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Summary

In this paper we consider some statistical inferences on location parameters
of Marshall and Olkin's bivariate exponential distribution. Two-stage sampling
procedures are given for constructing a fixed-size confidence region and se-
lecting the best population. Some test procedures for a structure of location
parameters are proposed.

0. Introduction

Exponential distributions have been introduced in a rich literature as
a simple model for statistical analysis of lifetimes. In survival analysis, the
hazard function is a constant if and only if the failure time has an exponential
distribution, see e.g., Cox and Oakes [11] or Kalbfleisch and Prentice [30].
Then the hazard rate is equal to the scale parameter of the exponential distribu-
tion. In reliability analysis, the location parameter is viewed as a guaranteed
lifetime of a system. Bain [3] and Barlow and Proschan [5] dealt with
statistical procedures in reliability theory by using exponential distributions.

There is an extensive literature on the construction of bivariate exponential
models, for example, Gumbel [21], Freund [18], Downton [13], Block and
Basu [8] and so on. Marshall and Olkin [36] proposed a multivariate exten-
sion of exponential distributions which is much of interest in both theoretical
developments and applications. Marshall and Olkin [36] derived a bivariate
exponential (BVE) distribution by supposing that failure is caused by three
types of Poisson shocks on a system containing two components. The BVE
distribution has three scale parameters. We note that the parameters of the
BVE distribution are not scale parameters in the usual definition of scale
parameters; however we call them scale parameters. Statistical inferences for
scale parameters have been considered by many authors. For example, Arnold
[1] and Bemis, Bain and Higgins [7] derived estimators for the scale parameters.
Awad, Azzam and Hamdan [2] considered the problem of estimating P(X > Y)
in the BVE and Ebrahimi [17] applied the BVE to an accelerated life test. Lu
and Battacharyya [35] proposed a bivariate extension of the Weibull model
along the line of Marshall and Olkin [36]. However, there is no literature
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which deals with the locations of BVE distribution. In this paper, we propose
a BVE distribution having location parameters and consider statistical inferences
on the location parameters.

In Section 1, we define a BVE distribution with location and scale param-
eters, which is an extension of Marshall and Olkin [36], and state some
properties of the BVE. The problem of constructing a fixed-size confidence
region for location parameters has been studied by many authors for the
normal distribution. Stein [43] derived a two-stage sampling procedure of
obtaining a confidence interval for the normal mean. Healy [23] extended this
two-stage procedure to the construction of simultaneous confidence intervals
for multivariate normal means. Chatterjee [9], Dudewicz and Bishop [14],
Mukhopadhyay and Al-Mousawi [39], Hyakutake and Siotani [27] developed
Stein's [43] two-stage procedures for multivariate normal populations. Chat-
terjee's [9] method could be implemented in practice by applying Hyakutake
[24] and Hyakutake, et. al. [28]. A two-stage sampling procedure for the
univariate exponential population has been considered by Ghurye [19]. For
the BVE distribution, we derive a two-stage procedure of constructing a fixed-
size confidence region in Section 2. The procedure is applied to the ranking
and selection problem in Section 3, where we treat two BVE populations with
the same scale parameters. Desu, Narula and Villarreal [12], Lee and Kim
[32] and Mukhopadhyay [38] applied Ghurye's[ 19] procedure to the problem
of selecting the best of several univariate exponential populations. Dudewicz
and Dalai [15] gave a two-stage selection procedure for univariate normal
populations. Dudewicz and Taneja [16] and Hyakutake [25] derived a general
treatment for selecting the best multivariate normal population based on Stein's
[43] two-stage procedure. In Section 4, we propose two-step procedures of
testing a hypothesis on a structure of location parameters. The null hypothesis
is the equality of two location parameters of the BVE distribution. The two-
step procedure can be viewed as a preliminary test, see e.g., Bancroft [4].
Takeuchi [44] and Lehmann [34] considered a test for the location parameter
of univariate exponential distribution.

