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Introduction

This paper is concerned with periodic and almost periodic behavior of
solutions to the following problem:

u — Av = f, ve f(u), in (0, 00) x £,

v=go, on (0, 0)x Iy,
0.1)
opw+pv=g; on (0, ) x(I'I),

u0, ) = ug in Q.

Here v’ = (8/0t)u, Q is a bounded domain in RY (N > 1) with smooth boundary
I', I'y is a measurable subset of I" with positive surface measure, p is a non-
negative bounded measurable function on I, d, denotes the outward normal
derivative on I, and § is a maximal monotone graph in R x R. Damlamian
and Kenmochi have studied in [8,9] the global behavior of solutions to (0.1) in
the case in which f is Lipschitz continuous. The Lipschitz continuous case is
effective for Stefan problems in weak (enthalpy) formulation, but it is in general
required to assume that f is multi-valued. In fact, we do have this situation for
instance in the weak formulations of free boundary problems arising from Hele-
Shaw flows as well as electrochemical machining processes, see [5,18,
19,20]. As observed by Damlamian [6,7], problem (0.1) is formulated as an
evolution equation by means of time-dependent subdifferentials in an
appropriate Hilbert space. In Kenmochi-Otani [14,15], the periodic and
almost periodic stability of solutions to a general class of evolution equations
with time-dependent subdifferentials have been studied. However, it does not
seem that their result is directly applicable to the problem (0.1) if both § and
B! are multi-valued. In this paper, we extend a part of the result given in [9]
to a class of maximal monotone graphs f so that the inverse of the Heaviside
function may be contained. This is necessarry to treat the problems for Hele-
Shaw flows and electrochemical machining processes, since in these cases f is
the inverse of the Heaviside function. The main results of this paper were
already announced in [17], and this paper contains their complete proofs.
We shall first establish existence theorems of periodic (resp. almost
periodic) solutions of problem (0.1) and then discuss their asymptotic stability,
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provided that f and g; (i=0,1) are periodic (resp. almost periodic)
functions. Our method employed here is similar to that developed in [9], but
a new version is presented in Lemma 4, Section 3. We note that our class of
functions includes the function B(r) = |r|™ 'r (m > 1) which appears in the
porous media equations and functions such that B~! is non-decreasing,
bounded and Lipschitz continuous; this case occurs in equations of parabolic-
elliptic type. As for the periodic stability of solutions, DiBenedetto-Friedman
[10] have investigated evolutionary dam problem, and Kenmochi and Kubo
[13] have treated a model problem of partially saturated flows in porous media.

In this paper, given a Banach space Y, we denote by ||y the norm of
Y. We use various terminologies related to proper lower-semicontinuous
(l.s.c.) convex functions and their subdifferentials; for them we refer to Brézis
[3]. Moreover, we use the following notations:

H = I?(2) with inner product (-,"), X = HY(Q)
and
V={zeX; z=0 ae. on I,}.

By assumption, I, has positive surface measure and the function p is non-
negative and bounded, and so V becomes a Hilbert space with respect to the
inner product

0.2) )y = J Vz- Vydx + f p(x)z(x)y(x)dI(x) for z, yeV.
(e r

We write V* for the dual space of V and F for the duality mapping of V:
(03) <FZ’ y> = (27 y)V for z, Y€ I/,

where {-,-> stands for the duality paring between V* and V. V* becomes a
Hilbert space with respect to the inner product (z, y), =<z, F 'y and the
norm is defined by |z|, = (z, z)¥/*>. It should be noted that V= H = V* and the
injections are dense and compact.

1. Theorems

We study the problem (0. 1) for functions f belonging to the class defined
below.

DEFINITION 1. Let B be a maximal monotone graph in R x R and §: R
—RU {0} be a proper Ls.c. convex function with § = df. Given constants a
>0 and b >0, we say that § belongs to the class B(a, b) if ,l? satisffies

B(r) = a|r)* — b for all reR.
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For example, if § is the inverse of the Heaviside function, then f(r) = 0 for
0 <r <1, = oo otherwise, and feB(1,1)

LEMMA 1 (cf. Damlamian [6, 7]). Let feB(a,b), g: R— H, teR, and
define the function ¢ V* > RU{o0} by

Py

f Bz(x))dx — (g(¢), z)  for zeH,
2

(1.1) ¢'(2) = [
o0 for ze V*\ H.

