Lemmas 2.2 and 2.4, it turns out that the above relations are equivalent to

the conditions

(2.16) β = βo(c)

and

(2.17) c = co(β)/τ.

By Remark 2.1, (2.17) is identical to

(2.18) β = βjc; τ).

LEMMA 2.5. The curves (2.16) αm/ (2.18)(<?r(2.17)) have at least one

intersection point for any τ > 0. In particular, when v*e(v-, v+) these have
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three intersection points for small τ, while only one for large τ and intersect

transυersally at each point, and when v*e(vmin, vmax)\(v_9 v+), these have only

one for small or large τ and intersect transversally (see Fig. 3).

(a) (b)

Fig. 3: The graphs of the two curves: β = βo(c) and β = β^c; τ).

(a) For small τ, there are three intersection points.

(b) For large τ, there is a unique intersection point.

Let (c*(τ), β*(τ)) be an arbitrary intersection point of the curves (2.16) and

(2.18). Define

f t/o (z; c (τ), )3*W) + Wo~(z/ε; τ; c*(τ), β*{τ)), zeR_
uo(z; ε; τ) - < ^ c , ( t ) > ^ ( τ ) ) + ^ + ( z / £ . τ ; c # ( τ ) > ^ ( τ ) ) > z g R +

and

F 0 - ( Z ; C * ( T ) J * ( T ) ) , zeR_

We call (u0, vo)(z; ε; τ) a singular limit traveling wave solution of (2.1), (2.2) and

(2.3), which becomes the lowest order approximation uniformly in R. Also,

c*(τ) is called the singular limit velocity. From Lemma 2.5, it directly follows

that

THEOREM 2.1. Suppose that (A-l) - (A-4) hold. Then, (2.1), (2.2) and (2.3)

has at least one singular limit traveling wave solution with the singular limit

velocity c*(τ) for any τ > 0.
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Moreover we see that the number of the singular limit traveling wave
solutions depends on τ and the location of v*.

COROLLARY 2.1. Suppose that (A-l) - (A-4) hold. When i?*e(ι;_, v+),
(2.1), (2.2) and (2.3) has three singular limit traveling wave solutions for small τ
and has only one for large τ. On the other hand, when v*e(vmin, t;max)\(t;_, v + ),
it has only one for small or large τ.

2.4. Traveling wave solutions for ε > 0

In this subsection, we fix τ > 0 arbitrarily. Suppose that (c*(τ), β*(τ)) is an

arbitrary intersection point of the curves (2.16) and (2.18) at which these

intersect transversally. Let Σδί = {(c,β)\ \c - c*(τ)| + \β - β*(τ)\ < δ j for

some constant S1>0. For any fixed (c, β)eΣόι, we seek exact solutions

(M±, υ*) to (2.5)± in the following forms:

W l7' P* T" /° Π^ — TI (7' P Pι\ -4- \ftf ( 7 IP ' T* /" /?^ —I- V ( 7 ' P' T* /°

1)^(7' p T* ^ /?̂  = V^(7' c R\ -I- sî fV* p* T* /̂  R\
\ 9 9 9 ? Γ"̂  / 0 V ? 9 # / I ^ \ 9 9 9 9 Γ"̂  / 9

where ^(z ; ε; τ; c, β) = (r*, 5±)(z; ε; τ; c, j5) are the remainders converging to 0

uniformly as ε j 0. Applying the standard singular perturbation techniques, we

have the following lemma.

LEMMA 2.6. There are εx > 0 and δ1 > 0 such that for any εe(Q, εx) and

(c, β)eΣδί, there exist (M±, V*)^; ε; τ; c, β)e%Pfε(R±) satisfying (2.5)±, w/ẑ re p is

an arbitrarily fixed constant satisfying 0 < p < μ(c*). Moreover the remainders

^(z; ε; τ; c, β), -^~~(zi εί τ\ c-> β) and -jΓβ-(zi ε; τ ί c

? )5) ^ ^ uniformly continuous

with respect to (ε, c, β)e(0, εx) x 27^ /« ίA^ Xpε(R±)-topology and satisfy

( l l ί ^ s ε τ c , ^ ! ! * ( R ± ) = o(l)

«5 εjO uniformly in (c, β)eΣδί.

Finally we construct a solution of (2.1), (2.2) and (2.3) in the whole interval

R, matching (M~, V~)(Z; ε; τ; c, j5) and (M + , ι^+)(z; ε; τ; c, β) at z = 0 in the C 1-

sense. For this purpose, we define two functions Φ and Ψ by

Φ(ε; τ; c, β) = ε—-M"(0; ε; τ; c, j5) — ε—w+(0; ε; τ; c, β)

( 2 2 0 ) / i *
Ψ(ε; τ; c, /0 = — v~(0; ε; τ; c, β) - ^-» + (0; ε; τ; c, β)

dz dz
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and determine c and β as functions of ε such that

(2.21) Φ(ε; τ; c, β) = 0 = Ψ(ε; τ; c, β)

hold. We call the relation (2.21) the matching condition. Noting that Φ and Ψ

are uniformly continuous in ε, we can extend them continuously so as to be

defined for ε = 0. Setting ε = 0, we can reduce (2.20) to

(2.22)
f Φ(0; τ; c, β) = Φ0(τ; c, β)

jψ(0; τ; c, /ί) = Ψ0(c, β).

Recall that (c*(τ), β*(τ)) is an arbitrary intersection point of the curves (2.16)

and (2.18) at which these intersect transversally, or equivalently (c*(τ), β*(τ))

satisfies

(2.23)

and

(2.24)

Φ0(τ; c (τ), β*(τ)) = 0 = ), j8 (τ))

det

^ Φ 0 ( τ ; c (τ),

J(τ; c (τ), j8 (τ)) =

(τ)) ^ Φ 0 ( τ ; c*(τ), /ί (τ))

We call J(τ; c*(τ), )8*(τ)) the Jacobian of the matching condition (2.21). Thus we

can apply the implicit function theorem [7: Theorem 4.3] to (2.21). That is,

there is ε2 > 0 such that there exist continuous functions c(ε; τ) and β(ε; τ)

satisfying (2.21) for εE[0, ε2) and lim ε i Oc(ε; τ) = c*(τ) and lim ε i Oβ(ε; τ)

= β*(τ). Then, we have the desired results.

THEOREM 2.2. Suppose that (A-l) — (A-4) hold and fix τ arbitrarily such

that the curves (2.16) and (2.18) intersect transversally at (c*(τ), β*(τ)). Then, for

any εe(0, ε2) there exists a traveling wave solution (M, V)(Z; ε; τ)eI p

2

) £(R)

of the problem (2.1), (2.2) and (2.3), which satisfies

; ε; τ ) - u o ( ;ε; |ϋ( ; ε; τ)-vo(-;ε; 0

as εJ,O. Furthermore the velocity c(ε; τ) converges to the singular limit velocity

c*(τ) as εJ,O.

COROLLARY 2.2. Suppose that (A-l) - (A-4) hold. When v*e(v_, v+),

(2.1), (2.2) and (2.3) has three traveling wave solutions for small τ and has only one

for large τ. On the other hand, when v*e(vmin9 vmax)\(v-9 v+), it has only one

for small or large τ.
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3. Geometrical characteristics of traveling wave solutions

First, we rewrite the problem (2.1) as an equivalent four-dimensional

dynamical system

(3.1)

du

Tz~
dp

dz

dv

Tz~

dq

dz

P
ε

cτ
γy

εP

cq-Q

f(u> v)

ε

i(u, v)

zeR,

du dv
where p = ε— and q = — . For V = \u, p, v, q), we simply write (3.1) as

dz dz

(3.2)
dV

~dz
= F(V; β; τ; c).

Let (M, V)(Z; ε; τ) be an arbitrary traveling wave solution with velocity c = c(ε; τ)

o f ( 2 . 1 ) , ( 2 . 2 ) a n d ( 2 . 3 ) . T h e n w e find t h a t τ T ( z ; ε ; τ ) = [u9 ε ^ , υ9 ^ ) ( z ; ε ; τ )

\ dz dz J

is a solution of (3.2) when c = c(ε; τ), which tends to P_ = '(M_, 0, u_, 0) as z -•

— oo and P+ = \u+, 0, v+, 0) as z -• + oo, respectively. Namely, V

= τΓ(z; ε; τ) corresponds to a heteroclinic orbit connecting P_ to P + , say

y(ε; τ), of (3.2) when c = c(ε; τ) in the four-dimensional phase space.