1. BVE distribution and its properties

The location parameters of exponential distributions can be viewed as
guaranteed lifetimes of systems or their components. We define a BVE distri-
bution of Marshall and Olkin [36] with location parameters as the distribution
whose joint survival function is

x, Y>y)
(1.1)

ΛΛ* - TO - λ2(y - τ2) - A0 max(x - τ l 5 y - τ2)} ,
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where x > τ1 ? y > τ2, λ1 > 0, λ2 > 0, λ0 > 0 (see Hyakutake [26]). For con-

venience, we denote (X, Y) ~ BVE(τ, λ), where τ = (τ l5 τ2) and λ = (λ lf Λ2, ΛΌ)>
if a random vector (A', 7) is distributed as a BVE with the survival function

(1.1). It is easily seen that the BVE distribution has exponential marginals, say
the distribution of X (or Y) is exponential with the location parameter τ1

(or τ2) and the scale parameter λ1 + λ0 (or λ2 + λ0). Marshall and Olkin [36]

has given some basic properties for BVE(Q, λ). Modifying their derivations, the

moment generating function of BVE(τ, λ) is given by

(λ, +
l ' ' ί)

The mean vector and the covariance matrix of (X, Y) are

and

A0)

1

(λ2 + λ0)
2

respectively. The correlation coefficient of X and Y is λ0/(λ1 + λ2 + λ0).
Hence, X and Y are independent if and only if λ0 = 0, that is, the correlation
(or the covariance) is zero.

The BVE distribution is not absolutely continuous with respect to the
usual Lebesgue measure; however, let

(1.2)

λ±(λ2 + λ0)F(x, y), y - τ2 > x - τl > 0 ,

λ2(λι + λ0)F(x, y), x - T! > y - τ2 > 0 ,

λ0F(x, x), x — T! = y - τ2 > 0 .

The function (1.2) may be considered to be a density for the BVE distribution, if

it could be seen that the first two terms are densities with respect to two-

dimensional Lebesgue measure and the third term is a density with respect to

one-dimensional Lebesgue measure (see Bemis, Bain and Higgins [7]). From

Arnold [1] or Awad, Azzam and Hamdan [2], we obtain the following lemma.
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LEMMA 1.1. // (X, Y) ~ BVE(τ, λ), then

P(X-Y>δ) = λ2/(λl

P(X - Y = δ) = V(^ι

where δ = τ1 — τ2.

PROOF. It is easily seen from (1.2) that

P(X - Y < δ)
J Jy-τ2>x-τί

f(x, y) dx dy = A1/(A1 + λ2 + λ0),
>0

P(X-Y>δ)=(\ f(x, y) dx dy = λ^λ, + λ2 + λ0),
J Jχ-τι>y-τ2>0

and P(X - Y = δ) = I - P(X - Y < δ) - P(X - Y > δ).

The p.df. of Z = X - Y is given by

(1.3) h(z) =

! + λ2 +

λi+λ2 + λ0

(λ2 + λ0) exp [(A2 + A0)(z - δY] , z<δ,

1 + λ2 + λ0 '
= δ,

which is obtained by (1.2) and a change of variables. Using (1.3), we have the
following lemma.

LEMMA 1.2. // (X, Y) ~ BVE(τ9 λ),

(1.4) P(X
A2 + AO

exp[-(A2

! + A2 + AO
exp [(/li + A0)(5] ,

, (5>0,

δ < 0 .

Let {(Xr, Yr),r = 1,2,...} be a sequence of independent and identically
random vectors having the joint survival function (1.1). By using (1.2), the
likelihood function of the random sample of size n may be expressed as
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->*! £r (xr - τ j - λ2 £Γ (yr - τ2)

(1.5) - ΛO £r max (xr -τl9yr- τ2) + n+ log [λ^ + λ0)]

+ π_ log [A2(/11 + AO)] + m log AO} ,

where π+ = Σr/(Zr - Yr < 5), n_ = ΣrI(Xr - Yr > δ)9 m = ΣrI(Xr - Yr = <5),
I(X — Y < δ) = 1 if X — Y < δ, = 0 otherwise, n = n+ + n_ + m and ΣΓ means
Σ"=1. The following lemma and theorem are obtained.

