
HIROSHIMA MATH. J.

19 (1989), 477-197

Abstract homotopy theory and homotopy
theory of functor category

Yoshimi SHITANDA

(Received September 19.1988)

Introduction

Many topologists have studied the various homotopy theories (the
equivariant homotopy theory [2,13] and the ex-homotopy theory [8,21]
etc.). Such homotopy theories have the common back-grounds. For example
Puppe's theorem [19] and J. H. C. Whitehead's theorem [25] etc. hold also in
these homotopy theories. Therefore these phenomena must be treated in the
systematic manner. In this paper we study an axiomatization of homotopy
theories mentioned above and deduce the various fundamental theorems
systematically. Moreover we study the homotopy theory of the functor
category in detail. Our theory enable us to treat the n-ad homotopy theory
and equivariant homotopy theory in the unified manner. By introducing the
cell structure in the functor category, we obtain the detailed results (e.g. the
obstruction theory).

In part I we give an axiomatization of homotopy theory based on the
cylinder and path functors (cf. [9,10]). By introducing the extension condition
and natural homotopy axioms 1, 2, we can obtain the various fundamental
theorems (e.g. Puppe's theorem). Our axiomatization satisfies the duality
principle and is closed under the constructions of the functor category and the
comma category. Hence we can obtain the various fundamental theorems in
the various homotopy theories in the systematic manner (cf. [8,13,16]).

In part Π we study the homotopy theory of the functor category in
detail. Let Q) be a topological small category, CGH the category of compactly
generated Hausdorff spaces and continuous mappings. Let $F — Cont Funct
{β9 CGH) be the functor category whose objects are continuous contravariant
functors and morphisms are natural transformations between them. The
category 3F becomes an abstract homotopy category in the sense of Part I. By
introducing ^-orbits Da: Q) -^ CGH defined by Da{x) = Q)(x, a) (horn-set in 3>\
we define the functor complex over @ which is the natural generalization of
equivariant CW complexes (cf.(2,13)) and rc-ad CW complexes. By the the
natural isomorphism ^{Da x % X) = CGH(Γ(α), X(a)) where Tis a constant
functor and X SL continuous functor, it is shown that Puppe's theorem, the
celllar approximation theorem and J. H.C. Whitehead's theorem hold also in
the category of functor complexes. We can also develop the obstruction theory
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and Postnikov systems etc. as same as the ordinary homotopy theory.

The author wishes to express his hearty thanks to Professor T. Kudo who

introduce him this theme, and Professor M. Sugawara who read his paper

carefully and gave useful suggestions. He would like also to thank Professors

N. Oda and K. Fujii for many advices.

Part I. Abstract homotopy theory

§ 1. Axioms of abstract homotopy theory

To reproduce systematically the results of D. Puppe [19] and J. H. C.

Whitehead [25] in the various homotopy theories [2,8], we shall define an

abstract homotopy theory. In this paper, we use the terminologies and

notations on the category given in S. MacLane [12].

DEFINITION 1.1. We call a category # a pre-homotopy category if it

satisfies the following axioms (A 1-3):

(Al) ^ is closed under finite limits and finite colimits; hence it has the

initial object φ and the terminal object 1, and is closed under finite

(co) products, pullbacks and pushouts.

(A2) There are given co variant functors /, P: # -> ̂  with a natural

isomorphism %(IA, B) = @(A, PB) for any objects A, B of # ( # ( - , - ) is the

horn-set in <&); hence /(resp. P) preserves φ and colimits (resp. 1 and

limits). We call these the cylinder and path functors and the adjoint

isomorphism, respectively.

(A3) Moreover there are three natural transformations k^: Id -• I(k = 0, 1)

and τ: /-> Id with τ 0^ = Id = τl*. Here Id means the identity functor or

identity natural transformation. 0^, 1^ and τ are called the top-face, bottom-

face and projection transformations, respectively.

DEFINITION 1.2. Let /" be the n-time composed functor of / in (A2) (/°

= Id); and define the natural transformations

d) = In-jkJj:In —+In+ί and Sj = Γ~jτlj: Γ + 1 — J"

for (j, k)e[n] x [ l]([m] = {0, 1, , m}) using k* and τ in (A3). We call these
the face and degeneracy operators, respectively.

PROPOSITION 1.3. These operators d), s} satisfy the cubical simplίcial
relations

siSj = Sjsi + 1

Sj'dt = dk

i'Sj-1(i<j), = Id (i = j), = d\_^{ί >j)

PROOF. (A3) shows the relations immediately. •
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Let (ί0, ko)e [n] x [1]. Then by patching the 2n + 1 faces df: /» -> /» + 1 for

(i, k) # (Ϊ 0 , k0), or by taking the pushout of the 2« + 1 copies of /" according to

the relations in Lemma 1.3, we obtain the following

LEMMA 1.4. There are the functors Γ = Γ(i0, k0) and the natural

transformations άf. F-+Γ for (i, k) Φ (i0, k0) tf«</ 2: J π - > / n + 1 satisfying the

following properties (l)-(3):

(1) Jf 4 = 5 J + 1 - # I""1 —>Jn(i £j) and λR\ = ά\\ Γ —>/Λ + 1.

(2) f\\ FX -+ 7for (i, k) # (i0, k0) with the compatibility conditions fid1}

= fh

j+1 dh

t: ΓX -• Y(i < j) give us uniquely f = {/?}: ΓX -» 7 wiίA / ^ = /?.

(3) Let τn: In -> Id be the composed transformation of projections τ, and

τ'n: J
n~x -> Id /Λ̂  induced projection. Then these satisfy τnλ = τj,.

We use the letter Jn for any (Ϊ 0 , k0). When n = 0, we have J° = Id and λ

= k*: J° -+1 (k = 0, 1).

Now we consider the following extension condition and natural homotopy

axioms for a pre-homotopy category #, where Jn

9 λ, τn and τ^ are the above

ones:

(EC) For any morphism / : ΓX -* Y9 there is a morphism F: In + 1X-+Y

with Fλ=f

(NHA 1) There is a natural transformation μ: /" -• J " " 1 with μΛ = Id for

all π > 0, that is, (EC) holds naturally by taking F =fμ for all n > 0.

