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1. Introduction

A variety of propagating phenomena for reaction-diffusion systems have
been investigated in physics, chemistry, biology and other fields. Among these
phenomena, there are traveling waves in bistable reaction media which
correspond to propagating transition from one stable state to the other. See
e.g. Ortoleva et al [29], [30], Fife[8], [9] and their references therein. These
waves are basically modeled by a two-component system of the form

{Bt“r = e2u,, + f(u, v)

1.1
( ) vt = vxx + g(u’ v)

with the nonlinearities of f and g in Fig. 1. It is shown that there are three
spatially constant steady states (E., Ey): two of them (E.) are stable, while one
(E,) is unstable. One simple but very substantial nonlinearities of f and g is the
Bonhoeffer-Van der Pol kinetics

g(u, v)=0

v

max

V‘

Vmin === - -~

f(u,v)=0

0

Fig. 1: Functional forms of f=0 and g =0 in (L.1).
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(1.2) {ﬂu, v)=u(l —wu—a)—v

gu, v) =u—yv

with positive constants a and y. The system (1.1) includes two physical
parameters ¢ and 1. et is the ratio of the reaction rates of u, v and ¢/t is the
ratio of the diffusion rates. Here we assume that one of the parameters ¢ is
small, so that there appear internal and/or boundary layers of width O(¢) in
u. For this reason, we call ¢ a layer parameter. When t = O(1) as ¢ 0, our
system (1.1) indicates that u diffuses much slower than v, while u reacts much
faster than v.

In the previous papers [13] and [16], we have studied the existence of
traveling wave solutions of (1.1) connecting E_ to E, by using singular
perturbation techniques. By the traveling coordinate z = x + ct, a traveling
wave solution with velocity ¢ corresponds to a solution of the following
equations with a parameter c:

&%u,, — ectu, + f(u, v) =0
,zeR
(1.3) v,, —cv, +gu, v) =0 z€

(, V)(£ ) =E,.

For the system (1.3), it is shown that there exist at least three solutions with a
suitable parameter ¢ when 7 is small, while there exists a unique solution when t©
is large (see [16] for the details). For the special nonlinearities of (1.2), Fig. 2
shows a global structure of traveling wave solutions with respect to teR. This
picture clearly shows the appearance of critical value t = t, such that there is
only one solution for 7, < 7, while there are three solutions for 0 <7 < 7,.

Fig. 2: Global bifurcation diagram of traveling wave solutions in (z, ¢)-plane.
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The stability of these traveling wave solutions can be studied by examining
the spectrum of the linearized operator corresponding to (1.3) at the concerned
solution (see Henry [12], for example):

¢ d? d 1 . .
T el ek
& =
€ d_z_ i+ &
9u iz Caz "9

For the distribution of eigenvalues, there are two different methods: One is an
analytical method of treating directly the eigenvalue problem of the linearized
operator & (see Nishiura [25], Nishiura et al [26], [27], [28], Ito [19] and
Sakamoto [31]), the other is an geometrical method of treating an equivalent
four-dimensional dynamical system with a parameter ¢, for which eigenvalues
can be found by using the geometrical properties of the orbit corresponding
to the traveling wave solution in the four-dimensional phase space
(see Evans [3], [4], [5], [6], Jones [20], Yanagida [33], Maginu [23], [24],
Ikeda et al [15], [17], [18] and Yanagida et al [34]).

In [28], we have already discussed the stability of traveling wave solutions
of (1.1) using the former method. In that place, we found that there are two
critical eigenvalues: One is zero which corresponds to translation invariance, the
other is real which essentially determines stability. The interesting point is that
the sign of the latter corresponds exactly to that of the Jacobian of the
matching condition (see 2.24)). That is, the sign of the Jacobian of the
matching condition gives essential information about stability property.

The latter method was firstly proposed by Evans [3], [4], [5], [6] to show
stability of traveling pulse solutions of generalized nerve axon equations which
include the FitzHugh-Nagumo (FHN) equations and the Hodgkin-Huxley (HH)
equations. He rewrites these as equivalent dynamical systems with velocity c,
and then defines the index (which takes one of the three values { + 1,0, — 1})
of the homoclinic orbit corresponding to a traveling pulse solution with velocity
c*, by the direction in which the one-dimensional unstable manifold crosses the
multi-dimensional stable one with respect to the unique resting state, when the
parameter c increases through c*. It is shown that when the index takes — 1,
the solution is unstable, while when the index takes 1, it gives a nesessary
condition for the solution to be stable. Using his method, Jones [20] and
Yanagida [33] proved that the fast traveling pulse solution of the FHN
equations is stable. Recently, Ikeda et al [17] and [18] have proved that the
fast traveling pulse solution of the HH equations is stable, while the slow one is
unstable. In Evans’ index theory, it is essential that the dimension of the
unstable manifold is equal to one. Maginu [24] extended Evans’ index theory
to a more general reaction-diffusion systems inciuding (1.1), that is, he extended
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the definition of the index to the crossing manner of the multi-dimensional
stable manifold and the multi-dimensional unstable one when the parameter ¢
increases through c*, and showed that when the index takes — 1, the traveling
pulse solution is unstable.

Lately, by using a distance-like function of the stable and unstable
manifolds (which is different from the index theory), Kokubu et al [21] have
shown that stability of traveling wave solutions is determined by a direction of
strictly crossing of the stable and unstable manifolds with respect to c.

The aim of this paper is to calculate the index of the corresponding
heteroclinic orbit, which gives essential information about stability
property.” The index can be determined as a by-product when we construct a
traveling wave solution by using singular perturbation techniques. We apply it
to the results obtained by Maginu [24] and show stability of traveling wave
solutions connecting E_ to E,. We shall state this more precisely. The
system (1.3) can be rewritten as an equivalent four-dimensional dynamical
system

iV=F(V; & T; C), zeR
(1.4) ( dz
V(% 0)=P.
t du dv . .
for V= [u, aE, e (see (3.1), (3.2)). Here P, are stationary points of (1.4),

corresponding to E., in the four-dimensional phase space. (1.1) has a traveling
wave solution (u, v)(z; ¢; 7) connecting E_ to E, with velocity ¢ = c(e; 7) if and
du dv o

PP v, E)(z, e; 1) for
c=c(e; ). Let y(e; ) is the heteroclinic orbit of (1.4) corresponding to
¥(z; €; 7). In the four-dimensional phase space, it holds that

t
only if (1.4) has a heteroclinic solution ¥7(z; ¢; 1) = <u, €

y(E 1) = St nU .

for ¢ = c(e; 7), where S, is the two-dimensional stable manifold of (1.4) with
respect to P, and U_, . is the two-dimensional unstable manifold of (1.4) with
respect to P_. In this situation, we can define the index of the heteroclinic
orbit y(e; 1), say Ind[y(e; 7)], by the direction in which the stable manifold S, .
passes through the unstable one U, . when the parameter ¢ increases through
c(e; 7). In general, the calculation of the index is rather difficult. However
there are a few examples in nerve axon equations, for which one can calculate
the index (see Langer [22] and Ikeda et al [17], [18]).

An outline of this paper is as follows: in Section 2 we give a brief summary
of the existence results of traveling wave solutions studied in [13], [16]; in
Section 3 we define the index of the heteroclinic orbit which corresponds to the

traveling wave solution of (1.1), and show that the index corresponds in a one-
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to-one manner to the sign of the Jacobian of the matching condition
(see Theorem 3.1); in Section 4, we conclude that when Ind[y(e; 7)] = — 1, the
traveling wave solution corresponding to y(g; t) is unstable, while Ind[y(e; 7)]
=1 is a necessary condition to be stable; finally in Section 5, we remark that
under the additional discussion to the condition Ind[y(e; 7)] = 1, the traveling
wave solution is stable.

We first impose the following assumptions on the nonlinearities of f and g
(see Fig. 1):

(A-1) f=0 is S-shaped and consists of three branches u = h_(v), hy(v) and
h,()(h_(v) < ho(v) < h,(v)), while g = O intersects each branch at once.
That is, there is only one intersection point on each branch u = h.(v).
We denote these points by (us, v.)(v_ < v,), respectively. The signs of
f and g are both negative in the upper region of the curves f=0 and
g=0

min? Umax) s

h+ (v)
(A-2) F(v) =f f(u, v) du has a unique isolated zero at v*e(v

h-(v)
(A-3) Sulhs(v),v) <0 for velv_, v,],
gh_(v), v) <0< g(hy(v), v) for ve(v_, vy)

and

ig(hi(v), ) <0 at v =v.;
dv

(A-4) f(u,v)<0 for (u, v)e{(u, V)Ih_-V)<u<h,(v), v <v<v,},
guu,v)>0 and g, u,v)<0 at (u, v) = (U, V).

Throughout this paper, we shall use the following function spaces. Let I
=R_, R, or R, ¢ and u be positive numbers, and n be an integer. Let

e“""(ai)iu(x) < + oo},
dx

X,o = {ue C'(D| |lu ”x;:a(l) = Z:‘= 1 sxlg)

Xn () = {ue Xt (D|u(0) = 0},
X,.Ry)=X2,[R.) x X2,(Ry),

BC(R) = {the set of the bounded and uniformly continuous functions
defined on R}.

Acknowledgments. 1 am very grateful to Professor M. Mimura for his
continuous encouragement and his inspiring conversation with me throughout
the course of this work.
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2. Construction of traveling wave solutions

In this section, we give a short summary of the existence results of traveling
wave solutions studied in the previous paper [16]. Introducing the traveling
coordinate z = x + ct, we find that a traveling wave solution with velocity c
satisfies the following equations

2 —_ =
2.1) eu,, —ectu, + f(u, v) =0 _zeR
U, — CU, + g(u: U) =0
with boundary conditions
(2.2) u( £ 00) =uy, v( £ 0©) = vy,

where 0 < ¢ « 1. Since any solution of (2.1) has translation invariance, we can
normalize u by

23) u(0) = o,

where o is arbitrarily fixed in some interval (see Subsection 2.2). Moreover we
put

24) v(0) = Be(v_, vy).

B will be determined later.

First, we shall separate the whole interval R into two subintervals, say R_
and R,, and consider the following boundary value problem on each
subinterval:

e2(u*),, — ect(u*), + f(u*, v*) =0
(Ui)zz - C(vi)z + g(ui, Ui) =0
u*( £ 0) = uy, u*(0) =«

v*( £ 00) = vy, v*(0) = B.