LEMMA 1.3 (Arnold [1]). (n+, n_9 m) is distributed as the trinomial distri-

bution with parameter (n, λ^Kλ^ + λ2 4- λ0), λ2/(λί + λ2 -f A 0X ^o/(^ι + ^2 + ^o))

THEOREM 1.1. Lef (A',., Yr), r = 1, ..., n, be a random sample of size n from
BVE(τ^\ and XnΛ = mm(Xl9 ..., XΛ) and YnΛ = min (Yl9 ..., YH). Then

(i) ί/iβ maximum likelihood estimate (MLE) of τ is (Xntί, Yn>ι\
(ii) (XnΛ9YnΛ)

PROOF, (i) is easily seen from (1.5). By the definition of the BVE distri-

bution and (Xn>1, Yn,ι\ we find that

= P(Xr>x,Yr>y9r=l...,n)

*,γr> y)
- τ j - nλ2(y - τ2) - nλ0 max (x -τl9y- τ2)} ,

which proves (ii).

When τ = 0, Proschan and Sullo [40] gave the MLE of λ if n+, n_ or m is
zero. Klein and Basu [31] obtained the MLE in the case of Block and Basil's

[8] absolutely continuous BVE distribution with λ1 = A2. If all of n+, n_ and
m are not equal to zero, the MLE can not be written in a closed form, but it
can be obtained by an iteration method. When τ is unknown, it is quite
difficult to derive the MLE since (n+, n_, m) depends on τ (or δ).

REMARK. If X is distributed as an exponential, then aX is distributed as
exponential for all a > 0. However, if (AT, Y) - BVE, then (a^X, a2Y) - BVE
only if a1 = a2 > 0 (Marshall and Olkin [36]).

2. Estimation of location parameters

Here we consider two estimation problems, which are constructing a fixed-
size confidence region and estimators with a bounded risk. To provide such
a confidence region is basic in multiple comparisons (or simultaneous statistical
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inferences), see Miller [37]. The problems are solved by using the MLE

( X H t l 9 Y n t l ) o f ( τ l 9 τ 2 ) .

2.1. Fixed-size confidence region when λ is known

Since the MLE of τ is (XΛtl9 YnΛ\ Xttjί >τ^ and YnΛ > τ2, it is natural to
consider a confidence region for τ such that

(2.1) P(XΛtl - S < τ, < Xmtl9 YnΛ-t<τ2< YnΛ) > 1 - α ,

where t > 0 and α (0 < α < 1) are predetermined constants. We consider the
problem of determining the sample size n satisfying (2.1). Jones [29] constructed
a fixed-size rectangular confidence region like (2.1) for a multivariate mean by
a sequential procedure. For simplicity, we write the left-side of (2.1) as P(AnΛ).
By using Bonferroni's inequality, we have

(2.2) P(AnΛ) > 1 - P(XnΛ > τ, + f) - P(YnΛ >τ2 + t).

By Theorem 1.1 and the fact that the BVE has exponential marginals,

Γ*
P(XnΛ > τ t + /) = n(λi + λ0)e-n(λί+λo)(χ-τί) dx

Jiί + S

Γ00

92(t)dt

and similarly

02 W * ,

where gq( ) is the probability density function (p.d.f.) of a chi-square distribution
with q degrees of freedom (d.f). From the above argument, we obtain

P(AnΛ)>\-2 Γ g2(t)dt,
J2n(λmia+λ0)t

where λmin = min (λl9 λ2). Hence we have the following theorem.

THEOREM 2.1. Suppose that λ is fenown. Then the required condition (2.1)
is satisfied if

where Xq(a) is the upper lOOα % point of a chi-square distribution with q d.f.
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We choose the sample size n equal to the smallest integer satisfying (2.3).
Tables give the sample size n and the exact confidence coefficient P(An t l ) for
some given values of ( and λ when α = 0.05. It is seen that P(AnΛ) is fairly
closed to the required confidence coefficient when the difference of λ± and λ2 is

small.

λ = (.1, .1, .1) λ = (.1, .2, .1)

) * n

.1 185 .9544 .1 185 .9720

.2 93 .9553 .2 93 .9725

.3 62 .9553 .3 62 .9725

.4 47 .9569 .4 47 .9737

.5 37 .9544 .5 37 .9720

λ = (.1, .5, .1) λ = (.1, .1, .2)

n P(AnΛ) t n P(AnΛ)