(NHA 2) There is a natural transformation μ\ Γ -+ Γ~x with τ^μ = τπ and

μλ = Id for all n > 0.

DEFINITION 1.5. Let ^ be a pre-homotopy category.

(1) We call # an abstract homotopy category if it satisfies (NHA 2).

(2) We say that two morphisms/0, / x : X -• 7 are homotopic (relative j : A

-• JO. if there is a morphism / : IX -> 7 with /k =/kJ |c for k = 0, 1 (and # / = / 0

jr); and then we write f0 ~fx (rel j) and call / a homotopy of/0 and /i.

(3) Let /, g: IX -* 7 be homotopies with / I * = gΌ^ and consider ft): /ΛΓ

-^ 7 given by /ι? = / , h\ = g and /ι} = gfl̂ . Then if * satisfies (EC), we have

# : / 2X -^ 7 with Hd\ = h) for (i, k) # (0, 0). We define f®g = Hd% which is

unique up to homotopy relative / = {0^ -u-1*}.

(4) Consider h\\ I2X^IX given by A? = l^τ = hi and A} = Id. If *

satisfies (EC), we have iί: /2X -> IX with Hdf = Â  for (i, k) # (0, 0). We define

i = Hdoi IX -• IX which is unique up to homotopy relative /.

PROPOSITION 1.6. Let %> be a pre-homotopy category satisfying (EC). Then
we have the following results.

(1) The homotopy relation ~ (resp. ^ rel /) is an equivalence relation
compatible with composition.
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(2) Iff and /'.: IX-* Y(resp. g and g') are homotopic relative ϊ and satisfy
/ I * = gθ^9 then f®g and f 0 g' are homotopic relative L

(3) Let f g, k.IX^Y be homotopies with / I * = grO*, g\* = ZiO*. Then
(f@g)@h and / 0 (# φ ft) are homotopic relative I.

(4) Let f, g:IX-+Y, ft: W-+X, and k: Y-^Z be homotopies with / I *
= 00*. Then (f®g)Ih and flhφglh (resp. k(fφg) and kf®kg) are
homotopic relative I.

(5) There is a morphism v: I2X -> IX with vd% = Id = vd? and vdj = l*τ

(6) Id 0 l^τfi^τ 0 Id and Id are homotopic relative I.
(7) Id 0 z and 0#τ(resp. i 0 Id and 1^ τ) are homotopic relative I.

(8) ί/ tfwtf1 Id are homotopic relative I.

If *% satisfies (NHA1), then the above results hold also for natural

transformations.

PROOF. (1) Let/: IX -> Y be a homotopy of/0 and fv Then/z gives a
homotopy of fx and /0. The other cases are proved analogously.

(2), (3) and (4) are proved by elementary calculations.
(5) Let λ: ί2 -+1 2 be the canonical natural transformation where J 2 is the

boundary of I2 (i.e. the patching of 4 copies of /) and α: I2 -• / the natural
transformation with α<?o = Id = αα1? and adl = 1* τ = a<?J where 5f: / -> / 2 is
defined by λd1- = d*. Since a and O τ̂α = O ^ X are homotopic, there exists
v: I2X-+IX with v l = α by (EC) (cf. Definition 2.1.)

(6) and (7) are proved by using the definitions of v and z.
(8) By (6) and (7), we have z 0 n - l^τrel /. Then I d - I d © ^ !

- Id 0 i 0 u - O^τ 0 u ~ u by (3), (4), (6) and (7). •

Here we note on the dual considerations.
Corresponding to Id in <£(IA, IA) and <g(PA, PA) by the adjoint

isomorphism in (A2), we have η: Id -• PI (called the unit) and ε: IP -> Id (called
the counit). Thus we have the following axiom (A3*) which is dual and
equivalent to (A3) by taking /c* = εk*P(k = 0, 1) and σ = P(τ)η:

(A3*) There are three natural transformations k* : P -> Id (/c = 0, 1) and
σ : I d - > P with 0*σ = Id = l*σ, called the top-coface, bottom-coface and
injection transformations, respectively.

DEFINITION 1. 2*. For the composed functors Pn: %? -> <€ of P, we have the
natural transformations

d\ = P^Xk^P1; Pn + 1 -+Pn and σ£ = Pn~i(σ)Pi: Pn -> P " + 1

for (i, /C)G[Π] x [1], which are dual to d£ and st in Definition 1. 2.

These satisfy the cubical simplicial relations dual to the relations in

Proposition 1.3.
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DEFINITION 1.4*. As the adjoint to Jn with λ: J n - > / " + 1 in Definition 1.4,

we can define the functor β": ^ - ^ with the natural transformation π: Pn+1

-> Qn by the dual construction, (β° = Id and π = k* (k = 0, 1) when n = 0).

These give us the axioms (EC*) and (NHA*1, 2) which are dual and

equivalent to (EC) and (NHA 1, 2), respectively.

EXAMPLE 1.7. (1) The category CGH( = CGHaus in [12]) of compactly

generated Hausdorff spaces and continuous mappings is our abstract homotopy

category. Here the cylinder and path functors are given by

IX = X x I (the product space) and PX = X1 (the path space)

for the closed interval / = [0, 1]. (Al-2) are contained in the following (aO-2)

(see [12; VΠ §8], [22] and (A3) and (NHA) hold as usual:

(aO) In CGH, the product X x Y ( = XΠYin [12]) and the function space

Yx are given by the Kellyficatίons of the usual product topology and the compact-

open topology.

(al) CGH is closed under {infinite) limits and colimits, and Lim (Xt x Y)

= (Lim;!Q x Y holds.

(a2) The exponential law (Zγ)x = ZXxY holds, and the composition Yx x Zx

is continuous.

We note that so is the category Top (resp. Haus) of topological (resp.

Hausdorff) spaces in the same way (see [12; V§9)).

(2) The pointed category CGH^cf. (12; VΠ §9], [22]) of CGH-spaces

with base point * and continuous mappings preserving * is also an abstract

homotopy category, by taking IX = X A I+ (the smash product with / +

= / -u- *) and PX = X1 (the path space with the constant mapping * as a base

point), since CGH* satisfies (al-2) replacing x by Λ which is the product in

CGH*. (Note that CGH* is the comma category CGH* of CGH given in

Theorem 1.9 below.)

