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1. Introduction

Such concepts as information, entropy, divergence, energy and so on play
an important role in mathematical sciences to research random phenomena.
This paper tries a unified approach to measurement of these notions, in
particular the geometrical structure induced by a contrast function. In the
mathematical formulation a contrast function p on a manifold M is defined by
the first requirement for distance: p(x, y) > 0 with equality if and only if x = y,
see Eguchi [2] for various examples. A simple example is found in

n + l

Pι(P> 0) = Σ Pi(l°£ Pi ~ loδ <?;)
i = l

on the n-simplex ^ = {p = (Pι,...,pπ+ι): Σ"=ί Pt = 1» ^ < Pi < O This func-
tion is called the Kullback information in the context that p and q are the
vectors of probabilities for n + l disjoint events, see [2] for other examples
and construction for p. Thus a contrast function is generally not assumed
to be symmetric as seen in pl.

We discuss on the manifold M instead of £f on the assumption of finite
dimensionality because we wish to investigate contrast functions or functional
over not only £f but also a general space of probability measures. A new
geometry on M by means of p is presented: a Riemannian g, a pair (P, P*)
of torsion-free connections and a pair (D, D*) of second-order differentials.
The asymmetry of p leads to different two connections V and P* such that
1/2 (P + P*) is the Riemannian connection. Lauritzen [3] calls (M, 0, T) a
statistical manifold, where T is the third order tensor representing the difference
between P and P*. In general such a pair (P, P*) is called conjugate in the
sense that if M is curvature-free with respect to P, then M is also curvature-free
with respect to P*. Nagaoka and Amari [6] extended a notion of locally
Euclidean space: If M is curvature-free with respect to P, then there exists
a pair of local coordinates (x1, U) and (xf, V) such that

g\ —:, ) = δt

j (Kronecker's delta)
\ dxl dxj /

on UnV. In Section 2 we present a further conjugacy property introduced
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by new operators (D, D*) related with p. It is shown that the two operators
D and D* generate tensors B(X, Y) and B*(X, Y) of which antisymmetric
parts are the Riemannian curvature tensors with respect to V and F*,
respectively. Section 3 investigates the case of a Riemannian space (M, g). A
contrast function p0(x, y) on M is naturally defined by the squared arc-length of
a geodesic curve connecting x with y in M. We give a formula of geometric
quantities g0, (F0, F£) and (D0, £>*) by p0 Section 4 gives the induced form
of the geometry by p into a submanifold M. Let x be in M — M. We
consider minimization of p from x to M. For a fixed point x of M we
denote L% the space of points from which minimization of p into M are
given at x. If for any x there exists a unique minimizer jc of the function
p(x9 - ), M is decomposed into a foliation M = u{L~: xeM}. We call L~
a minimum contrast leaf and we investigate the second fundamental tensor of
L~. It is shown that the tensor of L- vanishes at Jc.

2. Geometry associated with a contrast function

Let M be a C°°-manifold of dimension d. Let 3E(M) be the space of
vector fields on M and *&(M) the space of C°°-differentiable functions on
M. We call p: M x M-»R a contrast function if p(x, y) > 0 for all x and
y in M with equality if and only if x = y. Eguchi [2] introduced three classes
of W-type, M-type and S-type in all the contrast functions on a space of
probability distributions. In this paper it is assumed that p is a C°°-function
on M x M and that

XxXxp(x,y)\y=x>0

for all nonzero X in £(M) and xeM. We will show that the assumption
determines the main order of p (see the last paragraph in this section).
Throughout this paper we use the standard notation in Kobayashi and Nomizu
[3] in addition to the following notation on partial differentials:

p ( X 1 ' ' ' X m \ Y 1 YJ(z) = (X1)x- '(XJx(Y^

for Xj,...,Xn and Yl9...9Ymm ΐ(M). A Riemannian metric g on M is defined
by

g(X,Y)=-p(X\Y).

