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Introduction

Many topologists have studied the various homotopy theories (the
equivariant homotopy theory [2,13] and the ex-homotopy theory [8,21]
etc.). Such homotopy theories have the common back-grounds. For example
Puppe’s theorem [19] and J. H. C. Whitehead’s theorem [25] etc. hold also in
these homotopy theories. Therefore these phenomena must be treated in the
systematic manner. In this paper we study an axiomatization of homotopy
theories mentioned above and deduce the various fundamental theorems
systematically. Moreover we study the homotopy theory of the functor
category in detail. Our theory enable us to treat the n-ad homotopy theory
and equivariant homotopy theory in the unified manner. By introducing the
cell structure in the functor category, we obtain the detailed results (e.g. the
obstruction theory).

In part I we give an axiomatization of homotopy theory based on the
cylinder and path functors (cf. [9,10]). By introducing the extension condition
and natural homotopy axioms 1, 2, we can obtain the various fundamental
theorems (e.g. Puppe’s theorem). Our axiomatization satisfies the duality
principle and is closed under the constructions of the functor category and the
comma category. Hence we can obtain the various fundamental theorems in
the various homotopy theories in the systematic manner (cf. [8,13,16]).

In part I we study the homotopy theory of the functor category in
detail. Let 2 be a topological small category, CGH the category of compactly
generated Hausdorff spaces and continuous mappings. Let # = Cont Funct
(2, CGH) be the functor category whose objects are continuous contravariant
functors and morphisms are natural transformations between them. The
category & becomes an abstract homotopy category in the sense of Part I. By
introducing @-orbits D,: 9 - CGH defined by D,(x) = 2(x, a)(hom-set in 2),
we define the functor complex over &2 which is the natural generalization of
equivariant CW complexes (cf.(2,13)) and n-ad CW complexes. By the the
natural isomorphism % (D, x T, X) = CGH(T(a), X(a)) where T is a constant
functor and X a continuous functor, it is shown that Puppe’s theorem, the
celllar approximation theorem and J.H.C. Whitehead’s theorem hold also in
the category of functor complexes. We can also develop the obstruction theory
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and Postnikov systems etc. as same as the ordinary homotopy theory.

The author wishes to express his hearty thanks to Professor T. Kudo who
introduce him this theme, and Professor M. Sugawara who read his paper
carefully and gave useful suggestions. He would like also to thank Professors
N. Oda and K. Fujii for many advices.

Part I. Abstract homotopy theory

§1. Axioms of abstract homotopy theory

To reproduce systematically the results of D. Puppe [19] and J. H. C.
Whitehead [25] in the various homotopy theories [2,8], we shall define an
abstract homotopy theory. In this paper, we use the terminologies and
notations on the category given in S. MacLane [12].

DerINITION 1.1. We call a category € a pre-homotopy category if it
satisfies the following axioms (A1-3):

(Al) € is closed under finite limits and finite colimits; hence it has the
initial object ¢ and the terminal object 1, and is closed under finite
(co) products, pullbacks and pushouts.

(A2) There are given covariant functors I, P: ¥ — ¥ with a natural
isomorphism ¥(IA, B) = #(A, PB) for any objects A, B of €(%(—, —) is the
hom-set in %), hence I(resp. P) preserves ¢ and colimits (resp. 1 and
limits). We call these the cylinder and path functors and the adjoint
isomorphism, respectively.

(A3) Moreover there are three natural transformations k,: Id - I(k = 0, 1)
and . I - 1Id with © 0, =Id = t1,. Here Id means the identity functor or
identity natural transformation. O,, 1, and T are called the top-face, bottom-
face and projection transformations, respectively.

DEFINITION 1.2. Let I" be the n-time composed functor of I in (A2) (I°
= Id); and define the natural transformations
df = I"Jk 1" —I"*' and s; = "7l M —

Jor (j, k)e[n] x [11([m] = {0, 1,---, m}) using k, and 7 in (A3). We call these
the face and degeneracy operators, respectively.

PROPOSITION 1.3. These operators df, s; satisfy the cubical simplicial
relations

d;"d}' = d?ﬂ 'di'((i <)) 5i8;=88i41 (0 2 J);
syt =dis_y (<)), =1d (=), = d_,sfi > ))

ProoF. (A3) shows the relations immediately. []
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Let (io, ko)€ [n] x [1]. Then by patching the 2n + 1 faces d I" —» I"*! for
(i, k) # (iy, ko), or by taking the pushout of the 2n + 1 copies of I" according to
the relations in Lemma 1.3, we obtain the following

LEMMA 1.4. There are the functors J"= J"i,, ko) and the natural
transformations d%: I" — J" for (i, k) # (ig, ko) and A: J" — I"*! satisfying the
following properties (1)}3):

(1) didi=dj-d: 1" —JS)) and Adf =df: " — "

(2) fEI"X - Y for (i, k) # (iy, ko) with the compatibility conditions f%d"
=fh,,df: J"X - Y (i <)) give us uniquely [ = {ff}: J"X > Y with fdf = f*.

(3) Let 7, I"—>1d be the composed transformation of projections T, and

1. J""1 5 1d the induced projection. Then these satisfy T,A = T,.

We use the letter J" for any (iy, k;). When n =0, we have J° = Id and 4
=k J°>I(k=0, 1).

Now we consider the following extension condition and natural homotopy
axioms for a pre-homotopy category ¥, where J", A, 1, and 1, are the above
ones:

(EC) For any morphism f: J"X — Y, there is a morphism F: ["*'X > Y
with FA ={.

(NHA 1) There is a natural transformation w: I" — J"~! with ul = Id for
all n> 0, that is, (EC) holds naturally by taking F = fu for all n > 0.

(NHA 2) There is a natural transformation u: I" — J"~! with t,u = 7, and
ui =1d for all n> 0.

DerINITION 1.5. Let € be a pre-homotopy category.

