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Linearized oscillations for equations with positive
and negative coefficients
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1. Introduction

Recently a linearized oscillation theory has been developed in [6]-[9] for
nonlinear delay differential equations which in some sense parallels the so called
linearized stability theory for differential equations. Roughly speaking, it has
been shown that, under appropriate hypotheses, certain nonlinear differential
equations have the same oscillatory behavior as an associated linear equation
with constant coefficients.

Our aim in this paper is to present a linearized oscillation result for the
neutral differential equation with positive and negative coefficients

d .
1) 5 [xO = POGK( — )] + Q1) H, (x(t — 01)) — Qo) H,(x(t — 0,)) =0

where we will assume that there are constants P,, p,, ¢;, 4, and M such that
the following hypotheses are satisfied:

2 P, Q,, Q, € C[[ty, ©), R*], G, Hy, H,e C[R,R],
(3) TG(O’ w)y 01, 626[0’ (X)), 612625
4) limsup P(t) = P, €(0, 1), liminf P(t) = p, € (0, 1),
t— o0 t— o0
&) liminf Q,(f) =¢q,, limsup Q,() =gq,,
t—o t— o
G
6) 0§ﬂ§1 foru+#0, lim@= ,
u u—0 U
H H
) 1 () > and 0< 2) <M foru#0, lim H) _ 1
Hz(“) u u-0 U
and
®) 1 — Py — Mqy(0, —6,)>0.

With Eq.(1) we associate the linear equation with constant coefficients
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d
)] E[Y(t) —PoY(t — )]+ q1y(t — 01) — @2 y(t —0,) =0.

In Section 2 we establish some basic lemmas which we will use in Sections 3
and 4 and which are interesting in their own right. In Section 3 we establish
sufficient conditions for the oscillation of all solutions of Eq.(1) in terms of the
oscillation of all solutions of the linear Eq.(9). Finally, in Section 4 we show
that, under appropriate hypotheses, if the linear Eq.(9) has a positive solution,
so does Eq.(1).

Let m = max {7, 0,,0,}. By a solution of Eq.(1) we mean a function
x € C[[t, — m, ), R], for some t, =t,, such that [x(t) — P(t)G(x(t — 1))] is
continuously differentiable on [t,, v) and such that Eq.(1) is satisfied for
t2t,.

As is customary, a solution of Eq.(1) is said to oscillate if it has arbitrarily
large zeros. Otherwise the solution is called nonoscillatory.

In the sequel, unless otherwise specified, when we write a functional
inequality we will assume that it holds for all sufficiently large values of t.

2. Some basic lemmas

In this section we will present some basic lemmas which are needed for our
proofs of the main theorems in Sections 3 and 4.
The first lemma is extracted from [2].

LEMMA 1([2]). Consider the neutral delay differential equation

d
(10) DO — Pyt =]+ 41yt —0) — g2y(t — 05) =0
where p, q,, q,, T, 0, and o, are real numbers. Then every solution of (10)
oscillates if and only if its characteristic equation
(11) A—ple™® + qe —get2 =0
has no real roots.

The next lemma is interesting in its own right. Roughly speaking, it states
that if Eq.(10) oscillates at the point (p, g, g,) € (0, 1] x R* x R* then it also
oscillates in some neighborhood of the same point.

LEMMA 2. Assume that
P € (O, 1]’ qls q2 € (Oa w)y T€E (09 w)’ o-la 62 € [0’ w)

and suppose that every solution of Eq.(10) oscillates. Then there exists an
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g0 > 0 such that for any ¢, ¢, &, €[0,¢&,] every solution of the differential
equation

d
(12) [0 = (p — &)yt — D] + (g1 — )yt — 01) — (g2 + &2)y(t — 03)
also oscillates.

Proor. By Lemma 1 it suffices to show that the characteristic equation
of Eq.(12) has no real roots. The hypothesis that every solution of Eq.(10)
oscillates implies that the characteristic equation

fA) =24 —Ape™* 4 q,e” % —g,e™*2 =0
of Eq.(10) has no real roots. As f(o0) = oo, it follows that
(13) f(A)>0 forall 1eR.

