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Linearized oscillations for equations with positive
and negative coefficients
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1. Introduction

Recently a linearized oscillation theory has been developed in [6] -[9] for
nonlinear delay differential equations which in some sense parallels the so called
linearized stability theory for differential equations. Roughly speaking, it has
been shown that, under appropriate hypotheses, certain nonlinear differential
equations have the same oscillatory behavior as an associated linear equation
with constant coefficients.

Our aim in this paper is to present a linearized oscillation result for the
neutral differential equation with positive and negative coefficients

(1) ^ WO - P(t)G(x(t - τ))] + Q,(t)H,(x(t - σj) - Q2(t)H2(x(t - σ2)) = 0

where we will assume that there are constants P0, p0, ql9 q2 and M such that
the following hypotheses are satisfied:

(2) P, β l 9 Q2 e C[[ί0, oo), K+] , G, H19 H2 e C[Λ, K] ,

(3) τε(0, oo), σl9 σ2 e [0, oo) , σ1 ^ σ2 ,

(4) lim sup P(t) = P0 e (0, 1) , lim inf P(ί) = p0 e (0, 1) ,
ί-*oo t-»oo

(5) lim inf Q^t) = ql , lim sup Q2(t) = q2 ,
t-*ao ί-*oθ

(6) O^^^l f o r » ^ 0 , l im^=l,

(7) -̂ ^ ̂  1 and 0 < -^^ ^ M for u * 0, lim -̂  = 1
r*2(

M) M u->0 W

and

(8) 1 - PO - Mq2(σ, - σ2) > 0 .

With Eq.(l) we associate the linear equation with constant coefficients

On leave from Department of Mathematics, Yangzhou Teacher's College, Yangzhou, Jiangsu,

P.R.C.



332 Q. CHUANXI and G. LADAS

d
(9) ly(t) - p0y(t - τ)] + q,y(t - σ,) - q2y(t - σ2) = 0 .

In Section 2 we establish some basic lemmas which we will use in Sections 3
and 4 and which are interesting in their own right. In Section 3 we establish
sufficient conditions for the oscillation of all solutions of Eq.(l) in terms of the
oscillation of all solutions of the linear Eq.(9). Finally, in Section 4 we show
that, under appropriate hypotheses, if the linear Eq.(9) has a positive solution,
so does Eq.(l).

Let m = max {τ, σί9 σ2}. By a solution of Eq.(l) we mean a function
x e C[[ίi - m, oo ), K], for some f t ^ ί0, such that [x(ί) - P(t)G(x(t - τ))] is
continuously differentiate on [tί9 oo) and such that Eq.(l) is satisfied for

' ί ^ ί i
As is customary, a solution of Eq.(l) is said to oscillate if it has arbitrarily

large zeros. Otherwise the solution is called nonoscillatory.
In the sequel, unless otherwise specified, when we write a functional

inequality we will assume that it holds for all sufficiently large values of t.

2. Some basic lemmas

In this section we will present some basic lemmas which are needed for our
proofs of the main theorems in Sections 3 and 4.

The first lemma is extracted from [2].

LEMMA 1([2]). Consider the neutral delay differential equation

(10) ly(t) - py(t - τ)] + qιy(t - σj - q2y(t - σ2) = 0

where p, qΐ9 q2, τ, σx and σ2 are real numbers. Then every solution of (10)
oscillates if and only if its characteristic equation

(11) λ - pλe~λτ + qιe-λσ> - q2e~λσ2 = 0

has no real roots.

The next lemma is interesting in its own right. Roughly speaking, it states
that if Eq.(lO) oscillates at the point (/?, ql9 q2) e(0, 1] x R+ x R+ then it also
oscillates in some neighborhood of the same point.

LEMMA 2. Assume that

p e (0, 1], ql9 q2 e (0, oo), τ e (0, oo), σl9 σ2 e [0, oo)

and suppose that every solution of Eg. (10) oscillates. Then there exists an
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ε0 > 0 such that for any ε, ε1? ε2

 6 [0» εo] βi βry solution of the differential
equation

d
(12) - [_y(t) -(p- ε)y(t - τ)] + (βl - βl)y(ί - *ι) - («2 + <ψ(* ~ *2> ~

α/so oscillates.

PROOF. By Lemma 1 it suffices to show that the characteristic equation
of Eq.(12) has no real roots. The hypothesis that every solution of Eq.(lO)
oscillates implies that the characteristic equation

f(λ) = λ- λpe~λτ + «!*-*" - q2e~λ*2 = 0

of Eq.(lO) has no real roots. As /(oo) = oo, it follows that

(13) /U)>0 for all λeR.

