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1. Introduction and statement of results

For 1 < p < o0, a weight w (a nonnegative Lebesgue measurable function
in the euclidean space RY) is said to satisfy the Muckenhoupt 4, condition ([4])
if

1 1 p-1
A sup, — | wdx|— | wVd-P dx) < 0,
(“47) Pe o L <|QIL

where Q is a cube with sides parallel to the axes and |Q| stands for the volume
of Q. By A4, we denote the class of weights w satisfying (4,). In this note we
always assume that we 4,.

Let I" be a family of locally rectifiable curves in R%. A nonnegative Borel
measurable function p in R? is called I'-admissible if [,pds>1 for every
yeI. We define the weighted module of order p of I by

M, (I'; w) = inf { J pPwdx; p is [’-admissible}
R4

and the weighted extremal length by the reciprocal of the weighted module.
Let E be a compact set in R? and let G be a domain containing E. The
weighted p-capacity of the pair (E, G) is defined to be

C/(E; G) = infj |grad u|Pwdx ,
G

where the infimum is taken over all functions u € CY(G) for which u =1 on
E. If G = R’ then we shall write C}(E) for C}(E; R?).

Ziemer [7] gave a relation between extremal length and p-capacity, in case
w=1. In this note we shall consider a similar relation between weighted
extremal length and weighted p-capacity for we 4,. We shall first establish

THEOREM 1. Suppose R — E is a domain. Let G be a bounded domain
containing E and let I" be the family of curves connecting E and 0G in G — E.
Then M,(I'; w) = CJ(E; G).

Ohtsuka [5, §6] proved Theorem 1 in a more general form in case w is a
positive continuous weight. The proof of Theorem 1 can be carried out along
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the same lines as in Ziemer [7]. Since the continuity of extremal distance with
respect to w € A, holds (Lemma 6), Theorem 1 implies

THEOREM 2. Let I, be the family of curves in R — E connecting E and the
point at infinity. Then M,(I; w) = C;(E).

We denote by A4, ; (cf. [1]) the class of w € 4, satisfying the condition
(*) j (1 + x99 w(x)1"P dx < o0 ,
R4
where 1/p + 1/p’ = 1. Using the above two theorems, we shall prove

THEOREM 3. Let we A, ; and let /\(E) be the family of curves in R* — E
terminating at points of E. Then M,(/\(E); w) = 0 if and only if C}(E)=0.

In case w=1, the condition (*) implies p <d. Therefore Theorem 3
is a generalization of Ziemer’s result [7, Theorem 4.3]. Remark that
M,(/\(E); w) =0 implies C}(E)=0 under the assumption we 4,. We shall
give an example in which M,(/\(E); w) # C}(E) for some we A, — 4, ;.

2. Lemmas

Let G be a domain in R%. We write

1/p
L7*(G) = {f; L |f1Pwdx < 00} and  ||fl,.= (L lfl”de> .

Since w7 is locally integrable, f € LP-*(G) implies that f is locally integrable.
For a locally integrable function f in G, we define mollified functions (f),
of fin G by

= [#(x+al)uiende =12,

where a(x) is a function in C®(G) such that 0 <a < 1, |grad | < 1/2 and
20(x) < dist(x, dG), and Y(r) is a nonnegative function on 0 < r < oo such that
Yy=0on1=<r<oo, y(Ix])e C°(R?) and [gay(|x|)dx = 1. They are of class
C*(G).

LemMA 1 (cf. [6, Lemma 6]). If f belongs to LP¥(G), then
”(f)n *f”p,w_’o as n — 0.

PrROOF. Let f=0o0n R?— G. The maximal function of f is defined by

Mf(x) = sup,eq é L O dy.
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s () [rom (") a

d
Smaxll//|< & )) ﬁ—l - |f(y)l dy
< const. Mf(x).

Then

Theorem 97), the dominated convergence theorem yields that ||(f), — f|,., — 0
as n— .

Since (f),(x) = f(x) as n— oo for ae. x and |Mf],, <const. ||f,, (cf [4,

We shall say that a function f in G is ACL when f is absolutely con-
tinuous on each component of the part in G of almost every line parallel to
each coordinate axis. If fis ACL in G, then grad f exists a.e. in G.

LEMMA 2 (cf. [5, Theorem 4.5]). Let f be ACL in G and assume that
|grad f| belongs to LP"*(G). Then |grad((f), — f)ll,,w»— 0 as n— oo.