Then ¢' is proper, ls.c. and convex on V*, and the effective domain of @' is
characterized as follows:

(1.2) D(¢") = Dy = {ze H; f(z)e L'(2)}

Moreover for u and u* in V*, u*edp'(u) if and only if the following (i) and (ii)
hold:

(i) ueD(@)(=D,).

(ii) There is a function v in X such that u—geV, u* = F(v — g) and
v(x) e B(u(x)) for a.e. xe£2.

We now reformulate broblem (0.1) as an evolution equation of the form
(1.3) u'(t) + 0p'(u(t))af(t) for a.e. teR, (= [0, 0))

with the initial condition
u(0) = u,.

In fact, system (0. 1) excluding the initial condition is written in the following
variational form (see [6,7,8,9] for the details):

(1.4), v(t, x) € B(u(t, x)) for a.e. (t, x)eR, x Q,
(1.4), v(t) —g(t)eV for a.e. teR,,
(1.4), (), z) + f V(v(t, x) — g(t, x)) Vz(x)dx

7]

+ f p(x) (v(t, x) — g(t, x))z(x)dI"(x) = (f(2), 2)

for all zeV and a.e. teR,.
Here g(t) is determined by gy(f) and g,(¢t) as the solution of the elliptic problem
— Ag(t,’)=0 in £,
glt,") = go(t,’) on I,
0y9(t,) + pg(t,;) = g4(t,) on I'\I
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for each t. With the mapping F(cf. (0.2), (0.3)), variational form (1.4) is
expressed as

(1.5) w(t)+ F(u(t) — g(t)) = f(t) and vep(u) for a.e. teR,.

In view of Lemma 1-(ii), we see that (1.3) is equivalent to (1.5) and therefore to
(1.4). In the sequel, we denote equation (1.3)(or (1.5)) by E(B, g, f) and treat
the problem (0.1) in this form

DeFINITION 2. Let BeB(a,b), ge Wil(R; H) and fel?, (R;V*). A
function w: J = [to, t;]1— V, is called a solution to E(f, g, f) on J, if u satisfies
the following three conditions (a), (b) and (c):

(@) ueC(J; V¥NWil((to, t11; V*).

(b) The function ¢+ ¢'(u(t)) belongs to L(J), where ¢' is given by (1.1).

(©) u(t) + 0p'(u(t))af(t) for a.e. teld.

Also for a general interval J in R, u: J —» V* is said to be a solution to E(f, g, f)
on J, if u is a solution to E(f, g, f) on each compact subinterval of J in the
above sense.

We note that if u is a solution to E(B, g, f) on an interval J (in the above
sense), then by (1.2) u(t) belongs to the closure of Dy with respect to the
topology of V* for all teJ, since ue C(J; V*) and u(t)e D(¢') for a.e. teJ. As
to the solvability of the Cauchy problem for E(f, g, f), we have the following
result which is obtained by applying the abstract theories developed in [6,7,11]
and their slight modifications

LEMMA 2. Let B, g and f be as in Definition 2. Let u, belong to the closure
of Dy with respect to the topology of V* and let toeR. Then there exists a
unique solution u to E(f, g, f) on [to,0) with u(ty) = u, such that t—
(t — to)? W e LE ([to, ) V*), tr>(t — to)'? ue LZ.([to,0); H) and t— @'(u(t))
eWit((tg,0)). If in particular uge Dy, then u' €Ll ([ty,0);V*), uelsy,
([to c0); H) and t— ¢'(u(t)) € W ([to, ).

In what follows, we shall discuss solutions in the sence of Definition 2 and
Lemma 2. Our first result is concerned with the periodic stability of solutions.

THEOREM 1. Let Be B(a,b), ge WL (R; H) and fe L2 (R; V*). Assume that
there exists a constant T> 0 such that

gt +T)=gt) and ft+T)=f(t) for a.e. teR.

Then we have the assertions (i) through (iii) below.

(i) There exists a T-periodic solution to E(f, g, f) on R. In other words, the
set Py = {u: R > V* u is a solution to E(B, g, f) on R satisfying u(t + T) = u(t)
for all teR} is not empty.

(i) For each solution u to E(B, g, f) on [ty, ), to€R, there exists we Py
such that
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u(t) — w(t) —0 in V* and weakly in H as t — 0.