.1 185 .9752 .1 123 .9573

.2 93 .9757 .2 62 .9585

.3 62 .9757 .3 41 .9573

.4 47 .9767 .4 31 .9585

.5 37 .9752 .5 25 .9597

2.2. Fixed-size confidence region when λ is unknown; two-stage estimation

It is well known that there exists no fixed-size confidence region for the
location parameter of location-scale family with the fixed sample size if the scale
parameter is unknown (see Lehmann [33] or Singh [41]). Hence, in order to
construct a fixed-size confidence region, it is necessary to use at least two-stage

sampling schemes.
We first take a sample of size nQ (> 2) from the BVE population having the

survival function (1.1) and compute

Si = —^ Σ&i (χr ~ *»o,i) and S2 = —L- ££x (Yτ - YnoΛ).
HQ — 1 IΪQ — 1

Define N by

(2.4) N = max {n0, [c^J + 1, [ClS2] + 1} ,

where [b] denotes the greatest integer not greater than b and c1 is a posi-
tive constant. Next we take N — n0 additional observations and compute

(XN.I, YN.I) = (min [Xl9...,XN}9 min {7 l9..., YN}). From (2.2) and (2.4), it can
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be shown that

P(ANtl) > 1 - P(XNtl > τ, + ί) - P(YNtl > τ2 + /)

= 1 - P{N(XNtl - τ j > Nt} - P{N(YNtl - τ 2 ) > NS}

> 1 - P{N(XNΛ - τJ/Si > c^} - P{N(YNtl - τ2)/S2 > cj} ,

where both of N(XNtί — τί)/S1 and N(YNΛ — τ2)/52 have an F-distribution with
(2, 2(n0 - 1)) d.f. (see Desu, Nalura and Villareal [12]). Hence we have

where Λβ l i β 2( ) is the p.d.f. of the F-distribution with (ql9q2) d.f. Let F4ijβ2(α)
be the upper 1000 % point of the F-distribution with (qί9q2) d.f. We can
summarize the above argument in the following

THEOREM 2.2. // the constant c1 in (2.4) is chosen so that

(2.5)

ί/iβn the fixed-size confidence region as (2.1) can be constructed.

In the above two-stage sampling procedure, we choose the first stage
sample size n0 satisfying

(2.6) lim,_0 MO = oo and lim,_0 (Λι0) = 0 .

Then

lim^^o St = - - — (almost surely) , i = 1, 2 .
AI + ΛO

Hence we have

liπv^0 max (Sl9 S2) = -. - r- (almost surely) .
^min + ^0

Furthermore, it holds that

max (c1Sl9 c1S2) <N < max (c1Sl9 clS2) + n0

from (2.4). These imply the following theorem.

THEOREM 2.3. In the two-stage sampling procedure defined by (2.4), suppose

that Ci = ^2,2(π0-i)(α/2)/^ and n0 satisfies (2.6). Then
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N E(N)
(2.7) liπv_>0 — = 1 (almost surely) and liπv_0 = 1,

n n

i f n = χi(α/2)/{2/μmin + λ0)} in Theorem 2.1.

In the sense of Chow and Robbins [10], that is, satisfying the second
property of (2.7), the two-stage sampling procedure (2.4) is called asymptotically
efficient for the single-stage procedure in the previous subsection.

2.3. Bounded risk

Let dn be an estimator of τ, based on a random sample of size n from
BVE(τ, λ). Let L(dn, τ) be the loss function defined by the sum of absolute
errors, that is, L(dn, τ) = Σ\dnΛ — τt\. Then the risk function (or expected loss)

is

Rn(dn,τ) = E{L(dn9τ)}.

For a given ε > 0, we wish to decide the sample size n such that

(2.8) Rn(dn, τ) < ε for all (τ, λ).

Now we consider the problem of determining such a sample size when

dn = (XnΛ, YnΛ) or dN = (XNΛ, Y N t l ) according to the case when λ is known or
unknown. By Theorem 1.1 (ii) we have

Rn(dn9 τ) = Y-T-I-T- +
λ2 + /LO

Hence, when λ is known, the requirement (2.8) is satisfied if n is chosen so that

I / 1 1

If λ is unknown, it can be solved by using the estimator dN = (XNtl, YN,I) based
on the two-stage sampling scheme described in Subsection 2.2. By using the
two-stage procedure, we get

RN(dN, τ) = Ew[E{|*Wtl - t i l + \YKtl - τ 2 | |JV}]

+ A0 λ2 + λj IN

-E<-^\ + ̂ -^E

Since 2(n0 — l)(λt + λ0)St (i = 1, 2) is distributed as a chi-square with 2(n0 — 1)
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d.f., £[{2(n0 - l)(λt + io)^}'1] = l/[2(n0 - 2)] for n0 > 2. Hence, if the con-
stant c1 > 0 in (2.4) is chosen so that cx > 2(π0 — l)/{ε(n0 — 2)}, the requirement

(2.8) is satisfied.