In effect the bilinearity of g holds by definition. Since the contrast p(x, y)
has a minimum 0 when x = y, we see p(Y\ ) = 0 for any YeX(M). Moreover,
applying X to p(Ύ\ ) = 0 we have

p(XY\ )=-p(X\Y).
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Thus from the assumption we get g(X, X) > 0 for all X φ 0 in S(M). The
symmetry follows from g(X9 Y) - g(Y, X) = - p([_X9 7]| ) = 0. Accordingly
g is well-defined as a metric tensor with the expressions

Next we define a pair (F, F*) of covariant differentials as follows:

g(rxY9Z)=-p(XY\Z) and g(r$Y9 Z) = - p(Z\XY)

for all ZeX(M). Here VXY and V$Y are determined by the conditions that

the above quantities are satisfied for all Z. By definition the mapping

(X, Y) -> Vx Y is bilinear. Noting that

g(Vfx Y,Z) = - P ( ( f X ) Y\ Z) = g(fVx 7, Z),

g(VxfY9 Z)=- p(X(fY)\Z) = - p((Xf) Y + f ( X Y ) \ Z )

= g((Xf)Y+frxY,Z)

for all /eS(M) and all Ze3E(M), we have

rfxγ=frxγ and F J/r=(^/)y+/F j rκ (2.1)

Similarly we can see that F* satisfies these properties. Thus V and F* are
well-defined connections and have the following relation, see Eguchi [2].

1
PROPOSITION 1. Let F = - (F + F*). Then V is the Riemannian connection

with respect to g.

PROOF. By definition,

Xg(Y9 Z)=- p(XY\Z) - p ( Y \ X Z ) = g(VxY, Z) + g(Y9 FjfZ).

This implies

Xg(Y9 Z) = -X{g(Y, Z) + g(Z9 Y)} = g(VxY, Z) + g(Y9 FX

which shows that F is metric. Next we see that

g(VxY- VΎX, Z)=- p(XY- YX\Z) = g({X, 7], Z)

and

Y- rfx, z)=- P(Z\XY- YX) = g([x9 y], z)

for all Zeΐ(M), which implies that both F and F* are torsion-free and

hence F is. Π
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If p is symmetric, then V — V = F*. This case reduces to the

Riemannian geometry. A typical example of a contrast function is asymmetric

as pi defined in Introduction. Hence we pay attention to a tensor on M,

The tensor T is symmetric because

T(X, Y 9 Z ) - T(Y, X, Z) = g(Vx Y- ?ΎX - (P* Y- r j X ) , Z)

]-[*, r],z) = o
and

T(X9 Y,Z)~ T(X, Z, Y) = X{g(Y, Z) - g(Z9 Y)} = 0.

Thus the triple (M, g, T) becomes a statistical manifold according to the

terminology by Lauritzen [4].

Nagaoka and Amari [6] introduced a dualistic structure on such a triple

(M, 0, T), see also Chapter 3 in Amari [1] for extensive discussions. The

identity

IX, Y]g(Z9 W) = XYg(Z, W) - YXg(Z, W)

leads to

g(R(X9 Y)Z9 W) = g(Z9 tf*(K X)W)9

where R and R* are the Riemannian curvature tensors associated with F

and F*, that is,

, F) =
and

Thus it is seen that M is R-free if and only if it is #*-free. Further, when

M is R-fΐQQ and #*-free, the corresponding dual affine coordinates (xl) and

(xf) to F and F*, that is

Pa/ac' = °' F*V = ° and ^ ' = <5ί'

are connected with the Legendre transformation £«χίχ* = ^(x) + φ(x*)
Here both ^ and φ are convex-conjugate and are called the potential

functions. It is shown that

(22}
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Thus the notion of a locally Euclidean space can be extended to a dualistic
version.

We now define a pair (Z), D*) of differential operators £(M) x £(M) x
3E(M)->3E(M) by the conditions

g(Dx,YZ, W)= - p(XΎZ\W) and 0(DJ.yZ, W) = - p(W\XYZ)9

which should be satisfied for all

PROPOSITION 2. 77ze operator D satisfies the following conditions:

(1) 77/e mapping (X, Y, Z) - >DXYZ is trilinear.

