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1. Introduction

Let Q be an open domain in R" with n > 1 and consider the second
order elliptic differential operator on Q defined by

(Eu)(x) = = Y7 o au(x)0;0u(x) + 2o bi(¥)0;ulx) + e(x)u(x)  (L.1)

where 0Q is the boundary of 2. Let 1 <p<o and let E, denote the
LP(Q)-realization of this boundary value problem defined by (E,u)(x) = (Eu)(x)
with domain of definition Z(E,) = W*?(2)nW,"?(2). The aim of this paper
is to give simple conditions for the boundedness of the purely imaginary
powers E7 and for an estimate of the form

[EY| < Ke®™  for all yeR, (1.2)

where K = K(f) > 0, 0 < § < = are constants; see Section 3 for the definition
of complex powers of linear operators. We show that this holds, under some
smoothness assumptions and technical restrictions on the coefficients a;, b;, ¢
and the domain (2, essentially whenever the resolvent estimate

C
||(,1+Ep)‘1llgm for all AeZ, o= {leC:i#0,|argi|<m— 6}, (1.3)

is satisfied. Observe that this condition for 0 < # < x/2 implies that — E,
generates an analytic semigroup e”'®» in LP(Q). In Priiss and Sohr [16] it
has been shown that (1.3) is always necessary for (1.2); the difficult part is the
proof of the converse. In the paper just mentioned it is also shown that (1.2)
implies the same estimate for ¢ + E, for each é > 0, with the same constants
K and 6.

Estimates for the imaginary powers A” of a closed linear operator 4 in
a Banach space X are of interest for several reasons. One of these is related
to the determination of the domains 2(A4%) of the fractional powers A* of 4,
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where 0 < a < 1. It is known (see e.g. Triebel [22]) that uniform boundedness
of A" for |y| < 1 implies 2(A%) = [X, 2(4)],, the complex interpolation space
between 2(A), equipped with the graph norm of 4, and X. As a consequence
one then obtains via the reinterpolation theorem the identities [2(A4?), 2(4%],
= 9P(A?), where y = 0a + (1 — 6)f. This property in turn leads e.g. to sharp
results about the solvability behavior of evolution equations of the form

u(t) + Au(t) = f(t), u(0) =uy, tel0, T); (1.4)

see e.g. von Wahl [23] or Giga and Sohr [10]. Thus via estimate (1.2) the
domains of the fractional powers of A are linked to complex interpolation
theory and so its tools are available in the study of (1.4).

On the other hand, property (1.2) of the purely imaginary powers EJ’ has
recently become important by a new remarkable application to evolution
equations; Dore and Venni [4] proved by means of (1.2) the important
L2-LP-estimate

Tl o
L ot

—u

q T T

ai+ i< c [ 1o (L)
P 0 0
for evolution equations (1.4) with 4 = E,, u =0, and 1 < p, g < oo, whenever
E, is boundedly invertible, T < oo, and (1.2) is valid for some 6 < /2. Here
C>0 is a constant which depends on T>0, in general. Such a priori
estimates are used in the theory of nonlinear equations, e.g. like

u+Eu+Nu=f (1.6)

where N(u) is a nonlinearity subordinate to E,u. Dore and Venni’s theory
has been extended in [16], [10] in a direction which is especially important
for unbounded domains. By means of this result estimate (1.5) is also valid
for unbounded domains and with constant C independent of T. Letting
T = oo in (1.5) this yields asymptotic properties of the solution u(t) of (1.4) for
t— o0; [16], [10].

So far there are only a few methods available for proving (1.2). In the
Hilbert space case p =2, one may use the functional calculus for selfadjoint
linear operators and lower order perturbations to obtain (1.2). The angle 6
will be optimal in this case, and the assumptions on the coefficients of E are
quite weak; if E is taken in divergence form then, besides ellipticity, the
coefficients are only required to be of class L*.