3. Ranking and selection problem

Suppose that there are two BVE populations Πί and 772 with different
location parameters and common scale parameters, that is, Π^ : BVE(τί9 λ) and
772 : £KE(τ2, λ), where τ, = (τ/i, τ^) (7=1,2). The problem is to select one
population as "better" in an experimenter-specified sense. In the multivariate

case, almost all ranking and selection procedures are based on some device by
which the original multivariate parameter is univariatized (see Chapter 15 of
Gibbons, Olkin and Sobel [20] or Chapter 7 of Gupta and Panchapakesan

[22]). Here we consider a simple scalar function 0,- = τj{ + τj2 as a uni-
variatized parametric function. If the ordered values are denoted by 0m < 0[2],
and corresponding populations by Π[1} and 77[2], then we select 77I2] as the
better population. The better population can also be viewed as the one
associated with the larger mean of the sum of the components.

3.1. The case when λ is known

A natural selection procedure is to estimate θj (or τ,-) by 7J j Π = X^\ + Ύ^\

(j = 1, 2) and select the population having the larger TJtΛ. However, since the
order of 7i „ and T2 „ does not always equal to the order of θί and Θ2 due to
sampling variation, we need to have a probability statement with a specified
confidence that the procedure leads to a correct selection (CS). We use the
indifference zone approach introduced by Bochhofer [6] in which he considered
the problem of ranking k normal means. For a fixed P* (1/2 < P* < 1), we

wish to attain the probability of correct selection P* in the indifference zone
formulation, that is

(3.1) infβpP(CS) = P*,

where ΩP is a subset of the parameter space Ω and is called the preference zone.
Let Ωτ = {(τ1,τ2): -oo < τjt < +00, ij = 1, 2} and Ωλ = {λ : λt > 0, i =

1, 2, 0}. We define Ωp(τ) = {(τ1? τ2) : 0[2] > 0m + δ*9 δ* > 0} and use T[1]>π and
7J2]>Π as estimates for 0m and 0[2], respectively. Then the probability require-
ment (3.1) is written by infβp(τ) P(CS) = P*, that is

(3.2) P(T[l]tΛ < Tmn) > P* whenever 0[2] - 0U] > δ*

for given P* (1/2 < P* < 1) and <5* > 0. When λ is known, we obtain the

following theorem.
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THEOREM 3.1. The probability requirement (3.2) is satisfied, if the sample

size n from each population satisfies

(3.3) n > I log (1 - PT1 -
OVin + Λ θ)£*

PROOF. Using θ[2] — θ{1] > δ* and Bonferroni's inequality, we have

(3.4)

> P(Tllln - θlί} < Tl2},n - Θ12] + δ*)

- T[2i] + y» *»l.Y - T[i2] < V,ιJ - T[22]

,5<Λ
τ[21]

where ΓW)B = Z^ + F^ ( = 1, 2). The second and third terms of the last

inequality in (3.4) are expressed as

Λoo /*c»

JO Jv2+n(λί + λ0)δ't

ίoo Λoo

D »/ v2Ί~n(λ2~\~AQ)O*

and
^00 [*oo

'1)02(^2)^1 rft;2 ,

respectively. Hence we have

ί oo Λoo

02(^1)02(^2)^1 dv2

If we choose n such that 1 — exp ( — n(λmin + λ0)δ*/2) > P*9 which implies (3.3),

then (3.2) is satisfied.

In the above procedure, the upper bound for P(CS) is given in the following

theorem.

THEOREM 3.2. In the least favorable configuration, θ[2] = 0tl] + <5*, P(CS) is

bounded by
I _ e~2e-n(λmin+λ0)δ*
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PROOF. It is easily seen that

P(ΓULM < ί) < 1 - exp{-n(Amin + λ0)(t -

for t > θy). Hence we have

ΌίΠΓ Ω ^ T f) _ι_ X^Λ
•* v i l l n — i l l Γ21 n — Γ21 " " " /

< ETmn(l - exp {-n(Amin + λ0)(Tmιt - θ[2] + δ*)}).