(2) DfX,YZ=fDx,YZ,

(3) DXtfγZ=fDXtYZ + XfrγZ

and

(4) βj.r/Z =fDXtYZ + XfVYZ

PROOF. By definition, (1) is clear. The Leipnitzs law yields that

,yZ, NO = - p(fXYZ\W) = g(fDXtYZ, W),

fγZ, W)=- p(fXYZ + (Xf) YZ\ W) = g(fDx,ΎZ + Xf?ΎZ, W)

and

g(Dx,YfZ, W)=- P(fXYZ + (Xf) YZ + (Yf)XZ + X(Yf)Z\W)

= g(fDXtYZ + XfVΎZ + YfVxZ + X(Y/)Z, WO

for all ^eϊ(M) and /eg(M), which conclude (2), (3) and (4). Π

Take arbitrarily two local coordinate systems (A, (7, (/)), and (μ, V, (za))
with UnV^φ. Then Dd/dyitd/dyjd/dyk defines the components of D in the
coordinates (λ, 17, (/)). The natural bases {S/S/} and {d/δzfl} on 17 n F are
related by

d _ dyi d

~dza ~ ~dz° a/

from which it follows that

De e A = ̂ De

 d i
' '
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, 3V „ a . 5V
ί (from ί1) and

dy*

dzaΰzb dzc dyk

d2yj dyk _&_ d2yj dyk

+

_ _

d? a? ty dzadzbdzc ty

(from (1), (2) and (3)), where {dyl/dza} denotes the Jacobi matrix of
λ~l (μ( )) Here and hereafter the Einstein convention is used for indices
i 9 j and k. Thus we observe that the set of the conditions (l)-(4) determines
the transformation rule of components of D for a change of variables. By
a similar argument we see that D* enjoys also the conditions:

(1)' The mapping (X, Y, Z) - >DξtYZ is trilinear.

(2)' DjXtYZ=fDίtrZ

(3X D^fΎZ=fD^γZ + XfV^Z and

(4)' DίtYfZ=fDίtYZ + X f V f Z + 7/F*Z + X(Yf)Z

for all/e5(M).
We now define

, Y) = DX9Y- VXVΎ and B*(X, Y) = DξtY

Then we have that

B(fX, Y)Z = B(X9fY)Z = B(X9 Y)fZ=fB(X, Y)Z

for all /eg(M) since VXVΎ also satisfies the conditions (l)-(4). Thus both
B(X, Y) and B*(X9 Y) are g(M)-linear and are a kind of curvature-like
tensors associated with D and D*. We now show that the antisymmetric
part of B is nothing but the Riemannian curvature tensor.

PROPOSITION 3. R(X, Y) = B(Y9 X) - B(X, Y).

PROOF. The result follows from Dx YZ — DY XZ = V[XtY}Z. In fact,

g(DXtYZ - DY,XZ, W)=- p([X9 y]Z| WO = βPix.πZ, W)

for all We3E(M). Π

By a similar argument, R*(X, Y) = B*(Y, X) - B*(X9 Y). Proposition 3
directly implies Bianchi's first and second identities:

<SR(X, Y)Z = 0 and S(Fzfl)(AT, 7) = 0,
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where S denotes the cyclic sum on X, Y and Z. The symmetry of B is
equivalent to R-freeness. Further, the following identities hold.

PROPOSITION 4. (1) B(X, Y)Z = B(X, Z)Y.

(2) g(B(X, 7)Z, W) = g(B(W, Y)Z, X).

(3) g(B*(Y9 X)W,Z) = g(B(X, Y)Z9 W).

PROOF. We get

B(X, Y)Z = DXtΎZ-VxVΎZ

= »x,γY+ rxlY> Z] - VX(VZY + [S Z]) = B(X, Z)Y

since

DXtYZ = DXtZY+rxίY,Z].