(3) In the category CGH, we consider a topological group G and the

category CGH G of G-spaces and continuous G-mappings. Then for any G-

space X, the above IX = X x I and PX = X1 are G-spaces by the G-action on

X; and CGH G becomes an abstract homotopy category, as is shown by (al-2).

(4) For a ring R with unit 1, consider the category ChΛ of chain

complexes over R and chain maps. Let / be the chain complex with Io

= i ? 0 R generated by e0, eu Ix = R generated by/, It = 0 (i Φ 0, 1) and d1: J x

-> / 0 given by dj = e0 - ex\ and R with Ro = R and Rt = 0 (ί φ 0). Then we

have / and P in (A2) by IC = C <g) / and PC = Horn (/, C) and /c* and τ in (A3)

induced by the cahin maps k#: R-*I9 k^(l) = ek, and τ: / -> R, τ(ek) = 1,

respectvely, so that ChΛ becomes an abstract homotopy category (cf. [4]).

Let ^ be a pre-homotopy category. Consider the functor category J*
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= Funct (β, Ή) for a small category Q) of contra variant functors Q> -• <€ and
natural transformations between them. For this category, (Al) follows from
(Al) for #, / and P in (A2) are induced from / and P for # by composing them,
and so are k+ and τ in (A3); and we see easily the following

THEOREM 1.8. If ^ is a pre-homotopy category, then so is the functor
category Funct {<2>, ^){β\ a small category) by /, P9 k^ and τ induced from those
in (A2-3) for <€. If <€ satisfies (NHA 1) or (NHA 2) in addition, then so does
Funct {β9 <€).

Moreover, we consider the comma category (cf. [12; Π-6) #j} for fixed
objects A, B and fixed morhism a: A -• B in #, whose object is any diagram

A -*+ X -£+ B in tf with px = α, and whose morphism /: (A -*+ X - ^ β)

-• (A -^ Y-^ B) is any morphism /: Jf -• Y in ^ with fx = y and ^f/= p. For

A -^ X -£+ B, /, P, k* and τ in (A2-3) for <€ give us the diagrams

(PO(resp. PB) means that the square is the pushout (resp. pullback) diagram)
with τx = x, ττ' = τ, k^ = τ'/c ,̂ pσ = /?, σ'σ = σ and β* = k*σr. Hence we have

A-Z+ TX -£+B(p = pτ) and A -*+ PX M B(Jc = σx) in ^ , the functors /,

P: Ήβ -• ^ and the natural transformations τ: T^> Id, fc^: Id -^ Γ, satisfying
(A2-3). For example for any f:TX-*Y with fx = y and g / = p, we have /: X
-+PY corresponding / τ ' by # ( / * , Y) = ^(X, PY), and / : X -^ PY with σ'/ = /
and § / = p ; a n d the adjoint isomorphism for #£ is given by sending / to

/ Moreover, λ and μ in (NHA 2) for ^ induce those for #£, and we see the
following

THEOREM 1.9. If <# is a pre-homotopy category, then so is the comma
category <&$. Moreover if <& satisfies NHA 2, then so does the comma category
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§2. Fundamental properties

Let ^ be a pre-homotopy category in Definition 1.1.

DEFINITION 2.1. We say that j : A-+X in X in ^(resp. p: Y -+B) has the
property HEP n (resp. HLPn), if any commutative square

->PnZ

(resp. λ

ΓZ

p)

B

has a dotted morphism to obtain two commutative triangles; and that it has
HEP (resp, HLP) if so does HEPπ(resp. HLPΠ) for all n ^ 1.

We note that (EC) is equivalent to HEP for any morphism φ -> X or HLP
for any X-* 1. HEP X (resp. HLP x) is known as the homotopy extension
(resp. lifting) property, and coincides with HEP (resp. HLP) (cf. [22; §§, 6-7))

LEMMA 2.2. For any morphism f: X -• Y in Ή, consider the diagram

PO

•+ Y

of the mapping culinder M(f), where pi = 1# and ph = If. Then

/ = qj: X —-• M(/) —• Y for j = hO* and q = τp.

If Ή satisfies (EC) (resp. (NHA 1)), then i and q are homotopy equivalences with
iq ~ Id, and j has HEPX (resp. HEP).

PROOF. Assume (EC) for c€. Then we have a morphism ξ: I2X -> IX with
ξά\ = Id and ξdl = \^τ = ξd\ by (EC), and so p: IM(f)^>M(f) with plh
= hξ and pIi = iτ by the pushout obtained by applying / to the above one (see
(A2)). Now p is a homotopy of Id and iq; and g is a homotopy equivalence.

Consider the diagram
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>Jn~1M(f) IΊX<- FX

PO

FX InM(f)

PO

Γi

inf

ΓY

with fu'u = Fj and fv' = λ. Then to show j = hθ^ has HEP, it is sufficient to

construct a retraction R: ΓM(f) -• W with Rf = Id by the above

definition. Now assume (NHA 1) for ^ and consider μ: Γ -• J " " 1 with μλ = Id

and Jn~xfμx = μγl
nf. Then by (EC), there exists

μ'\ FIX with μ'λ' = Id and μ Π , = t?Jπ"11

for Ar: W^> FIX with Λ' i; = λx and λ' w = FO*. Hence we have R: FM(f) -> PT

with RFh = u'μ' and R/ni = vJn~1iμγ, and £ / = Id is seen as desired, by the

definition of pushouts and by noticing that pushouts are also preserved by

Jn~1. When n = 1, this proof is valid by taking μ = τ in (A3). •

PROPOSITION 2.3. In Ή satisfying (EC), consider the pushout diagrams

(k = 0,1).

(1) If j has HEPn, then so does j k .

(2) Assume HEP for j . If f0 and f1 are homotopic, then there exists

morphisms mk: Mk -> Mz(/ = k — 1) with mkjk =j\ and mkgk ~ gι and homotopies

hk: IMk -* Mk of mxmk ^ Id with hkljk = jkτ: IB -• Mk (i. e., mks are cofiber

homotopy equivalences).

PROOF. (1) is easily seen by the definition of HEPn.