(1) We call € an abstract homotopy category if it satisfies (NHA 2).

(2) We say that two morphisms f,, f;: X — Y are homotopic (relative j. A
— X), if there is a morphism f: IX — Y with f, = fk, for k=0, 1 (and fIj = f,
Jjt); and then we write f, >~ f; (rel j) and call f a homotopy of f, and f,.

(3) Let f, g: IX - Y be homotopies with f1, = g0, and consider h%: IX
— Y given by h) =f, hi =g and h} = gl,. Then if € satisfies (EC), we have
H: I*X - Y with Hdf = h for (i, k) # (0, 0). We define f g = Hdg which is
unique up to homotopy relative I = {0, w1,}.

(4) Consider hf: I’X —»1X given by h} =1,7=h} and hi=1d. If ¥
satisfies (EC), we have H: I2X — IX with Hd* = h* for (i, k) # (0, 0). We define
1 = Hd3: I1X - IX which is unique up to homotopy relative I.

PROPOSITION 1.6. Let € be a pre-homotopy category satisfying (EC). Then
we have the following results.

(1) The homotopy relation ~ (resp. ~rel I) is an equivalence relation
compatible with composition.
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(2) If fand f": IX - Y (resp. g and g') are homotopic relative I and satisfy
f1,=90,, then f@D g and f' @ g' are homotopic relative I

(3) Let f, g, h: IX > Y be homotopies with f1, = g0,, gl, = h0,. Then
FDgPDh and f® (g @D h) are homotopic relative I.

4 Let f, gIX—->Y, hh Wo X, and k: Y- Z be homotopies with f1,
=g0,. Then (fD g)lh and fIh P glh (resp. k(fDg) and kf D kg) are
homotopic relative I

(5) There is a morphism v: I*X — I1X with vd) =1d = vd? and vd} = 1,7t
=vdl.

©6 Id®P1,10,7PDId and Id are homotopic relative I

(7) Id@: and O,z(resp. 1 @ 1Id and 1, 1) are homotopic relative I

(8) u and 1d are homotopic relative I.

If € satisfies (NHAL1), then the above results hold also for natural
transformations.

Proor. (1) Let f: I1X — Y be a homotopy of f; and f;. Then f1 gives a
homotopy of f; and f,. The other cases are proved analogously.

(2), (3) and (4) are proved by elementary calculations.

(5) Let X: I? - I? be the canonical natural transformation where I? is the
boundary of I? (i.e. the patching of 4 copies of I) and «: 12> I the natural
transformation with ad = Id = ad? and ad} = 1,7 = ad} where d% I — I is
defined by Ad¥ = d¥. Since « and 0,7a = 0,7,7 are homotopic, there exists
v: I*’X - IX with vi = a by (EC) (cf. Definition 2.1.)

(6) and (7) are proved by using the definitions of v and .

(8 By (6) and (7), we have :@ u ~ 1, trel I. Then Id~Id @ 1,7
>ld@:1Pu~0,1Pu=~u by (3), 4, (6) and (7). O

Here we note on the dual considerations.

Corresponding to Id in ¥(I4, IA) and ¥(PA, PA) by the adjoint
isomorphism in (A2), we have #: Id — PI (called the unit) and ¢: IP — Id (called
the counif). Thus we have the following axiom (A3*) which is dual and
equivalent to (A3) by taking k* = ¢k, P(k =0, 1) and ¢ = P(1):

(A3*) There are three natural transformations k*: P —»1Id (k =0, 1) and
o:1d > P with 0*%¢ =1Id = 1*0, called the top-coface, bottom-coface and
injection transformations, respectively.

DEerFINITION 1. 2*.  For the composed functors P" € — % of P, we have the
natural transformations

o = PP i{(k*)P'; P"*! - P" and g, = P""{(0)P': P" > P"*!
for (i, k)e[n] x [1], which are dual to d* and s; in Definition 1. 2.

These satisfy the cubical simplicial relations dual to the relations in
Proposition 1.3.
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DEFINITION 1.4*. As the adjoint to J” with A: J" — ["*! in Definition 1.4,
we can define the functor Q": € — € with the natural transformation n: P"*!
— Q" by the dual construction, (Q° =1Id and = = k*(k =0, 1) when n = 0).

These give us the axioms (EC*) and (NHA*1, 2) which are dual and
equivalent to (EC) and (NHA 1, 2), respectively.

ExampLE 1.7. (1) The category CGH( = CGHaus in [12]) of compactly
generated Hausdorff spaces and continuous mappings is our abstract homotopy
category. Here the cylinder and path functors are given by

IX = X x I (the product space) and PX = X! (the path space)

for the closed interval I = [0, 1]. (A1-2) are contained in the following (a0-2)
(see [12; VII §8], [22] and (A3) and (NHA) hold as usual:

(a0) In CGH, the product X x Y (= XO Y in [12]) and the function space
Y X are given by the Kellyfications of the usual product topology and the compact-
open topology.

(al) CGH is closed under (infinite) limits and colimits, and L_,iE)(X ;xY)
= (Lim X;) x Y holds.

=3

(a2) The exponential law (Z¥)* = Z**Y holds, and the composition YX x ZX
is continuous.

We note that so is the category Top (resp. Haus) of topological (resp.
Hausdorff) spaces in the same way (see [12; V§9)).

(2) The pointed category CGH,(cf. (12; VII §9], [22]) of CGH-spaces
with base point * and continuous mappings preserving * is also an abstract
homotopy category, by taking IX = X A I* (the smash product with I+
= I x) and PX = X’ (the path space with the constant mapping * as a base
point), since CGH, satisfies (al-2) replacing x by A which is the product in
CGH,. (Note that CGH,, is the comma category CGH} of CGH given in
Theorem 1.9 below.)