Hence we obtain (1). We next show (2). By applying X to the definition

g(VΎZ, W)=-p(YZ\W)

we get

g(VxVΎZ, W) + 0(FyZ, V$W) = - p(*YZ|H/) - p(7Z|XMO,

or

g(B(X, y)Z, WO = g(PyZ, P|ίΦO + p(rZ|^WO. (2.3)

From this and the torsion-freeness of Γ* it follows that

g(B(W, Y)Z9X) = ̂ (ΓyZ, [̂  ̂ ] + P* WO + p(YZ\WX)

= g(VΎZ, Γ* WO + p(7Z|*WO = ^(B(Jf, 7)Z, W),

which concludes (2). The identity

leads to

^(B*(ί X)W, Z) = ^(FyZ, F*^) + p(YZ\XW), (2.4)

which concludes (3) because of (2.3). Π

Since it follows from (3) in Proposition 3 that

g({B(X9 Y) - B*(X, 7)}Z, W) = g(B(X, 7)Z, W) - g(B(Y, X)W, Z),

we obtain that B(X, Y) = B*(X, Y) if and only if
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g ( B ( X , Y ) Z 9 W ) = g ( B ( Y , X ) W 9 Z )

for all Z and W in
From this we get a kind of symmetry associated with B.

COROLLARY 1. The forth-order tensor g(B(X, Y)Z, W) or g(B*(X9 Y)Z, W)

is symmetric if and only if B is equal to B* and R vanishes.

PROOF. The result follows from the above statement and Proposition 4

(1) and (2). Π

Now we obtain that the contrast function generates a further dualistic

structure over M.

THEOREM 1. The following statements are equivalent:
(1) M is B-free. (2) M is B*-free.

(3) There exists a system of coordinates (x1) satisfying

and

d
k 0 (ί<i,j,k< d ) . (2.5)

ox

(4) There exists a system of coordinates (xf) satisfying

and

β*/fa* w* ̂  = Q (1 ^Λ Λ fc ^ r f) (2.6)J dx*

PROOF. If follows from (3) in Proposition 4 that (1) is equivalent to

(2). Next we assume (1). Then M is β-free on account of Proposition
3. Namely M has P-affine coordinates (x1), which are seen from (1) that

dxk

This implies (3). Conversely if (3) holds, then

, dxl' dxj
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with respect to the coordinates (xf), which leads M to be B-free since B is
a tensor. Similarly (2) is equivalent to (4). Π

In the statements (3) and (4), (2.5) and (2.6) can be exchanged for

d d
P\ ̂

Sxl dxj

d d
— — =0 and p( — —
dxk dx1} \dxf dxf dxf

respectively, on account of (2.3). We assume that M is β-free in this

paragraph. From (2.2) it is satisfied that

Q γ_d_ , = φ.

* *** dxf dxf J dxf dxf dx{

dxldxjdxk

and

Further, then

since

.
dxj L \ 3x' a^ dxl J dx> dxk dxl

yields

^&?' *&dϊ

Similarly we obtain that

/ _ _
9 ' ' " dxf dxf dx$ dxf

If M is R-free, then the divergence function can be introduced as

d

U\X ^9 X^) ~~ T v ^l/ ' Φ\ ^2/ / _, X j "^2ί'

where ι/^ and (/> are potential functions with respect to (x1) and (xf),

respectively. Thus d is a contrast function, see [1]. The contrast function

p is related with d as follows.
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COROLLARY 2. Assume that M is B-free. Then

p(xl9 x%) = d(xl9 x%)

by neglecting 0(\\x1 -x2||
5).

PROOF. We write <5(x l5 xf) = p(xl9 xf) - d(xl9 xf). It suffices to show
that the differential coefficients of δ(xl9 x$) in x1 vanish at xi = x2 up to
the forth-order by Taylor's theorem. By definition we have the following
identities: p(XΎ\ - ) = g(X9 7),

'(
d

' d

&

d

d

dxj

δ

δ
δx"

δ
δx' dxj δx" dxl

\_ δ>

}- d4

I//
k T

J δx'dxjδxkδxl

p(XYZ I ) = g(VΎZ, X) + g(VxY, Z) + g(Y9

and

P(χγz i - ) = g(DXtYz9 W) + 0(PχPz^ r) +

+ 0(F*FyZ, W) + ^(PyZ, 7$ W) + 0(F;rZ, F? H/) + g(Z, Ff F? WO-

Hence we have

and

from Theorem 1, (2.7) and (2.8). Consequently the function δ is of order

0(||x1-x2 | |
5). D

We discuss a deformation of a contrast function. Let a function
Φ: [0, oo)-»R be monotone increasing such that Φ(0) = 0 and Φ'(0) = 1. As
typical examples we can mention