(2) For Fk: IA-+B oϊfk ~fh there is G{. IX -> Mx with Gι\+ = gι and G,//

= JιFk by HEP for j . Then jjfk = Gfi^j, and we have mk: Mk -> M f with mfc7k

= jt and m^ k = Ĝ Ô  ̂  ^ by Gz. Moreover {mιGι © Gk)// = 7 ^ © Fz) - j k τ// k
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rel / by taking F, = Fkι(see Proposition 1.7). Thus we have hk: IX -» Mk with

Klj =h*Ifk and h!k ~ mfiι 0 Gk rel / by HEP for j , and so hk: IMk -> Mk with

hjjk = Λ τ a n d hkl0k = K> which is a homotopy of mfmfc ~ Id. •

By taking the family of morphisms satisfying HEP (resp. homotopy relation
of morphisms) as Cof ^(resp. congruence ~ ) of A. Heller's h-c-category [6, 7],
we can easily see that our abstract homotopy category satisfies the axioms of A.
Heller's h-c-category. Hence the results in [6, 20] hold also in our abstract
homotopy category.

As we showed in §§3-4 in [20], we can deduce various propositions from
Lemma 2.2 and Proposition 2.3. The proof of Proposition 2.4 (resp. 2.5) below
is elementary and the same as one of Lemme 3.4 and Proposition 3.5 (resp.
Lemme 3.2) in [20].

Hereafter, we work in our abstract homotopy category ^ .

PROPOSITION 2.4. For the pushout diagram in Proposition 2.3., the following
results hold.

(1) If j has HEP and fk is a homotopy equivalence, then gk is a homotopy

equivalence.

(2) If j has HEP and is a homotopy equivalence, then so does j k .

(3) Iffk has HEP(/c = 0, 1) and f0 ~fu then Mo is homotopy equivalent to

PROPOSITION 2.5. Let consider the commutative diagram

A > Bf

where the outer and inner squares are pushouts, j and f have HEP, ht (i = 1,2,3)

are homotopy equivalences. Then h4 is a homotopy equivalence.
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DEFINITION 2.6. (1) The cone and suspension functors C, i 7 : # - > # are
defined by the pushout diagrams (1: the constant functor to the terminal object
1)

(2) For j : A-+X, the shrinking X/f A, the mapping cone C{f) and the
morphisms d, fί9 /2, m1 are defined by the diagrams

1

PO

ΣA.

We can define the cone functor by using the natral transformation 0+: Id
-*/ instead of 1*. Though these are not isomorphic, these are homotopy
equivalent to the final functor 1 by Lemma 2.2. We can also define the top-
coface fixed path functor L and the loop functor Ω by the diagrams dual to
Defintion 2.6, respectively. When <# has the zero object, there are natural
isomorphisms <€(CA9 B) = <V(A9 LB) and <V(ΣA9 B) = <V(A9 ΩB) for any objects A,

B of #. If ^ has not a zero object, these don't hold.

Let Ho # be a quotitent category of <€ by the homotopy relation (cf. (12; Π,
§8)). Let n/ = J 0 / 0 © / (n ̂  1) be the cylinder functor of length n
obtained by patching n-copies of cylinder. Then we can define the cone
functor Cn and suspension functor Σn of length n by using nl. The functors
Σn(n ^ 1) are naturally equivalent each other on H o # by Proposition 2.5. (cf.
[20; §4]). Of course Cn is homotopy equivalent to the functor 1 for all n ̂  1.

THEOREM 2.7.

following

Let %> be an abstract homotopy category. Then we have the
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(1) / / / : A^X has HEP, then C(f) ss X/fA.

(2) For f:A->X, C(/i) a 2M /iotas.
(3) 7/"/0 and fx are homotopic, then C(/o) cs C(/Ί).
(4) There holds the commutative diagram

i
0/ natural sequences, where M / consists of the iterated mapping cones, each mi is

a homotopy equivalence and f has HEP, and i: Σ -> Σ is induced by i: I -> I in

Definition 1.5.

PROOF. (1) Since A -• X has HEP and CA is homotopy equivalent to 1,
C(/) is homotopy equivalent to X/fA by Proposition 2.4(1).

(2) and (3) are proved analogous to (1).

(4) To discuss exactly, we distinguish the cone functors C+, C~ defined by

the colimits of diagrams / 4^- Id -• 1 and / <¥- Id -• 1, respectively. We write

C(/i), ΣX and C(f2) as C~XuC+A, C~X[)C+X and C~X[jC + C(f). By
iterating the construction in Definition 2.6 we have shrinkings mt: C ^ ) -• i7A

= C+A/A and m2: C(f2)-^>ΣX = C~X/X which are homotopy equivalences.

Let kτ\ C~X[)C+X -• C+X/X be shrinkings. Then (k") (k + )" 1 : ΣX =

C+X/X -+ΣX = CX/X is homotopy equivalent to i: ΣX -• ΣX by Definition

1.5. Hence by the above constructions, m2/3: C f / J - ^ C ' X u C ^ A C ( / 2 )

is homotopy equvalent to ιΣfmγ\ C(/)-> C+A/A -+ C+X/X ^ >

Since / 3 has HEP, we can choose m2: C(f2)-+ΣX = CX/X such

that m 2/ 3 = iΣfi m1. Π

When our abstract homotopy category ^ has the zero object 0 (i.e. φ = 1),
there is the natural transformations μ: Σ ^ Σ2 -• ^ V Σ and z: 27 -> Σ on Ho #
obtained by collapsing the equator and reflecting the cylinder,
respectively. These satisfy the relations

(μ V Id)μ = (Id V μ)μ9 (Id V ι)μ = 0 = (i V Id)μ, (Id V 0)μ = Id = (0 V Id)μ.

Moreover it is proved that μΣ, Σμ: Σ2 —• Σ2 V Σ2 are naturally equivalent each
other on Ho (€. The relation (Σμ V Σμ)μΣ ^ (μΣ V μΣ)Σμ holds also as usual.