(iii) Let w,, w,€ Py, and let n,€ f(w;) be such that w;+ F(n; — g) = f a.e.
on R, i=1,2. Then n,t) =n,(t) for a.e. teR and there is an element o in H
such that w,(t) = w,(t) + a for all teR.

We shall prove the above theorem as a corollary to the second theorem
which is concerned with the almost periodic stability.

DEerINITION 3 (cf.[1]). Let E be a Banach space. A continuous function
f: R — E is said to be E-almost periodic if for any sequence {t,} in R there is a
subsegence {t,} of {t,} such that f(t + ¢,) converges in E uniformly in teR.

Given a function feL2.(R; E), we define f:— I*(0,;E) by [f(1)](s) =
f(t +s) for teR and a.e. se(0, 1). We say that a function fe L2 (R; E) is E-
almost periodic in the sense of Stepanov if the mapping f: R —» L?(0,1; E) is
L?(0,1; E)-almost periodic.

THEOREM 2. Let BeB(a,b). Assume that ge WLIXR; H) is H-almost
periodic and that feL%.(R; V*) is V*-almost periodic in the sense of
Stepanov. Suppose that the following two conditions (a) and (b) hold:

(a) SuptenlgllLl(t,t+l:H) < .

(b) If {1,} is a sequence in R such that g(t + t,) — §(t) in H uniformly on R,
then ée Wllo'cl(R’ H) and SuptenlngL‘(t,t-%' 1:H) < .

Then we have the assertions (i) through (iii) below:

(i) There exists a V *-almost periodic solution to E(B, g, f) on R. In other
words, the set AP = {u: R — V*; u is a solution to E(B, g, f) on R and V *-almost
periodic} is not empty.

(ii)y For each solution u to E(B, g, f) on [ty,»), to€R, there exists we AP
such that

ut) — w(t) — 0 in V* and weakly in H as t — oo

(iii) Let w,, w,€ AP, and let n;e P(w,) be such that w; + F(n;, — g) = f a.e.
on R, i=1, 2. Then n(t) = n,(t) for a.e. teR and there is an element o in H
such that w,(t) = w,(t) + a for all teR.

REMARK 1. (a) Assumption (b) of Theorem 2 is valid if, for instance, the
following holds:
SUPserl 9 | Lo+ 1:0) < OO for some 1 < p < 0.

(b) In general AP as well as P, is not necessarily a singleton set.

The third theorem of this paper is concerned with the characterization of
periodicity and almost periodicity of solutions by means of global boundedness.

THEOREM 3. Under the same assumptions as those in Theorem 1 (resp.
Theorem 2), a solution u to E(B, g, f) on R is T-periodic (resp. V *-almost periodic)
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if and only if u is V*-bounded on R in the sense that sup,.|u(t)|, < oo.

In the next section, we recall some known results. Some key lemmas are
prepared in Section 3. And Theorems 1, 2 and 3 are proved in Section 4.

2. Continuous dependence of solutions on boundary, forcing and initial data

In this section, we collect some results concerning key estimates for
solutions to E(f, g, f) and the continuous dependence of solutions on the data g,
fand u, given in [8] and [9]. Although the following results are stated in [§]
and [9] under the assumption that f is Lipschitz continuous, the proof for the
case in which feB(a, b) is almost the same as in those of [8,9]. The same
results can also be obtained from the abstract results due to Kenmochi [11]
and Kenmochi and Kubo [12].

PROPOSITION A. Let feB(a,b) and let ge Wil(R; Hn L°(R; H) and
feLZ (R; V*). Assume that

Stl(g) = 19| Loousry + SUPrerld | L1yt + 10y < O
and

Si’z(f) = SUP;l f] L2+ 1;v%) < O.

Let u be a solution to E(B,g,f) on [ty,0). Then the following holds:

sup,2,0|u(t)|* + Supto<t510+l(t — to)|u(®)| g + SUD; s+ 1 | U(E)| g
+ SuPtzto|u|L2(z,:+ vy 16— to)l/z u,|L2(10,10+1;V*)
+ Sup12t0+1|ul|L2(t,t+ 1v% + SUPy<r <10+ 1(t — to)| @' (u(t))]
+ SUP; sy 41 |(Pt(u(t))| +Supt2t0|(p(.)(u( : ))ILl(z,z+ 1)
< M, = M(a, b, S"(g), SY2(f), lulto)l,) < oo,
where M: (R, \{0}) x R4 >R, (R, = [0, 0)) is an appropriate locally bounded
Sunction. If in particular u(t,)e Dy, then we have
Suptztolu(t)lﬂ + Suptzro|u,|L1(z,t+ 1yt sup,z,okp‘(u(t))l

< M2 = Mz(a, b> Sl‘l(g)a Sg:'z(f)’ |u(t0)|*, I(P‘O(u(to))l) < @,

where M,: (R \{0}) x R -> R, is an appropriate locally bounded function.