3.1. Stable and unstable manifolds

We consider the stable manifolds S£τ>c and the unstable manifolds U*τ%c of
(3.2) with respect to the stationary points P ± , which are defined by

and

S±τ,c = {aeR4 |V(z; ε; τ; c; a) > P ± as z . + oo}

/£ t C = {aeR4 |V(z; ε; τ; c; a) • P ± as z > - oo},

respectively. Here V(z; ε; τ; c; a)(aeR 4) is a solution of (3.2) subject to the

initial condition V(0; ε; τ, c; a) = a.

Let ^l±(ε; τ; c) by the linearized matrices of F in (3.2) at P±. Then,

A±(ε; τ; c) have the following properties.

LEMMA 3.1. For any fixed ceR, the matrices Λ±(ε; τ; c) have two negative
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eigenvalues, vf(ε τ c), vj(ε; τ; c) and two positive eigenvalues V3 (ε; τ; c),

V4 (ε; τ; c) when ε > 0 is sufficiently small More precisely, vf (ε; τ; c)(ί = 1,2,3,4)

are represented as follows:

vffe. c)-
cτ — c2τ2

(H-o(l)),

as ε|0,
defined similarly.

f* =fu(u±, v±). f*9 g± and g* are also

This lemma is the special case of Lemma 4.1, so we omit the proof.

REMARK 3.1. Note that the eigenvalues of A±(ε; τ; c) are classified into

two cases: vf (ε; τ; c) < 0 < V3 (ε; τ; c) are of the order 0(1) and vf(ε; τ; c) < 0

< v|(ε; τ; c) are of the order 0(l/ε) as ε JO.

We define the eigenvectors af (ε; τ; c) corresponding to the eigenvalues

vf(ε τ c) by

We

(3.3)

a?

note

±

(ε; τ

the

ic) =

-

following

1

relations:

HptΓa± a ± a* a ± 1 — I — I 0(ε) > 0

and

(3.4) det[ a i

+ ,a 2

+ ,a 3 -,a 4 -] =
Γ fu (c2τ2 - 4f-)1/2 + (c2τ2 - 4/u

+)

sl 'si' 2
+ O(ε)>0.

By virtue of Lemma 3.1, we know that linearly independent solutions of the
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linearized equations

dV
— = A±(β; τ; c)V

are given by

Qf (z; ε; τ; c) = e*?*™» aftβ; τ; c) (i = 1,2,3,4)

and satisfy

QfCz ε τ c) • 0 as ^ .
(z • - oo (i = 3,4).

According to the definitions of S*tfC, solutions V±(z; ε; τ; c) of (3.2) lie on S£ttC if
and only if these satisfy

(3.5) V±(z; ε; τ; c) ^ Σ?=i αf Qf (z; ε; τ; c) as z • + oo,

where αf (i = 1,2) are some constants. Here a(z) ~ 5(z) as z -> + oo means that
{a(z) - b(z)}/{ || a(z) \\ + || b(z)\\} -• 0 as z -• + oo. Similarly, solutions
V±(z; ε; τ; c) of (3.2) lie on l/£t§c if and only if

(3.6) V±(z; ε; τ; c) ^ Σf= 3 αf Qf (z; ε; τ; c) as z , - oo,

for some constants af(i' = 3,4). These conditions (3.5) and (3.6) imply that S£τ§c

are two-dimensional manifolds which are tangent to af and a j , and l/*τ>c are

two-dimensional manifolds which are tangent to a 3 and a£. That is, these

manifolds pass through the stationary points P ± , and their tangent spaces TS*τc

and TU*ttC at the points V = P± are spanned by the vectors {af, a£} and

{33, a^}, respectively. In this paper, we fix orientations to Se%fC and l/*tfC by

regarding the ordered pairs ( a ^ a j ) and ( a ^ a ^ ) of the basis vectors,

respectively, as positively oriented basis of their tangent spaces TS*τc and 7T/*t>c

at the stationary points P±. Note that the conditions (3.3)± determine a

relationship between the orientations of the two manifolds S*ttC and C/*TfC.

3.2. Positively oriented basis of tangent spaces of stable and unstable
manifolds along the heteroclinic orbit

Let us consider the dynamical system (3.2) when c = c(ε; τ):

(3.7) ^ = F(V; ε; τ; c(ε; τ)).

Recalling that i^(z; ε; τ) is the heteroclinic solution of (3.7) connecting P_ to

P + , we find that the stable manifold S+τ ( = Sε"^c(ε;τ)) and the unstable manifold

U~τ ( = U-τMε;τ)) of (3.7) satisfy the condition SttτnU~τ Φ 0 That is, γ(ε; τ)

ϊ
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In order to study behavior of the flow of (3.7) along the heteroclinic orbit

y(ε; τ), we consider the following linearized equation of (3.7) with respect to

z; β; τ):

(3.8) J = A(z; ε; τ)V,

dF
where A(z; ε; τ) = — (V; ε; τ; c(ε; τ)) |y = ^ ( z ; ε ; τ ) . Noting that

A(z; ε; τ) • A±(ε; τ; c(ε; τ)) as z • ± oo,

we know that the equation (3.8) has just two linearly independent solutions

\i(z; ε; τ)(i = 1,2) which satisfy

Vf(z; ε; τ) • 0 as z > + oo (i = 1,2)

and just two linearly independent solutions Vf(z; ε; τ)(i = 3,4) which satisfy

Vf(z; ε; τ) •O as z • — oo (i = 3,4).

This implies that {Vx(z; ε; τ), V2(z; ε; τ)} and {V3(z; ε; τ), V4(z; ε; τ)} can be

regarded as basis vectors of TzS+τ and TzU~τ for all zeR,

respectively. TzS+t(resp. TzU~τ) stands for the tangent space of S+τ (resp. U~τ)

at the point i^(z; ε; τ)eS+τnU~τ.

Let us normalize the solutions Vt(z; ε; τ)(i = 1,2,3,4) of (3.8) by assuming,

without loss of generality, the condition

(3 9) V (z- ε τ) ~ ί Q i + ( Z ; β ; T ; Φ ; τ ) ) ^ z — . + co (i = 1,2)
( } Λ ' ' ' " IQΓ (z; ε; τ; c(ε τ)) a s z - , - 0 0 (i = 3,4).

When this condition is satisfied, the ordered pair (Vl5 V2) can be regarded as a

positively oriented basis of TzS+τ for each zeR because its limit (Q^, Q "̂) as z

-> + 00 is a positively oriented basis of TS*τ at V = P+. Similarly, the ordered

pair (V3, V4) can be regarded as a positively oriented basis of TzU~τ for each

zGR. Therefore, the positively oriented basis of the tangent spaces of S*τ and

U~τ are determined at each point on the heteroclinic orbit y(ε; τ). Note that a

relationship between the orientations of the two manifolds S*τ and U~τ are

determined by the condition (3.4).

3.3. Index of heteroclinic orbit

In this subsection, we give the definition of the index of the heteroclinic

orbit along the work by Maginu [24], which can be seen as an extension of

Evans' results [6].

To study detailed properties of the manifolds S*τ and U~τ near the

heteroclinic orbit y(ε; τ), we introduce a locally transversal section Mz which
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passes through the point V = i^(z\ ε; τ).

DEFINITION 3.1. A locally transversal section Mz is an arbitrary three-

dimensional smooth and small disk which meets the orbit y(ε; τ) at a point V

= i^(z\ ε; τ) and is transversal to the flow of (3.7).

By the definition of Mz, the manifolds S*τ and U~τ are transversal to

Mz. Hence S*τΓ\Mz and U~τΓ\Mz are smooth one-dimensional manifolds, and

pass through the point i^(z; ε; τ)ey(ε; τ)nM z. Here we assume the following:

(Mz is a locally transversal section, and S+ τnM z and

\u~τΓ\Mz cross transversally to each other at V(z\ ε; τ).

Note that the above assumption (B) does not depend on the choice of a locally

transversal section Mz. Under the assumption (B), the heteroclinic orbit y(ε; τ)

cz S+τ n U~τ is isolated.