By (13) we see that f(0) = g, — g, > 0 and either 6, = g, or 6, <0, <1. Then
it follows that f(—o) = oo and so m = min, g f(4) exists and is positive.
Therefore

(14) A—Ape™* + qie* —qe*2>2m, AeR.
Set
d=4%imin{p,q, —q,} and  g(A) =6(|Ale™* + e % + e7272).
Observe that
f() = g() = 2 — (pA + 3|A))e™ + (g, — d)e™*** — (g, + d)e™*
and so
|}|I-I:I:o [f(A)—g(A)] = o0.
In particular, there exists a A, > 0 such that
f@—g>2  for Az
Let n = Age?® + e*o?t + ¢*2 and set ¢, = min {6, m/2n}. To complete the

proof, it suffices to show that for every ¢, ¢, &, € [0,¢,] the characteristic
equation

A=Ap—ee™ +(ar —&)e ™ — (g, + &)™ 2 =0

of Eq.(12) has no real roots. Indeed for |A| = 4,
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A—AMp—e)e™™ +(q, — e)e™*" — (g + £3)e™*
= f(A) — [—ede ™™ + g e7 %1 4 gre722]
2 f(A) —gA) >m/2>0.
Also for |A| £ 4o,
A—Ap—ee* +(q, —&)e "t — (g, + &,)e 22
2 f(A) — eo[Age™" + e*o%t + e%%2] > m —m/2> 0.

and the proof is complete. W

The following lemma about integral inequalities is interesting in its own
right.

LEMMA 3. Assume that F € C[[T, ), (0, )], He C[R*, R*], 1€ (0, o0),
01, 0, € [0, ), ¢y, c; €[0, ), H(u) is nondecreasing in a neighborhood of the
origin and o, = 0,. Let m = max {1, 6,} and suppose that the integral inequality

H(z(s)) ds + c, j H(z(s)) ds < z(t), t=T

t—a,

t—o,

(15) F@)z(t — t) + ¢, J

t—o,
has a continuous positive solution z: [T — m, o0) — (0, c0) such that

(16) lim z(z) = 0.

t— oo

Then there exists a positive solution x: [T — m, o0) — (0, o0) of the corresponding
integral equation

e}

H(x(s))ds + c, f H(x(s)) ds = x(t) , t=T.

t-ay

t—a,

17) F@)x(t — 1) + ¢4 J

t—a,

Proor. Choose a T' = T and a 6 > 0 such that z(t) > z(T') for T—m =
t<T,0<z(t) < fort 2 T' — m and H(u) is nondecreasing in [0, 6]. Define
the set of functions

W={weC[[T—m,0),R*"]:0<w(t) < z(t)fort = T — m}

and define the mapping S on W as follows:

" Hw(s)) ds + c, f Y Hw)ds, =T

t—a,

t—a

Fyw(t — 1) + ¢4 J

(Sw)(t) =
SwW(T') + z(t) — z(T"), T—-m=<t<T.

Clearly, the function Sw:[T — m, o) - R* is continuous. Also w;, w,e W
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with w; < w, implies Sw, < Sw,. Clearly, Sz <z and so we W implies Sw <
Sz <z Thus, S: W—> W. We now define the following sequence on W:

Zo =12 and 2, =82, 4 for n=12,....
It is clear by induction that forn=1, 2, ...,

0= z,(t) S z,_1(t) £ z(¢) for t=2T—m.

Set x(t) = lim,_ z,(t) for t = T — m. It follows by Lebesgue’s dominated con-
vergence theorem that x(¢) satisfies (17). Then by an argument similar to that
in Lemma 2 in [1] (see also [4]) we can easily prove that x(t) is continuous and
positive. The proof is complete. W

3. Linearized oscillations
The main result in this section is the following linearized oscillation result.

THEOREM 1. Assume that (2)—(8) are satisfied and that every solution of
Eq.(9) oscillates. Then every solution of Eq. (1) also oscillates.