On the other hand, by using Jensen's inequality, we find that

£(exp {-n(λmin + λ0)(T[2],n - 0[2])})

> exp {-n(/lmin -h λ0)E(T[2]9H - θ[2])}

1 1

n(λι + Λ,0) w(/l2 "t" ^o>
= exp -n(λmin

>e-2.

Thus we obtain

3.2. The case when λ is unknown; Two-stage procedure

When λ is unknown, the required sample size n as in (3.3) cannot be
determined. Furthermore, the probability requirement (3.1) should be replaced
by infβp(φ Ωλ P(CS) = P*. If one knows lower bounds on all elements of λ, say
λL, one can obtain n replacing λ by λL in (3.3). However, this may lead to
over sampling. Thus we propose a two-stage sampling procedure, which is an
extension of the one considered by Desu, Narula and Villarreal [12].

We first take samples of size n0 (>2) from each of two populations and
compute

and

Define N by

(3.5) N = max {«0, [c2SJ + 1, [c2S,] + 1} ,
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where [i] denotes the greatest integer not greater than b and c2 is a posi-
tive constant. Next we take N — n0 additional observations and compute
(X$!, Ytf\) based on N observations (j = 1,2). By (3.4) and (3.5), it can be
shown that

i - τul ] >

- P{2N(λ2 + λ0)(Y»l - τ[12]) > 2N(λ2 + λ0)(Ytf\ - τ[22])

+ c2δ*(λ2

/*00 foo Γao

= 1-2
JO JO Jt>2+(c2<5*u/4(n0-l))

c δ
4(n0 -

Hence we obtain the following theorem.

THEOREM 3.3. The probability requirement (3.2) is satisfied, if the constant
c2 in (3.5) is chosen so that

c2 > ̂ 2(

The procedure proposed in this section is based on the marginal distribu-
tions. Hence, it is possible to use the procedure for the selection with respect
to linear combinations of the locations, that is, Qj = a±τn + a2τj2 (j = 1, 2) with
#! > 0 and a2 > 0, since avXr and a2 Yr are distributed as exponentials.

4. Tests for a structure of location parameters

We consider the null hypothesis H0: δ = 0 (say, τ1 — τ2) against the alter-
native hypothesis H^: δ ̂  0 in the BVE(τ, λ) population. Here we assume that
A j = λ2 ( = λ). Without loss of generality, we may assume that there is no tied
observation except for the point δ with probability one, which means that
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P(χr -γr = χr, - γr, φ δ) = 0 for all r Φ r'

and

P(Xr -Yr = Xr, - Yr, = δ\λQ > 0) > 0 for some r Φ r'.

Since λ1 = λ2, the hypothesis can be viewed as the one for the equality of the

means of two components in the BVE distribution. Thus the hypothesis is one

of the contrasts of means (e.g., see Chapter 5 of Siotani, Hayakawa and

Fujikoshi [42]). We propose two-step procedures for testing the hypothesis

//o, based on a sample of size n whose size is fixed.

4.1. Conditional binomial test

From Lemma 1.3, we may employ (n+9 n_, m) to derive a simple test for the

hypothesis H0. A two-step procedure is described in the following.

STEP I.

We first examine the difference of the components, say Xr — Yr, of each of

n observations. By the assumption of no tied observation, if we could observe

that

Xrι - Yrι = X,2 - Yf2 = - = X,m -Yrm (2 < m < n),

then we decide Xrι — Yfί = δ with probability one. Hence, for m > 2, the most

obvious test is to accept H0 when Xfι — YΓι = X,2 — Y,2 = 0 for some rt φ r2

and to reject H0 when Xfι — Yfi = X,2 — Yf2 / 0 for some r^ Φr2. It is easily

seen that both of the probabilities of type I error and type II error are zero for

this test.

We cannot always make a decision at Step I whether to accept or reject

the hypothesis, since P(m > 2) < 1. When m < 2, δ is not determined exactly.