ΦΛ(t) = - log (1 + αί), ΨΛ(t) = - tan (αί)
α α

or their inverse transformations, where α is a positive constant. Then

Pι(x> y) = ^>(p(x-> y)) is als° a contrast function. The geometric quantities
(0, F, F*, D, D*) and (^1? F l 9 Ff, D l 5 D?) associated with p and P! are
connected with

(0ι,^l7) = (fcF,F*), (2.9)

(DJx.yZ = DXtYZ + Φ"(0) S^(Jί, y)Z (2.10)

and
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(D$XtYZ = D*,YZ + Φ»(0)<5g(X9 Y)Z.

In particular, the deformation of p keeps the equality of B with B*.
Let ϊf be a simplex of dimension n. As an alternative contrast function

on y to ρl defined in Introduction, we give

for p and q in ̂  It follows from a straightforward calculus that p0 and pί

generate a common metric tensor, say g0. By taking Φ(t) = (cos"1^ — ί/4))2,

we know that Φ(ρQ(p, q)) is the squared arc-length of the geodesic curve
connecting p and q with respect to g0.

Let p be a contrast function on M such that p is C°°-differentiable and

generates a nontrivial metric tensor g. For every δ > 0, p(<5)(x, y) = {p(x, y)}δ

is also a contrast function by definition. However if δ < 1, then p(δ)(x, y) is
not differentiate at x = y. Alternatively if δ > 1, then the metric tensor by
p(δ} is reduced to a zero tensor. Thus we see that if p yields a nontrivial
metric tensor g, then any power change of p becomes nonsense. In effect
p(x, y) has the same order as the squared arc-length of the geodesic curve
connecting x with y with respect to g, which will be shown in the following
section.

3. Riemannian case

Let (M, g) be a Riemannian manifold and V the Riemannian connection
with respect to g. We denote the geodesic curve connecting x with y by

C = {x,: 1 < t < 1}, where x0 = x and xί = y. Define a contrast function by

i ( Γ . \2

Po(*> y) = rI vsufe' **)dί '
^ \ Jc /

where x, = dxt/dt. Since the tangent vectors x/s are parallel to each other

along the curve C,

Pθ(x,y)= T0*t(Xr>*ί)

for any fe[0, 1], in particular p0(x, j>) = gx(x0, x0)/2. We now investigate

what geometry the function p0 generates. Let (00, F0» P* > ^o> ^o) be the
geometric quantities associated with p0 according to the formulation discussed
in Section 2. The symmetry of pQ yields P0 = V$ and D0 = DJ on
M. Further, it will be seen that g0 = g and P0 = V$ = V, where P is the

original Riemannian connection.
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THEOREM 2. g = g0, P0 = V$ = V and

(D0)X,YZ = VXVΎZ - 1 [R(X, Y)Z + R(X, Z)Y}9

where R denotes the Riemannian curvature with respect to V .

PROOF. For a sufficiently small p0(
χ> y) there exists a local chart

(x1 , . . . , xd, 17, φ) of M such that x 6 U and y e 17. Then the curve x, = (x1 (ί), . . . ,
xd(t)) satisfies

^ x' (ί) + Σ /iί^W) ~ *'« ̂  ̂ (0 = 0 (3.1)

with (x'(0)) = x and (x^l)) = y, where /^'s denote the Christ offel symbols.
We now express the vector (dx^ty/dt) as a polynomial of y — x up to

the third order. From (3.1),

At) = Σ - i

-xy(t)-x*(t)-
at at ' dt

A Taylor expansion leads to

x' (t) = x1' + x'(0)ί +

where Δi = dx'(Q)/dt. From (x'(l)) = y, it follows that

Σ ^
x||4). (3.2)

Let X , Y, Z and W be vector fields on M. Define a mapping
(X,
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dx> dxJ

for X = ̂ X^/dx1 and Y=^Y'd/dx>. By definition

?XY=X Y+Γ(X, Y),

see Loos [5]. Further,

VXV^Z = X.(Y Γ) + (X. Γ)(Y, Z) + Γ(Γ(Y, Z), X)