Let T2(z; ε; τ) and T4(z; ε; τ) be tangent vectors of S+ tnM 2 and U~τ(]Mz

at f (z; ε; τ), respectively, that is,

T2(z; ε; τ)e Tz(S+τ n Mz) and T4(z; ε; τ)e Tz(U~τ n Mz).

Assumption (B) guarantees that T2(z; ε; τ) and T4(z; ε; τ) are linearly

independent, that is, T2(z; ε; τ) and T4(z; ε; τ) span a two-dimensional subspace

in the three-dimensional tangent space TZMZ of the section Mz. On the other

di
hand, the tangent vector —— (z; ε; τ) of the orbit γ(ε; τ) is contained in both of

az

the tangent spaces Tz5ε^τ and TzU~τ9 but is not contained in the tangent space

TZMZ. Hence, defining the vectors Tx(z; ε; τ) and T3(z; ε; τ) by

(3.10) T^z; ε; τ) = — (z; ε; τ) = T3(z; ε; τ),

we may regard the ordered pairs (T1? T2) and (T3, T4) as basis of TzS*τ and

TzU~τ, respectively. Without loss of generality, we may choose T t (z; ε; τ)

(i = 1,2,3,4) such that the following relations are satisfied:

7 p τ)

where B^z; ε; τ) = {^(z; ε; τ); 1 < ij < 2} and B2{z; ε; τ) = {ft/z; ε; τ);

3 < i , 7 < 4 } are some orientation preserving linear transformations, that is,

detBi(z; ε; τ) > 0 and det£2(z; ε; τ) > 0 hold. Then, (T l 9 T2) and (T3, T4) also

become positively oriented basis of Tz5ε^τ and TzU~τ, respectively. Hereafter

we use these vectors as positively oriented basis in stead of V^i = 1,2,3,4).

Now let us consider the direction in which S£τ > cnMz crosses through

ί/~τ>cΠMz when c increases through c(ε; τ). First, we note that S+ τ c nM z and

U~TtCC\Mz depend smoothly on c because the locally transversal section Mz is
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transversal to S*t>c and C/ετc when \c — c(ε; τ)| is small. Moreover, when c

= c(ε; τ), these manifolds cross to each other at a point f ( z ; ε; τ)ey(ε; τ)nM z .

Let X(z; ε; τ; c) and Y(z; ε; τ; c) be arbitrary points on S£"|"tιCnM2 and

l/" r > cί)M z } respectively, satisfying

(3.12) X(z; ε; τ; c(ε; τ)) = T(z; e; τ) = Y(z; ε; τ; c(ε; τ))

(see Fig. 4). We define a vector R0(z; ε; τ)eTzMz by

X(z; ε; τ; c) - Y(z; ε; τ; c)
R0(z; ε; τ) = lim

c->c(ε,τ) c - c(ε; τ)

X(z; ε; τ; c)

Fig. 4: Phase portrait of (3.2) and the locally transversal section M z, and the

points X(z; ε; τ; c)eS?tttCΓ\Mz and Y(z; ε; τ; c)e ί/~τ>cΠMz.

Roughly speaking, this vector points to the direction in which S+ttC n Mz passes

through U~XtCΓ\Mz when c increases through c(ε; τ). Recall that T2(z; ε; τ) and

T4(z; ε; τ) span a two-dimensional subspace in the three-dimensional tangent

space TZMZ. Thus, we may say that S£ t f C nM z passes through U~TtCC\Mz with

non-zero velocity when c increases through c(ε; τ) if and only if the vector

R0(z; ε; τ) is not contained in this two-dimensional subspace. That is,

h(z; ε; τ) = det[R0(z; ε; τ), T2(z; ε; τ), T3(z; ε; τ), T4(z; ε; τ)] # 0.

We may say that h(z; ε; τ) represents the velocity at which S+ τ > cnM z passes

through U~rtCΓiMz when c increases through c(ε; τ).

REMARK 3.2. When h(z; ε; τ) = 0, we may say that S + t c n M z touches

U~X>CΓ\MZ tangentially to the direction of the vector R0(z; ε; τ) when c increases

through c(ε; τ).

The next lemma is very important for our purpose.

LEMMA 3.2 (Maginu [24]). The sign of h(z; ε; τ) does not depend on

zeR. Furthermore, the sign of h(z; ε; τ) does not depend on the choice of the

locally transversal section Mz9 the points X(z; ε; τ; c) and Y(z; ε; τ; c) in the
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definition of the vector R0{z; ε; τ), and the positively oriented basis (Ύl9 T2) and

(T3, T4) of the manifolds Sβ+ and U~τ at the point -T(z; ε; τ).

This lemma guarantees that the sign of h(z; ε; τ) can be regarded as a
geometrical characteristic of the heteroclinic orbit γ(ε; τ). Namely, we denote it
as

Ind[y(ε; τ)] = sign{/z(z; ε; τ)},

and we call it the index of the heteroclinic orbit y(ε; τ), where sign {x} is the

function defined by

sign{x} =

REMARK 3.3. Ind[y(ε; τ)] represents the direction in which S+ZfC passes

through U~TfC through the orbit y(ε; τ) when the parameter c increases through

c(ε; τ).

3.4. Relation between index and matching condition

As we have already seen in the preceding subsections, in order to calculate

the index of the heteroclinic orbit γ(ε; τ), we must construct the stable manifold

S*tfC and the unstable one l/~τ,c in the concrete. Though this is very difficult in

general, we shall show that it is possible for our method applying singular

perturbation techniques.

Recall that, in Section 2, we solved the problem (2.5) ± in each subinterval

R± in stead of the problem (2.1), (2.2) and (2.3) in the whole interval R. This

procedure is, in fact, identical with a procedure to construct parts of the stable

manifold S*ttC and the unstable one U~τ%c containing the heteroclinic orbit y(ε; τ)

when c = c(ε; τ). We shall state it more precisely. Fix a parameter c in some

neighborhood of c(ε; τ). We find that

; ε; τ; c, β) EE ί w + , ε ^ , v\ ^)(z; e; τ; c,

υ- < β <v +

is a part of the two-dimensional stable manifold S£t>c (which is parametrized by

z and β) containing the heteroclinic orbit y(ε; τ) when c = c(ε; τ). Similarly,

U~τ,c = {V"(z; ε; τ; c, β) E= T M " , ε ^ - , iΓ, ^A(z; ε; τ; c, β)eR4\

Z G R _ , U_ < β < v + }
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is a part of the two-dimensional unstable manifold ί/ε t c (which is parametrized

by z and β) containing the orbit y(ε; τ) when c = c(ε; τ). Here

(w*, ι?±)(z; ε; τ; c, β) are the solutions of (2.5)± (see (2.19)± and Lemma 2.6).

Let us choose a locally transversal section M 0 as follows:

M o ΞΞ {'(α, p, t;, - p(0; ε; - i?(0; ε; \q - q(0; ε; τ)| < ω},

where α is a fixed constant satisfying u(0; ε; τ) = α(see (2.3)) and ω is a small

positive constant. Clearly, this section M o is transversal to the flow of (3.7).

Next, we construct the ordered pairs (T l 5 T2) and (T3, T4) along the

heteroclinic orbit y(ε τ), which are basis of ΓzS+τ > c ( ε ; τ )(zeR+) and

Γzϊ/~τ>c(ε ;τ)(zeR_) respectively. For this purpose, we must prepare the

followings: First we consider approximate manifolds of the stable manifold S+tfC

and the unstable one U~XtC. The next lemma is very important.

LEMMA 3.3. Let z±(ε) = =F εlogε. Then the following assertions hold for

any ceR and βe[ι?_, v+]\

(i) lim V"(z"(ε); ε; τ; c, β) = \h-(β), 0, β9 (Vό)z(0; c, β))9

lim V*(z+(ε); ε; τ; c, β) = <(h+(β)9 0, β, (K0

+)z(0; c, β)).
ε|0

(ii) limVtt(z;ε;τ;c,iS)
ε|0

z; c9 β)9 0, V0-(z; c9 β)9 (F 0 ") z (z; c, β)) s V^(z; c, β)

on ze J"(ε) = ( — oo, z"(ε)]

h.{β) + Wo - τ ; c9β , - τ; c, /ϊ , ft (K0-)z(0; c, j8)

= V}(z; ε; τ; c, /?) on zeJ}(ε) = [z"(ε), 0]

l imV s (z;ε;τ;c, β)
ε|0

and

•(I/ί (z; c, /0, 0, K0

+(z; c, j8), (K 0

+) z(z; c, β)) = V^(z; c, j8)

Tfc+(jί) + ^ 0

+ f t τ; c, A (^ί)«fe τ; c, A β9 (F0

+)z(0; c, ft)

s V}(z; ε; τ; c, ft on ze J}(ε) = [0, z+(ε)]

uniformly in each subίnterval.
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By virtue of Theorem 2.2, the proof is easily shown, so we omit it.