By (13) we see that /(O) = qί — q2 > 0 and either σ1 ^ σ2 or σ1 < σ2 ^ τ. Then
it follows that /(— oo) = oo and so m = minλeRf(λ) exists and is positive.
Therefore

(14) λ - λpe~λτ + q^-**1 - q2e~λff2 ^ m , λeR.

Set

5 = i min {p, βl - 42} and ^(λ) = (5(μ|β~λτ + e~*"* -f ^~λσ2) .

Observe that

f(λ) - g(λ) = λ-(pλ + δ\λ\)e~λτ + (βl - δ)e-*"> - (q2 + <5)β~^

and so

lim [/(A) - g(Xf\ = oo .
μ|-»oo

In particular, there exists a λ0 > 0 such that

for μ | ^ A 0 .

Let i; = λ0e
λ°τ -h eλ°σι + eλ°σ2 and set ε0 = min {<5, m/2η}. To complete the

proof, it suffices to show that for every ε, ε t, ε2 e [0, ε0] the characteristic
equation

λ-λ(p- ε)e-λτ + (q, - sje^ - (q2 + e2)e~*** = 0

of Eq.(12) has no real roots. Indeed for |A| ^ λθ9
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λ-λ(p- 8)e~λτ + (<h - εje-*"* - (q2

m/2 > 0 .

Also for \λ\ ̂  λ0,

λ-λ(p- ε)e~λτ + (q, - εje^ - (q2 + ε2)e'^

^ f(λ) - ε0[λ0e
λ°τ + eA°σι + eA°ff2] ^ m - m/2 > 0 .

and the proof is complete.

The following lemma about integral inequalities is interesting in its own
right.

LEMMA 3. Assume that F e C[[T, oo), (0, oo)], H e C[K+, #+], τ e (0, oo),
σί9 σ2 6 [0, oo), cί9 c2e [0, oo), H(u) is nondecreasing in a neighborhood of the
origin and σί ^ σ2. Let m = max {τ, σί} and suppose that the integral inequality

ί
t-σ2 Λoo

H(z(s)) ds + c2 H(z(s)) ds ̂  z ( t ) , ί ̂  T
-σi Jί-σi

/ιαs α continuous positive solution z: [T — m, oo) -> (0, oo) such that

(16) lim z(ί) = 0 .
ί-»oo

Then there exists a positive solution x: [T — m, oo) —> (0, oo) of the corresponding
integral equation

Γt-σ2 poo

:x H(x(5))^5 + c2

Jί—σi Jί—σi

(17) f (ί)x(t - τ) + ct H(x(s)) ds + c2 H(x(s)) ds = x(t), t ̂  T.
Jt—σι J ί—σj

PROOF. Choose a T' ^ T and a 5 > 0 such that z(ί) > z(T) for Γ - m ^

ί < Γ', 0 < z(ί) < (5 for ί ̂  T' — m and f/(w) is nondecreasing in [0, δ]. Define
the set of functions

py = (w e C[[Γ - m, oo), K+]: 0 ̂  w(ί) ̂  z(ί) for ί ̂  T - m}

and define the mapping 5 on W as follows:

ίί-<r2

-ffi

— τ) -\- ci H(w(s)) ds -h c2 //(w(s)) ds , t^.Tf

Jt-σι Jt-σι

(5w)(r) + z(£) - z(T'), T-m^t<T .

Clearly, the function Sw: [Γ — m, oo) -> Λ+ is continuous. Also w1? w2e\V
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with wx ^ w2 implies SM^ ^ Sw2. Clearly, Sz :g z and so w e VF implies Sw ̂
Sz ^ z. Thus, S:W->W. We now define the following sequence on W:

z0 = z and zn = Szn^ for n — 1, 2, ....

It is clear by induction that for n — 1, 2, ...,

0 ̂  zM(ί) ̂  zn_!(ί) ̂  z(ί) for t^T-m.

Set x(ί) = lim^oo zw(ί) for ί ̂  T — m. It follows by Lebesgue's dominated con-
vergence theorem that x(t) satisfies (17). Then by an argument similar to that
in Lemma 2 in [1] (see also [4]) we can easily prove that x(t) is continuous and
positive. The proof is complete.

3. Linearized oscillations

The main result in this section is the following linearized oscillation result.

THEOREM 1. Assume that (2)-(8) are satisfied and that every solution of
Eq.(9) oscillates. Then every solution of Eq. (1) also oscillates.