(3) In the category CGH, we consider a topological group G and the
category CGH; of G-spaces and continuous G-mappings. Then for any G-
space X, the above IX = X x I and PX = X' are G-spaces by the G-action on
X; and CGHg becomes an abstract homotopy category, as is shown by (al-2).

(4) For a ring R with unit 1, consider the category Ch, of chain
complexes over R and chain maps. Let I be the chain complex with I,
= R @ R generated by e, e;, I, = R generated by f, I, =0 (i #£0, 1) and 9, : I,
— I, given by 0,f = e, — ey; and R with R =R and R; =0 (i #0). Then we
have I and P in (A2) by IC = C ® I and PC = Hom (I, C) and k,, and t in (A3)
induced by the cahin maps k,:R—-1I, k(l)=¢, and 7: [ >R, 1(e) =1,
respectvely, so that Chg becomes an abstract homotopy category (cf. [4]).

Let ¥ be a pre-homotopy category. Consider the functor category &
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= Funct(2, %) for a small category 2 of contravariant functors 2 - ¥ and
natural transformations between them. For this category, (A1) follows from
(A1) for €, I and P in (A2) are induced from I and P for € by composing them,
and so are k, and 7 in (A3); and we see easily the following

THEOREM 1.8. If € is a pre-homotopy category, then so is the functor
category Funct (2, €)(2: a small category) by I, P, k,, and t induced from those
in (A2-3) for €. If € satisfies (NHA 1) or (NHA 2) in addition, then so does
Funct (2, 9).

Moreover, we consider the comma category (cf. [12; II-6) ¥4 for fixed
objects A, B and fixed morhism a: 4 - B in %, whose object is any diagram

A>3 X -2 B in € with px =a, and whose morphism f:(4 % X % B)
—(4 % Y% B) is any morphism f: X — Yin % with fx = y and qf = p. For
A->*X-2B I P k, and 7 in (A2-3) for ¥ give us the diagrams

Ix i s 5
JA —— IX X : = > PX > B
T PO 14 P PB o
v v k, v v
A———>x X, PX — 3 PB
X 7 Pp

(PO (resp. PB) means that the square is the pushout (resp. pullback) diagram)
with % = x, 7t =1, k,, = t'k,, p6 = p, 0’6 = o and k* = k*¢’. Hence we have

A5 TIX L B(p=pi) and 45 PX L, B(X = 6x) in ¥4, the functors I,

P. ¢4 - %4 and the natural transformations 7. I —1d, k,: Id - I, satisfying
(A2-3). For example for any f: IX — Y with fx = y and qf = p, we have X
— PY corresponding f7 by €(IX, Y) = (X, PY), and J: X —» PY with ¢/f=f
and §f= p; and the adjoint isomorphism for %4 is given by sending f to
f Moreover, A and u in (NHA 2) for € induce those for €4, and we see the
following

THEOREM 19. If € is a pre-homotopy category, then so is the comma
category €4. Moreover if € satisfies NHA 2, then so does the comma category
é4.
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§2. Fundamental properties
Let ¢ be a pre-homotopy category in Definition 1.1.

DEerINITION 2.1. We say that j: 4 -» X in X in % (resp. p: Y — B) has the
property HEP, (resp. HLP,), if any commutative square

A—— 3 P7 JNZ— 5y
2 A
/ /
/
s /
’ ,/
j ’ n 2 / p)
/ (resp. P
’ /
/ /
/, /,
{f’ v \ g
X——Q"'Z 1"z ———> B

has a dotted morphism to obtain two commutative triangles; and that it has
HEP (resp, HLP) if so does HEP, (resp. HLP,) for all n = 1.

We note that (EC) is equivalent to HEP for any morphism ¢ - X or HLP
for any X —» 1. HEP, (resp. HLP,) is known as the homotopy extension
(resp. lifting) property, and coincides with HEP (resp. HLP) (cf. [22; §§, 6-7))

LeEMMA 2.2. For any morphism f: X — Y in €, consider the diagram

x—7L 5y

(" PO i
O*; R R R
X——IX ——> M(f) ——> [Y —Y

T
of the mapping culinder M(f), where pi =1, and ph = If. Then
f=qj: X - M(f)—Y for j=h0, and q=r1p.
If € satisfies (EC) (resp. (NHA 1)), then i and q are homotopy equivalences with
iq ~ 1d, and j has HEP, (resp. HEP).

PrROOF. Assume (EC) for €. Then we have a morphism & [2X — I X with
¢dY =1d and ¢df=1,t=¢&d} by (EC), and so p: IM(f) —» M(f) with plh
= h¢ and p Ii = it by the pushout obtained by applying I to the above one (see
(A2)). Now p is a homotopy of Id and ig; and q is a homotopy equivalence.

Consider the diagram
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_]"”0* _ n—1
JTIX — J" 1IX-—J—h—>J"‘1M(f) I'x «e——1I"X
x PO v PO ] i I'h PO rf
¥ ¥ , ¥ v
I"x —> W ” > W 7 —> I"M(f) GTI"Y

with ju'u = I'j and jv' = A. Then to show j = h0, has HEP, it is sufficient to
construct a retraction R: I"M(f)—> W' with Rj’=1d by the above
definition. Now assume (NHA 1) for € and consider pu: I" — J"~! with pui = Id
and J" ! fuy, = uy I"f. Then by (EC), there exists

Wi I"X — W with A =1d and p'I"1, = vJ" "' 1, uy

for A': W— I"IX with A'v= Ay and A'u = I"0,. Hence we have R: I"'M(f) > W
with RI"h = v’y and RI" = vJ" 'ipy, and Rj’ = Id is seen as desired, by the
definition of pushouts and by noticing that pushouts are also preserved by
J"~l. When n =1, this proof is valid by taking u =7 in (A3). [

PROPOSITION 2.3. In € satisfying (EC), consider the pushout diagrams

4—2> 5p

v v
_
X 9k Mk

(1) If j has HEP,, then so does j.