Let us define a singular stable manifold SBtttC and a singular unstable

manifold UEtTtC by

S..τ.c Ξ {V (̂z; c, β)εR*\ze J*(ε), t;_ < /? < t> + }

U{V}(z; ε; τ; c, 0 ) e R 4 | z e J}(ε), t;_ < j8 < i>+}

and

Uε,τ,c = {Yu

s(z; c, £ ) e R 4 | z e Js"(ε), υ. < β < v+}

U{V}(z; ε; τ; c, β)eR4\zeJ}(ε), υ.<β< v+},

respectively. On the other hand, noting that

ΓV"(z; ε; τ; c(ε; τ), 0(ε; τ)),
ε; τ) =

Vs(z; ε; τ; c(ε; τ), jS(ε; τ)),
zeR_
zeR + ,

we find by Lemma 3.3 that the heteroclinic orbit γ(ε; τ) corresponding to

y(z\ ε; τ) can be approximated by the following singular heteroclinic orbit

for zeJ^(ε)

for ze J}(ε)

for ZG J?(ε)

for zeJ}(ε)

{ /\(β; τ): V = \s

s(z; c*(τ), β*(τ))

Γ2(ε; τ): V = V}(z; ε; τ; c (τ), β*(τ))

Γ3(ε; τ): V = VJ(z; c*(τ), /ί (τ))

Γ4(ε; τ): V = V}(z; ε; τ; c (τ), j8 (τ))

(see Fig. 5). Lemma 3.3 warrants that the basis vectors of (the tangent space of

the singuler stable manifold) TzSE>τtC*iτ) and (the tnagent space of the singular

unstable manifold) Tzc7βttfC (τ) along the singular heteroclinic orbit Γ(ε; τ)

become nice approximations to (T l 9 T2) and (T3, T 4), respectively. Then we

; τ)

Fig. 5: A schematic picture of the singular manifolds and the singular orbit.
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find that on Γ2(ε; τ)\{z+(ε)}(that is, zeJ}(ε)\{z+(ε)}) T\(z; ε; τ) is represented

as follows by the definition of Ί \ (see (3.10)):

(3.13) z; ε; τ) = — V}(z; ε; τ; c*(τ), jj (τ)) + O(ε)

tf)Λ τ; c*(τ), β*(τ)\ + O(ε)

1

0(8)

0(8)

At z = z+(e)9 since TZSE>τ>c+(τ) is spanned by the both tangent spaces of the

manifolds {V}(z; ε; τ; c*(τ), jS*(τ))eR4 |ze J}(ε), v. < β < v + }, which is the fast

part, and {V*(z; c*(τ), ^*(τ))eR 4 |zG J*(ε), i;_ < β <v + }, which is the sfow part,

Tx(z+(ε); ε; τ) is represented as follows:

^z^ε); ε; τ) = ^ ); ε; τ; c (τ), j8 (τ))

y-V*(z+(ε); c (τ), /ϊ (τ)) + O(ε) as ε 10.
αz

Similarly to the case at which z = z+(ε), we can construct Tx(z; ε; τ) on
Γx(ε; τ)(that is, ze J*(ε)). Namely, for any fixed ze J^(ε) when we define β(z; τ)
by VQ(Z; c*(τ), ^*(τ)), T^z; ε; τ) is represented as follows:

(3.14)
d Ί

5z"

— \s

s(z; c*(τ),β*(τ)) + O(ε)
az

as ε 10.

Note that β(z; τ) -> v+ as z -• + oo. Using the same techniques as those in De

Villiers [1: Lemma 4.1], we obtain

(3.15) Ί\(z; ε; τ) o, { - dtf + O(l)}e*ΐ*'&ϊ + ψ^i +

as z -h αo,

where vf

+ = v^(ε; τ; c*(τ)), af

+ = a f

+(ε; τ; c*(τ)) and ^£ are some positive

constants (ί = 1,2). By the same ways as above, we have
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(3.16) T3(z;ε;τ) = -

; c*(τ), β*(τ)) + O(β)

O(ε)

O(ε)

for zeJ}(ε)\{z~(ε)} and

(3.17) T 3 (z;ε;τ):

a s z • — oo,

where vf~ = vf~(ε; τ; c*(τ)), af~ = a£~(ε; τ; c*(τ)) and dt are some positive
constants (i = 3,4).

Put

— w + (z;ε;τ; φ ; τ), β(ε; τ))
dβ

T2(z; ε; τ) = -

~d~βV+(z;ε;τ; c(ε; τ), j8(ε; τ))

a dv +

^p dz

( z e R + )

and

T4(z; ε; τ) =

— u (z ε τ; c(ε; τ), j8(ε; τ))

op αz

— i? (z ε τ; φ ; τ), β(ε; τ))
dβ

•^~Ί-(z'>ε;τ; Φ ; τ)> ^ ( ε ; τ )
op ΛZ

(Z6R_),

Similarly to the cases of Ύ1 and T3, we obtain the following results:
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(3.18) T2(z; ε; t) =

forzeJ}(ε)\{z+(ε)},

( 3 1 9 )

0

-τ; τ; c*(τ), β*{τ) ) + 0(ε)

- 1 + 0(ε)

+ < -d, <^- 0(ε) >evl &2 as z > + oo,

(3.20) T4(z; ε; τ) =

for zeJ}(ε)\{z"(ε)}, and

(3.21) T4(z; ε; τ) * { - d3 ^

0

)• τ; c*(τ), )S*(τ) J + O(ε)

1 + O(ε)

c*(τ), r W ) + O(ε)

0(e)

— oo.

From the above formula, it obviously follows that

T2(0; ε; τ)eT0(S+τnMo) and T4(0; ε; τ)eΓ 0 ( l/-nM 0 ) .

Furthermore, by the relations

(3.22) 4 φ o ( ^ C*W' 0*W)

; τ; c*(τ), /?*(τ)) - 4 ^ o + ) ί ( 0 ; τ; c*(τ), β*{τ)) > 0
op

and
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(3.23)
δ ,

dβ

= Jβ(yoΊΛ0; c*(τ), β*(τ)) - ^ ( ; c*(τ), β*(τ)) > 0

(see (2.9) and (2.14)), we find that T 2 (0 ; ε; τ) and T 4 (0; ε; τ) are linearly

independent on T0M0. These results imply that Assumption (B) in Subsection

3.3 holds for z = 0.

Let us show that the ordered pairs ( T l 9 T 2 ) and (T 3 , T 4 ) which we now

constructed become positively oriented basis of T 0 S+ τ c ( ε ; τ ) and T o C7 ~ t>c(ε;τ) when

z = 0, respectively. Using the results (3.15), (3.17), (3.19) and (3.21), we have

ΓTiίz β τΠ Γ^ β

LT2(z;ε;τ)J L ^ ' «2

+

and

ΓT3(z;β;τ)Ί

Lτ4(z;e;τ)J~
for sufficiently small ε > 0, where

Γ - dJt + 0(1)

B+ =

as z

as z

Ju

0 0

— 00

s:
ru+ (W0

+UO)
O(ε) - ^

and

B~ =

+ 0(1)

7." o(β) -Ji=
fu (Wo)iΦ)

Comparing the above results with (3.11), we find that

B x (z; ε; τ) > B+ as z • + oo and

B2(z; ε; τ) > B~ as z • — CXD,

from which we obtain

fv K V}

O(β)

^ + oo; ε; τ) = detB+ = d^ j+

and
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detB2( - oo ε; τ) = detB" =

for sufficiently small ε > 0. Noting that the sign of detB^z; ε; τ) and

det52(z; ε; τ) are definite for all zeR, we find that det/^O; ε; τ) > 0 and

det£2(O; ε; τ) > 0 hold, which implies that (T l 9 T2) and (T3, T4) are the

positively oriented basis of T0§+XtC(e;x) and Toΰ~τMε;τ) when z = 0, respectively.