PrOOF. Assume, for the sake of contradiction, that Eq.(1) has a non-
oscillatory solution x(z). We will assume that x(¢) is eventually positive. The
case where x(t) is eventually negative is similar and will be omitted. By
Lemma 1 the characteristic equation

f2) = 2 — pode™™ + g™ — ge*71 =0
of Eq.(9) has no real roots. As f(0) = g, — g, and f(o0) = oo it follows that

(18) 91> 9> -

Choose n > 0 and so small that

(19 41— 9, —2n>0
and
(20) I —Py—M(q, +n)(o, —0a)>0.

Then by conditions (5) and (7) for ¢t = ¢, where ¢, is sufficiently large, we have
21

d

7 X0 — POGX(t — )] + (g — WH, (x(t — 1)) = (g2 + M Hz(x(t — 02)) < 0.

Set
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@) 2)=x0— POCKXE—0)— g+ f T Hy ) ds.

Then by (21), (7) and (19)

(23) z'(1) = [x(®) — POGx(t — 1)) — (g2 + n)[Ho(x(t — 02)) — Hy(x(t — 0,))]
< —(q: — MH(x(t — 0,)) + (92 + N H,(x(t — 0,))

—(1 — g2 — 2nHy(x(t — 61)) = 0.

Hence, z(t) is decreasing. Now we claim that x(¢) is bounded. Otherwise
there exists a sequence of points {z,} such that

IA

lim t, = o0, lim x(t,) = o and x(t,) = max x(s) .

t— o t—o s<t,

Then by (4), (6), (7) and (20)
2(t) = *(t) — P6)Gx(t, — 9) — (g5 + 1) f " Hy ) ds

G(x(t, — 7)) Hz(x(s))
x(tn - )

2 x(t,)[1 — P(t,) — M(q; + n)(6y —063)] >0  as n—o0

= x(t,) — P(t,) x(ty = 1) = (@2 + 1) f x(s) ds

which contradicts (23). Then by (22) and (23) we see that z(t) is also bounded
and lim,, z(t) =€ R. By integrating both sides of (23) from ¢, to oo we
obtain

(24) I—z(t) = —(q1 — 92— 2n) ro Hy(x(s — 0y)) ds

which, in view of (7) and the boundedness of x(t), implies liminf,_ x(t) = 0.
We claim that lim,_,, x(t) = 0. To this end, let u = limsup,_, x(t) and let {t,}
and {t,'} be two sequences of points in the interval [¢,, co) such that

lim ¢, = o0, limt,' = o0, lim x(t,) =0 and lim x(t,') = u

From (22) we see that z(t,) < x(t,) which implies
(25) 1<£0.

On the other hand, by taking ¢ > 0 and sufficiently small, we find

z(t,) 2 x(t,) — P(t,)x(t,' —7) — M(q2 + 1) " x(s) ds

t,' —o,

2 x(t,) — Pt )(n + &) — M(q, + n)(oy — o) (u+€).
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By taking limits as n — co we obtain
12 p— Po(p+¢)— Mg, + nioy —a)(n+¢).
As ¢ is arbitrary, we conclude that
l2 p— Pop — M(q, + n)(oy — ax)u = [1 — P, — M(q, + n)(o, — 03)]u
which, in view of (20) and (25), implies | = 4 = 0. Hence
(26) lim z(t) =0 and lim x(t) = 0.
t— o0 t—oo
Then from (24) we see that
—z2() £ —(q1 — 92 — 2'1).[ H,(x(s — 0y)) ds .
t

Now by using (22) into this inequality we obtain,

02 POCK( )+ (a0 | Hale(9) ds

+ (41 — g2 — 2n) I_ H,(x(s)) ds

— t—oy H
= P(t)g(;(—:E_T;-))x(t — 1) +(q2+1) J: zx(z;()s))x(s) ds
® H
+ (g1~ 42— 20) f i?s;s))x(s) s
Let
| n
27 O<s<§mm{p0,q2+n}.

Then by (4), (6), (7) and (26) we see that for ¢t = t, where ¢, is sufficiently large,

W02 (o~ 36~ 9+ @ 0 =0 [ x9d

+(q1— 49— 2n)(1 —¢) fw x(s) ds .