In general, n+ and n_ depend on δ. However, under the null hypothesis, it is

possible to compute n+ (or n'_\ that is

(4.1) n'+ = Σ?=ι I(Xr ~ Yr > 0), πl = Σ^ I(Xr - Yr < 0).

Now we may use the statistics n+ (or ri_) for test of the hypothesis in the next

step.

STEP II.

The test procedure in Step I is available only for the case of m > 2. We

employ n'+ in (4.1) as a test statistics and reject H0 if n+ or n — n+ is small. In

order to obtain the critical region, the conditional distribution of n'+ given

m < 2 is needed. The following theorem is useful in determining the critical

region.
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THEOREM 4.1. Under H09 the conditional probability function of n'+ given
m<2 is

where p = λ/(2λ + λ0).

PROOF. By Lemma 1.3, we find

nl

n! fl\*fp+(n - n'+)(l - 2p)

n'+l(n-n'+)\\2j\ p + n(l - 2p)/2

The result (4.2) implies the following corollary.

COROLLARY 4.1. Under H09

(4.3) Qo(n'+\m < 2) + Q0(n - n'+\m < 2) = 2
n+l(n - n+)!

By Corollary 4.1, we can determine the critical region with significance
level α as

(4.4) Cζα = [n'+ :n'+<ζΛ,n-n'+< ζΛ} ,

where ζΛ is the greatest integer such that

The above test is available for both cases when λ is known or λ is unknown,
since the test statistics and the critical region do not depend on λ.

In order to calculate the power function, it is needed to find the probability
function of n'+ (or n!_) under the alternatives. From (1.4) and the proof of
Theorem 4.1, we obtain

2. , > 0) . ^ϊ

p + (n - n'+)(

' p + fi(l - 2p)/2



540 Hiroto HYAKUTAKE

p + (n - <)(! -

p + n(l - 2p)/2 '

The power of the test is given by

Qι(n'+\m < 2,δ > 0 (and/or 5 < 0)) ,

where C0 = Cξa.

4.2. Conditional exponential test

It is interesting to derive an alternative test procedure based on '(XΛfί9 Yn^)

instead of n+ in Step II of the previous subsection. We shall derive such a test
under the assumption that λ is known. Letting Zn = Xntί — YnΛ, it is natural

to reject the null hypothesis when and only when

(4.5) |ZJ > η ,

where η is a positive constant determined by the significance level. The p.d.f.

of Zn under H0 is given by

2l 1 ,τ „ x

2λ + λn 2
(4.6) Λ(z) =

which follows from (1.3) with λί = λ2 = λ. In order to determine η, we need to

evaluate

(4-7) P{\Zn\>η\m<2},

under H0. For this, let

A = {-η<:Zn<η}, A'

Bls = {Xs - Ys = 0 and Xr - Yr * 0 (r = 1, ..., s - 1, s + 1, ..., n)} .

Then (4.7) can be rewritten as

ί48) 1(4.8) 1
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LEMMA 4.1. Under f/0,

V2A + λj \2λ + λj \2λ + λ,

(ii) pμnA>) = (W

(iϋ) ]

I" \ "/

PROOF, (i) follows from Lemma 1.3. By using (4.6), we have

2Ϊ

which proves (ii). In order to evaluate P(A n 5ls), we put

where X(s} = mm (Xί9 . . . , Xa_ί9 Xs+ί9 . . . , Xn\ Y(s) = min (Y1? . . . , 7S_1? 7S+1, . . . , Yn)
and JTS = Ys. Since Bls = (J£=1 BJS and βίs, . . . , 5fs are mutually disjoint,

(4.9) P(A n Bls) = Σ«κ=ί P(A n BfJ = ̂ K

6

=1 P(A n Bfs|Bl

From (1.2) and Lemma 1.1,

y(M) > x(s)

2/L

and

fι(χ,, ys\χs = ys) = (21 + A0)
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where τ = τ1 = τ2 Hence we obtain

= P(-η <Xs-Ys<η,Xs< Xw < Y(s})

= P(xs < x(s} < yw)

= Γ f" ί°°
Jτ Jjcs J X(S)

•(n - 1)(I

= l/2n,

< xw -γ,<η, xw <xs< rω)
- Jίs < Z(s) + η, Xw <XS< Yw)

ί
oo Λx(β)+ι, Λ αo

, L ί, 21

I(n-l)(2ϊ+l 0) 2Ϊ + 10

2 n(21 + 10) (21 + 10) + (π -

_

= P(-η < X(s} - Y(s} < η, Xw < Y(s} < X.)