,zeR,
(2.5)+

In Subsection 2.1, we construct outer solutions which approximate (2.5). in the
outside of a boundary layer region. In Subsection 2.2, we construct inner
solutions which approximate (2.5). in a boundary layer region. Second in
Subsection 2.3, using these approximate solutions we construct singular limit
traveling wave solutions of (2.1), (22) and (2.3), which give important
information to construct exact solutions. Finally, in Subsection 2.4, we obtain
an exact solution (u, v)(z; ¢; 7) of (2.1), (2.2) and (2.3) for an appropriate ¢
= c(e; 7).

2.1. Outer solutions

By putting formally ¢ = 0 in (2.5)., we consider the following problems:
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fw*, v*)=0
(vi)zz - C(Ui)z + g(ui, vi) = 0
v*( £ 0) = vy, v*(0) = B.

By (A-1), we replace f(u*, v*) =0 with u* = h.(v*).

,zeR
2.6). Ze8s

Thus, (2.6). can be

reduced to
(2 7) (Vi)zz - c(Vi)z + g(h:!:(Vi)’ Vi) = Oa ZGR:{:
T V*(+ o0)=v,, V*(0)=8B.
LeEMMA 2.1. For any fixed ceR and Be(v_, v,), there exist unique strictly

monotone increasing solutions V§(z; c, B)(zeRy) of (2.7): satisfying
|Voi(z§ c, p)— U:EIEX;f(c),l(R:t)’

where u(c) = min{u_(c), u+(c)} and p.(c) are positive roots of p% — cus

+ d—dv- ghi(vs), v:) =0. Moreover V§(z;c, B) are continuous with respect to
(c, p)eR x (v_, v,) in the X2, (R:)-topology and satisfy
old__ d . T
@8) sl O H -V G |>0
and
old__ d_ ... ]
29) 8| &z Vo (05¢, ) — Vo (0; ¢, ﬂ)_ > 0.

By this lemma, we directly obtain the following result which is useful for
the discussion in Subsection 2.3.

LEMMA 2.2. For any ceR, there uniquely exists B = B,(c)e C*(R) satisfying

dz

2 Ve 05 ¢, Be) —

z

V5 (05 ¢, B(c) = 0.

The function B,(c) is strictly monotone decreasing and converges to v. as c
Moreover for v*e(v_, v,),

— F o0, respectively.

FW*) S0 if and only if B,(0) = v*,
where #(f) = JW g(h_(v), v) dv + J‘w g(h.(v), v) dv.
v- B

Using the functions V§(z; ¢, B), we define U (z; ¢, B) by

Us(z; ¢, By = ho(V5 (25 ¢, B)),

zeR,.

We thus find that (U3, Vy)(z; ¢, B) satisfy (2.5). approximately in the outside of
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a neighborhood of z =0, however U3 (z; ¢, ) do not satisfy the boundary
conditions U5 (0; ¢, f) = o

2.2. Inner solutions

As being stated above, (Ug, V{)(z; ¢, ) do not satisfy (2.5). approximately
in a neighborhood of z=0. That is, solutions u* of (2.5). have steep
gradients. Therefore we must remedy this defect by supplementing (U3, V)
with inner solutions W in a neighborhood of z =0, so that (Us + Wy, V§)
will satisfy (2.5). approximately for all zeR..

For this purpose, we introduce the stretched variable & =z/e in a
neighborhood of z = 0. Substituting (U + W, V§) into (2.5). and putting ¢
= 0, we obtain the following problems:

(W5)er — ct(Wo )g + f(ha(B) + Wo', B) =0,  eR.
(2.10) W5 (0) = o — h.(B)

We: (& o) = 0,
where f and « are fixed constants satisfying fe(v_, v,) and ae(h_(B), h.(B)),
respectively. We first state the following lemma.

LemMma 23 (Fife et al [11]). For any fixed Be[v_,v,], consider the
following problem:

@2.11) {W:e:—CWg+f(W, B =0, ¢EeR

W £ o) = ha(B), W(O) = o

Then there exists ¢ = co(B)e C*([v_, v,]) such that (2.11) has a unique strictly
monotone increasing solution WA&; B) satisfying

[W(&; B) — he(B)le X2, 5,1 (RL),
where
0:(B) = [ F co(B) + ((co(B))* — 4£.(h:(B), B))'/*]/2.

Furthermore

coB) =0 if and only if S(B) 0.

LEMMA 2.4. For any fixed Bel[v_, v,], let c/(B; 1) = co(f)/t. Then there
exists 8o >0 such that for any fixed (¢, B)EA‘,O = {(&, B)l [é — ci(B; T + B
— Bl <60}, (2.10). have wunique strictly monotone increasing solutions
We' (& 75 &, B) satisfying

IWg (& 15 8 B)le X2, 1 (RL),
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where g.(t) = mf(gﬂ)e,,& o.(t; & p) and o:(t5¢, B)=[ F ct + ((c1)?
- 4fu(hi(ﬂ) PNY2]/2. Furthermore Wi (E; 5 ¢, B) are continuous with respect
to (¢, ﬂ)eAéo in the X2, 1 (R.)-topology and satisfy

2.12) wsmrcﬂinﬁr~—wwmqunxm=a
@.13) a[dwwrcwﬂﬂ) 4wy 0; W)ﬂq

. dé 0 T dé T, Cf T

2.14 o|d W (0; d W+ 0: z; : 0
Q1) | O el 0. B — 1 W <,qunxm]>

;ECI(:B ;1) is

strictly negative for fe[v_, v,]. Then there exists an inverse function of ¢
= ¢/(B; 1), say B = Pic;t), which is strictly decreasing for ce[c/v,; 1),

clv-; 7)].

REMARK 2.1. It follows from (2.12), (2.13) and (2.14) that

2.3. Singular limit solutions

In the preceding subsections, we constructed the lowest order approxim-
ations (U5 (z; ¢, B) + Wy (z/e; t; ¢, B), Vi (z; ¢, B)) of the problems (2.5).. It is
clear that these approximations are matched at z = 0 in the C%sense. But in
order that these become an approximation of (2.1), (2.2) and (2.3) uniformly in
R, their derivatives have to be matched at z = 0 in the C%sense. That is, we
impose the following conditions on (Wy, Vy):

d
5”’0 ©; 756, 8) =

Wo(c, B) = i%wcm—i%mcm

Dy(z; ¢, f) = Wo(OTCB)
(2.15)

By Lemmas 2.2 and 2.4, it turns out that the above relations are equivalent to
the conditions

(2.16) B =By
and

(2.17) ¢ = co(f)/.
By Remark 2.1, (2.17) is identical to

(2.18) B = Bilc; 7).

LEMMA 2.5. The curves (2.16) and (2.18)(or(2.17)) have at least one
intersection point for any > 0. In particular, when v*e(v_, v,) these have
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three intersection points for small t, while only one for large t and intersect
transversally at each point, and when v* € (Vyin, Umay) \ (V—, V), these have only
one for small or large T and intersect transversally (see Fig. 3).

B B
=~ T T - - - I N
N B O N D

—\ \

B B(S \’\ )

= fic; 1) \ \

©, v*); (©, v*)} :

B=Bic; 7) ,
____________ N P~ S NI U
C [

(a) (b)
Fig. 3: The graphs of the two curves: § = f,(c) and B = Bic; 7).
(a) For small 7, there are three intersection points.

(b) For large 7, there is a unique intersection point.

Let (c*(r), B*(r)) be an arbitrary intersection point of the curves (2.16) and
(2.18). Define

Us (z; ¢X(), B*(@)) + Wo (2/e; 15 ¢*(1), B*(1)),  zeR-

olz: &7) = {UJ (z; c*(1), B*()) + W5 (z/e; T; c*(1), B*(x)),  zeR,

and

Vo (z; ¢*(x), p*(x)),  zeR_

volzs &570) = {Vo* (z; c*(@), B*E),  zeR..

We call (1o, vo)(z; €; T) @ singular limit traveling wave solution of (2.1), (2.2) and
(2.3), which becomes the lowest order approximation uniformly in R. Also,
c*(7) is called the singular limit velocity. From Lemma 2.5, it directly follows
that

THEOREM 2.1. Suppose that (A-1) — (A-4) hold. Then, (2.1), (2.2) and (2.3)
has at least one singular limit traveling wave solution with the singular limit
velocity c*(t) for any © > 0.
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Moreover we see that the number of the singular limit traveling wave
solutions depends on t and the location of v*.

COROLLARY 2.1. Suppose that (A-1) — (A-4) hold. When v*e(v_,v,),
(2.1), (2.2) and (2.3) has three singular limit traveling wave solutions for small ©
and has only one for large . On the other hand, when v* € (Vyn, Vmax) \ (0—, V),
it has only one for small or large 7.

2.4. Traveling wave solutions for ¢ > 0

In this subsection, we fix t > 0 arbitrarily. Suppose that (c*(t), f*(t)) is an
arbitrary intersection point of the curves (2.16) and (2.18) at which these
intersect transversally. Let X5 = {(c, B)| |c — c*@)| +|B — B*(x)| < 6,} for
some constant 6, >0. For any fixed (c, f)e,, we seek exact solutions
(u*, v*) to (2.5): in the following forms:

{u*(Z; e 1,6 p)=Us(z ¢, )+ Wy (z/e5 15 ¢, B+ r*(z; 6,15 ¢, B)

(2.19), vi(z; 815 ¢, B) = ViE(z; ¢, B) + s:(z; & 15 ¢, B),

where t*(z; ¢; 1; ¢, B) = (r*, s*)(z; €; 1; ¢, B) are the remainders converging to 0
uniformly as £ 0. Applying the standard singular perturbation techniques, we
have the following lemma.

LEMMA 2.6. There are ¢, >0 and 6, > 0 such that for any ¢€(0, &;) and
(c; p)eZs,, there exist (u*, v*)(z; ¢ T; ¢, B)e)%p,e (R.) satisfying (2.5)., where p is
an arbitrarily fixed constant satisfying 0 < p < p(c*). Moreover the remainders
ot* ot*
t¥(z; €; 15 ¢, B), —a——(z; g 7; ¢, f) and ﬁ(z; €; T; ¢, f) are uniformly continuous
c

with respect to (g, ¢, f)e(0, ;) x X5, in the X e (Ry)-topology and satisfy

155 & 75 ¢, BIR,umay = 0(1)

t
“%(, g 156 P) “)?N(Ri) =o(1)

at*
== (s &0 Plg,w.) =o0(1)

op
as €0 uniformly in (c, p)eZs,.