From these considerations and Theorem 2.7 we obtain the following

COROLLARY 2.8. If %> has the zero object, then for the homotopy sets
%>\_ —, Y] with 0 = [0], the sequence P / /« Throrem 2.7 induces the exact
sequence
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VIA, Y] £- <€\X9 Y] £- VtC(f)9 Y] «£*- <g{ΣA9 Y] <

i.e., Ker φ = φ " 1 ^ ) = Im φ ' / o r successive maps S<¥- Sf £- Sf'.Moreover this is
the exact one of groups and homomo phisms except for the first three, and the
group V[ΣA9 Y] acts on <V[C(f), Y] by the shrinking Of) = X U C2A -> X U
CM V 27A

We also note that P/induces the exact sequences for a half exact functor H
in [5; §5] instead of <#[ —, Y]. The above results are generalized to the Mayer-
Vietoris sequence and Milnor's one.

Part Π. Homotopy theory of functor categories

§3. Functor spaces and functor complexes

Throughout Part Π, we are concerned with the category CGH of
compactly generated Hausforff spaces, which is an abstract homotopy category
by Example 1.7(1); and we consider spaces and their (co)limits etc. in this
category unless otherwise stated, and use the properties (aO-2) in Example
1.7(1) frequently.

DEFINITION 3.1. (1) We call a category @ a topological category if any set
of morphisms Q) (a, b) is a CGH-space and the composition Q)(a, b) x @>(b, c)
-> Q)(a, c) is continuous for any objects α, b, c in #, and a contravariant functor
F: &>-*><& between them continuous if the induced map F^: Q)(μ, fr)-»^(F(fr),
F(a)) is continuous for any objects a, b in @.

(2) We consider always CGH as the topological category by CGH(7^ S)
= Sτ in (aO). Hereafter we fix a topological small category Q), and consider the
functor category

& = &{β) = Cont Funct {β9 CGH)

whose objects (called functor spaces over Q) or 3F-spaces simply) are continuous
contravariant funtors X: Q) -> CGH and whose morphisms (called $F-
morphisms) are natural transformations between them. Also we have the
pointed category ^ = &Jίβ) = Cont Funct [β9 C G H J of J^-spaces X
= (X, *) with based point *(or ^-spaces X3*) by the pointed category CGH^
in Example 1.7(2).

(3) Any object c in @ ̂ gi y e s u s t r i e continuous functor Dc: @ -+ CGH by
Dc(a) = <&(a, c) and Djf) =fφ: <2>{b9 c) -• Θ{a, c) for any a a n d / : a - * b in 3}\ and

we call this J^-space Dc the ^-orbit of c. We regard any CGH-space T as the
J^-space T by T[a) = T and T(f) = Id: Γ-> T.

(4) Consider the category A(ή) of ordered objects 0 < 1 < ••• < n whose
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morphisms consist of unique i -•; for ί rgj. The category ^ n + 1 of (n + l)-ples

X <r- A1 <- +-An of ^-spaces is considered as ^n+1 = Funct (A(n), 3F) = ^{Q)

x A[rί]) by the product category <& x J[n](with the usual topology). For n

= 2, we call 3F"2 the category of pairs of 3F-spaces. We call A c X a relative

pair if ,4(α) is a closed subspace of X(a) for any a in Q).

THEOREM 3.2. 77ze categories $F and # * #re closed under (co) limits and

become abstract homotopy categories in our sense by the cylinder and path

functors obtained by composing those for CGH and CGH^.

PROOF. Let {Xt} be a direct system in &, and consider the adjoint
ad(Xf): Xi(b) x 0 (a, b) -> X^a) of Xf: ®(α, b) -> CGHCX^ft), AΊ(α)), which are
continuous by the definition and the exponetial law in (a2). Then by taking
X(a) = U^Xia) in CGH we have ®(α, 6) x X(fe) = Liπj(^(α, 6) x X ^ ) )
-»ΛΓ(α) by (al) and its adjoint @(a, b) -• CGH(X(fe), ΛΓ(Λ)) which are also
continuous. Thus X = Lin} Xt is well-defined in ^ and so is the inverse limit
analogously. For the path functor P on CGH, P*: CGH(5, T)
-+CGH(PS,PT) is continuous since the adjoint ad P: Ts x S1 -• T J is
continuous; hence we have P: 3F -+3F which is the continuous functor. We
have / for <F in the same way; and we see the theorem according to Theorem
1.8. Analogously we have the results for BF^. •

We now introduce the notion of functor complexes as follows, where φ is

the empty spaces, V1 is the unit n-ball and Sn~1 = V" the (n - l)-sphere (V° = *,

S'1 = φ) in CGH.

DEFINITION 3.3. (1) We call K(resp. (K, L)) a functor compex over Q) or

#-complex (resp. relative one), if K'1 = φ(τesp. L) and K = Liiη Xw in ^ for

J^-spaces Xn with j n : Kn~1 -> K", which are constructed inductively by the

pushout diagrams

A , X

,., ^ J PO
> β ί χ yn

J
in ίF for some objects a{ in ^ , ^-morphisms /• and the upper J^-morphism

induced by S"" 1 cz V1. Here -u- stands for the direct sum in J^ and Z)c x Tis

the product #"-space of the ^-orbit and a CGH-space T, i.e., (Dc x T)(α)

= Θiμ, c) x Tand (Dc x T)(/) = ^ ( / , c) x T(cf. Definition 3.1(3)). We call Kn

the n-skeleton, Da. x V" the n-cells attached by fi9 and the maximum integer of

rΐs appeared in (*) the dimension of K (resp. (K, L)).

Note that jn(a): Kn~1(a)-+Kn{a) satisfies the properties in the following :

(a3) Let A a X in CGH 2 satisfy the properties that A is regular in X(i. e.,
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A and x e X — A are separated by open sets in X\ hence A is closed) and is a

neighborhood retract of X. Then for the pushout Y= X Όf B of X => A^+ B in

CGH, we have B c Y with the same properties.

(2) A pair (Kθ9 Kλ) of ^-complexes, or an !F -subcomplex K1 of an 3F-

complex Ko is defined to be a functor complex K over ® x Δ[Y] with Xh(α)

= X(α, h)(cf. Definition 3.1(3)). Then X x consists of n-cells D{a.Λ) x F" and X o

of those together with D(a.0) x F". Also we have an ^-complex K = (K, *)

w/ίλ base point *, which is an ^-space .