For p # 2, however, there are essentially two different methods known.
The first one relies on the so-called transference method developed by Coifman
and Weiss [3]; see also Stein [19]. When combined with multiplier theory
for LP(R) it leads to the estimate
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IEZ) < K(L+1yDe?”,  yeR, (R)

whenever — E, generates a positive strongly continuous contraction semigroup
e B in L”(Q). In this case the assumptions on the coefficients of E turn
out to be as weak as in the case p =2, but in contrast to p = 2, the angle
n/2 in (1.7) is not optimal, in general. In fact, when E is of pure divergence
form, i.e. ¢(x) =0 and b(x) = —Z;f:lajajk(x), then ¢(E,) = [0, c0) and (1.2)
should hold for any 6 > 0, with K = K(6).

Combining (1.7) with (1.2) for p =2, via interpolation one obtains (1.2)
also for p # 2, with some 8 < /2, which is enough for the application of the
Dore-Venni theorem to obtain the a priori estimate (1.5) mentioned above;
see also the recent paper of Duong [6]. On the other hand, there are
problems which require for the optimal angle 8; see the applications in the
paper of the authors [16], in Clément and Priiss [2], and in Priiss [15].

In the special case of a bounded domain £ with 0Q of class C* and
E with C®-coefficients, Fujiwara [8] and Seeley [18], [17] obtained (1.2) with
optimal angle # by means of a quite different approach; see also Triebel
[22]. Their method rests essentially on the theory of pseudo-differential
operators and is quite involved, but it also applies to higher order equations
and systems.

The motivation for this work are the following:

(i) Our proof is direct; it uses only elementary multiplier theory in R"
for the constant coefficient case and applies rather elementary perturbation
and localization arguments.

(i) (1.2) is proved under rather mild regularity assumptions on the
coefficients and 0€2; see Section 2 for details. This is in particular important
for applications to nonlinear equations where the coefficients depend on u and
Vu; see [15].

(iii) Unbounded domains 2 are included. As mentioned above, this
leads to new a priori estimates (1.5) for unbounded domains.

(iv) The estimate (1.2) we obtain is best possible concerning the value of 6.

The plan for this paper is as follows. The main results are stated and discussed
in Section 2, while their proofs are carried through is Sections 4, 5 and 6, for
Q=R" Q2=R"%, and Q = R" arbitrary, respectively. Section 3 contains an
abstract perturbation result which allows for the passage from constant to
variable coefficients with small deviations of the main part. Finally, in Section
7 some resolvent estimates are sketched. Although these seem to be known
we have included them here for the convenience of the reader and for the
sake of future reference.

Concluding we want to mention that the method of proof presented here
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can be extended to arbitrary elliptic systems of order 2m in case 2 = R". But
even for a halfspace 2 = R", our method is restricted to a single equation of
second order, apparently due to a weakness of the perturbation result,
Proposition 3.1. Therefore further research will be necessary.

Acknowledgement: We want to thank G. Dore for discussions on
perturbations of imaginary powers of linear operators, which were helpful in
the proof of Proposition 3.1.

2. Main results

In the following, 2 = R" is either the whole space R", the half space
R% = {x = (xy,...,X,)eR": x; > 0}, a bounded domain or an exterior domain
in R", i.e. a domain which contains a neighborhood of infinity. We always
assume that the boundary 0Q of Q is of class C2.

First we explain some notations. Let 1 < p < oo and let LP(2) denote the

usual (complex) Lebesgue space with norm [ul, = (_[glu(x)l" dx)%. For meN,
W™P(£2) means the usual Sobolev space with norm |[ul, , = (stm” lo IIZ)%
where 0;=0/0x;, j=1,...,n, 0*=0710%--0%, and |o|=o0+ -+ 0,
Wo™P(£2) denotes the closure of the space of test functions C(£2) under the

norm of W™?(Q), where as usual CP(22) means the space of all smooth
functions on © with compact support in Q. We set ¥ = (d,, d,,...,d,) and

1Pull, = (S0 1307, 172l = (5o, 18,0127, 1 a(x) = (ax(x)) is a
matrix, b(x)=(b;(x)) a vector and c(x) a scalar, we write a(x)¢-¢ =
k=1 @u()EE for & =(&1,..,8), a(X): V2u(x) =" _ | ap(x)9;0,u(x), b(x)-
Vu(x) =Y. bi(x)0;u(x).