Finally we construct a solution of (2.1), (2.2) and (2.3) in the whole interval
R, matching (u™, v7)(z; ¢; 1; ¢, B) and (u*, v*)(z; ¢; 1; ¢, ) at z =0 in the C!-
sense. For this purpose, we define two functions ® and ¥ by
— d - . pe o d + o pe .
;¢ B = sEu 0; & 1;¢, B)— sEu ©; e 1;¢, p)
(2.20) d d
¥ e p =0 0610 p)— L0 Gech)
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and determine ¢ and B as functions of ¢ such that
(2.21) O(e; 156, p))=0="Y(& 15 ¢ P)

hold. We call the relation (2.21) the matching condition. Noting that ® and ¥
are uniformly continuous in ¢ we can extend them continuously so as to be
defined for ¢ = 0. Setting ¢ =0, we can reduce (2.20) to

{Q(O; 75 ¢, f) = Do(7; ¢, B)
¥(0; 75 ¢, B) = ¥olc, B).
Recall that (c*(r), f*(r)) is an arbitrary intersection point of the curves (2.16)

and (2.18) at which these intersect transversally, or equivalently (c*(z), f*(7))
satisfies

(2.22)

(2.23) @uts €*(0), (D) = 0 = ¥o(e*(D), %)
and
(2249 3(e; e, BH) =
s €0, B0 5 0ol cH0). %)
det # 0.
5 Wole* ) BHE) (e, B0

We call J(t; c*(z), B*(t)) the Jacobian of the matching condition (2.21). Thus we
can apply the implicit function theorem [7: Theorem 4.3] to (2.21). That is,
there is ¢, > 0 such that there exist continuous functions c(e; t) and B(e; 7)
satisfying (2.21) for e€[0,e,) and lim, oc(e; ) = c*(r) and lim, , B(e; 1)
= B*(r). Then, we have the desired results.

THEOREM 2.2. Suppose that (A-1) — (A-4) hold and fix t arbitrarily such
that the curves (2.16) and (2.18) intersect transversally at (c*(t), f*(zr)). Then, for
any e€(0, ¢,) there exists a traveling wave solution (u,v)(z; &; 7)€ X2, (R)
x X2, (R) of the problem (2.1), (2.2) and (2.3), which satisfies

(-5 5 7) — uo(-5 & Dllxsm + 005 &5 2) = vo(*5 & Dy w — 0

as € 0. Furthermore the velocity c(g; t) converges to the singular limit velocity
c*(t) as ¢|0.

COROLLARY 2.2. Suppose that (A-1) — (A-4) hold. When v*¥e(v_,v,),
(2.1), (2.2) and (2.3) has three traveling wave solutions for small © and has only one
for large . On the other hand, when v* € (Vyin, Umax) \ (V—, U4), it has only one
for small or large .
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3. Geometrical characteristics of traveling wave solutions

First, we rewrite the problem (2.1) as an equivalent four-dimensional
dynamical system

du_p
dz ¢
dp _ct  fw )
dz ¢ €
3.1) , Z€R,
dv
dz q
d
T =cq— gl v)
du dv . .
where p = ed— and g = P For V ='(u, p, v, q), we simply write (3.1) as
yA
dv
. — =F(V; ¢ 1; 0).
(3.2) 1 (Vi & 150

Let (4, v)(z; ¢; 7) be an arbitrary traveling wave solution with velocity ¢ = c(g; 1)
! d d

of (2.1), (2.2) and (2.3). Then we find that ¥(z; ¢; 7) = <u, sa—li, , é)(z; )

z

is a solution of (3.2) when ¢ = c(¢; 7), which tends to P_ =*(u_, 0, v_,0) as z —

—o and P, =%u,,0,v,,0) as z— + oo, respectively. Namely, V

= ¥7(z; ¢; ©) corresponds to a heteroclinic orbit connecting P_ to P, say

y(g; 1), of (3.2) when ¢ = c(¢; 7) in the four-dimensional phase space.

3.1. Stable and unstable manifolds

We consider the stable manifolds S}, . and the unstable manifolds U}, . of
(3.2) with respect to the stationary points P,, which are defined by

St..={aeR*V(z; e 1;c;a) — P, as z — + 00}

&,T,C
and

+
UE,T,C

= {aeR*|V(z; ¢ 1; c; a) — P, as z — — o},

respectively. Here V(z; ¢; 7; c; a)(aeR*) is a solution of (3.2) subject to the
initial condition V(0; ¢; 7, c; a) = a.

Let A*(¢; t; ¢) by the linearized matrices of F in (3.2) at P,. Then,
A*(g; ; ¢) have the following properties.

LEmMMA 3.1. For any fixed ceR, the matrices A*(eg; t; ¢) have two negative
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eigenvalues, vi(e; 1;¢), vi(e;t;¢c) and two positive eigenvalues vi(e; t; c),
v; (e; t; ¢) when ¢ > 0 is sufficiently small. More precisely, vE(e; t; ¢)(i = 1,2,3,4)
are represented as follows:

ct — (c?t? — 4f*)1/?

Vi 1 0) = - (1 + o(1)),
(2 ADPEfEV2
w9 =Ty o),
2 ApE 12
vie T 0) = et ;D [14) 1 + o(1)),
viem o= THEE T o)

as €0, where D* = ffgF — ffg* and ff = f(us, vs). fE, g and g} are also
defined similarly.

This lemma is the special case of Lemma 4.1, so we omit the proof.

ReMARK 3.1. Note that the eigenvalues of A*(g; t; ¢) are classified into
two cases: v3 (¢g; T; ¢) < 0 < vi(g; 1; c) are of the order O(1) and vi(e; ;) <O
< vi(e; 1; ¢) are of the order O(1/e) as ¢ 0.

We define the eigenvectors aj(e; 7; ¢) corresponding to the eigenvalues
vi“(e; 7; ) by

&v;
at(e;1;0) = (i=1,234).
= g [LOEP —oviE + 5]
— V&g /L0 — ovif + 95 ]

We note the following relations:

(3:3)«
det[a},ay,a3,a;] = <7§>2-(02¢2 —4fE)2 (2 — 4D*/fE)2 4 0(e) > 0
and
(34)  det[a],a],a5,a;] =J{_ F (e*e? — 41, : (c*2* —4f)'"?
x 4D/ Y7+ 4D /1" +0(e)>0.

2
By virtue of Lemma 3.1, we know that linearly independent solutions of the



Stability properties of traveling wave solutions 601

linearized equations
dv
i A*(; t; )V

are given by
Qf(z; 6573 ¢) = € @™ ak(g; ;o) (i=1,2,3,4)
and satisfy

z— +0  (i=1,2)
z—> —0  (i=3,4).

Qi (z;e51;¢)— 0 as {

According to the definitions of S}, ., solutions V*(z; ¢; t; ¢) of (3.2) lie on S, . if
and only if these satisfy

(3.5) VE@z e 0) > Y af QF (z;6,15¢) as z— + oo,

where o (i = 1,2) are some constants. Here a(z) ~ b(z) as z - + oo means that
{a(z) — b(2)}/{lla@@)|| + IIb(z)||} >0 as z— + co. Similarly, solutions
V*(z; &; 7; ¢) of (3.2) lie on U, if and only if

(3.6) V(z; &5 15 0) > Yt 30 Qf (z; & 15 ) as z —> — o0,

for some constants «;* (i = 3,4). These conditions (3.5) and (3. 6) imply that S7_,
are two-dimensional manifolds which are tangent to aj and a3, and U}, are
two-dimensional manifolds which are tangent to a3 and aj. That is, these
manifolds pass through the stationary points P, and their tangent spaces TS;,
and TU;, . at the points V =P, are spanned by the vectors {a}, a5y} and
{a3, a;}, respectively. In this paper, we fix orientations to SF,, and U, by
regarding the ordered pairs (af, a;) and (a3, a;) of the basis vectors,
respectively, as positively oriented basis of their tangent spaces TS;, . and TU;, .
at the stationary points P,. Note that the conditions (3.3). determine a
relationship between the orientations of the two manifolds S;. . and U, ..

3.2. Positively oriented basis of tangent spaces of stable and unstable
manifolds along the heteroclinic orbit

Let us consider the dynamical system (3.2) when ¢ = c(e; 7):

3.7) %}ZI— =F(V; ¢; 1; c(e; 7).

Recalling that ¥7(z; ¢; ©) is the heteroclinic solution of (3.7) connecting P_

P, we find that the stable manifold S;, (= S, ...,) and the unstable manifold
U, (= U, ) Of (3.7) satisfy the condition S;,nU,, # &. That is, y(e; 1)

c ShnU,..
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In order to study behavior of the flow of (3.7) along the heteroclinic orbit
y(e; ©), we consider the following linearized equation of (3.7) with respect to
¥(z; &; T):

v = A(z; &; 1)V,

(3.8 ’r

JoF
where A(z;¢; 1) =-=(V; & 7; c(e; 1)V = ¥(z: &: 7). Noting that
v (z & 7)

A(z; &; 1) —> A*(e; 1; c(e; 1)) as z — =+ o0,

we know that the equation (3.8) has just two linearly independent solutions
Viz; ¢; 7)(i = 1,2) which satisfy

Viz;e;7)— 0 asz— 4+ 0 (i=1,2)
and just two linearly independent solutions V(z; &; 7)(i = 3,4) which satisfy
Viz; &; 1) —0 as z—> — oo (i =3,4).

This implies that {V,(z; &; 1), V,(z; &; 7)} and {Vs(z; &; 1), V4(z; &; 1)} can be
regarded as basis vectors of T,S and T, U, for all :zeR,
respectively. TS/ (resp. T,U, ) stands for the tangent space of S, (resp. U,},)
at the point ¥(z; &; 1)€S,,nU,,.

Let us normalize the solutions V(z; ¢; 7)(i = 1,2, 3,4) of (3.8) by assuming,
without loss of generality, the condition

Q/f (z; &; 1; c(g;7)) asz—> + 00 (i=12)
Q; (z; & 7; (7)) as z— — oo (i=3,4).