(2) Assume HEP for j. If f, and f, are homotopic, then there exists
morphisms m;; M, — M, (I = k — 1) with myj, = j, and mg, ~ g, and homotopies
he IM, > M, of mm,~1d with hlj =jv:IB— M,(.e,m’s are cofiber
homotopy equivalences).

Proor. (1) is easily seen by the definition of HEP,.

(2) For F,: IA - B of f; ~ f, there is G;: IX — M, with G,1, = g, and G/Ij
= j,F, by HEP for j. Then jf, = G0,j, and we have m;: M, - M, with mj,
= j; and mg, = G0, ~ g, by G;. Moreover (m,G, @ Glj = jF D F) = jitlf;
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rel I by taking F, = F,i(see Proposition 1.7). Thus we have h: IX — M, with
hlj = jyt1f, and b ~ mG, @ G, rel I by HEP for j, and so h,: IM, - M, with
hdj = j,© and hlg, = h;, which is a homotopy of mm, ~Id. [

By taking the family of morphisms satisfying HEP (resp. homotopy relation
of morphisms) as Cof & (resp. congruence ~ ) of A. Heller’s h-c-category [6, 7],
we can easily see that our abstract homotopy category satisfies the axioms of A.
Heller’s h-c-category. Hence the results in [6, 20] hold also in our abstract
homotopy category. »

As we showed in §§3—4 in [20], we can deduce various propositions from
Lemma 2.2 and Proposition 2.3. The proof of Proposition 2.4 (resp. 2.5) below
is elementary and the same as one of Lemme 3.4 and Proposition 3.5 (resp.
Lemme 3.2) in [20].

Hereafter, we work in our abstract homotopy category %.

PROPOSITION 2.4.  For the pushout diagram in Proposition 2.3., the following
results hold.

(1) If j has HEP and f, is a homotopy equivalence, then g, is a homotopy
equivalence.

(2) If j has HEP and is a homotopy equivalence, then so does j,.

(3) If fy has HEP(k = 0, 1) and f, ~ f,, then M, is homotopy equivalent to
M,.

PROPOSITION 2.5. Let consider the commutative diagram

AI > Br

X; by

A——>8B

X—>Y

h hy
»/: !
). ¢ > Y

where the outer and inner squares are pushouts, j and j have HEP, h; (i = 1,2,3)
are homotopy equivalences. Then h, is a homotopy equivalence.
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DEeFINITION 2.6. (1) The cone and suspension functors C, X: € — € are
defined by the pushout diagrams (1: the constant functor to the terminal object

1)

d—— 51 d—— 1
1, PO 0 j=Hho, PO

v v v v

I———h-—> C, C—— 7,

(2) For j: A— X, the shrinking X/f A, the mapping cone C(f) and the
morphisms d, f,, f,, m; are defined by the diagrams

A— 1| A / > X —> CX >
f PO J PO h PO PO
v v v v v v
X—X/fA, CA y >C(f) — C(f1) > ZA.
2

We can define the cone functor by using the natral transformation 0,: Id
— I instead of 1,. Though these are not isomorphic, these are homotopy
equivalent to the final functor 1 by Lemma 2.2. We can also define the top-
coface fixed path functor L and the loop functor 2 by the diagrams dual to
Defintion 2.6, respectively. When & has the zero object, there are natural
isomorphisms ¥(CA, B) = 4(A4, LB) and ¥(Z A, B) = (A4, 2B) for any objects 4,
B of €. If € has not a zero object, these don’t hold.

Let Ho & be a quotitent category of € by the homotopy relation (cf. (12; 1I,
§8)). Let nI=1@IPD---DI (n=1) be the cylinder functor of length n
obtained by patching n-copies of cylinder. Then we can define the cone
functor C, and suspension functor X, of length n by using nl. The functors
X,(n = 1) are naturally equivalent each other on Ho % by Proposition 2.5. (cf.
[20; §4]). Of course C, is homotopy equivalent to the functor 1 for all n = 1.

THEOREM 2.7. Let € be an abstract homotopy category. Then we have the
following
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(1) If f: A> X has HEP, then C(f) ~ X/fA.

(2) For f:A—- X, C(f;) ~ ZA holds.

(3) If fo and f, are homotopic, then C(fy) ~ C(f,).
(4) There holds the commutative diagram

Mfa—Is x Lt c(n L)L o) Ly, —

N,

PfifA——> X — > C(f)—> 24 >3 X —> S C(f)—>
12f 12,

of natural sequences, where M f consists of the iterated mapping cones, each m; is
a homotopy equivalence and f; has HEP, and 1: £ — X' is induced by 1: 1 —> I in
Definition 1.5.

ProOF. (1) Since A —» X has HEP and CA is homotopy equivalent to 1,
C(f) is homotopy equivalent to X/fA by Proposition 2.4(1).

(2) and (3) are proved analogous to (1).

(4) To discuss exactly, we distinguish the cone functors C*, C~ defined by
the colimits of diagrams I <¢~1d — 1 and I <~ Id — 1, respectively. We write
C(f1), ZX and C(f,) as C"XUC*4, C"XUC*X and C"XUC*C(f). By
iterating the construction in Definition 2.6 we have shrinkings m;: C(f;) » 24
=C%A4/A and m,: C(f,) > ZX = C~X/X which are homotopy equivalences.
Let kT: C"XUC*X -» CFX/X be shrinkings. Then (k™) (k") " :2X =
C*X/X - XX = C~X/X is homotopy equivalent to ©: £X — XX by Definition
1.5. Hence by the above constructions, m,f;: C(f;) = C X UC*X = C(f,)

= C~X/X is homotopy equvalent to 1Xfm,: C(f)»> C*4/A-»C*X/X =
C™X/X. Since f; has HEP, we can choose m,: C(f;) > 2X = C~X/X such
that m,f; =12 fim,. O