PROPOSITION B.  Let S B(a, b), g,, g WL (R: H), and let f,, fe L2.(R; H),
n=1, 2,---. Assume that
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SUPpen S 1(gn) + 511(9) + suPaey Sy () + S3A(S) < o0,
ga(t) — g(t) in H for all teR
and that
fo—f in 12(J; V*) for each compact set J in R.

Let u,, n=1, 2,---, and u be solutions to E(B, g,, f,) and E(B, g, f) on [y, o),
respectively. Assume that

{(pto(un(tO))}neN is bounded

and that
u,(ty) — ulty) in V*

Then we have:

(i) u,(t) > u(t) in V* and weakly in H uniformly on each compact interval
in [ty, o).

(ii) u, > u weakly in L*(ty, t;; V¥) for all t, > t,.

(iii) v, > v weakly in L2(ty, t;; X)  for all t; > t,,
where v,, v are the functions such that

u;n + F(vn_gn) =f;l’ Uneﬁ(un)’ n= 13 29"',
u + F(v—g) =f, ve f(u).

These propositions will be used in various limit processes in the proofs of
Theorems 1, 2 and 3.

3. Lemmas

In this section, we prepare four lemmas which will be used in the proofs of
Theorems 1, 2 and 3.

LEmMMA 3. Let uy and u, be solutions to E(B, g, f) on J = [t,, t,] and set
(3.1) ui+ Fo,—g)=f, vepu), i=1,2
Then the following equality holds:

t

(32 27 uy (1) — uy (913 + f (v1(7) — v2(1), uy (1) — uy(7))de

=27 uy(s) —uy(s)l2 for all ty<s<t<t,.
Proor. Multiplying the identity derived from (3.1)

uy —uy + F(v, —vy) =0
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by u, — u,, we obtain

27Yd/dt)|us (1) — w1 + (F(01(0) — v2(0)), uy(t) — uy(1))y = 0

for ae. teJ.
Since u,(t), u,(t)eD(¢") = H for a.e. teJ, (F(vy(t) — vy(t)), v4(t) —uy(t)), =
(v1(t) — v,(t), uy(t) — uy(t)). Hence we have (3.2). q.ed.

REMARK 2. We note that in the above lemma (v, — v,, v; — u,) > 0 by the
monotonicity of f. Hence t+—|u,(t) — u,(t)|, is non-increasing.

LeEMMA 4. Let feB(a,b), ge WLA(R; H) and fe L (R; V*). Let u, and u,
be solutions to EB, g, ) on J=[ty, t;]. Assume furthermore that

(3.3) t—|uy(t) — uy(t)|, is constant on J.

Then the following (i) and (ii) hold:
(i) There is an element a in H such that

u (t) = u,(t) + o for all teJ.
(i) Eu; + (1 — Eu, is an solution to E(B, g, f) on J for all 0 < ¢ < 1.

PrROOF OF LEMMA 4-(ii). We first show assertion (ii) by assuming that
assertion (i) of Lemma 4 is valid. We give the proof of (i) after this. From (i)
it follows that v; = F"Yf—u)) +g=F " (f—u5) + g =0, a.e. on J. There-
fore if we put w = &u; + (1 — &u, (£€[0, 1]), then the relation v;e (), i = 1, 2,
and the maximal monotonicity of § together imply that v = v; = v,ef(w) a.e.
on J x 2. On the other hand we infer from (3.1)

w=2C8u +(1-Quy=¢{f—F@v, —g)} +(1 - O{f—Fl, —9)}
=f—F@—yg) for a.e. teJ.
Hence w is a solution to E(B, g, f). q.ed.