3.9 Viz; & 1) ~ {

When this condition is satisfied, the ordered pair (V,, V,) can be regarded as a
positively oriented basis of T,S;, for each zeR because its limit (Qf, Q5) as z
— + o0 is a positively oriented basis of TS, at V=P, . Similarly, the ordered
pair (V;, V,) can be regarded as a positively oriented basis of T,U_, for each
zeR. Therefore, the positively oriented basis of the tangent spaces of S., and
U, are determined at each point on the heteroclinic orbit y(e; 7). Note that a
relationship between the orientations of the two manifolds S;, and U_, are
determined by the condition (3.4).

3.3. Index of heteroclinic orbit

In this subsection, we give the definition of the index of the heteroclinic
orbit along the work by Maginu [24], which can be seen as an extension of
Evans’ results [6].

To study detailed properties of the manifolds S, and U,, near the
heteroclinic orbit y(e; 7), we introduce a locally transversal section M, which
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passes through the point V = ¥7(z; ¢; 1).

DErRNITION 3.1. A locally transversal section M, is an arbitrary three-
dimensional smooth and small disk which meets the orbit y(¢; 7) at a point V
= ¥7(z; ¢; 1) and is transversal to the flow of (3.7).

By the definition of M,, the manifolds S;, and U,, are transversal to
M,. Hence S;/.NnM, and U_,nM, are smooth one-dimensional manifolds, and
pass through the point ¥7(z; ¢; t)ey(e; )N M,. Here we assume the following:

®) M, is a locally transversal section, and S;,nM, and
U..NnM, cross transversally to each other at ¥(z; ¢; 7).

Note that the above assumption (B) does not depend on the choice of a locally
transversal section M,. Under the assumption (B), the heteroclinic orbit y(e; 7)
c S5.nU,, is isolated.

Let T,(z; ¢; 7) and T4(z; ¢; 7) be tangent vectors of S, .nM, and U, .NM,
at ¥7(z; ¢; 1), respectively, that is,

T,(z; & 1)e TS, M,) and T,(z; ¢ 1)e T(U, N M,).

Assumption (B) guarantees that T,(z;¢;7) and T,(z;¢; t) are linearly
independent, that is, T,(z; ¢; 7) and T,(z; ¢; ) span a two-dimensional subspace
in the three-dimensional tangent space T,M, of the section M,. On the other
av . . . .
hand, the tangent vector d—(z; ¢; 1) of the orbit y(e; 7) is contained in both of
z
the tangent spaces T,S., and T,U,,, but is not contained in the tangent space
T.M,. Hence, defining the vectors T,(z; ¢; ) and T;(z; ¢; t) by

v
(3.10) Ti(z; ¢ 1) = %Z—(z; g; 1) = Ts(z; ¢&; 1),

we may regard the ordered pairs (T, T,) and (T3, T,) as basis of T,S;, and
T,U, ., respectively. Without loss of generality, we may choose Tz; ¢; 1)
(i=1,2,3,4) such that the following relations are satisfied:

Z,z=1 ﬂij(Z; & T)Vj(Z; &; 1) (i=12)
Yi-3Biiz e DViz61)  (i=3,4),

where  By(z; ;1) = {Bi;(z; &, 1); 1 <i,j <2}  and B,(z; &; 1) = {Bi(z; &; 1);
3 <i,j <4} are some orientation preserving linear transformations, that is,
det By(z; €; ) > 0 and det B,(z; ¢; 1) > 0 hold. Then, (T,, T,) and (T3, T,) also
become positively oriented basis of TS, and T,U,,, respectively. Hereafter
we use these vectors as positively oriented basis in stead of V(i =1,2,3,4).
Now let us consider the direction in which S}, .nM, crosses through
U...NM, when c increases through c(e; 7). First, we note that S, .n M, and

&,7,C

U...NM, depend smoothly on c¢ because the locally transversal section M, is

(3.11) T(z; &;71) = {
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transversal to S;. . and U, when |c — c(¢; 7)| is small. Moreover, when ¢
= c(¢; 1), these manifolds cross to each other at a point ¥7(z; ¢; t)ey(e; )N M,,.

Let X(z; & 7;¢) and Y(z; & 7; ¢) be arbitrary points on S; .NM, and
U_..NM,, respectively, satisfying

(3.12) X(z; e t5¢(61)=7(z; 8, 1) = Y(2; € 15 c(g; 7))
(see Fig. 4). We define a vector Ry(z; ¢; 1)e T,M, by

X(z;e;1;¢) — Y(z; 8575 €)

Ry(z; ¢; 1) = lim

c—elerr) c—c(e 1)

Y(z; ¢; 1; )

X(z; &; 1; €)

Fig. 4: Phase portrait of (3.2) and the locally transversal section M,, and the
points X(z; &; 7; ¢)e S, .NM, and Y(z; & 1; )e U, N M,.

Roughly speaking, this vector points to the direction in which S, .n M, passes
through U,, N M, when c increases through c(e; 7). Recall that T,(z; ¢; 7) and
T,(z; ¢; t) span a two-dimensional subspace in the three-dimensional tangent
space T,M,. Thus, we may say that S;, .n M, passes through U, .nM, with
non-zero velocity when ¢ increases through c(e; 7) if and only if the vector
Ry(z; &; 7) is not contained in this two-dimensional subspace. That is,

h(z; &; 1) = det[Ry(z; &; 1), Ta(z; &; 1), T3(z; &5 1), Tylz; &; )] # 0.

We may say that h(z; ¢; ) represents the velocity at which S, .nM, passes

through U.,.NM, when c increases through c(e; 7).

REMARK 3.2. When h(z; ¢; 1) =0, we may say that S}, .NM, touches
U,...N M, tangentially to the direction of the vector Ry(z; &; ) when c increases
through c(e; 7).

The next lemma is very important for our purpose.

LemMma 3.2 (Maginu [24]). The sign of h(z; ¢; t) does not depend on
zeR. Furthermore, the sign of h(z; ¢; T) does not depend on the choice of the
locally transversal section M, the points X(z; ¢; t; c¢) and Y(z; &; T; ¢) in the
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definition of the vector R(z; ¢; 1), and the positively oriented basis (T,, T,) and
(T3, T4) of the manifolds S}, and U_, at the point ¥(z; ¢; 1).

This lemma guarantees that the sign of h(z;¢; t) can be regarded as a
geometrical characteristic of the heteroclinic orbit y(¢; t). Namely, we denote it
as

Ind[y(e; 7)] = sign{h(z; ¢; 1)},

and we call it the index of the heteroclinic orbit y(e; t), where sign {x} is the
function defined by

+1 ifx>0
sign{x} = 0 ifx=0
-1 if x<O.

REMARK 3.3. Ind[y(e; 7)] represents the direction in which S, . passes
through U, . through the orbit y(e; 7) when the parameter c increases through
c(e; 7).

3.4. Relation between index and matching condition

As we have already seen in the preceding subsections, in order to calculate
the index of the heteroclinic orbit y(g; t), we must construct the stable manifold
S..c and the unstable one U_, . in the concrete. Though this is very difficult in
general, we shall show that it is possible for our method applying singular
perturbation techniques.

Recall that, in Section 2, we solved the problem (2.5). in each subinterval

R. in stead of the problem (2.1), (2.2) and (2.3) in the whole interval R. This

procedure is, in fact, identical with a procedure to construct parts of the stable

manifold S;",. and the unstable one U, . containing the heteroclinic orbit y(g; 7)

when ¢ = c(g; t). We shall state it more precisely. Fix a parameter ¢ in some
neighborhood of c(g; t). We find that

du* dv*

t
Seee={V(z 65150, B) = <u+, e vt s

zeR,,v_<B<v,}

)(Z; & 7; ¢, P)eR?|

is a part of the two-dimensional stable manifold S/, .(which is parametrized by

z and f) containing the heteroclinic orbit y(g; ) when ¢ = c(e; t). Similarly,
- ! du” dv~
Uree = {Vi(z5 85750, p) = (u‘, e, v, L)(Z; &; 75 ¢, B)eR?|
” dz dz

zeR_,v_<f<v,}
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is a part of the two-dimensional unstable manifold U,_  (which is parametrized

by z and f) containing the orbit y(¢;t) when ¢ =c(g; 7). Here

(u*, v*)(z; ¢&; 1; ¢, B) are the solutions of (2.5). (see (2.19). and Lemma 2.6).
Let us choose a locally transversal section M, as follows:

M, = {{o p, v, 9)€R?*| |p — p(0; & 1)| + |v — v(0; & 7)| + |9 — q(0; &; 7)| < w},

where o is a fixed constant satisfying u(0; ¢; 7) = a(see (2.3)) and w is a small
positive constant. Clearly, this section M, is transversal to the flow of (3.7).

Next, we construct the ordered pairs (T,, T,) and (T;, T,) along the
heteroclinic orbit y(g;r), which are basis of sz‘gj,,c(e;,, (zeR,) and

Tzlj;,m;,,(zeR_) respectively. For this purpose, we must prepare the

followings: First we consider approximate manifolds of the stable manifold S':m

and the unstable one Ue‘,,,c. The next lemma is very important.
LEMMA 3.3. Let z*(¢) = F eloge. Then the following assertions hold for
any ceR and Bel[v_,v,]:

(i)  LUmV“z"(e); & 75 ¢, B) ="(h-(B), 0, B, (V5).(0; c, B)),

el0

im V*(z* (¢); &; 7; ¢, B) = (h+(B), O, B, (V5).(0; c, B)).

el0
() lLmV*(z; e 15 p)
el0

'(UO- (Z; [ ﬁ)’ 0’ VO_(Z; c, ﬁ)9 (VO_)z(Z; c, ﬂ)) = V:(Z, C, .B)

on zeJi(e) = (— o0, z7(¢)]

(h_(ﬂ) +Ws (g; 5, ﬁ), (Ws)e (g; %, B), B (V6).0; c, ﬂ))
= Vi(z; 815 ¢, B) on zedy(e) = [27(¢), O]

and

imV(z; ¢; 7; ¢, f)

el0
‘WUs (25 ¢, B), 0, V' (25 ¢, B), (V'):(z; ¢, B) = Vilz; ¢, B)

on zeJi(e) = [z¥(g), + )

<h+(ﬂ) + W3 <§ w e, ﬂ), (W) <§ T, ﬂ>, B (v)0; c, ﬁ))
=Viz; e 15¢, B) on zeJ5(e) = [0, z¥(g)]

uniformly in each subinterval.
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By virtue of Theorem 2.2, the proof is easily shown, so we omit it.
Let us define a singular stable manifold S,.. and a singular unstable
manifold ljm,c by