Then the operator E, introduced in (1.1) can be written in the form

(E,u)(x) = — a(x): V2u(x) + b(x) - Vu(x) + c(x)u(x), 2.1
ue 9(E,) = W>P(Q)n W ?(Q).

E,: 9(E,))— L?(2) is welldefined under the assumptions (A1) ~ (A3) stated
below. A'(E,), #(E,), 6(E,), p(E,) mean null space, range, spectrum, and
resolvent set of the linear operator E,. & (LP(Q2)) designates the space of all
bounded linear operators T: LP(Q) — LP(£2) with the operator norm || T|.

For 0 < o < 1, C* () denotes the space of all functions u on Q satisfying
the Holder estimate |u(x,) — u(x,)| < C|x, — x;|* for all x,, x,€Q, where Q
as usual is the closure of Q.
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Assumptions on the coefficients. Let 1 < p < o0.

(A1) a(x) = (ap(x)) is a real symmetric matrix for all xeQ, and there is a
constant a, > 0 such that

ap<ax)é-é<ag! for all xeQ, £eR", |¢] = 1.

(A2) aijeC“(Q), for some ae(0, 1);if 2 is unbounded, af} = lim,_, a;;(x)
exists and

la;j(x) —a| < C|x|™* for all xeQ with [x|>1, i,j=1,...,n,

where C > 0 is a constant.

(A3) bi(x), c(x) are measurable complex-valued functions which admit
representations of the form by(x) = Yr_ b¥(x), i=1,...,n c(x) = Y r_, c*(x),
where b¥e L'™<(Q), c* e L(Q), for some numbers r,, s, which are subject to the
inequalities p <r, < 0, p<§, < ©, 1, >N, 5, > n/2

(Ad) bell(Q),i=1,...,n ceL’Q)forsome#, §with1 <f<n,1<5<n/2

If Assumptions (A1) ~ (A3) are satisfied, the operator E, defined in (2.1)
with domain of definition Z(E,) = WP Q)n Wil P(Q) is welldefined. This
follows from Sobolev’s embedding theorem [7]. Indeed, under these
assumptions we get ||a|, = sup,.sla(x)| < co and the following interpolation
estimates. Holder’s inequality yields with r =r, and s = s, from (A3)

165 - Pull, < 1B*1, 1Pull,, Nckull, < lcklislull 22)
1 1. 1 1 1 1
where 7, f are defined by - =-+—, ~=—+—B~; note that p<y < oo,

p r Y p S
p < B <oo. On the other hand, the Sobolev embedding theorem implies

1 2 1 1 1
IPull < CIIP2ullyllull,”» where p(— - —) +(0=p)-=-—-, (23)
p n p y n
ie. p=(1+n/r)/2e[1/2,1). Similarly
1 2 1 1
lully, < ClIIP?ullyllul, ™ where r<— - —> +(1—-1-=-, (2.4)
; p n p B

ie. T=n/(2s)e[0, 1). Combining (2.2) with (2.3) and (2.4) we get the
inequalities

16* - Pull, < CollP2ullbllull, ™ < el V2ull, + C(e)llull,, (2.5)
Ickull, < CollP2ullpllul, ™ < elV2ull, + Ce)lull,, (2.6)

where ¢ > 0 is arbitrary, and therefore summing over k we obtain
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IE,ull, < CiIIV2ull, + Cyllull, < Cllully,,. 27

This shows that E, is welldefined for all ue 2(E,); even more, the lower order
term b:Vu+ cu is a strictly subordinate perturbation of the main part
—a:V?u.

Our main results read as follows.