+ Γ(X Y, Z) + Γ(X Z , Y ) + Γ(Y Z, X)

and the curvature tensor with respect to V is expressed as

R(X, Y)Z = (X Γ)(Y, Z) - (Y Γ)(X, Z)

+ r(Γ(γ, z), x) - r(Γ(x, z), y). (3.3)

Note that in the right-hand sides of the above equations each term depends
on the local coordinate system, while all the left-hand side is coordinate-
free. Writing 17 = £j(y' — xί)(d/dx')x, we can express x0 as

*o = V + - ΓX(U, U) + -{(U ΓX)(U, U) + ΓX(ΓX(U, U), U)} + 0(|| U ||4)
2 o

(3.4)

by inverting the equation (3.2). The following relations are deduced from (3.4):

(X, Xo), = X, (*x *o)* =-X, (^x0)Φ =-X,

(xy (Yy (zy x0)))* = x (Y z) + r(x γ,z) + r(x z, Y) + r(r z, x),

+ ί-<${(X Γ)(Y, Z) + Γ(Γ(Y, Z), X ) }

and

(VW,Y, (Zy io)), = (W Γ)(Y, Z) + Γ(Γ(Y, Z), W)

Γ)(Y, Z) + Γ(Γ(Y, Z), W)},

where ® denotes cyclic sum and

((X1)x-(Xn)x(Y1)y-(Ym)yF(x,y))i,

= ((X1)x-(Xn)x(Y1)y-(YJyF(x, y)),.
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Specifically we get

(X, Yy Zy xo)* = PjΛZ - ~ {R(X, Y)Z + R(X, Z) Y},

and

(VWχ Yy Zy x0), = 1 {R(W, Y)Z + R(W, Z) Y}

on account of (3.3).
On the basis of the relations established above, we get

g0(X, Y)=- Po(X\ Y)=- (g(x0, VXχ Yy x0)

and

0o(Z, (Fί), Y) = - P0(Z\XY) = - (g(x0, VZχXy Yy Jc0) + ff(FZjcx0, Jf, 7, i0)

+ g(Y, x0, VZχXy x0) + g(VZχ Yy x0, Xy x0))»

by the use of the expression p0(x, y) = gx(x0, *o)/2 In this way the metric
g0 is g and both P0 and Γ^ are equal to V . Next we get

g(W, D*)x<γZ) = - Po(W\XYZ)

= - (g(χ<>, ΫwxXy Y, Zy i0) + ffί^io, Jf, i; Z, *„)

X0, PW,Xy Yy X0) + g(?WχZy ' X0, Xy ' Yy ' X0)

*0, F^ ,̂ Z, i0) + g(rw, Yy x0, Xy Zy x0)

+ g(Xy x0, VWχ Yy Zy x0) + g(VWχXy x0, Yy Zy x0)),

= g(w, rx?rz) -g(w, R(x, Y)z + R(x, Z)Y) + β(x, R(w,

+ R(W, Z)Y) + 9(Y, R(W, X)Z + R(W, Z)X) + g(Z, R(W, X)Y

+ R(W, Y)X).

Consequently we obtain

(D0)XιϊZ = (Dξ)x>ΎZ = VxVγZ --{R(X, Y)Z + R(X, Z)Y},

noting g(W, R(X, Y)Z) + g(R(X, Y)W, Z) = 0 and R(X, Y)Z + R(Y, Z)X
+ R(Z,X)Y=0. Π

Let B(X, Y) = (D0)x,y - i7χf7

ί . Then the Bianchi's first identity leads to
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[B(X, Y) + B(Y, X)}Z = - B(Z, X)Y.

Further it is easily seen from Proposition 3 that M is R-free if and only if
M is also 5-free.