When our abstract homotopy category € has the zero object 0 (i.e. ¢ = 1),
there is the natural transformations u: 2~ 2, -2V 2 and z £ - 2 on Ho ¥
obtained by collapsing the equator and reflecting the cylinder,
respectively. These satisfy the relations

VIdu=>0dV @ IdV)p=0=0VIdy (IdVOu=1d =0V Idu

Moreover it is proved that uX, Zu: 2 — X2 V X? are naturally equivalent each
other on Ho ¢. The relation (Zu V Zp)ul ~ (uX' V p2)Xu holds also as usual.
From these considerations and Theorem 2.7 we obtain the following

COROLLARY 2.8. If € has the zero object, then for the homotopy sets
€[—, Y] with 0 =[0], the sequence Pf in Throrem 2.7 induces the exact

sequence
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o[4, Y1L erx, v1 L grc), Y14 4154, Y] — -

i.e, Ker ¢ = ¢ 71(0) = Im ¢’ for successive maps S < §' & S" Moreover this is
the exact one of groups and homomo phisms except for the first three, and the
group €[2A, Y] acts on €[C(f), Y] by the shrinking C(f) = XUC,A—> XU
CAV ZA.

We also note that Pfinduces the exact sequences for a half exact functor H
in [5; § 5] instead of ¥[ —, Y]. The above results are generalized to the Mayer-
Vietoris sequence and Milnor’s one.

Part II. Homotopy theory of functor categories

§3. Functor spaces and functor complexes

Throughout Part I, we are concerned with the category CGH of
compactly generated Hausforff spaces, which is an abstract homotopy category
by Example 1.7(1); and we consider spaces and their (co)limits etc. in this
category unless otherwise stated, and use the properties (a0-2) in Example
1.7(1) frequently.

DerFINITION 3.1. (1) We call a category 2 a topological category if any set
of morphisms 2 (a, b) is a CGH-space and the composition Z(a, b) x 2(b, c)
— 9Y(a, c) is continuous for any objects a, b, ¢ in €, and a contravariant functor
F: 2 — 2 between them continuous if the induced map F.: D(a, b) - €(F (b),
F (a)) is continuous for any objects a, b in 2.

(2) We consider always CGH as the topological category by CGH(T, S)
= ST in (a0). Hereafter we fix a topological small category 2, and consider the
functor category

F = % (2) = Cont Funct (2, CGH)

whose objects (called functor spaces over 9 or & -spaces simply) are continuous
contravariant funtors X: 9 - CGH and whose morphisms (called %-
morphisms) are natural transformations between them. Also we have the
pointed category %, = % ,(2)= Cont Funct (2, CGH,) of #-spaces X
= (X, *) with based point *(or F-spaces X>*) by the pointed category CGH,,
in Example 1.7(2).

(3) Any object ¢ in 2 gives us the continuous functor D;: 2 - CGH by
DJa) = D(a, ¢) and D (f) =f,: 2(b, c) > D(a, c) for any a and f: a > b in Z; and
we call this &#-space D, the 9-orbit of c. We regard any CGH-space T as the
F-space Tby T(@)=T and T(f) =1d: T-> T.

(4) Consider the category A(n) of ordered objects 0 < 1 < --- < n whose
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morphisms consist of unique i —j for i <j. The category &, of (n + 1)-ples
X« A, « «A, of F-spaces is considered as & ,,, = Funct (4(n), F) = F(2
x A[n]) by the product category 2 x A[n](with the usual topology). For n
=2, we call &#, the category of pairs of F-spaces. We call A < X a relative
pair if A(a) is a closed subspace of X(a) for any a in 2.

THEOREM 3.2. The categories & and &, are closed under (co) limits and
become abstract homotopy categories in our sense by the cylinder and path
functors obtained by composing those for CGH and CGH,.

Proor. Let {X,;} be a direct system in &, and consider the adjoint
ad(X)): X«(b) x 2 (a, b) > X(a) of X; D(a, b) > CGH(X(b), X(a)), which are
continuous by the definition and the exponetial law in (a2). Then by taking
X(a) = Lim X(a) in CGH we have Z(a, b) x X(b) = Lim (Z(a, b) x X (b))
— X(a) by (al) and its adjoint 2(a, b) » CGH(X(b), X(a)) which are also
continuous. Thus X = Lim X, is well-defined in % and so is the inverse limit
analogously. For the path functor P on CGH, P,:CGH(S, T)
— CGH(PS, PT) is continuous since the adjoint ad P: T x ST > T' is
continuous; hence we have P: & — % which is the continuous functor. We
have I for & in the same way; and we see the theorem according to Theorem
1.8. Analogously we have the results for #,. [

We now introduce the notion of functor complexes as follows, where ¢ is
the empty spaces, V" is the unit n-ball and S"~! = V™" the (n — 1)-sphere (V° = x,
S~ ! = ¢) in CGH.

DeriNITION 3.3. (1) We call K(resp. (K, L)) a functor compex over & or
F -complex (resp. relative one), if K~ = ¢(resp. L) and K = Lim K" in & for
& -spaces K" with j,: K" ! > K", which are constructed inductively by the
pushout diagrams

A iDa.- X S"—l_————)_u. iDa,- x

(%) Liﬁl PO l

Kn—l — K"

in & for some objects a; in 9, #-morphisms f; and the upper & -morphism
induced by $"~! < ¥*. Here + stands for the direct sum in & and D, x Tis
the product &%-space of the Z-orbit and a CGH-space T, i.e., (D, x T)(a)
= 9(a, c¢) x Tand (D, x T)(f) = D(f, ¢) x T (cf. Definition 3.1(3)). We call K"
the n-skeleton, D,, x V" the n-cells attached by f;, and the maximum integer of
n’s appeared in (x) the dimension of K (resp. (K, L)).