— P(Y ^ V <? Y Λ- n Y < r Y <? Y \
— *\Λ(s) < I(s) ^ Λ(s) ~l~ Ί> Λ(s) <* I(s) <* Λs)

t^+n ΓQO _

(21ί <» Γ*M+1 |*«

: J*(s) JfM 21

. /|Λ 1 \ ί 1 _j_ 2 \a '" IA^ * *"Q)\y(S) T) A γ /j\) ΠΎ
\" / \ ^ "O/ ** ̂ s ί̂s) is) *

2 «(2A + Ao) (21 + AO) + (n - l)(λ + λ0)

It is easily seen that

_

n Bf.lB!.) = P(A n Bf, |Blf) ,

-t)
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Hence, we get (4.9) by substituting P(Bls) and P(AnBκ

ίs\Bls) (K = 1,..., 6).
This completes the proof of (iii).

THEOREM 4.2. // we choose the critical point

1 Γ 2l+nλ0 T1

*!=—= log — —<* .
n(λ + λϋ) |_21 + (n-l)A 0 J

then P(\Zn\ > η\m < 2) < α when H0 is true.

PROOF. Substituting (i), (ii) and (iii) of Lemma 4.1 into (4.8), we obtain

2λ

+ n -̂

λ0

2λ

J [i _ e-»α+A0),-|
l/

•rμ
L\2λ + V \2Λ + V \2λ + λ0

—'a j-' x" + (n - l)/ί0e~
2A + nΛ,0

which is bounded by

(4.10)
2λ + nλ0

Hence the proof is completed by letting the second term of (4.10) is equal to α.

This theorem shows that the probability of Type I error of the proposed
two-step test procedure is not greater than α, since the error probability in
Step I is zero.

When λ is unknown, it is suggested to use

Wn = ZJS0

instead of Zπ, where

is an unbiased estimate of l/(λ + A0). However, the distribution of Wn depends
on λ. It is complicated to derive the conditional distribution of Wn as in (4.2)
or (4.7).
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4.3. Asymptotic test

In this subsection, we construct an asymptotic test procedure based on the
mean difference, say X — Y, in Step II, when λ is unknown. Under H09 since

/ λ \ 2
the mean and the variance of Xr — Yr are zero and I 1 =-̂ — 1 — ,

respectively, the mean and the variance of X — Y are zero and -1 1 =-̂ — )
n\ 2λ + λJ

2
— . Hence the asymptotic distribution of

(4.12)
2λ + λ(λ

is the standard normal distribution ΛΓ(0, 1) by the central limit theorem. Since
the statistics (4.12) includes an unknown parameter λ, it is suggested to use the
MLE m/n and the unbiased estimate 50 in (4.11) for λ0/(2λ + λ0) and ί/(λ + λ0),
respectively, into (4.12). From the condition [m < 2}, m/n tends to zero as
n->oo. Thus the suggested test statistics becomes to ^fn/2(X — Y)/S0. The
critical region is given by

(4.13) ^ i I l > f l α / 2 ) ,

where ^(α/2) is the upper 100(α/2) % point of ΛΓ(0, 1).
The test procedure mentioned above is based on the unconditional dis-

tribution. We should derive the conditional distribution as in the previous
subsections, if the procedure is used in Step II. However, one can assume that
the two components X and Y are independent in the asymptotic case, because
the MLE of the correlation coefficient, say m/n, tends to zero as n -» oo. Hence
the testing hypothesis can be treated as a two sample problem, which shows
that the test procedure based on (4.13) is reasonable. We note that it is
possible to make a decision at Step I for large sample sizes with λ0 > 0, since

^P(m<2)= — - +n
+ V \2λ + V \2λ + V

tends to zero as n -> oo. In other words, if we use only Step I, the null
hypothesis is accepted when

Xrι -γr =... = χfm - 7Γw = 0 (2 < m < n)

and is rejected otherwise. Then the probability of Type I error is fairly closed
to zero. Clearly, the probability of Type II error is zero.
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