Finally, we shall calculate the vector Ro(0; ε; τ). Since the index does not

depend on the choice of X(0; ε; τ; c ) e S + τ c n M 0 and Y(0; ε; τ; c)eU~τ>cΠMo, we

fix points X(0; ε; τ; c) and Y(0; ε; τ; c) as follows: First we determine a function

β(ε; τ; c) satisfying

(3.24) Ψ(ε; τ; c, β(ε; τ; c))

= - ^ " ( 0 ; ε; τ; c, β(ε; τ; c)) - ^-^ + (0; ε; τ; c, j5(ε; τ; c)) = 0,
αz αz

which is possible by virtue of Lemmas 2.1 and 2.6. Next, using the function

β(ε; τ; c), we define X and Y as

X(0; ε; τ; c) =

and

M + (0; ε; τ; c, /?(e; τ; c))

du +

ε-^-(0; ε; τ; c, ^(ε; τ; c))

ί;+(0; ε; τ; c, /?(C; τ; c))

dv +

——(0; ε; τ; c, j^(ε; τ; c))
αz

Γ u (0; ε; τ; c, )5(ε; τ; c))

(0; ε; τ; c, β(ε; τ; c))

); ε; τ; c, β(ε; τ; c))

β(ε; τ; c)

4 - ( 0 ; ε; τ; c, β(ε; τ; c))
αz

Y(0; ε; τ; c) =

ε
αz

ι;~(0; ε; τ; c, β(ε; τ; c))

dυ~
(0; ε; τ; c, β(ε; τ; c))αz

ε-^—(0; ε; τ; c, j8(ε; τ; c))
αz

«e; τ; c)

——(0; ε; τ; c, β{ε; τ; c))

respectively. From the definitions of X and Y, it follows that

X(0; ε; τ; c)eS+τ,cf)M0, Y(0; ε; τ; c)e Ό"tfC n M o ,

and

X(0; ε; τ; c(ε; τ)) = iΓ(0; ε; τ) = Y(0; ε; τ; φ ; τ)).

Therefore, we may calculate Ro(0; ε; τ) as follows:
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c - c(ε; τ)

- — Φ ( ε ; τ ; c, β(e; τ; c))

0

0

(see (2.20)).

Using the relations (3.16), (3.18), (3.20) and (3.25), we obtain

h(0; ε; τ) = det[Ro(0; ε; τ), T2(0; ε; τ), T3(0; ε; τ), T4(0; ε; τ)]

; τ; c*(τ), β*(τ)) + O(ε)} | - Φ ( ε ; τ; c(ε; τ), £(ε; τ))

ίΓ)«(0; τ; c*(τ), β*(τ)) + O(e)} {J(τ; c*(τ);

Note that (W0~)ξ(0; τ; c*(τ), j8*(τ)) > 0 (see Lemma 2.4). Then we obtain the
desired results.

THEOREM 3.1. Let y(ε; τ) be any heteroclinίc orbit of"(3.2). Then, the index
ofy(ε; τ) is identical to the sign of the Jacobian J(τ; c*(τ); β*(τ)) of the matching
condition, namely

(3.26) Ind[y(ε; τ)] = sign{J(τ; c*(τ); β*(τ))}.

4. Stability properties of traveling wave solutions

In Section 2, we have shown the existence of traveling wave solutions of

(2.1), (2.2) and (2.3). That is, there exist three solutions when τ is sufficiently

small and one when τ is sufficiently large. In Section 3, we calculated the index

of the heteroclinic orbit which corresponds in a one-to-one manner to the

traveling wave solution. That is, the index of the heteroclinic orbit is equal to

the sign of the Jacobian of the matching condition. Hereafter, we fix

(w, v)(z; ε; τ) as an arbitrary traveling wave solution of (2.1), (2.2) and

(2.3). Recently, we have solved stability problem of (M, V)(Z; ε; τ) by analyzing

the singular limit eigenvalue problem in [28]. In this section, without solving
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the eigenvalue problem, we show that the index is essential to determine the

stability of the traveling wave solution along the paper by Maginu [24].

4.1. Preliminaries for stability analysis

By the traveling coordinate system (z, t) = (x + cί, ί), (1.1) takes the form

(4.1) Urut = e>uz,-scru+nu,v) R +

[vt = vzz - cvz + g(u, v)

Then, the traveling wave solution (u, v)(z; ε; τ) is a stationary solution of

(4.1). A standard technique for determining stability is to use the linearized

criterion. The linearized eigenvalue problem at (M, V)(Z; ε; τ)(c = c(ε; τ)) is

given by

(4.2) &

where

2 d 2 , d ,
.2 onίc TW L fε fε

dzz dz

dz az

and (M, V)(Z; ε; τ; /l)e,BC(R) x BC(R). Here/^,/^, ^ and gε

v denote the partial

derivatives o f / a n d g evaluated at (M, V)(Z\ ε; τ). The operator j£?ε r with the

usual domain becomes a sectorial operator for ε > 0 and the spectral analysis of

(4.2) derives the nonlinear stability or instability (for instance, see Henry

[12]). Therefore our problem consists of the following two parts:

(i) Distribution of the essential spectrum.

(ii) Distribution of isolated eigenvalues.

For the problem (i), noting that E± are both stable constant solutions of

(4.1)(see assumptions (A-l), (A-3) and (A-4)), we can conclude the following

proposition.

PROPOSITION 4.1 (Nishiura et al [28]). For any τ > 0, there exists a

positive constant δ(τ) such that the essential spectrum of (4.2) satisfies

Re {essential spectrum of (4.2)} < — δ(τ)

for sufficiently small ε < 0.

Next, we consider the distribution of eigenvalues. The complex number λ

is called an eigenvalue of (4.2) if this equation has a nontrivial solution

(M, V)(Z; ε; τ; λ) belonging to BC(R) x BC(R). Since (u, v)(z; ε; τ) is a solution
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ίdu dv\
of (2.1), (2.2) and (2.3), — , — (z ε τ) satisfies the equation (4.2) when λ

\dz dz j

= 0. This implies that λ = 0 is an eigenvalue of (4.2), which corresponds to

translation invariance of the traveling wave solution.

The eigenvalue problem (4.2) can be written equivalently as

'/_ dΰ _ dv\
where V = V(z; ε; τ; λ) — u, ε—, v9 — (z; ε; τ; λ), A(z\ ε; τ) is the same

\ dz dz J

matrix defined by (3.8) and C(τ) is a constant matrix defined by

0 0 0 0

0 0 0

0 0 0

0

C(τ) =
τ

0

0 1 0 .

Since V(z; ε; τ)->P± as z.-> ± oo, V(z; ε; τ; A) obeys the following linearized

equations:

(4 4) ±

when z tends to ± oo, where ^ ± (ε ; τ; c) are the same matrices stated in Lemma

3.1. Let μt(ε;τ;λ)(i= 1,2,3,4), Re{/ιf} < Re{/4} < Re{^} < Re{μί}, de-

note eigenvalues of the matrices A±(ε; τ; c(ε; τ)) + λC(τ). Without loss of

generality, we may assume that μf (ε; τ; A) depend analytically on λ and satisfy

μf (ε; τ; 0) = vf (ε; τ; c(ε; τ)), where vf(ε; τ; c) are the eigenvalues of

^ ( ε τ c ) ^ 1,2,3,4).

LEMMA 4.1. There exists a positive constant d independent of ε and τ such

that

Re{μf (ε; τ; λ)} < Re{μ£(ε; τ; A)} < 0 <

a// λeCd = {AeC|Re{A} > - d).

J(ε; τ; A)} < Re{μί (ε; τ; λ)}

The proof will be stated in the appendix.

By virtue of Lemma 4.1 and (4.4)±, for any λeCd (4.3) has just two linearly

independent solutions Vf(z; ε; τ; λ)(i = 1,2), which satisfy

V£(z; ε; τ; A) • 0 as z • + oo (i = 1,2)

and just two linearly independent solutions Vf(z; ε; τ; A)(i = 3,4), which satisfy
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V,(z; ε; τ; λ) • 0 as z > - oo (i = 3,4).

On the other hand, the coefficient matrix of (4.3) depends analytically on λ and

coinsides with the coefficient matrix of (3.8) when λ = 0. Then we may assume,

without loss of generality, that V4(z; ε; τ; λ) depend analytically on λ and satisfy

V,(z; ε; τ; 0) = Vf(z; ε; τ)(i = 1,2,3,4),

where Vf(z; ε; τ) are the solutions of (3.8) normalized by the condition (3.9).