PROOF. Assume, for the sake of contradiction, that Eq.(l) has a non-
oscillatory solution x(t). We will assume that x(t) is eventually positive. The
case where x(t) is eventually negative is similar and will be omitted. By
Lemma 1 the characteristic equation

f(λ) = λ- p0λe~λτ + qιe-λσ> - q2e~λσ- = 0

of Eq.(9) has no real roots. As /(O) = q1 — q2 and /(oo) = oo it follows that

(18) <h > <?2 -

Choose η > 0 and so small that

(19) qί-q2-2η>0

and

(20) / - PO - M(q2 + η)(σ, - σ2) > 0 .

Then by conditions (5) and (7) for t ^ ί l 5 where ίx is sufficiently large, we have

(21)

^[x(ί) - P(t)G(x(t - τ))] + (q, - η)H,(x(t - σj) - (q2 + η)H2(x(t - σ2)) ̂  0 .
at

Set



336 Q. CHUANXI and G. LADAS

(22) z(t) = x(t) - P(t)G(x(t - τ)) - (q2 + i,) Γ "* H2(x(s)) ds .

Then by (21), (7) and (19)

(23) z'(t) = [x(t) - P(t)G(x(t - τ))]' - (q2 + ff)[H2(x(t - σ2)) - H2(x(t - σ,)

^ -(<h - ίf)ίMx(ί - σj) + (q2 + η)H2(x(t - σ,))

^ -(<?ι - 92 - 2>/)H2(x(t - σj) g 0 .

Hence, z(ί) is decreasing. Now we claim that x(ί) is bounded. Otherwise
there exists a sequence of points {tn} such that

lim („ = oo , lim x(ίj = oo and x(ίB) = max x(s) .
<->oo ί-»oo sg(n

Then by (4), (6), (7) and (20)

*('„) = *(O - P(t.)G(x(t. - τ)) - (q2 + η) f '" "* H2(x(s)) ds
Jtn~σl

, x(t, _ P(,,«|̂ »,(,, - „ - ,,2 + ,> f ̂  «*«!̂  4,
^U/I T/ Jίn-^1 ^

^ x(ίj[l - P(ίJ - M(q2 + f/)(σι - σ2)] ̂  oo as n -* oo

which contradicts (23). Then by (22) and (23) we see that z(ί) is also bounded
and lim^oo z(ί) = IE R. By integrating both sides of (23) from ίλ to oo we
obtain

(24) - z(ίx) ̂  -(q, -q2- 2η) \ °°
Jίi

which, in view of (7) and the boundedness of x(ί), implies liminf^^xίί) = 0.
We claim that lim^^xίί) = 0. To this end, let μ = limsup^^xίί) and let [tn]
and {tn'} be two sequences of points in the interval [ίl5 oo) such that

lim tn = oo , lim tn' = oo , lim x(ίπ) = 0 and lim x(ίπ') = μ .
n-*oo n-*oo n-*oo π-^oo

From (22) we see that z(ίπ) ̂  x(tn) which implies

(25) / ̂  0 .

On the other hand, by taking ε' > 0 and sufficiently small, we find

i tn'-<T2

x(

n'-σι

z(tn') ^ x(t.') - P(tn')x(tn' - τ) - M(q2 + η) x(s) ds
Jίn'-σ!

^ x(ίπ') - P(tu')(μ + ε') - M(q2 + η)(σι - σ2)(μ + ε').
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By taking limits as n -» oo we obtain

I ^ μ - P0(μ + ε') - M(q2 + η)(σl - σ2)(μ + ε') .

As ε' is arbitrary, we conclude that

l^μ-P0μ- M(q2 + η)(σ^ - σ2)μ = [1 - P0 - M(q2 + f/)

which, in view of (20) and (25), implies / = μ = 0. Hence

(26) limz(ί) = 0 and lim x(ί) = 0 .
f-»αo ί-» oo

Then from (24) we see that

-z(t) ^ -(<h ~q2- 2η) \ H2(x(s - σj) ds .

Now by using (22) into this inequality we obtain,

x(ί) ̂  P(t)G(x(t - τ)) + (q2 fl) f "2 H,
Jt-ffi

•(ϊι-«2-2if) Γ H2(x(s))d5
J t~o\

x(t - τ) v ' v" f/ J,.̂  x(s)

Let

(27) 0<ε<-min<p 0 ,——
2 ( 42 +

Then by (4), (6), (7) and (26) we see that for ί ^ t2 where ί2 is sufficiently large,

ft-σa

x(ί) ̂  (po - β)x(ί - τ) 4- (ί2 H- η)(l - ε) x(s) ds
Jt-ff!