We see the following lemma by definition, which is basic in our theory

LEMMA 3.4. For any IF-space X and Da x T (T: a constant functor), the

natural isomorphisms

xT,X) = CGH(T(α), X(a)), ^ [ D f l x U ] = CGH[Γ(α),

hold by corresponding α: Da x Γ-> X and a: Γ(a) -> X(a) satisfying a(ί) = afl(Ida, ί)

and a(/, ί) = X(/)(a(ί))(/: a -* c, ίeT). Moreover we have the relation for T

ID 5 Ϊ/I C G H 2 ««ί/ ^ ^ ^ IΛ ^ 2 , eίc. As examples, ^(Dc x F", Dc

x S " " 1 ; X, >!)) = CGH(F", Sn~\ X(c\ A(c)); and &+[£>][ Λ 7 ; i ] = t f [ D f l

x % Da x *; X, *] = CGH^TXa), X(a)] /or T B * I/I

Da

+ Λ T)(c) = 0(c, a) + Λ T (® (c, a) +

Here (X, A)(resp. X) is N-connected if πn{X{μ\ A{a\ x)(resp. πn(X(a), x)) = 0

for any a in ®, x 6 A(α) (resp. A'(a)) and 0 ^n ^ N.

THEOREM 3.5. Lei (X, L) be a relative ^-complex.

(1) The canonical morphisms j n : X"" 1 —• Kn and L^> K have HEP; hence

Theorem 2.7 is valid for these morphisms.

(2) If a pair (X, A) of & -space is N-connected, then any 3F-morphism

f:(K9 L) -»(X, A) is homotopic relative L to some 3F-morphism g: K —• X with

g(Kn) c A.

(3) (Cellular approximation theorem) Let f: (K, L) -> (K', L) be an &-

morphism between relative ^-complexes. Then there exists g: (K9 L) -+ (K\ L)

which is homotopic relative L to f and satisfy g(Kn) a K'n for all n.

PROOF. (1) In the pushout diagram (*) in Definition 3.3 (1), the upper J^-

morphism has HEP by Lemma 3.4, and so does j n by Proposition 2.3 (1).

(2) is seen by Lemma 3.4, (1) and the induction on Kn; and (2) implies (3),

because (X, X") is n-connected by definition and Lemma 3.4. •

THEOREM 3.6 (J. H. C. Whitehead's theorem). Let f: (X, A)-+(Y9 B) be an

^-morphism between pairs of 3F -complexes. If the induced homomorphism

U πn(X{a), x) - * πn(Y(a)J(x)) and / „ : πΠ(Λ(α), x) — πΠ(B(α),/(x))

are bijective for n ^ max (dim X, dim Y), any a in Si and x e A(a\ then f is
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homotopy equivalence in

PROOF. The assumptions imply that (M(/), X) is JV-connected for the

mapping cylinder M(f) => X of /; hence we have g: Y^X with fg ~ Id by

Theorem 3.5 (2). Then g(a)+: nn(Y(a\ y) s πn(X(a\ g(a)(y)) for n^N, and we

have/': X -> Ywith gf ~ Id in the same way. Thus we have the absolute case,

and also the relative case by the considerations in & 2. •

We now define a coefficient system over a topological small category <2).

DEFINITION 3.7. Let G = Ab(τQsp. Gr) be the category of abelian groups

(resp. groups) (for n ^ 2 (resp. n = 1) in (2)-(3) and Lemma 3.8 below).

(1) For any /: a-+b in 3, let [/]eπ o (^(α, 6)) be its path-

component. Then we call a contravariant functor M: @ -+G a coefficient

system over Q) if M(/) = M(ff) when [/] = [/']; and we have the functor

category CS = CS(^) of them.

(2) For a O-connected ^^-space X, the homotopy group πn(X): @ -+Gr is

given by πn(X)(a) = πn(X(a)) and πn(X){f)+. We call X an Eilenberg-MacLane

&-space of type (M, n) if πn(X) = M and π^X) = 0 for i φ n.

(3) For any c in ^ , put PJ = πΠ(Dc

+ Λ SΠ) for Dc

+ Λ T in Lemma 3.4.

(4) Also define Pc: @ -+ Ab by Pc(a) = H0{^{a9 c)+; Z), and P C ( / ) M

= [#/]> where [^]ePc(b) denotes the generator represented by ge<2>(b, c).

LEMMA 3.8. (1) Pc = Pn

c when n ^ 2; α«<i PC(Λ) M the free group generated

by the elements [/] represented by \J+ Λ S1: S1 -+ 3>(a, c)+ Λ S1] > r / : a^c.

(2) CS (Pc, M) = M(c) Z?j corresponding α: P c -• M m CS β«fi? αeM(c)

satisfying ά = α[Id] α«c/ α[/] = M(f)(α)(Id: c^>c, f: a->c)

(3) P c is projective in CS; W CS (P?, πΠ(J\Γ)) = ^ [ ^ Λ Sn; X].

This lemma is proved by definition and Lemma 3.4.

THEOREM 3.9. For any coefficient system M: Q) -> Ab (resp. Gr) and n > 1

(resp. n = 1), there is an Eilenberg-MacLane 3F -complex K(M, n) of type (M, n),

which is unique up to homotopy type.

PROOF. By Lemma 3.8, we have a projective resolution of M, Px - ^ P o

-•M->0 where P o = ®jPCJ> Pi = ®kPdk(® satnds for the sum (resp. free

product)); and φ: PX-*PO is represented by a morphism /: VkDd

+

kΛS"

-• V,/)* Λ S"1 by Lemma 3.8. Then we can construct the mapping cone C(f)

which satisfies π t (C(f)) = 0 and M for i < n and i = n, respectively. Iterating

the above process for the higher dimensions nn + ι(C(f)) etc, we can obtain the

result inductively. •

EXAMPLE 3.10. (1) Let G be a topological group in CGH, and consider

the category CGH G of G-spaces in Example 1.7. The quotient spaces G/H of
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left cosets in Haus (hence in CGH) and G-maps between them form the

category ΘG of orbit types. Then ΘG becomes a small topological category

according to the natural isomorphism ΘG(G/H, G/K) = (G/K)H. Any G-space

X can be identified with the ^(0G)-space X: ΘG -• CGH given by X(G/H) = XH

(the invariant set of H) or X = X(e) (e: the unit group). A G-CW complex is

defined by a colimit Lim Xn, by taking ΛLJG/HJ X 5"" 1 -> JL G/HJ X Vn in place

of the upper morphisms in Definition 3.3(1). The above correspondences and

definitions induce the one-to-one correpondence between #X$G)-complexes and

G-CW complexes.

