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A simple proof that certain capacities
decrease under contraction
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It is well known that the Newton capacity, cap, decreases under contraction,

in the following sense:

cap£

for any compact (or analytic) set £ i R", n > 3, and for any contraction φ: E

(1) d(φ(x)9φ(y))<d(x9y)9 Vx, yeE,

d denoting the Euclidean distance. Similarly for the logarithmic capacity in the

plane. As observed by Landkof [11, p. 406 below] this is an easy consequence

of the characterization of the logarithmic capacity as the transfinite diameter in

the sense of Fekete [6], cf. also Pόlya and Szegό [12] for the Newton kernel in

dimension n > 2. The fact that polar sets ( = sets of logarithmic or Newton

capacity 0) are preserved under contraction was noted by Brelot, cf. [4, p. 50].

Replacing the Newton kernel |x — y\2~n by the Riesz kernels |x — y\Λ~n of

order α on R", 0 < α < n, there are two notions of capacity, the energy capacity

and the "ordinary" capacity (they differ for α > 2), and correspondingly two

notions of transfinite diameter, both generalizing the classical transfinite

diameter in R" associated with the Newton kernel. These two generalized

transfinite diameters with respect to the Riesz kernels were studied by Pόlya

and Szegό [12] who showed that they are equal if and only if α < 2. The

identification of one of these two notions of transfinite diameter with the energy

capacity (with respect to the same kernel) is due to Choquet [5], even for a

general symmetric lower semicontinuous kernel G (infinite on the diagonal) on a

locally compact space, cf. §1 below. This allows then for a simple proof that

energy capacity decreases under contraction in the case of Riesz kernels. We

bring a natural, short, direct proof of this (simpler than that of Landkof

[11, Ch.Π, §3]) applicable also in the general framework of Choquet [5] (see

Theorem 1 below). In the same way we obtain a similar result for the ordinary

capacity (Theorem 2). Probably this latter result could equally well be

obtained by an extension of Fekete's result, now concerning the other notion of

transfinite diameter, in the same spirit as in Choquet [5]. -The two results

coalesce for symmetric kernels satisfying the maximum principle, valid in

particular for the Riesz kernels of orders α < 2 as established by Frostman [7],
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thus in particular for the Newton kernel.

The question whether similar results hold for //-capacities, 1 < p < oo with

respect to suitable kernels on R" (cf. [10]) is studied by Aikawa [1]. For p = 2

and Riesz kernels of order α < n/2 the answer is affirmative, being equivalent to

LandkoΓs result on the energy capacity applied to the Riesz kernel of order 2a.1}

In the sequel X, X' denote locally compact (Hausdorff) spaces, and G, G'

denote kernels on X, X' respectively, i.e., lower semicontinuous functions:

G: X x X • [(),+ oo], G': X' x X' • [0, + oo].

A continuous map φ:X->Xr is called a contraction with respect to G, G'

(briefly: a G, G'-contraction) if

(2) G'(φ(x), φ[y)) > G(x, y), for all x,yeX.

For example, if X' = X is endowed with a metric d, if G = G' is a decreasing

function k of the distance:

G(x, y) = k(d(x, JO),

(with k: [0, diam X~\ -• [0, + oo] l.s.c, > 0, and decreasing), then every contrac-

tion φ: X -+X (as in (1), now with x, yeX) is a G-contraction (i.e., a G, G-

contraction). This situation covers e.g. the Riesz kernels.

When G is a kernel on ΛΓ, the potential Gμ of a Radon measure μ > 0 on X

is the l.s.c. function X -> [0, 4- oo] denned by

Gμ(x)= \ G{x9y)dμ{y).

The energy of μ is

For any set A a X, Jί+{A) denotes the set of Radon measures > 0 o n l with
support contained in A.

LEMMA. Let φ: E -* E' be a continuous surjection between compact spaces

E, E'. For any measure μ'eJί + (Ef) there exists a measure μeJί+{E) such that

μ! = φ(μ), that is,

(3) \f'dμ'= (f'°φ)dμ\rv-\u-

1) For arbitrary p the answer is affirmative in dimension 1 for a class of convolution kernels

comprising the Riesz kernels on R, see [1], but hardly in higher dimensions, not even for the

Newton kernel, I believe.
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for all continuous functions f ' : E' -• R (hence also for all l.s.c. functions f': E' -•
] - oo, + oo]).

PROOF. This lemma is well known. The following elegant proof was

indicated to me by J.P. Reus Christensen. Let Jf(£) and JΓ(£') denote the

vector spaces of continuous functions E -• R and E' -• R, respectively. The

functional p: Jf(£)->R defined by

is subadditive and positive homogeneous. On the vector subspace

of X(E) a linear form λ is defined by

(4) λ(fΌφ) = μ>(f>)

since φ is surjective. It satisfies

φ) < μ'(l)max/'(£') = //(l)max(/'° φ)(E) = p(fΌφ).

By the Hahn-Banach theorem [3, p. 27 ϊ.J λ extends to a linear form μ on

satisfying

μ(f)<P(f) for all/eJf(E).

In particular, μ(/) < 0 if/< 0, whence μ(f) — — μ( — f) > 0 for/> 0, showing
that μ is a positive Radon measure on E. And (3) follows from (4) since μ
extends λ. D

1. The energy capacity.

In this section G denotes any kernel on a locally compact space X.

DEFINITION. The energy capacity (with respect to G) of a compact set E

c X is

(5) eG(£) = sup{μ(£) 2 |μe^ + (£), I Gμdμ < 1}.•w, J
It can be shown that this supremum is attained if it is finite (in particular if

G(x, x) > 0 for all xeX, cf. [8, Theorem 2.3 and Lemma 2.5.1]).