4. Minimum contrast leaf

As discussed in Section 2, a contrast function p on M generates a metric
tensor g and differential operators V , V*, D and D*, where β-conjugacy is
established in addition to K-conjugacy. Let M be a fe-dimensional submani-
fold of M with the immersion / of M in M. By restricting the domain of

p as p = P!M xj t f , ώe quantities (g, V ', V \ D, D*) induce (g9 V , P, D, D*) over
M. For example,

g(U,V)=-p(U\V)

for U and V of 3E(M). Of course by definition g(U, V) = g(f^UJ^V).
Henceforth we identify U with fφU, so that g(U, V) = g(U, V). Let Nf be
the normal bundle of M and Sec(Nf) the space of sections of M into N/?

or the space of normal vector fields. We define a mapping α: £(M) x
-+Sec(Nf) by

for all ξ of Sec(Nf). Then α is the second-fundamental tensor with respect
to V because α is bilinear and it is decomposed that

Alternatively with respect to P7*, the tensor α* is similarly defined and hence

*(t/, V).

Next for a fixed ξ of Sec(Nf) the shape operator Aξ with respect to V
and the conjugate A\ are given by

§(AξU, V)=-p(Uξ\V) and £(K Λ?l/) = - p(V\Uξ).

Note that

Vυξ=-Aξυ + Vijξ and P^ξ = - AfU + Γ^ξ.

Thus (α, α*) and (Λ^, A|) are related to each other as follows:

PROPOSITION 5. g(A$U, V) + g(a(U, V), ξ) = Q and

g(AξU, K) + flf(α*(l7, K), ξ) = 0.
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PROOF. By definition,

U g ( V , ξ ) = Q and U g ( ξ , V ) = 0

or

-p(UV\ξ)-p(V\Uξ) = Q, and - p(ξ\UV) - p(Uξ\V) = 0,

which conclude the two identities. Π

We define a mapping β: 3E(M) x £(M) x X(M)^Sec(Nf) by

β(U, V,W) = β^U, K WO - F£α(K W) - Fj^α(l/, WO,

where /?! is defined to satisfy

g(β1(U, V, W), ξ) = - p(UVW\ξ)

for any ξεSec(Nf). It should be noted that β is a tensor field and

We call /? the third fundamental tensor with respect to D. The conjugate
counterpart is written by β*.

PROPOSITION 6. Assume that M is B-free. Then we have that

β(U, K WO = α(l7, VVW) - F£α(I7, W)

and

β*(U, V,W) = α*(l/, P^ WO - F^-Lα*(l/, ̂ .

PROOF. From the assumption it follows that

g(β(U, V,W),ξ) = Q(VυVvf^ ξ) - g(VΪ*(V, W) + F^α(l7, W), ξ)

α(K WO), ξ) - ^(F^α(K W) + r£*(V9 W), ξ)

for all ξ of Sec(Nf). This shows the first relation. From Theorem 1, M is
also £*-free, which leads to the second relation by a similar argument as

above. The proof is complete. Q

Hereafter we assume that for any point x of M there exists a unique

point M of M such that u minimizes p(x, v) in i eM. Then to each point u

of M it can be defined that

Lu = {xεM: p(x, u) = minp(x, ι?)},
veM

which we call the minimum contrast leaf at u. By the above assumption Lu
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is a submanifold of codimension k transversing to M at u. Thus M is
decomposed into a foliation M = u{L M : weM} and

TU(M)=TU(M)®TU(LU).

Now let u be fixed. From the above assumption it follows that

for all U of Ϊ(M) and x of Lu. Thus we have that gu(ξ, U) = 0 for all £
of 3£(LU) and 17 of 3E(M), or equivalently that the tangent space of Lu at /(M)

is equal to the normal space of M at u. Further,

p(ξ1-ξk\U)(u) = 0 (4.1)

for any k > 2. Hence the second fundamental tensor y of Lu is defined by

the condition

g(γ(ξ9ζ)9U)=-p(ξζ\V)

for all L? of Sec(N(Lu)). Next the third fundamental tensor δ of Lu is given by

δ(ξ, ζ, η) = δ,(ξ9 ζ, η) - rfr& η) - ^γ(ξt η)

PROPOSITION 6. Let Lu be a minimum contrast leaf through u of a subspace
M. Then the tensors y and δ for Lu, defined as above, vanish at u.

PROOF. The result follows from (4.1) with k = 2, 3.
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