Note that j,(a): K"~ '(a) > K"(a) satisfies the properties in the following :

(a3) Let A < X in CGH, satisfy the properties that A4 is regular in X(i.e.,
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A and xe X — A are separated by open sets in X; hence A is closed) and is a
neighborhood retract of X. Then for the pushout Y= XU, Bof X > A-5 Bin
CGH, we have B < Y with the same properties.

(2) A pair (Ky, K,) of F-complexes, or an & -subcomplex K, of an &% -
complex K, is defined to be a functor complex K over 2 x A4[1] with K,(a)
= K(a, h)(cf. Definition 3.1(3)). Then K, consists of n-cells D, ;, x V* and K,
of those together with D, o, x V". Also we have an % -complex K = (K, *)
with base point *, which is an & -space.

We see the following lemma by definition, which is basic in our theory

LemMMA 34. For any % -space X and D, x T (T: a constant functor), the
natural isomorphisms

Z (D, x T, X) = CGH(T(a), X(a)), #[D, x T, X]= CGH[T(a), X(a)].

hold by corresponding o:D, x T— X and & T(a) — X(a) satisfying a(t) = o, (Id,,t)
and o(f, t) = X(N@®)(f: a—c, teT). Moreover we have the relation for T
>SS in CGH, and X> A in %, etc. As examples, #(D, x V", D,
x §"~1; X, A)) = CGH(V", S§"°%; X(c), A(c));and ZF.[DS NT, X]=ZI[D,
x T, D, x x; X, x] = CGH,[T(a), X(a)] for Ta+ in CGH, and X>* in #,,
where (DT A T)(c) = D(c, &)* A T (2(c, a)* = D(c, a)*).

Here (X, A)(resp. X) is N-connected if n,(X(a), A(a), x)(resp. 7 (X(a), x)) =0
for any a in 2, xe A(a)(resp. X(a)) and 0 <n < N.

THEOREM 3.5. Let (K, L) be a relative F-complex.

(1) The canonical morphisms j,: K"™' - K" and L — K have HEP; hence
Theorem 2.7 is valid for these morphisms.

) If a pair (X, A) of &-space is N-connected, then any F -morphism
f(K, L)y—> (X, A) is homotopic relative L to some F-morphism g. K — X with
g(K") < A.

(3) (Cellular approximation theorem) Let f: (K, L)—»(K', L') be an %-
morphism between relative % -complexes. Then there exists g: (K, L) - (K’, L)
which is homotopic relative L to f and satisfy g(K") = K™ for all n.

Proor. (1) In the pushout diagram (*) in Definition 3.3 (1), the upper % -
morphism has HEP by Lemma 3.4, and so does j, by Proposition 2.3 (1).

(2) is seen by Lemma 3.4, (1) and the induction on K" and (2) implies (3),
because (K, K") is n-connected by definition and Lemma 34. [J

THEOREM 3.6 (J.H.C. Whitehead’s theorem). Let f: (X, A) — (Y, B) be an
& -morphism between pairs of F-complexes. If the induced homomorphism

fi: ml(X(a), x) — m(Y(a), f(x)) and f,: m,(A(a), x) — m,(B(a), f(x))

are bijective for n < max(dim X, dim Y), any a in 2 and xe A(a), then f is
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homotopy equivalence in ¥ ,.

Proor. The assumptions imply that (M(f), X) is N-connected for the
mapping cylinder M(f) > X of f; hence we have g: Y—> X with fg ~1Id by
Theorem 3.5 (2). Then g(a),: n,(Y(a), y) = 7,(X(a), g(a)(y)) for n < N, and we
have f: X — Ywith gf’ ~ Id in the same way. Thus we have the absolute case,
and also the relative case by the considerations in %, []

We now define a coefficient system over a topological small category 2.

DerFINITION 3.7. Let G = Ab(resp. Gr) be the category of abelian groups
(resp. groups) (for n = 2 (resp. n = 1) in (2)+3) and Lemma 3.8 below).

(1) For any f: a-b in 2, let [flenyPa, b)) be its path-
component. Then we call a contravariant functor M: 2 — G a coefficient
system over 2 if M(f)= M(f) when [f]=[f"]; and we have the functor
category CS = CS(2) of them.

(2) For a 0-connected & ,-space X, the homotopy group m,(X): 2 — Gr is
given by n,(X)(a) = n,(X(a)) and n,(X)(f),. We call X an Eilenberg-MacLane
F -space of type (M,n) if n,(X)=M and n(X) =0 for i # n.

(3) For any c¢ in 9, put P" = n,(D} A S") for DY A Tin Lemma 3.4.

(4) Also define P: 2 — Ab by P(a) = Hy(D(a, c¢)*;Z), and P/f)[g]
= [gf], where [g]€P(b) denotes the generator represented by ge 2(b, c).

LEMMA 3.8. (1) P,= P! when n = 2; and Pl(a) is the free group generated
by the elements [ ] represented by [f* A S*: S' = D(a, c)* A S'] for f: a—c.

(2) CS (P, M)= M(c) by corresponding a: P, M in CS and ae M(c)
satisfying & = a[1d] and o[ f]1= M(f)(@(Ad: c—c, f:a—¢)

(3) P, is projective in CS; and CS (P, n(X)) = Z,[DS N S*% X].

This lemma is proved by definition and Lemma 3.4.

THEOREM 3.9. For any coefficient system M: @ — Ab (resp. Gr) and n > 1
(resp. n = 1), there is an Eilenberg-MacLane & -complex K(M, n) of type (M, n),
which is unique up to homotopy type.