Before proving (i) of Lemma 4, we observe that the proof is immediate
provided that B or B~! is single-valued. In fact, under the assumptions of
Lemma 4, (3.2) and (3.3) together imply

Jn J‘ {v,(t, x) — v,(t, x) } {u,(t, x) — uy(t, x)}dtdx = 0.
o J 2

The integrand on the left hand side is non-negative by the monotonicity of
B. Hence

{vy(t, x) — vy(t, x)} {uy(t, x) — uy(t,x)} =0 for a.e. (t,x)eJ x Q.

Consequently, (a) if f is single-valued, then v, = v, a.e. on J x Q; (b) if 71 is
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single-valued, then u; =u, ae. on Jx£. In both cases (i) of Lemma 4
follows. However, as mentioned in Introduction we are interested in the case
where both B and B~! are multi-valued.

PrOOF OF LEMMA 4-(i) (cf. Remark 3). Let ¢° be defined by (1.1). First
using Kenmochi-Otani [15; Lemma 4.4] and (3.3) we have

B4)  f(t) — u(t) €09 (uy(2)) and f(t) — u'(t) e 0p'(u,(t)) for a.e. tel.

Next we see from (3.1) and B =df that the following inequality holds for
i=1,2

@' Muft + b)) — ¢'(u(®)
= f Blut + h,x))dx — j Bluit, x))dx — (g(t + k), uft + h)) + (9(2), u{2))
Q2 Q

> (v), ut + h) — w(®)) — (g(¢ + h), u(t + h)) + (9(2), ui(t))
=(v(t) — g(1), u(t + h) — uft)) — (g(t + h) — g(©), ut + h))
=vt) — g(0), u{t + h) — w(t)> — (9t + h) — g(t), uz + h))
=(F (vi(t) — g(0), ui(t + h) — uf®)), — (9(¢ + h) — g(0), ut + h))
= (fO) — ui(®), ut + h) — u0)), — (9(t + h) — g(2), u(t + h)).

Dividing both sides of the above inequalities by A, letting h— 0, and noting that
t—uft) is weakly continuous in H, we have

(3.5 (d/dt)e'(ut)) = (f(t) — ui (1), ui(©))y — (g'(®), ult))
for a.e. teJand i=1, 2.

Next it follows from (3.4) and Lemma 1 that for a.e. teJ there exist 4,(t) and
i,(t)e X such that

SO —uz(t) = F(@,(6) — 9(2),  d,(1) € Buy(2))

and
SO — ui(t) = F(@,(2) — g(t)), () € B(us(2)).
Therefore
(3.6) v, =F ! (f—uy) + g =t €pu)
and
(3.7 vy =F " Nf—uy) + g =t,€Pu).

Using (3.6), we obtain as before
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@ Huy(t + h)) — @'(uy (1))
= (v2(0), ui(t + h) — uy(9)) — (9(2 + h), us(z + h)) + (9(2), u,(2))
= (F(0t) = g(0)), us(t + h) — us(8))y — (9t + h) — g(t), us(t + h))
= (f() — u3(1), uy(z + h) — uy (1)) — (gt + B) — g(0), u,(t + h)).

Therefore, in the same way as in the derivation of (3.5), we get

3.8) (d/dn)e'(uy (1) = (f(8) — us (1), ui () — (@'(2), us(D)).
Similarly, by (3.7),
(39) (d/dn)p'(uy(1) = (f(8) — ui (1), uz(0)s — (@'(2), us(1)).

From (3.5) with i =1 and (3.8) it follows that

(1 (2), ui(®)y = (u2(1), ui()),
Similarly, (3.5) with i =2 and (3.9) together imply

(3(0), u3(1))y = (w1 (1), u3(1))y
Hence
lui () — uz (1% = @10, ui(®), — @2(0), i),
+ (u2(1), uz(1))y — (@1(), u3(1),
=0 for a.e. teld.

Thus there is aeV* such that u,(t) = u,(¢t) + o for all teJ. But, note that
u;e L*(J; HnW*2(J; V*) by Lemma 2, and so ae H. This proves the desired
assertion (i). qg.e.d.

REMARK 3. Our proof of Lemma 4-i) is a modification of that of Baillon-
Haraux [2], in which the periodic behavior of solutions to evolution equations
formulated with time-independent subdifferential is studied, and they used the
equality (d/dt)e(u(t)) = (W'(t), u*(t)) with u*(t)e dp(u(t)). In the time-dependent
case, this type of equality can no longer be expected. But for our {¢'}, it is
possible to compute (d/dt)e'(u(t)) explicitly and apply the same technique as in

[2].