A nontrivial solution V(z; ε; τ; λ) of (4.3) corresponding to an eigenvalue λ

must satisfy

V(z; ε; τ; A) • 0 as • ± oo.

Hence V(z; ε; τ; A) can be written as

V(z; ε; τ; 2) = £?~i <χ, Vf(z; ε; τ; 2) = £f-3<Xi V,(z; ε; τ; A)

for some constants αf (i = 1,2,3,4). In other words, λ = λ0 is an eigenvalue of
(4.3) if and only if the solutions Vf(z; ε; τ; λ)(ί = 1,2,3,4) of (4.3) are not linearly
independent when λ = λ0.

Let G(z; ε; τ; λ) be a 4 x 4 matrix defined by

G(z; ε; τ; 2) EE [ V ^ Z ; ε; τ; A), V2(z; ε; τ; A), V3(z; ε; τ; λ)9 V4(z; ε; τ; A)].

Since G(z; ε; τ; λ) is a solution of the matrix differential equation

we easily see that

detG(z; ε; τ; λ) = a(z; ε; τ) detG(0; ε; τ; λ),

where α(z; ε; τ) = exp trace {A(ξ; ε; τ)}d<H > 0. Setting

(4.5)

we find that g(ε; τ; λ) is an analytic function of λeCd, and det G(z; ε; τ; λ) = 0

for all z e R if and only if g(ε; τ; λ) = 0. Thus, we obtain the next lemma.

LEMMA 4.2. For any λeCd, λ is an eigenvalue of (4.2) if and only if

g(ε; τ; λ) = 0

4.2. Relation between stability and index

From Proposition 4.1 and Lemma 4.2, it follows that stability of the

solution (w, v){z\ ε; τ) is given by examining the location of the roots of
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g{ε\ τ; A) = 0. In this subsection, we state the properties of g(ε; τ; A) with

respect to A. Since A = 0 is an eigenvalue of (4.2), the function g(ε; τ; A)

satisfies

(4.6) g(ε; τ; 0) = 0.

For sufficiently large |A|, we obtain the following lemma.

LEMMA 4.3. The relation g(ε; τ; A) φ 0 holds for any λeΩε = {AeC|Re{A}

> — d and ε\λ\ -> + oo as ε | 0 } . /« particular, g(ε; τ; A) > 0 /or <z«y r^α/ A

satisfying ελ —• + oo βi ε J, 0.

The proof is stated in the appendix.

Though the above results follow from the general theory, the distribution

of eigenvalues in Cd \ Ωε is not clarified without solving the singularly perturbed

eigenvalue problem (4.3). But the index stated in Section 3 gives important

information about stability.

LEMMA 4.4. s ignj^(ε; τ; 0) i = Ind[y(ε; τ)].

PROOF. Let us define functions Tf(z; ε; τ; λ)(i = 1,2,3,4) by

ί Σ / - i A ^ i ) ^ ; ) (
Tι(z; ε; τ; A) =

lΣ/«3 A ^ ; e; τ)V/z; ε; τ; A) (/ = 3,4),

where /?y(z; ε; τ) are the same functions appeared in (3.11). Note that

Bx = det{]8y(z; ε; τ); 1_ < i, j < 2} > 0 and B2 = det{j8y(z; ε; τ); 3 < i, < 4}

> 0. We find that Tf(z; ε; τ; λ)(i = 1,2,3,4) satisfy the following relations:

(4.7) ^T^μίz ε τJ f

T£(z; ε; τ; 0) = T,(z; ε; τ)(i = 1,2,3,4),

ίz • + o o ( i = l ,
as

(4.8) T x(z; ε; τ; 0) = — (z; ε; τ) = T3(z; ε; τ; 0).

According to the definition of g(ε; τ; λ), we obtain

(4.9) 0(ε;τ;A)

= B 0 det[ f x(0; ε; τ; A), T2(0; ε; τ; A), T3(0; ε; τ; A), T4(0; ε; τ; A)],

where Bo = ( 5 ^ 2 ) " x > 0. Differentiating (4.9) with respect to A at A = 0, we

find that
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(4.10) —g(ε; τ; 0)

O; ε; τ) - W3(0; ε; τ), T2(0; ε; τ), T3(0; ε; τ), T4(0; ε; T)],

holds for W,(z; ε; τ) = ̂ f ,(z; ε; τ; 0)(i = 1,3).

On the other hand, differentiating (4.7) with respect to λ at λ = 0, we have

and

Recall

where

(4.11)

and

dz

w,

W ^ ^ z ε τlW,

(χ;.;τ)

the definition of

X(z; ε; τ;

Ro(0; ε;

c) and

dz

X(z; ε

- .

the vector

τ) — lim
c-*c(ε;τ

Y(z; ε; τ; c

= F(X; ε; τ

, τ; c) •

+ C(τ) —
dz

as <

U —
Ro(0; ε;

X(0; ε; τ

) <

) satisfy

0 as

-+ + oo (i =

-> — oo (i =

τ), that is,

c) - Y(0; ε

: - c(ε; τ)

z • + oo

(i =

1)

3).

t;

1,3)

c)

(4.12)

— Y = F(Y;ε;τ;c)

; β; τ; c) 0 as z - oo,

respectively. Since X(z; ε; τ; c) and Y(z; ε; τ; c) are smooth with respect c,
differentiating (4.11) and (4.12) with respect to c at c = c(ε, τ), we find that

and
Xc(z; ε; τ) = -=-X(z; ε; τ; c(ε; τ))

Yc(z; ε; τ) = — Y(z; ε; τ; cε; τ))

satisfy the following equations:

— Xc = Λ(z; ε; τ)Xc + C(τ)-—/V(z\ ε; τ)

X c (z; ε; τ) • 0 as z • + oo
(4.13)
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and

Y — A (<7- p r\ V 4- Γ*(r\ ^Ύr P r\
Z

Yc(z; ε; τ) • 0 as z • — oo,

respectively. A general solution Xc of (4.13) is represented as

Xc(z; ε; τ) = Wx(z; ε; τ) + £ ? = 1 KJ^Z; ε; τ)

because Wx is a particular solution of (4.13). Similarly, a general solution Yc of

(4.14) is represented as

Yc(z; ε; τ) = W3(z; ε; τ) + £ ? = 3 K ^ Z ; ε; τ).

Therefore Ro(0; ε; τ) is rewritten as follows:

d
Ro(0; ε; τ) = j^X(O; e; τ; c(e; τ)) - — Y(0; ε; τ; φ ; τ))

= Xc(0; ε; τ) - Yc(0; ε; τ)

= Wx(0; ε; τ) - W3(0; ε; τ) + £?- i ^T f (0; ε; τ) - £ f = 3 ^ ( 0 ; ε; τ).

Thus, substituting this into (4.10), we conclude that

| -0(ε ; τ; 0) = B o det[Ro(0; ε; τ), T2(0; ε; τ), T3(0; ε; τ), T4(0; ε; τ)]
oλ

= Bo-h(0;ε;τ).

That is, by virtue of the relation Bo > 0,

sign j — flf(e; τ; 0) i = sign{/ι(0; ε; τ)} = Ind[y(ε; τ)]. H

LEMMA 4.5. If -r-r̂ f(ε; τ; 0) Φ 0, Λ, = 0 is a simple eigenvalue of (4.2).
oλ

PROOF. It follows from (4.6) that λ = 0 is an eigenvalue of (4.2). If λ = 0

is not simple, there exists a bounded solution U(z; ε; τ) satisfying

^ - U = Λ(z; ε; τ)U + C ( τ ) - ^ ( z ; ε; τ).
dz dz

Namely, U(z; ε; τ) is represented as follows:

(4.15) U(z; ε; τ) = W^z; ε; τ) + £ ? - i K{tt(z\ ε; τ),

where /cf(i = 1,2,3,4) are appropriate constants. By the relations (4.8), (4.10)
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and (4.15), we obtain

^ 0 ( β ; τ; 0)
oλ

= Bo'detCW^O; e; τ) - W3(0; ε; τ), T2(0; ε; τ), T3(0; ε; τ), T4(0; ε; τ)] = 0,

which contradicts the assumption of Lemma 4.5. •

From Lemmas 4.3 and 4.4, it follows that

THEOREM 4.1 (instability). The traveling wave solution is unstable if the

index of the corresponding heteroclinic orbit is equal to — 1.