8,ee = (V22 ¢, DER*zEJ(e), v- < B <v,)
U{V3(z; & t; ¢, B)eR*|zeJ3(e), v < B <v,}
and
Oyee = {Vi(z; ¢, p)eR*|zeT4(e), v < f<v.}
U{V%(z; & 5 ¢, B)eR*|zeT(e), v- < B < v,},
respectively. On the other hand, noting that

V¥(z; ¢; 1; c(e; 1), Ple; 1)), zeR_

V(z; ;1) = {VS(Z; g; 1; c(e; 1), Be; 1), zeR,,

we find by Lemma 3.3 that the heteroclinic orbit y(e; ) corresponding to
¥'(z; ¢; 1) can be approximated by the following singular heteroclinic orbit

I(e; 1) = i1 Tie; o)

I'i(g; 1): V =Vi(z; c*(1), B*(1) for zeJi(e)
Iy(e; 1): V = Vi(z; &; 1; c*(1), B*(7)) for zeJ5(e)
I5(e; 1) V = Vi(z; c*(7), B*(1)) for zeJ¥(e)

Iy(e; 1): V= V(z; &5 7; c*(1), B*(7)) for zeJ%(e)

(see Fig. 5). Lemma 3.3 warrants that the basis vectors of (the tangent space of
the singuler stable manifold) nge,,,c,m and (the tnagent space of the singular
unstable manifold) T,f]e,m,m along the singular heteroclinic orbit I(e; 1)
become nice approximations to (T,, T,) and (T, T,), respectively. Then we

Fig. 5: A schematic picture of the singular manifolds and the singular orbit.
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find that on I',(; 7)\ {z*(¢)} (that is, ze J5(e) \ {z*(e)}) T,(z; &; ) is represented
as follows by the definition of T, (see (3.10)):

6.13 T 65 1) = Vi 65 % €0, 7)) + 06)

(W3)e ,T c*(@), ﬂ*(f)) 0(e)

w );{( T; c*(7), ﬁ*(f)>+0(8) :
O(e)
- O(e) .

M | -

At z = z*(g), since Tz§€_,,c,(,) is spanned by the both tangent spaces of the
manifolds {V5(z; &; 7; ¢*(r), B*(v)) eR*|z€ F5(e), v- < B < v,}, which is the fast
part, and {Vi(z; c*(7), B*(r))eR*|ze Ji(e), v_ < B <v.}, which is the slow part,
T,(z*(¢); ¢; 1) is represented as follows:

T, (z*(@); & 1) = o Vi(z7(e); &; 75 ¢*(1), B*(7))

t j—zvz(z+<e); (@), B*@) + 0)  as & 0.

Similarly to the case at which z=z%(¢), we can construct T,(z; s; 7) on

I'y(g; 7)(that is, ze J5(¢)). Namely, for any fixed ze Ji(¢) when we define B(z; 1)
by V5 (z; c*(x), B*(7)), T,(z; €; 7) is represented as follows:

(3.19) T,(z; ¢ 1) = —d—Vf(z & T; ¢*(1), B(z 7))
+ %Vj(z; c*(1),B*(7)) + O(e) as ¢]0.

Note that l;(z; t)—> v, as z— + oo. Using the same techniques as those in De
Villiers [1: Lemma 4.1], we obtain

(3.15) Ty(z; & 1) ~ { — d, 77 + O(1)} €% * a7 { jf"’ vy o+ O(s)}e";z-ﬁ;r

as z — + oo,

where ¥ = (e; 1; ¢*(r)), 4" =a/ (¢; 1; c*(r)) and d; are some positive
constants (i = 1,2). By the same ways as above, we have
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(W )e(z/e; T3 c*(x), B*(1)) + O(e)
(W )ee(z/; 75 c*(x), B*(x)) + O(e)
(3.16) Tiz; 1) =~
0()
O(e)

for zeJ%(e)\ {z7(¢)} and

(B.17) Ti(z; 6 1) ~ { —d, -j{L_-v; + 0(8)}ev .45 + {d, 95 + 0(1)}e%i a7

as z — — o0,

where ¥, =v; (g;7; c*(7)), 47 =a; (¢;7; c*(r)) and d; are some positive
constants (i = 3,4).

Put
o, ;
%u (z; &; 1; cle; 1), Be; 1)
6aﬂ dd (z; & 73 cle; 7), Ble; 7))
Ty(z; 851)= — (zeR})
b%v+(z &; 7; c(g; 1), B(e; 7))
i ai’ﬂdd+(z &5 T; c(e; 1), B(e; 1)
and
- 0
ﬁu ~(z; & 15 cle; 1), Ble; 1)
a(;dd_(z &; 1; c(e; 1), Ble; 1)
Tz 65 7) = FeR).
—%v (z; & 75 cle; 1), Bles 1)
;;}d: (z; € T; cle; 7), B(e; 7)) |

Similarly to the cases of T; and T;, we obtain the following results:
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0

L o (2
—ag W ):(; % ¢*(a), (r)) +06)
(3.18) Ty(z; ¢ 7) =
—140()

0
- @(VJ)Z(Z; c*(z), B*()) + O(e)

for zeJ5(e)\ {z*(¢)},

(3.19)  Ty(z; 1)~ {%~(:‘zjil(o) + O(e)}eﬁ*z-ﬁ;
+ { f" L1 + 0((9)}@72+ -aF as z — + ©
2 17 ©3).0 z ’
r 0

0
@(Wo—);é; 7; ¢*(1), B*(‘c)) + 0(g)
(3.20) T,(z; 6 1) =

14+ 0(e)
0
i %(I/O—)z(Z; c*(7), B*(r)) + O(e)
for zeJ4(e)\ {z"(¢)}, and
o fo V5 :
(B21) Tz 1) _{ YO 0(8)}e

fv . 8d4V4 Viz.5— —_— —
+{ fu W5 ):0) 0(8)}6 a, as z 0.

From the above formula, it obviously follows that
T,(0; &; Ve To(S;:nMo) and  T4(0; & 7)€ To(U, N M,).
Furthermore, by the relations

(3.22) @4’0(r c*(x), B*(1)

= S OF)05 3 ¢*6), 120 — 350005 5 €0, %) > O

and
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(3.23) ‘Po(C*(r) B*(x))

oB

B(Vo ):(0; ¢*(v), ﬂ*(r))__ﬂ(ll()+)z(0 c*(1), B*()) >0
(see (2.9) and (2.14)), we find that T,(0;¢;7) and T,0; ¢; t) are linearly
independent on ToM,. These results imply that Assumption (B) in Subsection
3.3 holds for z =0.
Let us show that the ordered pairs (T,, T,) and (T;, T,) which we now
constructed become positively oriented basis of TOSA;,,C(E;,) and Toﬁ; oce;y When
z =0, respectively. Using the results (3.15), (3.17), (3.19) and (3.21), we have

[T, (z; ¢; ‘L'):l ~B* ¥z a7

as z— + oo
| T,(z; &; 1) [ €745

and

Ts(z; & T):I B__e"52'§3‘
| Tz 67

e’ dy

for sufficiently small ¢ > 0, where

— d1\71+ + 0(1) dz'%‘ﬁ; + 0(e) ]
BT =
i edd} e,
w0 T we.o %9
and
—d, -fL:-ﬁ; +0() d, 77 +0(1) ]
B — u
fu_ dsvy fo ediVg
. : _Jv . 0
T e OO T e T OO

Comparing the above results with (3.11), we find that
B,(z; &, 1) — B* as z—— + o0 and
B,(z; ;1) —> B~ as z — — o,

from which we obtain

f,, 2

5 .0

detB,(+ o0; ¢; 1) =detB* =d,d, - +0(1)>0

and
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i - S Ve

detB,( — o0; &; 7) = detB diyd, = VoL.0

for sufficiently small ¢> 0. Noting that the sign of detB(z;e¢; 1) and

detB,(z; ¢; 1) are definite for all zeR, we find that detB,(0; ¢; t) >0 and

detB,(0; ¢; ) > 0 hold, which implies that (Tl, T,) and (T;, T,) are the

positively oriented basis of TOSetc(s . and ToU ..., when z = 0, respectively.

Finally, we shall calculate the vector R,(0; ¢; 7). Since the index does not

depend on the choice of X(0; ¢; t; c)e§;,,cho and Y(0; ¢; 7; ¢)€e ﬁ;mnMo, we

fix points X(0; ¢; t; ¢) and Y(0; ¢; ; ¢) as follows: First we determine a function
B(e; t; ) satisfying

+0(1)>0

(24 Y ;06 Bl 15 0)
— iv—(o. e T ﬁ(ﬁ ;) — i +(0. ‘T e ﬁ( ;1;¢) =0
_’dz s © ’cy > Ts dZv 5 €, T, C, & T, - Y

which is possible by virtue of Lemmas 2.1 and 2.6. Next, using the function
B(e; t; ¢), we define X and Y as

ut; e 156 Blest50) 1 [ o 1
+ du”
8@—(0; & 7; ¢, Ble; 5 ¢)) e (0; 65 7; ¢, BlE; T ©)
dz dz
X(0; &; 15 ¢) = =
v*(0; & 7; ¢, Be; 75 ) B(e; 5 ©)
d +
dL(o &7 ¢, Ble; 7; ©) =055 . Ble; 73 )
and
u (0;¢&1;¢, Ble;15¢)) - _ o
e (0; 6573 ¢, Ble; ; ) 2 (0; &5 7 ¢, Bles T3 )
dz dz
YO0;¢1;¢0) = = )
v7(0; ¢ 75 ¢, Ble; 5 ) B(e; t; ¢)
d (0 & 756 Ple; t50) | dsz(O; &; 15 ¢, Be; 5 ¢)

respectively. From the definitions of X and Y, it follows that
X(0; &; t; c)eS“cho, Y(O; &; 15 0)€ 0;,ch0,
and
X(0; &; 7; c(e; ) = ¥(0; &5 1) = Y(0; &; 7; cle; 7))-

Therefore, we may calculate Ry(0; ¢; 7) as follows:
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(325 R0 7) = lim 22859 Y0&w9

c-veleit) c—cle; 1)
= _;—CX(O; g T;¢) — ;—CY(O; & T; c):lc — oe; 1)
_ 0
~ 2 0 i ¢, fles 7 0)
dc
= o (see (2.20)).
L 0

Using the relations (3.16), (3.18), (3.20) and (3.25), we obtain
h(0; &; 7) = det[Ro(0; &; 1), T2(0; &; 1), T3(0; €; 1), T4(0; &; 7)]

1
= ;{(VVO_)g(O; 7; ¢¥(1), B*(1)) + O(e)} ':—cq)(ﬁ; T; ¢(&; 1), Ble; 7))

x {% Wo(cH(0), BH(0)) + O(s)}

1
= {505 75 ¢*(1), B*(D) + 0} {I(z; ¢*(x); B*(x) + O(e)}.