-0y

It follows by Lemma 3 that the equation

00) = (po — Jolt — ) + gz + M1 — 9) f ug s
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[+ 9]

+(@1— g, =201 - s)f v(s) ds

-0y

has a continuous positive solution v: [T — m, o0) — (0, c0) where T = ¢, is suffi-
ciently large. Clearly v(t) is also a positive solution of the neutral equation

000) — (po — ot — 9] + (@1 — e2)olt — 01) — (@5 + £2)0t — 03) = 0

where ¢, = + ¢q, — ne and ¢, = n — q,& — ne are positive numbers. As 5 and
¢ are arbitrarily small, it follows that ¢, and ¢, are also arbitrarily small.
Hence, by Lemma 2, Eq.(9) has a positive solution. This contradicts the
hypothesis and completes the proof of the theorem. W

4. Existence of a positive solution

Consider the neutral delay differential equation

d
(28) i [y(@®) — poy(t — 7)1+ q1y(t — 01) — q2y(t —0,) =0
where
(29) p07 ql’ qZ € (0’ (X)), T€E (O’ CD), 01’ 62 € [0’ (X)) .

The next lemma is extracted from [3].

LEmMMA 4([3]). Assume that (29) holds,
(30) 0<py<1, q1 > 43 and 1 —po—qz(0; —03)>0.

Then every nonoscillatory solution of Eq.(28) tends to 0 as t — 0.

Now, consider the nonlinear neutral delay differential equation
d
(31) 7 X0 — pOx(t — )] + q, H(x(t — 01)) — ¢ H(x(t — 05)) = 0

where

(32)
p e C[[ty, ), R*], He C[R, R], 4, q, € (0, ), T € (0, 00) and 7, 0, € [0, 0) .

The following theorem is a partial converse of Theorem 1 and shows that,
under appropriate hypotheses, Eq.(31) has a positive solution provided that an
associated linear equation has a positive solution.
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THEOREM 2. Assume that (32), (30) holds,
(33) 0<p®)=py, 0120,
and that there exists a positive constant 6 such that

(34) eitherr 0 < Hu)<u for 0

IIA
3
IIA

>
IA
S
AN =

(35) or O=ZHu)=u for — 0.

Suppose also H(u) is nondecreasing in a neighborhood of the origin and that the
characteristic equation of Eq.(28)

(36) A—pole ™™ 4+ qe? —ge?2 =0

has a real root. Then Eq.(31) has a nonoscillatory solution.

PrOOF. Assume that 0 < Hu) <u for 0 <u <. The case where 0>
H(u) = u for —6 < u < 0 is similar and will be omitted.

Let A, be a real root of Eq.(36) and set y(t) = exp (4ot). Then y(t) is a
nonoscillatory solution of Eq.(28). By Lemma 4, y(t) tends to zero as t — o0
which implies that 4, < 0. Hence, there exists a sufficiently large T such that
0<y(t)<Sfort=T— & and H is nondecreasing in [0, §].

By integrating both sides of (28) from ¢t = T to oo we obtain

@ 0

y(s —o01)ds — q, J ¥(s — 0;) ds = y(1)

t

Poy(t — 1) + q4 J

t
or

t—a,

poy(t — 1) + 4> J

t—a,

y(s)ds + (91 — q2) J_ ys)ds=y@), t=2T.

In view of (30), (32) and (33) this equation yields

t—o

p@)y(t — 1) + q, J 2 H(y(s)) ds + (g1 — 92) J_ H(y(s)) ds < y(t), t=T.

t—o,
By Lemma 3 it follows that the corresponding equation

t—o

p)x(t — 1) + q, J

t—a,

G s+ @ -0 | HOo) ds =50

also has a continuous positive solution. Hence, Eq.(31) has a positive solution.
The proof of the theorem is complete. W

Finally, by combining Theorems 1 and 2 we obtain the following necessary
and sufficient condition for the oscillation of every solution of Eq.(31).
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COROLLARY. Assume that (30), (32) hold,

H
nzo, 0<p)Sp=lmp), 0< g
t—o0

and H(u) is nondecreasing in a neighborhood of the origin. Then every solution
of Eq.(31) oscillates if and only if every solution of the linear equation (28)
oscillates, that is, if and only if Eq. (36) has no negative real roots.
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