Proor. For the ordinary partial derivatives d(f),/0x; (i=1,2,...,d), we

have
Dy = (L) w0+ [ (E-graa 100) 2 e,

where y = x + a(x)¢/n.  Set

A = j (é grad f(y)>—(—)|//(lél)dé

=1

Lemma 1 implies that |(0f/0x;), — 9f/0x;||,,,— 0 as n— co. Since |grad | <
1/2, as in the proof of Lemma 1 we have

By Minkowski’s inequality
H 9(f)n (3f

+ ”Ai"p,w .
p,w

401 S 5 J \grad f()IW(E) dé

cons
< t.

M((|grad f{)(x) .

Since |M(|grad f1)Il,,. < const.||grad f|, ,, (cf. [4, Theorem 9]), we see



636 Hiromichi YaMAMOTO

const.
"Ai"p,w éT”gradf"p,w_’O (n_’w)

Hence |grad((f), — f)l,w—0as n— co.

LeMMA 3 (cf. [5, Theorem 2.8]). Let G be a domain and let F,, F, be
mutually disjoint closed sets in 0G (the boundary of G in the one-point compacti-
fication of R%), and denote by I the family of curves in G connecting F, and
Fi. If M,(I'; w) < oo, then we may restrict I-admissible p to be continuous in G
and bounded away from zero on G K for any compact set K in R? in defining
M(T; w).

Proor. Let p be a I'-admissible function. Consider the mollified func-
tions (p), of p in G. Considering the image y, of y € I" by the transformation
x> x + (a(x)/n)é for ¢ e R* with |¢| <1 and noting that |grad a| < 1/2, we
see that (1 + 1/(2n))(p), is [-admissible. By Lemma 1, [(p)ull,, = llpl,,w as
n— oo. Thus we may restrict /-admissible function p to be continuous in G in
defining M,(I"; w). Now, let p be a I'-admissible function which is continuous
in G. Given ¢ > 0, choose a sequence {4, };, such that , > 0 and

5,{’f wdx <27%.
{k—1=|x|<k}

Set p,(x) = max (p(x), &) if k — 1 < |x| < k, for each positive integer k. Then p,
is I'-admissible and

J (pe)”wdxﬂj pPw dx ase—>0.
G G

This establishes the lemma.

A sequence {y,} of curves is said to converge to a curve y in Fréchet’s sense
if they are represented by x™(t) and x(t), 0 <t <1, such that x*"(t) converges
uniformly to x(t). The following two lemmas are known.

LemMMA 4 ([7, Lemma 3.3]; also cf. [5, Lemma 2.5]). Let p be nonnega-
tive lower semicontinuous in R® and {y,} be an infinite sequence of curves such
that all y, are contained in a closed ball B, each v, connects x, and y,, X, = X,
Y= Vo as n— oo and the lengths of y, are bounded. Then there exists a
subsequence {y, } and a curve y in B connecting x, with y, such that {y, }
converges to y in Fréchet’s sense and

f p ds < lim inf, J pds.
Y

n
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Lemma 5 ([2, chap. 11). A family I of curves satisfies M,(I'; w) = 0 if and
only if there exists a nonnegative Borel measurable function p € LY such that
[,p ds = oo for every yeTI.

3. Proof of Theorem 1 (cf. [7, §3])

Take any ue C§(G) such that u=1 on E. Obviously, |grad u| is
I'-admissible. Hence we have M,(I;w) =< [g|gradul’'wdx and derive
M(I; w) < CJ(E; G).

To prove the inverse inequality C;(E; G) < M,(I'; w), we may assume that
M,(I';w) < co. Set D=G — E. By assumption, D is a domain. We denote
by 2(D) the family of all ACL functions u in D such that |grad u| e L?*(D),
lim,, ;zu(x) = 1 and lim,_, g u(x) = 0. First we shall show

1) inf{f |grad ulPw dx; u e @(D)} SM,(T;w).
D

Take a I'-admissible function p which is continuous in D and satisfies
inf {p(x); xe D} 2 6 >0. Set p(x)=min {p(x), k} for each positive integer k
and extend it by 6 to R* — D. Given x € G, denote by Iy the family of curves
in G each of which starts from x and tends to a point in 6G. We set

w(x) = inf{f Pi ds; ')’51—3‘} .
¥

Suppose {7,} is a minimizing sequence in the definition of wu(x). Since
P = 0>0 in G, we may assume the lengths of y, are bounded. By applying
Lemma 4, we can take a curve yx € [ such that

w(x) = J P ds .
vk

This implies that

lu(x) — w(x)] = J~

Py ds

for any points x, x' in G, where xx’ is a curve connecting x and x’ in G. It
follows that u, is continuous ACL in G and that |grad u,| < p, a.e. in G (see, [7,
Lemma 3.6]). Set

m,, = min {u,(x); x € E}
and

ui (x) = min {u,(x), my} .
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The restriction of u¥/m, to D belongs to 2(D). By the same method as in the
proof of [7, Lemma 3.7], we see that lim inf,_,,m, = 1. Hence

inf f |grad u|’w dx < lim inf_, f (Igrad ug¥|/m,)’w dx
D

ue (D)
1\?
< lim inf, <7 pfwdx £ | pPwdx.
ny D D
From Lemma 3, (1) follows.