Note that (W5 ):(0; 1; c*(z), f*(r)) > O (see Lemma 2.4). Then we obtain the
desired results.

THEOREM 3.1. Let y(e; ©) be any heteroclinic orbit of (3.2). Then, the index
of y(e; 1) is identical to the sign of the Jacobian J(z; c*(t); B*(z)) of the matching
condition, namely

(3.26) Ind[y(e; 7)] = sign{J(z; c*(z); B*(z))}.

4. Stability properties of traveling wave solutions

In Section 2, we have shown the existence of traveling wave solutions of
(2.1), (2.2) and (2.3). That is, there exist three solutions when 7 is sufficiently
small and one when 7 is sufficiently large. In Section 3, we calculated the index
of the heteroclinic orbit which corresponds in a one-to-one manner to the
traveling wave solution. That is, the index of the heteroclinic orbit is equal to
the sign of the Jacobian of the matching condition. Hereafter, we fix
(u, v)(z; &; T) as an arbitrary traveling wave solution of (2.1), (2.2) and
(2.3). Recently, we have solved stability problem of (u, v)(z; ¢; T) by analyzing
the singular limit eigenvalue problem in [28]. In this section, without solving
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the eigenvalue problem, we show that the index is essential to determine the
stability of the traveling wave solution along the paper by Maginu [24].

4.1. Preliminaries for stability analysis

By the traveling coordinate system (z, t) = (x + ct, t), (1.1) takes the form

,(z, )eR x R,.

-2y
@1 {sru, = &*u,, — ectu, + f(u, v)

Uy = V,, — CU; + g(u, U)
Then, the traveling wave solution (u, v)(z; ¢; t) is a stationary solution of

(4.1). A standard technique for determining stability is to use the linearized
criterion. The linearized eigenvalue problem at (u, v)(z; €; 7)(c = c(g; 7)) is

given by
u et Off
4, et =
R
where
d? d
27 . - € £
€ = ec(e; t)tdz + f: fe
g!ﬁ,t =
2 ] d ’
Gu P - C(S, T)E + 9v

and (@, 0)(z; ¢; 7; A)e BC(R) x BC(R). Here f;, ft, g5 and g denote the partial
derivatives of f and g evaluated at (u, v)(z; ¢; 7). The operator #*° with the
usual domain becomes a sectorial operator for ¢ > 0 and the spectral analysis of
(4.2) derives the nonlinear stability or instability (for instance, see Henry
[12]). Therefore our problem consists of the following two parts:

(i) Distribution of the essential spectrum.

(ii) Distribution of isolated eigenvalues.

For the problem (i), noting that E, are both stable constant solutions of
(4.1)(see assumptions (A-1), (A-3) and (A-4)), we can conclude the following
proposition.

ProrosITION 4.1 (Nishiura et al [28]). For any t >0, there exists a
positive constant 8(t) such that the essential spectrum of (4.2) satisfies

Re{essential spectrum of (4.2)} < — (1)
for sufficiently small ¢ < 0.

Next, we consider the distribution of eigenvalues. The complex number A
is called an eigenvalue of (4.2) if this equation has a nontrivial solution
(@, D)(z; &; 7; A) belonging to BC(R) x BC(R). Since (u, v)(z; &; t) is a solution
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du dv
dz’ dz
= 0. This implies that 4 =0 is an eigenvalue of (4.2), which corresponds to
translation invariance of the traveling wave solution.

The eigenvalue problem (4.2) can be written equivalently as

of (2.1), (2.2) and (2.3), ( )(z; ¢; 7) satisfies the equation (4.2) when A

d - _
4.3) EEV = {A(z; &, 1) + AC(7)} V,
- = ! da _ dv
where V=V(z;¢1;0) = <1Z, SEZ’ o, E§>(Z; g 1;A), A(z;e; 1) is the same

matrix defined by (3.8) and C(t) is a constant matrix defined by

0 0 0 O]

7 0 0 0
C(r) =

0 0 0 0

Lo 0 1 0

Since V(z;¢;1)>P. as z— + o0, V(z; &; 7; 4) obeys the following linearized
equations:

44), LV = (4% % el ) + ACE@)}V*

when z tends to % oo, where A*(e; t; c) are the same matrices stated in Lemma
3.1. Let uf(e;t; A =1,2,3,4), Re{ui} < Re{u;} < Re{ui} < Re{us}, de-
note eigenvalues of the matrices A*(g; t; c(e; 1)) + AC(r). Without loss of
generality, we may assume that u*(¢; 7; A) depend analytically on A and satisfy
uE(e; t;0) = vif(e; 1; c(e; 1)), where vi(e;1;¢) are the eigenvalues of
A*(e; ;0@ = 1,2,3,4).

LEMMA 4.1. There exists a positive constant d independent of ¢ and © such
that
Re{ui(e; 15 A)} < Re{uy(e; 15 )} <0 < Re{us(e; 75 A)} < Re{ui(e; 75 4)}
hold for all AeC, = {AeC|Re{i} > — d}.

The proof will be stated in the appendix.
By virtue of Lemma 4.1 and (4.4)., for any Ae C, (4.3) has just two linearly
independent solutions V;(z; ¢; t; 4)(i = 1,2), which satisfy

Viz;e;1:4) — 0 as z— + oo (i=1,2)

and just two linearly independent solutions V,(z; ¢; t; A)(i = 3,4), which satisfy
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Viz; &1, 1) — 0 as z— — oo (i = 3,4).

On the other hand, the coefficient matrix of (4.3) depends analytically on A and
coinsides with the coefficient matrix of (3.8) when 4 = 0. Then we may assume,
without loss of generality, that V,(z; ¢; 7; A) depend analytically on A and satisfy

vi(z; & T, O) = Vi(z; € T)(l = 1’ 2, 354)’

where V;(z; ¢; 1) are the sglutions of (3.8) normalized by the condition (3.9).
A nontrivial solution V(z; ¢; 7; A) of (4.3) corresponding to an eigenvalue A
must satisfy

Viz;e;1; 1) — 0 as — + oo.
Hence V(z; ¢; t; A) can be written as
Vet A=Yt 0 Viz 6150 =250, Vi(z 8 15 4)

for some constants o; (i = 1,2,3,4). In other words, A = 4, is an eigenvalue of
(4.3) if and only if the solutions V,(z; ¢; t; A)(i = 1,2, 3,4) of (4.3) are not linearly
independent when A = A,.

Let G(z; &; 7; A) be a 4 x 4 matrix defined by

G(z;e; 1, 4) = [Vl(z; g 15 A), \_’z(z; g T; A), \_’3(2; & 15 4), \—’4(2; &1, A)].
Since G(z; ¢; 7; A) is a solution of the matrix differential equation

dd_ZG = {A(z; &; 7) + AC(7)} G,

we easily see that

detG(z; ¢; 1; A) = a(z; ¢; 1) detG(0; ¢; 1; 4),
where a(z; ¢; 1) = explif trace{A(¢; ¢; r)}dé] > 0. Setting
o

4.5) g(e; 7; 1) =detG(0; ¢; t; A),

we find that g(e; 7; A) is an analytic function of 1eC,, and detG(z; ¢;t; ) =0
for all zeR if and only if g(¢; 7; A) = 0. Thus, we obtain the next lemma.

LEMMA 4.2. For any AeC, A is an eigenvalue of (4.2) if and only if
g(e; t; 2) = 0 holds.

4.2. Relation between stability and index

From Proposition 4.1 and Lemma 4.2, it follows that stability of the
solution (u, v)(z; €; 7) is given by examining the location of the roots of
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g(e; t; A) =0. In this subsection, we state the properties of g(e; t; A) with
respect to 1. Since A =0 is an eigenvalue of (4.2), the function g(e; 7; A)
satisfies

(4.6) g(e; 7;0) = 0.
For sufficiently large ||, we obtain the following lemma.

LEMMA 4.3.  The relation g(¢; t; A) # 0 holds for any LeQ, = {1eC|Re{A}
> —d and ¢|A| > + © as ¢|0}. In particular, g(e; t; A) >0 for any real A
satisfying el — + oo as ¢ 0.

The proof is stated in the appendix.

Though the above results follow from the general theory, the distribution
of eigenvalues in C,\ £, is not clarified without solving the singularly perturbed
eigenvalue problem (4.3). But the index stated in Section 3 gives important
information about stability.

0
LEMMA 4.4. sign{a—i(e; T; 0)} = Ind[y(s; 7)].

PrOOF. Let us define functions T;(z; ¢; t; A)(i = 1,2,3,4) by
Y2 Bz e Vet (=12
Y Bz e 0Viz e T ) (i =3,4),

where f;;(z; &; 7) are the same functions appeared in (3.11). Note that
By =det{f(z;6;1); 1 <i,j<2} >0 and B, =det{f;(z;¢1);3<ij<4}
> 0. We find that T;(z; ¢; 7; 1) (i = 1,2,3,4) satisfy the following relations:

Ti(z; & 75 A) ={

in ={A(z; & 1) + AC(1)} T,

4.7) -
Ti(z; & 1; 0) = Ti(z; &; 1) (i = 1,2,3,4),
= z—> 4+ 00 (i=1,2)
Tiz; 6,1, 4) — 0 s {z——» o (i=3.4),
— v _
4.8) Ti(z; 6 1;,0)= j“il—z(z; &; 1) = T;(z; ¢ 75 0).