(2) Let A[n] be the category defined in Definition 3.1(4). Then there are

n + 1 types of ^-orbits Do = {* <- φ •••<-</>}, Dx = {*<-*<-•••<- 0}, Dn = {*

<-•••<-*}, and any ^(Λ[n])-complex can be identified with an rc-ad CW

complex (X, Al9- 9 An) with X =D A X => ••• ID An by Definition 3.3.

(3) Let F(rc) be the category of the n-time products of Δ[\~\. Then there

are 2" types of K(n)-orbits and JΓ(K(π))-complex can be identified with an rc-ad

CW complex (X; Al9~-, An) with X => Afc = 1, , ή) by Definition 3.3(1).

§ 4. Cohomology theory on «f =

Let (X, A) be a relative J^-complex with the n-skeleton Xn and the
canonical morphism jn: Xn~x -+ X", and consider the shrinking Xn

m = XnjXm by
the composition Xm -+ Xn(m < ή) of them. Then

Xn

n-1=Xn/Xn~1=(jLiDai x V")/^iDai xSn-'= \ίtDl ΛSn

and Xn~1->Xn induces the Puppe sequence

γn — 1 γn . γn &„
Λn-2 * Λn-2 > Λn-1

Now we define Cn(X, A): @ —> Ab in CS(0) and dn: Cn(X, A) —*Cn-x(X9 A) by

Qi, Λ)(a) = θiV(Mi)+; z) = Bjίxi-M, z),

dH(a) = ω * : CW(X, A)(α) = ^ ( ^ ^ ( α ) ; Z) - ,

and Cπ(^l, A) = 0 and dn+1 = 0 for n < 0. Since (tίw)#(dw + i)# = 0, we have the
chain complex Cn(X, A) and the homology

Hn(X, A): Q — Ab given by ifπ(X, Λ)(α) = Ker^(α)/Im δn + 1(α).

Moreover any cellular J^-morphism/: (X, A)->(Y, B) with f(Xn) c 7" induces
the J^-morphism/": X " / ^ " 1 -^ r ' / F 1 " 1 with Σfn

nZ\ dn = djn_1 and a natural
transformations
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/* = t / ϊ - i ) * : Cn(X, A) - > CJJ, B) and /„: Hn(X, A) — ί ί n ( i ; β).

DEFINITION 4.1. For a relative ^-complex (X, A) and a coefficient system

M: 0 -• Ab in CS(^), we put

C(X, A; M) = CS(®) (CJtX, A), M), δ" = C S ί ® ) ^ , M)

and if"(X, A; M) = Ker <57Im δn~1 as usual. Also a cellular J^-morphism /:

(X, A)-+(Y, B) induces

/ * = CS(@)(U M): Cn(X B; M) > C(X, A; M) and

/ * = H n(i; B; M) • Hn(X, A; M).

Thus we have the cohomology theory {Hn} on the category $F2 of paris of J^-

complexes and cellular J^-morphisms.

DEFINITION 4.2. A (generalized) cohomology theory on the category $F2 is

defined to be sequence of contravariant functors hn: #" 2 -• Ab (— oo < n <

+ oo) with natural transformations (5Π: hn(A, B)-+hn + 1(X, A) for any triple X

ID A ZD B, such that the following axioms are satisfied.

(1) Homotopy axiom: If/0,/i'. (X, A)-*(Y, B) are homotopic in J ^ t π e n

ΛVo) = ΛVi);
(2) Excision axiom: The inclusion i: (X, X(]A)->(X\J A, A) induces an

isomorphism hn(XΌA, A) = hn(X, Xf)A).

(3) Exactness axiom: Let ( J D A D β) be a triple of J^-complexes, then

the following sequence is exact.

> hn(X, A) —+ hn(X, B) —• hn(A, B) ^ hn+1(X, A) —> .

We set hn(X) for hn(X, φ).

THEOREM 4.3. The cohomology theory IP defined in Definition 4.1 becomes

a generalized cohomology theory on 3F'2 and satisfies the dimension axiom (i. e.

Hn(Da; M) = 0 for nΦ 0, any object a in ®\

PROOF. The excision axiom, exactness axiom, dimension axiom and the

functorial properties are clearly satisfied by the definitions. We shall only

verify the homotopy axiom. Let / 0, fx : (X, A)-+(Y, B) be two cellular J^-

morphisms and F a cellular homotopy of/0 and/ x . F induces the chain map

Fn\ Cn(I x X, I x A; M) -• Cn(Y, B; M). We define D: Cn(X, A; M)^Cn+1

(Y, B M) by D(a) = Fn(I (x) a). Clearly it holds dn + 1Dn + Dn^dn = (/0)*

— (/i )*• Hence, by taking the cohomology group, the homotopy axiom

hold. •

The category CS(^) becomes a Grothendieck category by Lemma 3.8 and

Theorem 1 in §4.7 of [18]. Projective objects {Pa\a: object in &} are
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generators in CS(^) by Lemma 3.8. Hence by Theorem 1 in §4.9 of [18], the

category CS(^) admits injective resolutions. By using the method of

homological algebra, we can obtain the universal coefficient theorem (cf. [11;

XI]).

THEOREM 4.4. Let M be a coefficient system and (X9 A) a relative !F-

complex. Then there is a spectral sequence {Es/9 dr) converging to H*(X, A; M)

where E^ = Exts(Ht(X9 A); M) and Ext considered in CS(^).

We can develop the obstruction theory on the category of ^-complexes by

the same way to the ordinary (equivariant) homotopy theory (cf. [2, 14,

24]). Then we have the following result.

THEOREM 4.5. Let K(M9 n) be the Eilenberg-MacLane ^-complex of type

(M, ή) where M: Q) -> Ab. Then there is a natural isomorphism

&*IX;K(M9 n ) ] = H % r , M)

for any <F^-complex X with base point, for all n^\. In particular there holds a

natural isomorphism ^ [ £ ( 1 , n); K(M9 ή)~] = CS(^)(Z, M).