- ε)
Jί-σ

s .

It follows by Lemma 3 that the equation

ίί-^2

Ό(S) ds
-σι
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+ (9ι - 92 -

has a continuous positive solution v: [T — w, oo) -> (0, oo) where Γ ̂  ί2 is suffi-
ciently large. Clearly υ(t) is also a positive solution of the neutral equation

lv(t) ~ (Po ~ Φ(t ~ τ)] + (4ι - εXf - σj - (q2 + ε2)ι;(f - σ2) = 0

where εl = η + εq1 — ηε and ε2 = η — q2ε — ηs are positive numbers. As η and

ε are arbitrarily small, it follows that ε1 and ε2

 are also arbitrarily small.
Hence, by Lemma 2, Eq.(9) has a positive solution. This contradicts the
hypothesis and completes the proof of the theorem.

4. Existence of a positive solution

Consider the neutral delay differential equation

(28) - ly(t) - Poy(t - τ)] + qιy(t - σj - q2y(t - σ2) = 0

where

(29) po, qί,q2e (0, oo), τ e (0, oo), σl9σ2e [0, oo) .

The next lemma is extracted from [3].

LEMMA 4([3]). Assume that (29) holds,

(30) 0 < p0 < 1 , qί > q2 and 1 - p0 - q2(σ1 - σ2) > 0 .

Then every nonoscillatory solution of Eq.(28) tends to 0 as t -> oo.

Now, consider the nonlinear neutral delay differential equation

(31) jtlx(t) - p(t)x(t - τ)] + qιH(x(t - σj) - q2H(x(t - σ2)) = 0

where

(32)

P e C[[ί0, oo), Λ+], H 6 C[#, K], ql9q2e (0, oo), τ e (0, oo) and σ l 5 σ2 e [0, oo) .

The following theorem is a partial converse of Theorem 1 and shows that,
under appropriate hypotheses, Eq.(31) has a positive solution provided that an
associated linear equation has a positive solution.
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THEOREM 2. Assume that (32), (30) holds,

(33) 0 < p(t) ^ po , σ, ^ σ2

and that there exists a positive constant δ such that

(34) either 0 ̂  H(u) ̂ u for O^u^δ

(35) or O^H(u)^u for -δ^u^O.

Suppose also H(u) is nondecreasing in a neighborhood of the origin and that the
characteristic equation of Eg. (28)

(36) λ - p0λe~λτ + qie~^ - q2e~λσ* = 0

has a real root. Then Eg. (31) has a nonoscillatory solution.

PROOF. Assume that 0 ̂  H(u) ̂ u for 0 ̂  u g δ. The case where 0 ̂
H(ύ) ^ u for — δ ^ w ^ 0 is similar and will be omitted.

Let ΛO be a real root of Eq.(36) and set y(t) = exp(λ0t). Then y(t) is a
nonoscillatory solution of Eq.(28). By Lemma 4, y(t) tends to zero as t -> oo

which implies that /10 < 0. Hence, there exists a sufficiently large T such that
0 < y(t) ^ <5 for t ^ T — 5 and # is nondecreasing in [0, δ].

By integrating both sides of (28) from t ^ T to oo we obtain

or

Λoo Λo

)̂ (s - σi) ds - g2

Γt-σ2 Λoo

q2 y(s) ds + (q1- q2) y(s) ds = y ( t ) ,
Jί-ffi Jί-σi

t ^ Γ.
Ί

In view of (30), (32) and (33) this equation yields

p(t)y(t - τ) + q2 \ ** H(y(s)) ds + (q, - q2) Γ H(y(s)) ds ̂  y ( t ) , t ̂  T.
Jί-ff! Jί-ffl

By Lemma 3 it follows that the corresponding equation

p(t)x(t -τ) + q2 \ *2 H(x(s)) ds + (q, - q2) Γ H(x(s)) ds = x(t)
Jί-<rι Jί-σi

also has a continuous positive solution. Hence, Eq.(31) has a positive solution.
The proof of the theorem is complete.

Finally, by combining Theorems 1 and 2 we obtain the following necessary
and sufficient condition for the oscillation of every solution of Eq.(31).
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COROLLARY. Assume that (30), (32) hold,

σ^σ2, 0 < p(t) ^ Po = I™ p ( t ) , 0 < —— ̂  1
f-*αo U

and H(u) is nondecreasing in a neighborhood of the origin. Then every solution
of Eq.(31) oscillates if and only if every solution of the linear equation (28)
oscillates, that is, if and only if Eq. (36) has no negative real roots.
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