According to the definition of g(e; 7; 4), we obtain
49) gt )
= B, det[T,(0; & 7; 4), T,(0; & 75 4), T5(0; & 75 4), T4(0; & 75 A)],

where B, = (B;B,)"! > 0. Differentiating (4.9) with respect to 4 at 1 =0, we
find that
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0
(@10) 540 0)

= Bo'det[W,(0; & 1) — W3(0; &; 7), T,(0; & 7), T5(0; & 1), Ta(0; & 7)1,

0 —
holds for Wi(z; ¢; 1) = _6_,1—Ti(2; g 1,00 =13).
On the other hand, differentiating (4.7) with respect to 4 at 4 = 0, we have

d d .
EW,- = A(z; &; )W, + C(t)—d—z“//(z, g1 (=13

and

Wiz; e57) — 0 s{z—>+oo(1=1)

z—> — o0 (i=23).
Recall the definition of the vector R,(0; ¢; 1), that is,

R (0; £ 7) = lim (056 7,0 — Y(0; 5 7; ¢)
c—c(e;t) Cc — C(S; 1,')

s

where X(z; ¢; 7; ¢) and Y(z; ¢; t; ¢) satisfy

iX =F(X;¢;1;0)

dz
4.11)

X(z;6;1;¢)—> 0 as z— + ©
and

iY =F(Y;¢;1;0)

dz
4.12)

Y(z;6;1;,¢0)— 0 as z —» — 00,

respectively. Since X(z; ¢; 7;¢) and Y(z; ¢; 7; ¢) are smooth with respect c,
differentiating (4.11) and (4.12) with respect to ¢ at ¢ = c(e, 7), we find that

X (z; 6 7) = —(ZX(Z; &; T, cle; 1)
dc
and

Y.(z; 6 7) = a%Y(z; &; T; C&; 7))

satisfy the following equations:

d

A
2

X, = A(z; ¢ 1) X, + C(‘c);—z—“lf(z; £ 1)

(4.13)
X.(z;6,1)— 0 as z— + ©
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and

d
—Y. =A(z; 1Y, + C(t)i“//'(z; £ 1)
dz dz

(4.14)
Y. (z;651)—> 0 as z —» — o0,

respectively. A general solution X, of (4.13) is represented as
X.(z; 6 1) = Wy(z; & 1) + Y21 K, Ti(z; & 1)

because W, is a particular solution of (4.13). Similarly, a general solution Y, of
(4.14) is represented as

Y.(z; & 1) = Wal(z; 6 1) + Y i=s k5, Ti(z;5 & 7).

Therefore Ry(0; ¢; t) is rewritten as follows:

0 0
R,(0; &;7) = %X(O; &; 1; c(e; 7)) — EZY(O; &; T; c(g; 7))

= X.(0; & 1) — Y.(0; &; 1)
=W, (0; & 1) — W3(0; &; 7) + Y7o 1, Ti(0; &5 7) — Y i- 3, TH(0; &; 7).
Thus, substituting this into (4.10), we conclude that
a—ig(a; 7; 0) = By - det[Ro(0; ¢; 1), T,(0; &; 1), T3(0; &; 1), T4(0; &; 7)]
= B, h(0; ¢; 7).

That is, by virtue of the relation B, > 0,

. 0 L .
sign) = g(e: ©; 0) ¢ = sign{h(0; &; 1)} = Ind[y(e; 7)]. »
0 . . ,
Lemma 4.5. If :ﬁg(a; 7;0)# 0, A =0 is a simple eigenvalue of (4.2).

Proor. It follows from (4.6) that A = 0 is an eigenvalue of (4.2). If 1 =0
is not simple, there exists a bounded solution U(z; ¢; 1) satisfying

d
DU =A@ & DU + CO-Lv (2 65 1),
dz dz

Namely, U(z; ¢; 1) is represented as follows:
4.15) U(z; 65 7) = Wilz; &5 7) + 22- 1 R Tilz; &5 1),
= Wi(z; 6 7) + Y i3 K Tilz; & 1),
where K;(i = 1,2,3,4) are appropriate constants. By the relations (4.8), (4.10)
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and (4.15), we obtain

d
. . 0
75796 )
= By-det[W,(0; &; ) — W3(0; &; 1), T,(0; &; 1), T3(0; &; 1), Ta(0; 6; 1)] = O,

which contradicts the assumption of Lemma 4.5. ]

From Lemmas 4.3 and 4.4, it follows that

THEOREM 4.1 (instability). The traveling wave solution is unstable if the
index of the corresponding heteroclinic orbit is equal to — 1.

Combining this results with Theorem 3.1, we have

COROLLARY 4.1. If the sign of the Jacobian of the matching condition is
negative, the traveling wave solution constructed from this matching condition is
unstable.

On the other hand, when the index of the heteroclinic orbit is equal to 1,
we know that zero is a simple eigenvalue by virtue of Lemma 4.5. Thus we
obtain the following theorem for stability of the traveling wave solution.

THEOREM 4.2 (stability). If the index of the corresponding heteroclinic orbit
is equal to 1, it gives a necessary condition for the traveling wave solution to be
stable.

COROLLARY 4.2. When the sign of the Jacobian of the matching condition is
positive, it gives a necessary condition for the traveling wave solution to be stable.

5. Concluding remarks

In our previous paper [28], we have concluded by using the SLEP method
that the sign of the Jacobian of the matching condition corresponds in a one-to-
one manner to stability of the traveling wave solution. That is, the traveling
wave solution is stable (resp. unstable) if and only if the sign of the Jacobian is
positive (resp. nagative). But our results in Section 4 is incomplete for stability
because an information from the index only determine the distribution of
eigenvalues in some small neighborhood, say 7, of the origin
(see Theorem 4.2).

In order to examine the distribution of eigenvalues in C,\ {Q,U A} (= 2,),
for any fixed AeQ, we must construct solutions V,(z;e¢; t; A)(i=1,2,3,4)
satisfying

d

(5.1 EV,. = {A(z; &; 1) + AC(1)} V,,
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Vi(z; & 15 0) = Vi(z; & 1) (i = 1,2,3,4),

5.2) Viz; et 0)— 0 as z— + o0 (i=1,2)
and
(5.3) Viz; 6,1, 4) — 0 as z— — oo (i =3,4).

And using these solutions \—’i (i=1,2,3,4), we must examine the location of
roots of g(g; 7; A) = 0 with respect to A. Indeed, this is possible. In the following,
we shall give a brief sketch.

First, we consider the following singularly perturbed eigenvalue problem:

(5.4) {szﬁ" — ec(e; T)td, + fea + f20 = etdi JeR

0,, —cle; )0, + giu + g50 = Ab

where A€, and (%, v)(z; €; 7; A)e BC(R) x BC(R)(see (4.2)). By Lemma 4.1,
(@, D)(z; &; t; ) (e BC(R) x BC(R)) must satisfy the condition (&, 7)( + o0; ¢; 7; 4)
= (0, 0). Then we impose these boundary conditions

(5.5) u(+ o0;¢e,1;4)=0 and o(x oo;¢1;4)=0

on (54). The problem (5.4), (5.5) is the same singularly perturbed problem as
we have already treated in Section 2. Similarly, we divide the whole interval R
into two subintervals R, and consider the following problems:

ez, — ec(e; 1)10F + fio* + fiy* = etdp*
Yo —cle; DYI + gio* + gyt = W*
¢*(£ 0) =0, p*(0)=a

Y*(£ 0) =0, y*(0) = b,

,zeR.

(5.6)=

where a and b are arbitrary fixed constants. By using the same techniques as
we used in Section 2, we can construct the solutions (¢*, ¥ *)(z; ¢; t; 4; a, b) of
(5.6).. Put

r otz 614 1,0) )

siq)*(Z; &1 4 1,0)
dz

Ui(z; 815 4) = ,
Y (z; 61 4; 1,0

e s 1,0)
dz
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ot (z; 6140, 1) _
d
e ¢ (@81 450,1)
U,z 873 4) = (zeR,),
Ytz 61, 4;0,1)
i!//"(2' g1, 4,0, 1)

L dz y G > ) > J
-9 (z; 61, 4; 1,0 W

siq)‘(z; &1, 4; 1,0)
dz

Us(z; 613 4) =
Vv (z;61;4;1,0)

d
- . . . . 1
L2, (z; 6,71, 4; 1, 0)

and

-0 (z; 61450, 1) 1

d - . . . .

8E(p (Za & T ﬂ., Oa 1)
U,(z; 51, ) = (zeR.).
Y (z6 1450, 1)

_iztﬁ‘(z; e 1;4;0,1)

We find that U;(z; ¢; t; A)(i = 1,2) are linearly independent solutions of (5.1),
(5.2) and U;(z; ¢; 7; ,l)_(i = 3,4) are linearly independent solutions of (5.1), (5.3)
for all AeQ,. Then V;(z; ¢; t; )(i = 1,2,3,4)(which were defined in Section 3)
are represented as

Viz 615 A 58T
(57) [_‘(Z 5 )] K@ A)[Ul‘z 5 ’“](zelm

V,(z; 815 4) U,(z; 8575 4)
and
(58) [Ya(Z; € T; l):l Ky l)[Us(Z; & 1; l)}(zeR_)’

Va(z; 815 ) U,(z; & 75 4)
where  K;(z; &, 7; ) are some linear transformations  satisfying
detK;(z; ¢; t; A) # 0(i = 1,2). Using these relations, g(e; 7; A) takes the follow-
ing form:
(59 gle A=K Ky)™!

det[U,(0; &; 75 4), U,(0; &; 75 4), Us(0; & 5 4), Uyt(0; &5 75 )],
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where K; =detK;(0;¢;1t; 1) #0 (i=1,2) for all AeQ,. For any fixed AeQ,,
using the functions U; (i = 1,2, 3,4) constructed above, we can conclude that
g(e; t; 4) # 0. That is, there is no eigenvalue of (4.2) in Q,. This procedure is
a new technique to solve the singularly perturbed eigenvalue problems such as
(5.4). Since it is very complicated, we shall state the detailed proof in the
forthcoming paper [14]. In a two-component system such as (1.1), when the
diffusion coefficient of v is zore (for example, nerve axon equations) or
degenerate as ¢ | 0 (for example, the Belousov-Zhabotinskii reaction equations,
see Fife [10] and Tyson et al [32]), it is difficult to apply the SLEP-
method. But our method is well applicable to such problems.

Appendix

Proof of Lemma 4.1.

The eigenvalues p; (e; 7; A)(j = 1,2,3,4) of the matrices A*(e; 7; c(e; 7))
+ AC(1) are obtained as the roots of the characteristic polynomials

F*(u; & 7; 4) = det[ul — A*(g; 7; c(e; 7)) — AC(1)] =0,

where I is the 4 x 4 unit matrix. By the definition of A*(g; t; c(e; 7)) and C(7),
the polynomials F*(u; ¢; 7; A) can be written equivalently as

F*(u; &; 7; A) = det[u®D — pc(e; ©)B + N* — AB],

2 + +
D=|:8 O:I, N*=f" fa  B= €T 0.
0o 1 g2 0 1

Let us seek the eigenvalues ui(j=1,2,3,4) by using the polynomials
F*(u; &; t; A) =0 in stead of F*(u; ¢; t; 4) = 0.