Next, set
u—¢
h(x) = min<1, 0, ———
(x) mm{ max( 1-23)}

for any u € 2(D) and sufficiently small number ¢ > 0. Let (h), be the mollified
functions of h in D and set (h), =1 on E. Then each (h), belongs to CZ(G).
Hence C;(E; G) = jG |grad (h),|’w dx. By Lemma 2,

ligrad (R)ull,w = ligrad ((h), — M)l + llgrad hll,,,, — ligrad kll,,

asn— oo. Thus
Cy(E;G) = J |grad h|Pw dx < ( ) J |grad u|Pw dx .
Letting ¢ — 0, by (1) we conclude that C;'(E; G) < M,(I'; w).

4. Proof of Theorem 2

To prove Theorem 2, we prepare the following lemma which gives the
continuity property of extremal distance in a special case. Denote by E,
the union of E and all bounded components of R! — E. In case R —E
is a domain, E, = E. Set G, = {x;|x| <n}. We may assume that G, > E,
for all n. Let I, (resp. I ¥) be the family of curves in G, — E, (resp.
R? — E,) connecting 0E, and 9G, (resp. the point at infinity). Note that

M, (I; w) = My(I3; w).
LeMMA 6. lim,_, M,(I}; w) = M, (I ¥; w).

Proor. First note that M, (I'¥; w) < M,(I,; w) < co for all n. For any
¢>0, by Lemma 3 we can take a [ *-admissible function p which satis-
fies (i) p is continuous in R*— E,, (ii) [pPwdx < M (I'*;w)+ ¢ and (iii)
inf {p(x); x e (R — E;)nK} >0 for any compact set K. Set p=0 on E,.
Then p is nonnegative lower semicontinuous in R%. We infer that there is n
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such that [,pds 21 — ¢ for every y € I, (cf. the proof of [5, Theorem 2.6 and
Lemma 2.7]). In fact, otherwise there would exist y,e I,; n=ngy, no+ 1, ...,

such that
j pds<1—e¢
Yn

for each n = ny. Let {y,;} be a subsequence of {y,};-, such that lim;,, x,; =
xo € 0Ey and limj,, y; = y, € 0G,,, where x,; is the starting point of y,;
and y,; is the first point of intersection of y,; with 0G,. Let y}; be the
subcurve of y,; connecting x,; and y,; in G,. Since inf {p(x); x € (R — E;) n
G,,} > O, the lengths of y}; are bounded. By applying Lemma 4, we can find a
curve y; connecting x, and y, in 5,,; such that a subsequence of {y¥;} converges
to y, in Fréchet’s sense and

J‘ pds_s_liminfjﬂmj. pds.

71 7?}

We may assume that {y¥} itself converges to y;. Next, let {y,;} be a sub-
sequence of {y,;} such that lim;,, y,; = y, € 0G, ,,, wWhere y,; is the first point
of intersection of y,; with dG, ;. Note that the sequence of the starting point
(which we denote by x,;) of y,; converges to x, in JE,. Let y¥; be the subcurve
of y,; connecting x,; and y,; in G, ;. Using Lemma 4 again we may assume
that {y§;} converges to a curve y, connecting x, and y, in G, ,, in Fréchet’s
sense and

J pds§1iminfj_,wj‘ pds.
72 it

Since {y,;} is the subsequence of {y,;} and {y};} (resp. {y};}) converges to y,
(resp. y,) in Fréchet’s sense, we see that y, contains y,. We continue this
process and obtain a curve y which contains all y,. We have

f pds =1lim,_, f p ds < lim;_ lim infj_.wj pds=<1-—e.
Y Vi

V)
Since y contains some y* in I .¥ and p is I ¥-admissible, this is a contradiction.
Thus p/(1 — ¢) is I,-admissible and hence

1\ 1\
M,(I,;w) < (1—_8> J‘ppw dx < (:) (M,(IF;w) +¢).
By letting ¢ = 0 we conclude that M (I}; w) - M, (I.¥; w) as h — 0.