Combining this results with Theorem 3.1, we have

COROLLARY 4.1. If the sign of the Jacobian of the matching condition is

negative, the traveling wave solution constructed from this matching condition is

unstable.

On the other hand, when the index of the heteroclinic orbit is equal to 1,

we know that zero is a simple eigenvalue by virtue of Lemma 4.5. Thus we

obtain the following theorem for stability of the traveling wave solution.

THEOREM 4.2 (stability). If the index of the corresponding heteroclinic orbit

is equal to 1, it gives a necessary condition for the traveling wave solution to be

stable.

COROLLARY 4.2. When the sign of the Jacobian of the matching condition is

positive, it gives a necessary condition for the traveling wave solution to be stable.

5. Concluding remarks

In our previous paper [28], we have concluded by using the SLEP method

that the sign of the Jacobian of the matching condition corresponds in a one-to-

one manner to stability of the traveling wave solution. That is, the traveling

wave solution is stable (resp. unstable) if and only if the sign of the Jacobian is

positive (resp. nagative). But our results in Section 4 is incomplete for stability

because an information from the index only determine the distribution of

eigenvalues in some small neighborhood, say Jί, of the origin

(see Theorem 4.2).

In order to examine the distribution of eigenvalues in Cd \ {ΩE U JV*} ( = Ωr),

for any fixed λeΩr we must construct solutions Vf(z; ε; τ; λ)(i = 1,2,3,4)

satisfying

(5.1) ^ \ i = {A(z;ε;τ)
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(5.2)

and

(5.3)

Vt.(z; ε; τ; A) > 0 as z • + 0 0 (Ϊ = 1,2)

V^z; ε; τ; λ) • 0 as z • — 00 (Ϊ = 3,4).

And using these solutions V£ (i = 1,2,3,4), we must examine the location of

roots of g(ε; τ; λ) = 0 with respect to λ. Indeed, this is possible. In the following,

we shall give a brief sketch.

First, we consider the following singularly perturbed eigenvalue problem:

(5.4)
ε2uzz — εc(ε; τ)τuz + flu + flυ = ετλu

ϋzz - c(ε; τ)vz + gε

uu + gε

vv = λv

where λeΩr and (M, V)(Z; ε; τ; A)e^C(R) x BC(R)(see (4.2)). By Lemma 4.1,

(M, V)(Z; ε; τ; λ)(eBC(R) x J3C(R)) must satisfy the condition (u,v)(±oo; ε; τ; λ)

= (0, 0). Then we impose these boundary conditions

(5.5) u( ± oo ε; τ; A) = 0 and t>( ± oo; ε; τ; λ) = 0

on (5.4). The problem (5.4), (5.5) is the same singularly perturbed problem as

we have already treated in Section 2. Similarly, we divide the whole interval R

into two subintervals R± and consider the following problems:

(5.6)±

ε ψtz ~~ εc(ε\ ^)τψt ~^~fuΨ± ~^fvΦ± = εΐλφ*

Φtz — £(^J τ)Φt "Ί" GlιΨ± ~^~ GvΦ*^ == ^Ά"1"

φ ± ( ± 00) = 0, φ±(0) = a

φ±( ± 00) = 0, ιA±(0) = 6,

where a and b are arbitrary fixed constants. By using the same techniques as

we used in Section 2, we can construct the solutions (φ ± , φ±)(z; ε; τ; λ; a, b) of

(5.6)±. Put

+ (z; ε; τ; A; 1, 0)

Ui(z; ε; τ; /t) =

ε — φ + (z; ε; τ; A; 1, 0)
αz

ψ + (z;ε;τ; λ; 1,0)

dz
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U2(z; ε; τ; λ) =

U3(z; ε; τ; λ) =

ε — φ + (z;ε;τ;λ;0, 1)

^ ( z ε τ Λ O, 1)

--φ + (z;ε;τ;λ;0, 1)
αz

Γ<p~(z; ε; τ; A; 1, 0)

ε — φ (z; ε; τ; Λ; 1, 0)
az

φ~(z; ε; τ; λ; 1,0)

(zeR+),

and

U4(z; ε; τ; 2) =

φ (z; ε; τ; A; 0, 1)

d
ε — φ (z; ε; τ; A; 0, 1)

αz

ψ-(z;ε;τ;λ;O, 1)
(ZGR_).

We find that U f(z; ε; τ; A)(i = 1,2) are linearly independent solutions of (5.1),
(5.2) and U f(z; ε; τ; λ)(i = 3,4) are linearly independent solutions of (5.1), (5.3)
for all λeΩr. Then Vf(z; ε; τ; λ)(i = 1,2,3,4)(which were defined in Section 3)
are represented as

(5.7)

and

ΓV^z; β; t; λ)Ί ^ . .TU.fz; ε; τ; λ)l. _ .
_ = K^z; ε; τ; A) (zeR + )

LV2(z; ε; τ; λ)J LU2(z; ε; τ; A)J

-
l_V

Ϋ 3 ( z ; ε ; τ ;

-
V4(z; ε; τ;

= X 2 ( z , ε, τ,
z ; ε ; τ ;

z; ε; τ; A)

where ^ , (z; ε; τ; λ) are some linear transformations satisfying
det^ f(z; ε; τ; A) Φ Q(i = 1,2). Using these relations, g(ε; τ; λ) takes the follow-
ing form:

(5.9)

MO; ε; τ; A), U 2(0; ε; τ; A), U 3(0; ε; τ; A), U 4 (0; ε; τ; A)],
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where Kt = detKf(0; ε; τ; λ) φ 0 (i = 1,2) for all λeΩr. For any fixed λeΩr,
using the functions U; (i = 1,2,3,4) constructed above, we can conclude that
g(ε; τ; λ) Φ 0. That is, there is no eigenvalue of (4.2) in Ωr This procedure is
a new technique to solve the singularly perturbed eigenvalue problems such as
(5.4). Since it is very complicated, we shall state the detailed proof in the
forthcoming paper [14]. In a two-component system such as (1.1), when the
diffusion coefficient of v is zore (for example, nerve axon equations) or
degenerate as ε j 0 (for example, the Belousov-Zhabotinskii reaction equations,
see Fife [10] and Tyson et al [32]), it is difficult to apply the SLEP-
method. But our method is well applicable to such problems.

Appendix

Proof of Lemma 4.1.

The eigenvalues μf(ε; τ; λ)(j = 1,2,3,4) of the matrices Λ±(ε; τ; c(ε; τ))
+ λC(τ) are obtained as the roots of the characteristic polynomials

F±(μ; ε; τ; λ) = det[μ/ - A±(ε; τ; c(ε; τ)) - iC(τ)] = 0,

where / is the 4 x 4 unit matrix. By the definition of A± (ε; τ; c(ε; τ)) and C(τ),
the polynomials F±(μ; ε; τ; λ) can be written equivalently as

F±(μ; ε; τ; λ) = det[μ2D - μφ; τ)B + N± - AB],

where

01 N ± = p fΠ Γετ 01

Let us seek the eigenvalues μf (j = 1,2,3,4) by using the polynomials
F±{μ; ε; τ; λ) = 0 in stead of F±(μ; ε; τ; A) = 0.

First for any ωeR, we consider the following polynomials with respect
to σ

(A.l)± det[ - ω2D + N± - σB] = 0.

Solving (A.l)± directly, we find that

σί (ω; ε; τ) = — [ - (ετ + ε2)ω2 + (£* + eτgϊ)

+ [{(ετ - ε2)ω2 + (/? " ^θt)}2 + 4ετ/,f ^ί

and
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σ${ω ε; τ) = ^ [ - (ετ + ε2)ω2 + (ff + ετgί)

- [{(ετ - ε2)ω2 + (/* - ετ^)} 2 +

When ε is sufficiently small, σf(j= 1,2) are real numbers and have the
following estimates:

σf(ω; ε; τ) < - d = maxtff, gt) < 0 (j = 1,2)

for any ωeR. That is, (A.l)± have two negative roots σf(ω; ε; τ)(j = 1,2).
Next we consider the increment of arg{F±(μ; ε; τ; λ)} when the complex

number μ moves along the imaginary axis from — /oo to + /oo. Substituting
μ = *ω (ωeR) in F±(μ; ε; τ; λ), we obtain

F ' ^ ω ; ε; τ; A) = det[ - ω2/) + iV± - (A + /ωc(ε; τ))β]

= {λ + /ωc(ε; τ)-σf(ω; ε; τ)}{H/ωc(ε; τ)-σ2(ω; ε; τ)}.