First for any weR, we consider the following polynomials with respect
to o

(A1), det[ — w?D + N* — 6B] = 0.

where

Solving (A.1). directly, we find that
1
0¥ (w; e 1) = i—s;[ — (et + ¥)w? + (fF + ergy)

+ [{(et — ) @? + (fif — ergy)}* + derfrga]'/?]

and
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1
E[ — (et + D)w? + (fF + e1gy)
— [{(er — ) ® + (ff — e1g)}> + derf 912 ]
When ¢ is sufficiently small, ¢j(j =1,2) are real numbers and have the
following estimates:

o5 (w; &; 1) =

o;(w; &1 < —d=max{f;, g9;} <0 (=12

for any weR. That is, (A.1). have two negative roots o; (w; & 1)(j =1,2).

Next we consider the increment of arg{F *(u; ¢; 7; )} when the complex
number y moves along the imaginary axis from — 700 to + ¢co. Substituting
p=io (weR) in F*(u;e; t; 1), we obtain

F*(iw; e; 1; 2) = det[ — 0?D + N* — (4 + cwc(e; 7))B]
= {A+ dwc(e; 1) — o7 (w; & 1)} {A + cowc(e; 1) — 05 (w; € 1)}
For any AeC,; = {AeC|Red > — d}, we put
ki (w; & 15 4) = A + docle; 1) — 05 (w5 & 7)(j = 1,2).
By the negativity of oj(w;e;7)(j=1,2), kj(j=1,2) have the following
properties:

ki(w;e;7;4)#0 and —g< arg{k¥ (w; &; 7; A)} <g(j= 1,2)

for all weR.
On the other hand, from (A.1). it follows that

or(w; e 1)= — g +0()

and
oi(w;e;17)= —w? 4+ 0(1)

for sufficiently large |w|. Hence kj (w; &; 1) satisfy

arg{ki (w; &, 1; )} — 0 as lo] — oo (j=1,2).
This implies that
Af =arg{ki(+ o0; & 1; 1)} —arg{kj(— o056 1; )} =0 (j=1,2).
Therefore we obtain
At = arg{ﬁi( + 005 815 A)} — arg{F*( — 70058 1;4)} =0.

That is, the increment A* of arg{F*(u; ¢; 7; A)} is equal to 0 when u moves
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along the imaginary axis from — /o0 to + ¢coo0. Applying the argument
principle to F *(u; &;1; A) =0, we find that the characteristic polynomials
F*(u; e; 7; 2) = 0 have just two roots uf (j = 1,2) in the left half plane and just
two roots uj (j = 3,4) in the right half plane. |

Proof of Lemma 4.3.

Here, we use the technique stated in Section 5. That is, we use the
relation (5.9). Though g(g; 7; ) in (5.9) is defined only for 1eQ,, it is easily
seen that this relation
(A2  gle A=K K)™?

det[U,(0; ¢; 7; 1), U,(0; &; 7; 4), U3(0; ¢; 75 4), Ut(0; &5 75 )]
also holds for any AeC,.

First we determine the sign of (K,K,)”!, which is definite for all
AeC,; Let A =0 in (5.7) and (5.8), we have the following relations:

%) [Mpald TR hebaidibd

Va(z; & 1) Uy(z; & 75 0)
and

V . . . . .
(A4) I: 3(z; & T):l = K,(z; ¢; 7; 0) I:U3(Z, &, T, 0):|

V,(z; € 1) Uy(z; & 75 0)

Since both Ui(z; ¢; 7; 0) and T;(z; ¢; 7) satisfy the equation (3.8), comparing the
values of U;(0;¢;7;0) in Section 5 with T;(0; ¢ t) in Subsection 3.4
(i=1,23,4), we find that

eT,(z; &; 1)
(W5")(0; 75 c*(1), B*(x)) + O(e)’
U,(z; 6515 0) = — Ty(z; & 1),

Ui(z; & 1;0) =

eT5(z; &; 1)
(W5)e(0; 75 c¢*(2), B*(7)) + O(e)

Us(z; 657, 0) =

and
U,(z; €5 75 0) = Tyu(z; &5 7).
Using these relations and (3.15), (3.17), (3.19) and (3.21), we easily see that
U,(z; 8 15 O)] ~ B+ [
U,(z; ¢ 75 0)

V{z,a~+
1
o as z — + o

-4;

and
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[U3(Z; & 0):|~}§‘ [ea .ai] as z — — o0

- vz,
AT

U,(z; &5 15 0)

holds, where

F ey A
[ . . 0 V. e &£ 2
g | DO TN T wne T
fi . edys; fE 5
_Je 2011 Jv . 0
TR woo %Y e oY
and
S s
_Je BV g _Hads | g
s | F0 T e T
Sfo  ds¥3 AN
v, 9373 0o v, 04¥4 | o
X N S X R
On the other hand, by virtue of (3.9) we have
Vi(z; ¢ r):l N [e”?"ﬁf] —
and [Vz(Z; e; 1)) Ler-af e T

\Y% . pe V5z.5—
[: a(z; & T):l ~ I:e:_ a3 as z — — oo,
V.(z; 6 17) e’ ?-a,
Substitute the above results into (A.3) and (A.4), and let z— + oo and z— — oo,
we obtain

I=K,(+;¢7;00B* and I=K,(— ;¢ 1;0B,
respectively, from which it follows that
detK,(+ o0;¢6;71;00<0 and detK,(— o0;¢;1;0)>0.

Noting that the sign of detK,(z; ¢; t; 0)(resp. detK,(z; ¢; t; 0)) is definite for all
zeR, (resp. ze R_), we may conclude that

(A.5) (K {K,) ' = (det K,(0; ¢; t; 4)-det K,(0; &; 7; 1)) ! <O.

Next we construct U(z;e; 7; A)(i=1,2,3,4) for any fixed 1eQ, =
{AeC,le|A| > 0 as ¢[0}. To do so, we consider the problems:

e, — ec(e; V107 + fag® +fiY* = etho*
Vi — cle; DY + quo™ + Y™ = W~
P*(+ 0)=0, p*(0)=a

(£ 0) =0, y*©0)=b

,zeR,

(A.6)
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(see (5.6):). Since g|A]—> 4+ oo as e]0, there exists a real, positive and
continuous function w(e) such that ew(e) > + oo as ¢ | 0 and A(e) is represented
as

(A7) AMe) = we)(e),

where pu(e) satisfies |u(0)| # 0 (see Eckhaus [2: Lemma 1.1.1]). Using the
relation (A.7), we rewrite (A.6). as

+ C(G; T) + fl:: ¢+ f:

&

;@(pn "o + 0@ ® T @ Y* = tue)p*
( ) N ZER*_
A8 . _ CclE, T v _ +
B9 e g g o
9*(% ) =0, p*(0) = a

Y*(+ 00) =0, y*(0) =

By the transformation y = w(e)!/?z, (A.8). can be rewritten as the following
regularly perturbed problems:

RERCCE NS I

yy e )1/2 TPy eo(e) @ s0(®) Y* = tue)p*
, VER,
+ c) Fa 0+ Fo ,+ +
(A9). Yy — (@) vy + o©® T oo Y* = uey

@*(£ ©0)=0, 0p*0)=a

Y*( £ 0)=0, Yy*(0) =

where f2=f(u L'za"c v L's"c and f%, g, §¢ are defined
u u w(e)l/za > B w(g)”z, B v us v

similarly. In order to construct approximate solutions of (A.9)., we consider
the following reduced problems:

&(95)yy = TH(0) 95
W)y = uOWYs
@5 (£ 0)=0, 95(0) =a
Y5 (£ ) =0, y5(0) =
Note that |u(0)| # 0. We can obtain solutions of (A.10). explicitly as follows:

{(Pé (; & 75 w(0); a, b) = a-exp[ F (zu(0)/e)'* y]
Yo (v; uO); a, b) = b-exp[ F u(0)"/? y]

Using a standard technique of (regular) perturbation method, we can construct

,yeR,
(A.10).

»YER,.
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exact solutions (¢*, y*)(y; ¢; T; u(e); a, b) of (A.9). satisfying

172 “ ((Pi - (pg)y ”C(Ri)

+10* — 95 llcgsy — O as /0
"('/’t - ‘/’g)yy" crs) T I ('//i - ‘//g)y”c(h)
+I1Y* — Y5 llcwsy — 0 as el0.

Then, (¢, Y*)(z; &; 7 4; a, b) = (¢*, ¥*)(w(e)"/*z; &; T; we); a, b) are solutions
of (A.6).. Therefore we obtain the following relations:

8" ((pt - (pa:)yyll CRRz) +é

[ ¢ 0;e1;2;1,00 ] [ 1+ o(1)
e (0; 8575 45 1, 0) — (tu(0)ew(e)) ' (1 + e(1))
U;0; ¢ 1;4) = . = s
Yt (0; 61451, 0) o(1)
L7 (0; ¢ t; 45 1,0) 4 i o(1) ]
[¢*@eni0n ] | o(1) 7
ep; (0; & 75 4; 0, 1) o(1)
U,0; e, )= | = ,
Ut (0;e1;4;0,1) 1+ o(1)
LY (056575 450, 1) L — (u0)w(2))2 (1 + o(1))
(¢~ (08 1:4;1,00 7 [ 1 +o(1) ]
ep, (056515 4; 1, 0) (tu(0)ea(e))'? (1 + o(1))
U085t 4)= | =
Vv (0; 61545 1,0) o(1)
LYs0;e5152;,00 ] | o(1) ]
and
¢ (0; 6515 4;0,1) ] o(1)
e¢; (0,6 7, 4,0, 1) o(1)
U056 13 4) = . =
Y (0;61;4;0,1) 1+ o(1)
Y7 (0567 4;0,1) ] (HO0)w(e)) (1 + o(1))

as ¢0. By virtue of (A.2), we have
(A1) g(e 13 D) = (K, Ky) 7 { — 4(1u0)ecw())/? - (u0) (€)' (1 + o(1)}
= — 4(K,K,) " (etA(e))/?- Ae)V*-(1 + 2(1)) £ 0

for sufficiently small e. In particular, when A is real, (A.11) implies that, by
(A.5), g(e; T; ) > 0 holds. This completes the proof. n
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