ProoF OF THEOREM 2. If ueCy and u=1 on E, then |grad u| is
I,-admissible. Hence the inequality M,(I",; w) < C)(E) follows.
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To prove the inverse inequality, we may assume that M,(I,; w) < co.
By Theorem 1, C)(Ey; G,) = M,([,;w). Obviously, C)(E) £ C;(E,)
Cy(Ey; G,). Hence CJ(E) £ M,(I,;w). By Lemma 6 we have, C;(E)
M(IF; w)=M,(I,; w).

A 1A

5. Proof of Theorem 3

To prove Theorem 3 we prepare two lemmas, the first of which follows
from [1, Theorem 2] and [3, Theorems 3 and 4].

LeMMA 7. Let we A, and {g,} be a sequence such that |g,|, . — 0.
Then [|x — y|*~g,(y) dy = 0 in measure in any bounded domain.

LemMMA 8. Let we A, ;. If CJ(E) =0, then C)(E; G) =0 for any bounded
domain G containing E.

Proor. Take a sequence {u,} of C¥ functions such that u,>1 on E
and | grad 4,/ ,, —0. We may assume that 0 <u, <1 for all n. Take any
@ e Cy(G) with ¢ =1 on E. Then ¢u, is admissible in the definition of
C)(E; G), and satisfies

lgrad(eu,)l,,» = ll@(grad w,)l,, + llun(grad @), -

Since u, € Cg, it is well known that
|u,(x)| < const. flx — yI' ™| grad u,(y)| dy .
By Lemma 7, there is a subsequence {u, } of {u,} such that
flx — yI'’Igrad u, (y)| dy - 0 for ae. xin G.

Hence we see that u,(x) -0 for ae. x in G. Since 0 <u, <1 and w is inte-
grable on G, the dominated convergence theorem yields that llu,(grad @)l ,,,,—0
as j —» oo. Obviously, ||¢(grad )l p,w — 0 and therefore ||grad (o)l p,w — 0 as
j— oo. Thus we conclude that C;(E; G) = 0.

PrOOF OF THEOREM 3. Suppose that M,(/\(E); w) = 0. Since I, = /\(E),
M, (I’y; w) £ M,(/\(E); w), so that M,(I",; w) = 0. From Theorem 2, C}'(E) =0
follows.

Conversely, suppose that we 4,, and C,(E)=0. First we shall show
that R — E is a domain. Assume that R — E is not a domain. Let x°
be a point in a bounded component of R?— E. Take a ring domain
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R={x;a<|x—x° <b} such that Ro> E. Set G = {x;|x — x°| < b}. Take
any ue C§(G) such that u=>1 on E. For any ray y,: x°+rf (a<r<b),
8] = 1, we have

1§J |grad u| ds .
Y

]

Hence

J d0§J |grad u||x — x°)' "¢ dx
181=1 R

1/p 1/p’
< a“"(f |grad ulPw dx) <f wha-p) dx) .
R R

Since w1 7P js locally integrable,

J~ |grad ulPw dx = J |grad ulPw dx
G R

14 —p/p’
> ( j de) ( j dx) 0.
16]=1 R

Hence C;(E; G) > 0. On the other hand, C;(E; G) = 0 by Lemma 8. Thus we
obtain a contradiction. Therefore R? — E is a domain.

Let {G,} be a sequence of relatively compact open sets such that G,,; = G,
for each n, (|2, G, = E and every G, consists of a finite number of components
G,;(i=1,...,i(n) each of which meets E. Set E,;=G,;nE. Denote by I} ;
the family of curves connecting E,; and 0G,; in G,; — E. By assumption,
Cy(E,;)=0. From Lemma 8 and Theorem 1, it follows that M,(/, ;; w) = 0.
Let I,,= )i I,; Then we see that M,([;,;w)=0. By Lemma 5, there
exists a sequence {p,} of nonnegative Borel measurable functions such that
IPull 5w < 27" and [,pnds = oo for every ye I, for each n. We set p, = Zp,.
Then ||poll,,w < c0. For each ye /\(E), there exists a curve y, € I, such that

¥, < 7. Hence
Jpodsgj podng~ ppds = 00 .
Y n n

Using Lemma 5 again we conclude that M ( /\(E); w) = 0.

REMARK. Let E = {0}. We show by example that C;({0}) =
0 < M,(/\{0}; w) for some we 4, — A4, ;.

Let 0 < B <p and let w(x)=|x[*"% Then weA,— A,,. For some a
with f/p < a < 1, we set
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wo{l st
PRI=Ux if x| > 1.

Then p € L»* and fy.p ds = oo for every ye I',. From Lemma 5 and Theorem
2, Cy({0}) = 0 follows. On the other hand, by Ohtsuka [6, Corollary], we see

that M,(/\{0}; w) # 0.
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