ProOF. By Lemma 3.8, we have a projective resolution of M, P,-% P,
—M -0 where Py = @;P.,, P, = @DiPy(D satnds for the sum (resp. free
product)), and ¢: P, —P, is represented by a morphism f: V, D A S"
— V;D} A 8" by Lemma 3.8. Then we can construct the mapping cone C(f)
which satisfies 7, (C(f)) =0 and M for i < n and i = n, respectively. Iterating
the above process for the higher dimensions =, ,(C(f)) etc, we can obtain the
result inductively. [J

ExampLE 3.10. (1) Let G be a topological group in CGH, and consider
the category CGHg of G-spaces in Example 1.7. The quotient spaces G/H of
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left cosets in Haus (hence in CGH) and G-maps between them form the
category (g of orbit types. Then (@, becomes a small topological category
according to the natural isomorphism O4G/H, G/K) = (G/K)¥. Any G-space
X can be identified with the #(0;)-space X: O; —» CGH given by X(G/H) = X!
(the invariant set of H) or X = X(e)(e: the unit group). A G-CW complex is
defined by a colimit I;ng X", by taking u ;G/H; x $""!' - u,G/H; x V" in place
of the upper morphisms in Definition 3.3(1). The above correspondences and
definitions induce the one-to-one correpondence between % (0g;)-complexes and
G-CW complexes.

(2) Let A[n] be the category defined in Definition 3.1(4). Then there are
n+ 1 types of @-orbits Dy = {s — -+ — ¢}, D, = {4 —« %« --- < @}, D, = {»
« -+ «x}, and any Z(4[n])-complex can be identified with an n-ad CW
complex (X, A,---, 4,) with X o A, o ---> A, by Definition 3.3.

(3) Let V(n) be the category of the n-time products of 4[1]. Then there
are 2" types of V(n)-orbits and % (V(n))-complex can be identified with an n-ad
CW complex (X; A,,---, A4,) with X o A(i = 1,---, n) by Definition 3.3(1).

§4. Cohomology theory on ¥ = F(9)

Let (X, A) be a relative & -complex with the n-skeleton X" and the
canonical morphism j,: X"~! —» X" and consider the shrinking X" = X"/X™ by
the composition X™ — X"(m < n) of them. Then

X4y =X"/X""'=(w;D, x V" 1;D, x S""1=V,D} AS"

and X"~ ! - X" induces the Puppe sequence
X1l Xt xn S, pxnt

Now we define C,(X, A): 2 — Ab in CS(2) and 4, C(X, A) —C,_,(X, A) by
CiX, A)(a) = ®:Ho(D(a,a)"; Z) = H(X]_ ,(a); 2),
(@) = (dn)y: Ci(X, A)(a) = H(X,-1(a); Z) —
Co-1(X, A)(@) = A,(Z X}~ 3(a); Z)
and C, (A4, A)=0 and 0,,, =0 for n <0. Since (d,),(d,+1), =0, we have the
chain complex C, (X, A) and the homology
H, (X, A): 2 — Ab given by H,(X, A)(a) = Kerd,(a)/Im 0, ,(a).

Moreover any cellular & -morphism f: (X, A) — (Y, B) with f(X") = Y" induces
the #-morphism f™ X"/X"~! - Y"/Y"~! with X f"-1 d, = d,f,_, and a natural
transformations
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f* = (fz—l)*: C,,(X, A) - Cn(Y, B) and f*: Hn(X’ A) -—’H.,(Y, B).

DerINITION 4.1. For a relative & -complex (X, 4) and a coeflicient system
M: 9 — Ab in CS(2), we put

C'(X, 4; M) =CS(2)(C(X, A), M), & =CS(2)(0, M)

and H'(X, A; M) = Ker 6"/Im 6"~! as usual. Also a cellular & -morphism f:
(X, A) - (Y, B) induces

f* = CS(@)(f,, M): C(Y, B, M) — C"(X, A; M) and
f* = H"(Y, B; M) — H"(X, A; M).

Thus we have the cohomology theory {H"} on the category &, of paris of & -
complexes and cellular % -morphisms.

DEFINITION 4.2. A (generalized) cohomology theory on the category &, is
defined to be sequence of contravariant functors h*: %, > Ab (— 0 <n <
+ oo) with natural transformations 6™ h"(4, B) —» h"*1(X, A) for any triple X
> A o B, such that the following axioms are satisfied.

(1) Homotopy axiom: If f;, f;: (X, A) — (Y, B) are homotopic in & ,, then
h(fo) = h'(f1)-

(2) Excision axiom: The inclusion i: (X, XNnA)—>(XuUd, A) induces an
isomorphism A"(X UA, A) = h"(X, X nA).

(3) Exactness axiom: Let (X > A o B) be a triple of &#-complexes, then
the following sequence is exact.

WX, A) — WYX, B) — WA, B) 1> "X, A) —> ---.

We set h"(X) for h"(X, ¢).

THEOREM 4.3. The cohomology theory H" defined in Definition 4.1 becomes
a generalized cohomology theory on ¥ , and satisfies the dimension axiom (i.e.
H"D, M)=0 for n#0, any object a in D).

ProoOFr. The excision axiom, exactness axiom, dimension axiom and the
functorial properties are clearly satisfied by the definitions. We shall only
verify the homotopy axiom. Let f,, f;: (X, 4)— (Y, B) be two cellular &%-
morphisms and F a cellular homotopy of f, and f;. F induces the chain map
F, C.(Ix X, Ix A, M)-C\Y, B, M) We define D: C(X, A; M)—>C,,,
(Y, B; M) by D(a)=F,(I ®a). Clearly it holds 8,,,D,+ D,_,0, = (fo)
— (f1 )« Hence, by taking the cohomology group, the homotopy axiom
hold. O

The category CS(2) becomes a Grothendieck category by Lemma 3.8 and
Theorem 1 in §4.7 of [18]. Projective cojects {P,|a: object in 2} are
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generators in CS(2) by Lemma 3.8. Hence by Theorem 1 in §4.9 of [18], the
category CS(2) admits injective resolutions. By wusing the method of
homological algebra, we can obtain the universal coefficient theorem (cf. [11;
X11]).

THEOREM 4.4. Let M be a coefficient system and (X, A) a relative F-
complex. Then there is a spectral sequence {E;", d,} converging to H*(X, A; M)
where E3' = Ext'(H(X, A); M) and Ext considered in CS(2).