Now the application of Lemma 4 implies the following two lemmas, which
play an important role in the proofs of the theorems.

LEMMA 5. Let BeB(a, b), g, g*c WEI(R; H) and f, f*e L .(R; V*). Let u;
and u¥, i = 1,2, be solutions to E(B, g, f) on [to, ®), toeR, and to E(B, g*, f*)
on R, respectively. Suppose that {t,} is a sequence in R such that t,— oo and
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(3.10) ut +t,) —u¥@) in V¥ as n — o for all teR i=1,2.

Then we have the following (i), (i) and (iii):

(1) |uf () —ui@®)|,,=d for all teR,
where
(3.11) d = limg_, ,|uy(s) — uy(s)|, (< ).

(ii) There is an element a in H such that
uf@) =ul() + «a for all teR.
(i) &u¥ + (1 — & u¥ is a solution to E(B, g*, f*) on R for all 0 < (< 1.

Proor. We first observe that the limit (3.11) exists (cf. Remark
2). Therefore by (3.10)

[uf (@) — uz @)y = lim, o |uy(t +t,) — uy(t + t,)]
= limg_, o, uy(s) — uy(9)|,
=d< for all teR.
Thus (i) is obtained, so that (ii) and (iii) follow from Lemma 4. g.e.d.

LEMMA 6. Let B, g, g*, f and f* be as in Lemma 5. Let u; and u¥, i = 1,2,
be solutions to E(B, g,f) on R and to E(B, g*, f*) on R, respectively. Suppose
that {t,} is a sequence in R such that t,— — oo as n— oo and (3.10)
holds. Furthermore, assume that

(3.12) SUPeq | Ui(t) |4 < 00, i=1,2

Then we have the same assertions (ii) and (iii) as in the statement of Lemma S and
the following (i)

@’ lu¥(t) — ut(t)l, =d  for all teR,
where
(3.13) d' = 1lim,, _ . |uy(s) — uy(s)l 4 (< ).

ProOF. By (3.12) and Remark 2, the limit (3.13) exists and is
finite. Therefore the lemma is proved in the same way as Lemma 5. q.e.d.

4. Proofs of Theorems

In this section, we prove Theorems 1, 2 and 3 by applying the argument in
[9]. We first prove Theorem 2, then Theorem 1 as a special case of Theorem
2, and then Theorem 3.
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Proor oF THEOREM 2—i). We employ the min-max principle. Fix
20€Dy. For n=1,2,---, let w, be the solution to E(B, g, f) on [ — n, c0) with
w,(—n) =z, Note that the existence of w, follows from Lemma 2, since
SUP,en® ~ "(20) < 0. In view of Propositions A and B in Section 2 and the fact
that the injection from H into V* is compact, we see that there is a subsequence
{w,} such that

W, (t) — w(t) strongly in V* and weakly in H

and the convergence is uniform in ¢t on each compact set in R, and that w is a
solution to E(f, f, g on R. Moreover

C, = SUPig|W(O) it + SUPseg| W |24 117 + SUP,@(W(1)) < 00
Therefore the following set K is not empty.
K = {u; u is a solution to E(B, g,f) on R and condition (x) below holds},
(*) SUP g | (1) 1 + SUP e U | 2+ 1170 + SUP@'(u(D)) < Cy.
We then put

I(u) = sup,lu(t)|, for ue L*(R; V*)
and
I, = inf{I(u); ue K}

We want to show that there is a unique u*e K satisfying I(u*) = I,. To this
end, we take a sequence {u,} in K so that I(u,)| I, as n —> co. As before, there
is a subsequence {u, } and a solution u* to E(f, g,f) on R such that

u,,(t) — u*(t) strongly in V* and weakly in H

and the convergence is uniform in ¢ on each compact set in R. Clearly u*e K
and I(u*) =1,. Next let u;, u, be two elements in K such that I(u,) = I(u,)
= I,. By the almost periodicity of f and g, there is a sequence ¢, > — o0 in R
such that (cf. [1])

g(t +t,) — ¢g(t) in H uniformly in teR
and
ft+t,+-)— f(t+-) in L*O, 1; V*) uniformly in teR.