EXAMPLE 4.6. (1) Let ΘG be the category defined in Definition

3.10(1). Then the cohomology theory {Hn} defined in Definition 4.10 is the

same as the classical equivariant cohomology theory defined in §3 of [14].

(2) Let Δ\T\ be the category defined in Definition 3.10(2). For the

coefficient systems Mί9 M2 and M 3 given by 0 -> π, π -> π and π -> 0,

respectively, the cohomology groups Hn(X; Mf)(ί = 1, 2, 3) of ^"-complexes X

= (A -• X) are isomorphic to the ordinary cohomology groups Hn(X9 A; π),

Hn(X; π), and Hn(A; π), respectively. Since the sequence 0 -• M1 -> M2 -+ M3

-> 0 is exact, we have the long exact sequence induced by the coefficient systems

Hn(X9 A; π) —• Hn(X: π)^>Hn(A; π) —• Hn+1{X9 A; π) —> •••

(3) Let F(2) be the category defined in Definition 3.10(3). F o r the

cefficient systems Ml9 M'2, M"l9 M3 given by the following diagrams

0 0 0 0

/ \ / \ / \ / \
O O π O o π π π

\ / \ / \ / \ /
π π π π

Mj M 2 M2 M3

the J^-cohomology groups Hn(X9 Mx), Hn(X9 M'2\ H\X9 M"2) and Hn(X9 M3) of

the ^-complex X = (X9 A, B) are isomorphic to the ordinary cohomology
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groups Hn(X, AΌB;π% Hn(X, B; π), H\X, AnB π) and Hn{X, Af)B; π),

respectively. For M2 = M'2 ® M\, we have Hn(X; M2) = Hn(X, A; π) © Hn(X,

B; π).

Since 0 -• Mγ -> M2 -> M 3 -> 0 is exact, we have the long exact sequence

induced by the coefficient systems which is the same as the ordinary Mayer-

Vietoris exact sequence.

Hereafter we work in the category J% of (O-connected) ^-spaces.

DEFINITION 4.7. Let p: X -+ B be a fibration with a fiber F in ^ and X,

B, F O-connected ^-spaces. Then we say that p admits an ^^-Postnίkov

system if there exists the following system:

(PI) There is a sequence of fibrations pn: Xn -> Xn_ x with a fiber

Kn = K(πn(F% n) for n ̂  1 (Xo = B).

(P2) There is a sequence of ^-morphisms pn: X -• Xn which is (n + 1)-

connected (n > 0). These satisfy pn pn = pn~1 for all n ̂  1.

Moreover when pn: Xn-^Xn^1 is induced by A;n: Xn-X -+Kn = K(πn(X),

n + 1) from the canonical fibration over KΠ, we say that pn is a principal

fibration. When pn is a principal fibration for all n > 0, it is called that p: X

-* B admits a principal tF^-Postnikoυ system.

By the standard arguments (cf. [23; 5, 24]), we have the following

THEOREM 4.8. Let p.X^B be a fibration with a fiber F and X, B, F

O-connected 3F^-complexes. If nγ(X) acts simply on nn(F) = πn + 1(B, X) for all

n ^ 1, then p admits a principal ^^-Postnikov system.

Let X be a O-connected ^"-complex with base point and Y a O-connected

simple ^-space. We assume that 0-skeleton X° of J is *. By using the

filtration by skeletons of X, we can construct the homotopy spectral sequence

as §1 in [17].

£ f = ̂ * L^~SXS; Y] (t ̂  s ^ 0)

(4.9) £ f = J%< IΓ-'X'X'/X'- X\Y\ (t ̂  s ^ 0)

£^-i=#' 5 | { [V J .Z) α

f ; . Λ r 1 ; Y] ( s ^ 1)

where J ^ [ — — ] denotes the homotopy set in J%. Then the homotopy exact

sequence yields an exact {Ds/\ Es/, αr, βr, yr} were α1 ? βx and yj are induced by

js: Xs~1-^Xs

9jLi•/.: V£Z>+ Λ 5 s " 1 - ^ X s and ks: X'^X'/X''1, respectively.

The £ 2 term is described by the formula E§f = HS(A:; πf(Y))(ί + 1 ̂  s ^ 0).

For the J^-Postnikov system of Y, we can construct the homotopy spectral

sequence as §1 in [17] (cf. [15]).

(4.10) D? = #•„ [X; flf- yf ] (t ̂  s ^ 0)

E / = ̂  = ̂ [ X ; ίy- +1XJ = Hs (X; π,
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Then the homotopy exact sequence yields an exact couple {Ds/\ Es/, άr, βn yr}.

where α1 ? j5x and y1 are induced by ps: Ys -> Ys-l9 ks: Ys -• BKS+1 and ίs: Ks -• Ys,

respectively.

Now we can prove the next theorem by the same way as §1 in [17].

THEOREM 4.11. Let X be a ^-connected # -complex with base point and Y a

^-connected simple tF^-space. Then there exist isomorphisms

φ: Ds/ —• Ds

r>\ ψ: Es/ —» Es/

which commutes with αr, βr, γr and αr, β, yr.

Let ^% be the category of O-connected J^-complexes with base point and

cellular ^-morphisms, and F J*° the full subcategory of J^£ consisting of J^-

complexes with finite cells, and Ho(J^£) and H o ί F J ^ ) the quotient categories

of ^"J and F ίF^ by the homotopy relation, respectively. Then we see easily

the following

THEOREM 4.12. A pair of the categories (HoίJ2^), Ho(FJ^£)) becomes an

abstract homotopy category in the sense of §2 in [3].

A functor K from Ho(«fJ) to the category of sets which satisfies (2.6) and

(2.7) in [3] called a Brown functor. By the same way as [3], we can prove the

representability theorem analogous to Theorem 2.8 in [3] (cf. [1]).

THEOREM 4.13. A Brown functor X defined on H o ί J ^ ) is represent able,

that is, there is a unique ty in ϊF^ and a natural isomorphism T: ^^.[X, 7 ]

= K(X) for all X in &+.
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