We can develop the obstruction theory on the category of #-complexes by
the same way to the ordinary (equivariant) homotopy theory (cf. [2, 14,
24]). Then we have the following result.

THEOREM 4.5. Let K(M, n) be the Eilenberg-MacLane & -complex of type
(M, n) where M: 2 — Ab. Then there is a natural isomorphism

F,.[X; KM, n)] = H(X, M)

Sfor any F . -complex X with base point, for all n 2 1. In particular there holds a
natural isomorphism # , [K(L, n); K(M, n)] = CS(2)(L, M).

ExampPLE 4.6. (1) Let (O; be the -category defined in Definition
3.10(1). Then the cohomology theory {H,} defined in Definition 4.10 is the
same as the classical equivariant cohomology theory defined in §3 of [14].

(2) Let A4[2] be the category defined in Definition 3.10(2). For the
coefficient systems M,, M, and M, given by O0—»#n, n>=n and n—0,
respectively, the cohomology groups H*X; M))(i = 1, 2, 3) of %-complexes X
= (A — X) are isomorphic to the ordinary cohomology groups H"(X, 4; m),
H"(X; n), and H"(A; =), respectively. Since the sequence 0 > M; - M, - M,
— 0 is exact, we have the long exact sequence induced by the coefficient systems

H"(X, A; n) — H"(X: m)— H"(4; 1) — H"* (X, A; 1) —

(3) Let V(2) be the category defined in Definition 3.10(3). For the
cefficient systems M, M’,, M}, M, given by the following diagrams

0/0\'0 / 0\'0 ‘/ \‘ ‘/ \‘
WSO\ NS NS

Ml MIZ M” 3

the & -cohomology groups H"(X, M,), HYX, M3), HYX, M%) and H"(X, M) of
the &-complex X = (X, 4, B) are isomorphic to the ordinary cohomology
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groups H%(X, AUB;n), H"X, B;n), H'X, AnB;n) and H"X, AnB; n),
respectively. For M, = M, @ M}, we have H'X; M,) = H'(X, 4; 1) @ H*(X,
B; n).

Since 0> M, - M, > M;—>0 is exact, we have the long exact sequence
induced by the coefficient systems which is the same as the ordinary Mayer-
Vietoris exact sequence.

Hereafter we work in the category %, of (0-connected) &, -spaces.

DEerFINITION 4.7. Let p: X — B be a fibration with a fiber F in &, and X,
B, F O-connected % ,-spaces. Then we say that p admits an % -Postnikov
system if there exists the following system:

(P1) There is a sequence of fibrations p, X,— X,_, with a fiber
K, = K(n,(F), n) for n=1 (X, = B).

(P2) There is a sequence of & -morphisms p”: X — X, which is (n + 1)-
connected (n > 0). These satisfy p, p" = p"~ ! for all n > 1.

Moreover when p, X,— X,_; is induced by k,: X,_; = K, = K(n,(X),
n + 1) from the canonical fibration over K, we say that p, is a principal
fibration. When p, is a principal fibration for all n > 0, it is called that p: X
— B admits a principal % -Postnikov system.

By the standard arguments (cf. [23; 5, 24]), we have the following

THEOREM 4.8. Let p: X > B be a fibration with a fiber F and X, B, F
0-connected & ,-complexes. If n\(X) acts simply on n,(F)=mn,,,(B, X) for all
n =1, then p admits a principal & .-Postnikov system.

Let X be a O-connected & -complex with base point and Y a 0-connected
simple #-space. We assume that O-skeleton X° of X is *. By using the
filtration by skeletons of X, we can construct the homotopy spectral sequence
as §1 in [17].

DY = F,[Z°X" Y] (t=s20)
(4.9) Ey' = F [ZXX XL Y] (t2s20)

EF - '=F [V,DSASTH Y] (s21)
where #, [ —; —] denotes the homotopy set in 4,. Then the homotopy exact
sequence yields an exact {D}*, E}, a,, B,, v,} were a;, f; and y, are induced by
Joe X*T o XS, wy f VDS NS5 X5 and kg X5 X5/X5T!, respectively.
The E, term is described by the formula E$' = HY(X; n(Y))(t + 1 = s = 0).

For the & -Postnikov system of Y, we can construct the homotopy spectral
sequence as §1 in [17] (cf. [15]).

(4.10) Dy =F, [X; 2] (t25s20)
S = F =T QTTK]=H (X (V) +12520)
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Then the homotopy exact sequence yields an exact couple {D¢', ES*, &,, B,, 7,}.
where &,, B, and 7, are induced by p;: Y, > Y,_, k: Y,> BK,,, and iy K, > Y,
respectively.

Now we can prove the next theorem by the same way as §1 in [17].

THEOREM 4.11. Let X be a 0-connected & -complex with base point and Y a
O-connected simple % ,-space. Then there exist isomorphisms

¢ Dy — Dy, i E}' — E}Y
which commutes with a,, B,, y, and &, B, 7,

Let #9 be the category of O-connected & -complexes with base point and
cellular & ,-morphisms, and F#9 the full subcategory of #9 consisting of -
complexes with finite cells, and Ho(# %) and Ho(F #9) the quotient categories
of #% and F # by the homotopy relation, respectively. Then we see easily
the following

THEOREM 4.12. A pair of the categories (Ho(F2), Ho(F #2)) becomes an
abstract homotopy category in the sense of §2 in [3].

A functor K from Ho(#J) to the category of sets which satisfies (2.6) and
(2.7) in [3] called a Brown functor. By the same way as [3], we can prove the
representability theorem analogous to Theorem 2.8 in [3] (cf. [1]).

THEOREM 4.13. A Brown functor A~ defined on Ho(F?3) is representable,
that is, there is a unique % in %, and a natural isomorphism T: F . [X, Y]
= K(X) for all X in #,.
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