Moreover, taking a subsequence of {t,} if necessary and referring to
Propositions A and B in Section 2, we may assume that for i = 1, 2 there exist
solutions w; to E(f, g,f) on R and

uft + t,) —> wyt) strongly in V* and weakly in H,
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where the convergence is uniform in ¢ on each compact set in R. Clearly w,,
w,e€K and I, = I(w,) = I(w,). Hence by Lemma 6
[wi(t) — wa(t)|,, = d = limg, _ u;(8) — uy(s)] 4 for all teR
and
w=2"1w,; + wy)ek.
On the other hand

W12 + 1274w (t) — wa® } 5 = 27 H{[w, (013 + [wa(0) 13}
<272+ 1) =13

Therefore 13 < I(w)*> < I3 — 27 2d%. Hence d =0 and
[uy(t) — ux(t)ly < limg, _ o Juy(s) — uy($)l, =d=0 for all teR,

which shows that u; = u,. Thus it is concluded that there is one and only one
element u* in K such that I(u*) =1, Once this is proved, the V*-almost
periodicity of u* is derived in the same way as in [9] or [1]. We refer to [9]
or [1] for the rest of the proof. q.e.d.

PRrOOF OF THEOREM 2—ii). Fix @e AP. Then by the almost periodicity of
g, f and @, there is a sequence {t,} such that t, > c0 as n— oo and

gt +t,) — g(2) in H uniformly in teR,
fe+t,+)— ft+) in L0, 1; V*) uniformly in teR,
a(t + t,) — a(t) in V* uniformly in teR.

We now put u,(t) =u(t +¢,) for t >ty —t,. Then using Proposition A in
Section 2 and taking a subsequence of {t,} if necessary, we find a function
o: R - V* such that

u,(t) — o(t) in V* uniformly in ¢t on each compact subset in R.

Moreover by Proposition B in Section 2, we observe that w is a solution to
E(f, g, f) on R. Therefore by Lemma 5, there is an element « in H such that

o(t) = o) + o for all teR.
Hence w belongs to AP and
ot +t,) =0t +t,) + o —> &) + o = () in V* uniformly in teR.
Moreover
lim,, , [u(t) — @(B)]y = lim,_, ,,|u(t,) — @(t,)], = lim,_, ,u,(0) — o(t,)l,

= |w(0) — w(0)|, = 0.



512 Masahiro Kuso

From this and the fact that sup,,, . |u(t)|y < oo, we infer (ii). qg.e.d.

ProOOF OF THEOREM 2—iii). Let w;, w,€ AP. Then lim,, ,|w,(t) — w,(t)l,
=d exists. Since t+|w(t) — w,(t)], is R-almost periodic, we conclude that
|w,(t) = wy(t)l, =d on R. Therefore, by Lemma 4, there is an element axe H
such that

w4(t) = w,(t) + « for all teR.
From this we obtain the relation
n1(t) = g(t) + F ~1(f(t) — 01 (t)) = g(t) + F ~(f(t) — w3(t)) = n5(t)
for a.e. teR. q.e.d.

ProOOF oF THEOREM 1. By Proposition A in Section 2, any solution u to
E(B, g, f) on [0, ) is V*-bounded, that is sup,,,|u(t)l, < co. Therefore, the
assertion (i) follows from Remark 2 in Section 2 and the well-known theorem by
Browder-Petryshyn [4]. Next note that all the assumptions of Theorem 2 are
satisfied. It is clear that P < AP. This relation and the assertion (iii) of
Theorem 2 together imply that P = AP. Hence assertions (ii) and (iii) of
Theorem 1 follows from those of Theorem 2. q.e.d.

ProoF oF THEOREM 3. The “only if” part is evident, so it suffices to prove
the “if” part. First we treat the almost periodic case. Fix any we AP. Then,
since u is V*-bounded, we have (cf. Remark 2 in Section 2)

d = lim,, ,|u(t) — o(t)], < 0.
By the almost periodicity of g, f and w, there is a sequence t, = — oo such that
gt +t,) — g(t) in H uniformly in teR,
fe+t,+)— ft+") in L*0, 1; V*) uniformly in teR,
ot + t,) — olt) in V* uniformly in teR.

Moreover, putting u,(t) = u(t + t,), we may assume that there exists a solution
u* to E(B, g,f) on R and

u,(t) — u*(t) in V* uniformly on each compact set in R.
Therefore, by Lemma 6, one finds o€ H such that
u*(t) = o(t) + o for all teR.
Consequently u* belongs to AP and
u*(t + t,) = ot + t,) + o—> w(t) + « = u*(t) in V* uniformly in teR.