THEOREM. Let G and G' be kernels on locally compact spaces X and X\

respectively. Let E denote a compact subset of X and φ: E^X' a G, G'-

contraction. Then

eG.(φ{E)) < eG(E).
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PROOF. Write E' = φ(E). Let μ'eJί+{Ef) satisfy G'μ'dμ'< 1, and

choose μeJί+(E) so that (3) in the above lemma holds. Then

(6) G'μ'(x') = I G'(x', /)Λμ'(/) = J G'(x', ΦϋO^μOO,

and hence

1 > J G'μ'dμ! = J (G'μ')(φ(x))ψ(x) = jY Γ G'(φ(x), φ{y))dμ{y)\dμ{x).

Invoking (2) we obtain

G(x,y)dμ(x)dμ(y),

showing that μ(E) < y/eG(E)9 and consequently, from (3) and (5)

1 dμ' = \ (1°φ)dμ = μ(E) < yJeG(E),
JE

from which the result follows by allowing μ' to vary. •

2. The ordinary capacity.

In this section G denotes any kernel on a locally compact space X.

DEFINITION. The ordinary capacity (with respect to G) of a compact set E
cz X is

(7) cG(E) = sup{μ(E)\μeJΐ+(E)9 Gμ < 1 on X).

It can be shown that this supremum is attained if it is finite, in particular if
there is no yeX such that G(x, y) = 0 for all xeX, cf. [8, Theorem 2.3] as to
the former statement.

THEOREM. Let G and G' be kernels on locally compact spaces X and X\

respectively. Let E denote a compact subset of X, and φ: X-+X' a G, Gf-

contraction. Then

cG\φ{E)) < cG(E).

PROOF. Write E' = φ(E). Let μ'eJί+{Er) satisfy G'μ'<\ on X\ and

choose μeJΐ+(E) so that (3) in the above lemma holds. For any xeX we

have from (2), noting that (6) holds again,
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Gμ(x) = f G(x, y)dμ(y) < ί G\φ(x), φ(y))dμ(y)

= ί G'(φ(x), y')dμ'(y') = (G'μ'){φ(x)) <; 1,

showing that μ'(E') = μ(E) < cβ(E), whence the desired conclusion by allowing

μ' to vary. D

impliesREMARK. For a kernel G on X, Gμ < 1 implies Gμdμ < μ(l), and it

follows easily that cG(£) < eG(E), with equality if G satisfies Frostman's

maximum principle, cf. [8, p. 153]. The Newton kernel on Rπ satisfies the

maximum principle, and so do the Riesz kernels for α < 2.

3. Inner and outer capacity.

Let G be a kernel on X, and let capG stand for either cG or eG. The inner

and outer capacities of an arbitrary set E c X are defined by

cap G £ = sup{capGK |Kcompact, X c £ } ,

cap G £ = inf{capGω|ωopen, ω => E},

respectively. Clearly, cap G £ < capG£. In case of equality, E is said to be

capacitable, and we may omit the bars. Compact sets and open sets are always

capacitable. (More about capacitability see below.) The relation

(8) cap G (J Kn = supw capG Kn

holds for any increasing sequence of compact sets [8, Lemma 2.3.3].

Consider now two kernels G, G' on X, X\ respectively, and a G, G'-
contraction φ: X -+ X'. Then

(9) capG, φ(E)< cap G £

for any Kσ-set E=[JnKni where (Kn) denotes an increasing sequence of

compact subsets of E. This follows immediately from Theorems 1 and 2,

respectively, in view of (8), noting that φ(E) = \Jnφ(Kn) with the φ(Kn) compact

and increasing.

We proceed to prove that

(10) capG,(p(£) < caρ G £
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for every set E a X under the following hypotheses: The spaces X and X' are

metrizable and σ-compact (i.e., Xσ-sets in themselves). In the case of the

energy capacity we suppose that G' is (symmetric, positive semidefinite, and)

consistent in the sense of [8, p. 167]. In the case of the ordinary capacity we

suppose that G' satisfies the continuity principle and "vanishes at infinity" (if X'

is non-compact) in the usual sense2).

Under these hypotheses, every open subset of X or X' is a Xσ-set, and

every Kσ-set oi X' is capacitable, cf. [8, Lemma 4.1.2], resp. [9, p.80]. To

establish (10), consider any open (hence Kσ) set ω c X such that E c ω, and

apply (9) to ω in place of E, noting that φ(ω) is a Kσ in X' and hence

capacitable:

capG.φ(E) < capG,φ(ω) = capG,φ(ω) < cap G ω,

whence (10) by allowing ω to vary.

The above hypotheses on the kernel G' on X' actually imply, in the case of

the energy capacity, that every analytic subset of X' is capacitable, see

[8, Theorem 4.5]. -In the case of the ordinary capacity, capacitability of

analytic subsets of X' will follow if we add to the above hypotheses on X' and

G' the following further assumptions concerning G' (omitting sometimes the

dash for the sake of simplicity of notation): The adjoint kernal (x, j/)f—»G(y, x)

likewise satisfies the continuity principle, and vanishes at infinity (if X' is non-

compact), and finally (x, y)\—>G(x, y) should be finite and continuous on X'

x X' off the diagonal (i.e., for x Φ y), see [9, Theoreme 8.2].

All these hypotheses —in the case of the energy capacity as well as in the

case of the ordinary capacity —are satisfied, e.g., by the Riesz kernels G(x, y)

= \x — y\Λ~n o n R "(0 < α < n)> c f C8> p.205], and earlier Aronszajn and Smith

[2], in the case of the energy capacity; and Frostman [7, p.26] in the case of

the ordinary capacity.
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