For any λeCd = {AeC|ReA > - d}9 we put

/c^(ω; ε; τ; λ) = λ + /ωc(ε; τ) — σ^(ω; ε; τ)(j = 1,2).

By the negativity of σf(ω;ε;τ)(j=l,2), kf(j= 1,2) have the following
properties:

kf(ω;ε;τ;λ)*0 and - | < arg{/c/(ω; ε; τ; 2)} < | (j = 1,2)

for all ωeR.
On the other hand, from (A.l)± it follows that

FCύ

σ f ( ω ; ε ; τ ) = - — + 0(1)

and

σ${ω\ ε; τ ) = - ω2 + 0(1)

for sufficiently large | ω | . Hence kf(ω; ε; τ) satisfy

arg{/c/(ω; ε; τ; A)} • 0 as | ω | • oo (j = 1,2).

This implies that

Af = arg{/c/( + (X); ε; τ; 2)} - aτg{kf( - oo; ε; τ; A)} = 0 (7 = 1,2).

Therefore we obtain

Δ ± = arg{F±( + /oo; ε; τ; A)} - arg{F±( - /oo; ε; τ; λ)} = 0.

That is, the increment Δ ± of arg{F±(μ; ε; τ; A)} is equal to 0 when μ moves
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along the imaginary axis from — /oo to + /oo. Applying the argument

principle to P±(μ; ε; τ; λ) = 0, we find that the characteristic polynomials

F±(μ; ε; τ; λ) = 0 have just two roots μf (j = 1,2) in the left half plane and just

two roots μf (j = 3,4) in the right half plane. •

Proof of Lemma 4.3.

Here, we use the technique stated in Section 5. That is, we use the

relation (5.9). Though g(ε; τ; λ) in (5.9) is defined only for λeΩr, it is easily

seen that this relation

(A.2) g(ε;τ;λ) = (K1K2Γ
1

detCU^O; ε; τ; λ)9 U2(0; ε; τ; λ), U3(0; ε; τ; λ), U4(0; ε; τ; A)]

also holds for any λeCά.

First we determine the sign of (K1K2)~1, which is definite for all

λeCd. Let λ = 0 in (5.7) and (5.8), we have the following relations:

,A.3, ϊlf^K^MlfZ
|V 2 (z; ε; τ)J l_U2(z; ε; τ; 0)

and

4(z; ε; τ)J |_U4(z; β; τ; 0)

Since both Uf(z; ε; τ; 0) and Tf(z; ε; τ) satisfy the equation (3.8), comparing the

values of 1^(0; ε; τ; 0) in Section 5 with Tt(0; ε; τ) in Subsection 3.4

(i = 1,2,3,4), we find that

U2(z; ε; τ; 0) = - T 2 ( 2 ; ε; τ),

εT3(z; ε; τ)
Ϊ T , m (W0-)ξ(0; τ; c*(τ), j8 (τ)) + O(β)

and

U4(z; ε; τ; 0) = T4(z; ε; τ).

Using these relations and (3.15), (3.17), (3.19) and (3.21), we easily see that

ΓU^z ε τ O)!

|_U2(z; ε; τ; 0)J
as z • + oo

and
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ΓU3(2;ε;i;O)Ί r p ' » ' i3-

|_U4(z; ε; τ; 0)J U^' ίί
as z • — oo

holds, where

0(ε) f-fr\wf)\θ) + °{&2)

f+ d^vi
J V 2 20(ε) 0(ε)

and

fΰ

+ 0(ε2) 0(ε)

0(ε) fv
0(β)

On the other hand, by virtue of (3.9) we have

and
Lv 2 ( Z ;ε ;τ)J |_^Z S2

+ as z 0 0

V 3 ( Z ;ε;τ)
as z > — oo.

Substitute the above results into (A.3) and (A.4), and let z -• + oo and z-> — oo,

we obtain

/ = Kx( + oo; ε; τ; 0)B+ and I = K2(- oo; ε; τ; 0)B",

respectively, from which it follows that

detXi( + oo ε; τ; 0) < 0 and detK 2 ( - oo; ε; τ; 0) > 0.

Noting that the sign of detX^z; ε; τ; O)(resp. detX2(z; ε; τ; 0)) is definite for all

z e R + (resp. zeR_), we may conclude that

(A.5) (K1K2y
1 = (detK^O; ε; τ; A) detX 2(0; ε; τ; λ))'1 < 0.

Next we construct U f(z; ε; τ; λ)(i = 1,2,3,4) for any fixed λeΩε =

e|A| ~> oo as ε | 0 } . To do so, we consider the problems:

(A.6)±

, ε2φtz - εc(ε; τ)τφt + / > ± ^f!φ± = ετλφ±

ψtz - c(ε; τ)ψt + Λφ* + ̂ ε > ± = ty*

φ±( ± oo) = 0, φ±(0) = α

I ψ±(± oo) = 0, ψ±(O) = b
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(see (5.6)±). Since ε\λ\ -> + oo as εJO, there exists a real, positive and

continuous function ω(ε) such that εω(ε) -• + oo as ε j 0 and λ(ε) is represented

as

(A.7) λ(ε) = μ(ε)ω(ε),

where μ(ε) satisfies | μ ( 0 ) | # 0 (see Eckhaus [2: Lemma 1.1.1]). Using the
relation (A.7), we rewrite (A.6)± as

(A.8),

ω(ε)

1

Φl τ)
ω(ε)

fi
1 i

εω(ε)

fv

εω(ε)
>± = τμ(ε)(^

ω(ε)ω{ε)ΎZZ ω(ε) Ύz ω(ε) Y

9±( ± oo) = 0, φ^O) = α

^ ± ( ± oo) = 0, φ±(0) = 5.

By the transformation y — ω(ε)ί/2z, (A.8)± can be rewritten as the following

regularly perturbed problems:

φ±( ± oo) = 0, φ±(0) = a

{ ψ±( ± oo) = 0, ψ±(0) = b,

where ft=fAul 1 / 2 ; e ; τ ) , ol 1 / 2 ; ε ; τ l ) and ft, ψu, g°v are defined

similarly. In order to construct approximate solutions of (A.9)±, we consider

the following reduced problems:

(A.10)±

oo) = 0, ^ ( 0 ) =

Note that |μ(0)| Φ 0. We can obtain solutions of (A.10)± explicitly as follows:

f φ£(y; ε; τ; μ(0); α, b) = α exp[ T (τμ(0)/ε)J/2 y]

Using a standard technique of (regular) perturbation method, we can construct
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exact solutions (φ±,φ±)(y; ε τ; μ(ε); a, b) of (A.9)± satisfying

-<Po \\C(M±)
as ε | 0

as

Then, (φ±, ^ ± )(z ; ε; τ; Λ; α, &) = (φ ± , ι^±)(ω(ε)1/2z; ε; τ; μ(ε); α, b) are solutions
of (A.6)±. Therefore we obtain the following relations:

+ ( 0 ; e ; τ ; λ ; l , 0 )

U 2 (0; ε; τ; λ) =

U 3 (0; ε; τ; λ) =

and

U 4 (0; β; τ; A) =

• φ - ( 0 ; β ; τ ; A ; l , 0 )

εφ~(0; ε; τ; λ; 1, 0)

^ - ( 0 ; ε τ; A; 1,0)

. ^ - ( 0 ; ε τ; A; 1,0)

φ~(0; ε; τ; A; 0, 1)

εφ~(0;ε; τ; A; 0, 1)

^-(O ε τ A O, 1) 1 + o(l)

as ε 10. By virtue of (A.2), we have

(A.11) g(ε; τ; A) = ( K ^ ) - ^ - 4(τju(0)εω(ε))1/2 (μ(0)ω(ε))1/2 (l + o(l)}

2 Γ 1 (ετA(ε))1'2 A(ε)1'2 (1 + o(l)) φ 0

for sufficiently small ε. In particular, when A is real, (A. 11) implies that, by

(A.5), g(ε; τ; A) > 0 holds. This completes the proof. •
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