Hence
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lu(t) — (), < lim,_, _ ,[u(s) — u*(s)|,
= lim,_, , |u(t,) — u*(t,)l,
= lim,, , |u,(0) — u*(t,),
= [u*(0) — u*(0)],
=0 for all teR.

Thus we have u = u*e AP.

As for the periodic case, repeat the above argument with w in Py instead of
AP and with t, = —nT, n=1,2,---. Then, exactly in the same way as above,
we have u =u*=w + aePr. q.e.d.

References

[1] L. Amerio and G. Prouse, Almost Periodic Functions and Functional Equations, Van
Nostrand, New York-Cincinati-Toronto-London-Merbourne, 1971.

[2] J. B. Baillon and A. Haraux, Comportment a l'infini pour les équations d’évolution avec
forcing périodique, Arch. Rat. Mech. Anal, 67 (1977), 101-109.

[3]1 H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les
espaces de Hilbert, North-Holland, Amsterdam-London-New York, 1973.

[4] F. E. Browder and W. V. Petryshyn, The solution by iteration of nonlinear functional
equations in Banach spaces, Bull. Amer. Math. Soc., 72 (1966), 571-575.

[5] A. B. Crowley, On the weak solution of moving boundary problems, J. Inst. Maths.
Applics., 24 (1979), 43-57.

[6] A. Damlamian, Problémes aux limites non linéaires du type du probléme de Stefan,
Thése, Univ. Paris VI, 1976.

[7] A. Damlamian, Some results on the multi-phase Stefan problem, Comm. Partial
Differential Equations, 2 (1977), 1017-1044.

[8] A.Damlamian and N. Kenmochi, Asymptotic behavior of solutions to a multi-phase Stefan
problem, Japan J. Appl. Math., 3 (1986), 15-36.

[9] A. Damlamian and N. Kenmochi, Almost-periodic and periodic solutions in time for a
multi-phase Stefan problem, Nonlinear Anal. T.M.A., 12 (1988), 921-934.

[10] E. DiBenedetto and A. Friedman, Periodic behavior for the evolutionary dam problem and
related free boundary problems, Comm. Partial Differential Equations, 11 (1986), 1297-
1377.

[11] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints
and applications, Bull. Fac. Education, Chiba Univ., 30 (1981), 1-87.

[12] N. Kenmochi and M. Kubo, Periodic solutions to a class of nonlinear variational
inequalities with time-dependent constraints, Funkcial. Ekvac., 30 (1987), 333-349.

[13] N. Kenmochi and M. Kubo, Periodic behavior of solutions to parabolic-elliptic free
boundary problems, J. Math. Soc. Japan, 41 (1989), 625-640.

[14] N. Kenmochi and M. Otani, Asymptotic behavior of periodic systems generated by time-
dependent subdifferential operators, Funkcial. Ekvac., 29 (1986), 219-236.

[15] N. Kenmochi and M. Otani, Nonlinear evolution equations generated by subdifferential
operators with almost periodic time-dependence, Memoirie di Mat. Acad. Naz. XL, 104
(1986), 65-91.



514
[16]
[17]
[18]

[19]

[20]

Masahiro Kuso

N. Kenmochi and I. Pawlow, A class of nonlinear elliptic-parabolic equations with time-
dependent constraints, Nonlinear Anal. T.M.A., 10 (1986), 1181-1202.

M. Kubo, Periodicity and almost periodicity of solutions to free boundary problems in
Hele-Shaw flows, Proc. Japan Acad. Ser. A, 62 (1986), 288-291.

J. A. McGeough and H. Rasmussen, On the derivation of the quasi-steady model in electro-
chemical machining, J. Inst. Maths. Applics., 13 (1974), 13-21.

A. Visintin, The Stefan problem for class of degenerate parabolic equations, in Free
Boundary Problems: theory and applications vol. II, Research Notes in Math. 79,
Pitman, Boston-London-Merbourne, 1983.

A. Visintin, General free boundary evolution problems in several space dimensions, J.
Math. Anal. Appl, 95 (1983), 117-143.

Department of Mathematics,
Faculty of Science and Engineering,
Saga University