THEOREM A. Let 1 <p< oo, neN, and let Q = R" be either R", or
the half space R"., or a bounded domain with C*-boundary or an exterior
domain with C*-boundary. Consider the operator E, defined in (2.1) with
Assumptions (A1) ~ (A3). Let 0 <6 <, and suppose o(E,) = X, and

A+ E) ' <CUAl+1)""  forall AeX _,, 2.8)
where C >0 is a constant. Then E)e ¥ (L*(Q)) and
[EY| < Me®™  for all yeR, (2.9)
where M >0 is a constant.

Observe that (2.8) implies that E, admits a bounded inverse; for
unbounded domains this is frequently not the case. Then we need the
additional assumption (A4).

THEOREM B. Let 1 <p < oo, neN, and let Q = R" be as in Theorem
A. Consider the operator E, defined in (2.1) with the Assumptions (A1) ~ (A4).
Let 0 < 0 < and suppose N/ (E,)=0, ¢(E)) = z,,

A+ E) ' <CylAI™Y  for all AeZ,_,, (2.10)
and
IV2ull, < C,IE,ull,  for all ue2(E), (2.11)
where Cy, C, > 0 are constants. Then E} e £ (L*(Q)) and
IEZ| < Me®™  for all yeR, (2.12)
where M > Q is a constant.

In applications the operator E is frequently encountered in divergence
form, i.e. Eu(x) = — Z;',j=1 0i(a;j(x)0;u(x)), xe 2. In this situation one can use
the selfadjointness of E, in L?(£2), localization and duality arguments to verify
the resolvent estimates assumed in Theorems A and B. As a consequence we

have the following result.

THEOREM C. Let 1<p< oo, neN, and Q = R" be as in Theorem A.
Suppose E, has divergence form E,= —3" _ 0,430+ 9, 6>0, and let
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a=(a) and b, = — (Y7_, 9;a3), k= 1,2,....n fullfill the Assumptions (A1) ~
(A3). In addition, assume either of the following.

(i) 0>0; (i) R is bounded; (iii) n >3 and (A4) holds for by, with ¢ =0,
(iv) (2.11) and (A4) hold for by, with ¢ = 0.

Then o(E,) [0, ), #(E,) =0, R(E,) = LP(2). For each 0 <0 <, there
are constants C,(6) >0, M,(6) > 0 such that

A+ E) ' <C,00A~"  for all AeZ,_,, (2.13)
and
EYe L(IF (Q)), |E?| < M)  for all yeR. (2.14)
If Q is bounded or 6 >0 then E, is boundedly invertible.

If E is not of divergence form, o(E,) need not be restricted to the positive
halfline and so the resolvent estimates cannot be expected to be true for any
0e(0, ©). However, we show in Section 7 that away from [0, c0) the spectrum
of E, consists only of eigenvalues, and therefore the condition

N(A+ E,) =0, for all AeZ,_,, (2.15)

is essentially sufficient for the resolvent estimates. Actually, for 1eX _,, the
kernels of A + E, are independent of p, and therefore condition (2.17) need
only be verified for one p, say for p = 2.

THEOREM D. Let 1 <p < o0, and let 2 be as in Theorem A. Consider
the operator E, defined in (2.1) with coefficients subject to (A1) ~ (A3) with
constants r,=p, r,>n, S =p, S, >n/2. Then
(@) For each 0€(0, m) there is R = R,(6) > 0 such that X,_o\ Bg(0) = p(— E,)
and

I(A+ E)" | < C,@A""  for all ieX,_q, |Al>R,(6), (2.16)

Jor some constant C,(0) > 0. In particular, 6 + E, satisfies the assumptions of
Theorem A for any 6 > R,(0).

(b) Assume (A4). Then N'(A+ E,) is increasing in p, for all Ae C, and for
each A¢(— o, 0], A (A + E,) is independent of p.

(c) Assume that —E, has no eigenvalues 0+ A€Z,_,. Then o(E,) < Z,
U{0}, and for each n >0 there is a constant C,(n) >0, such that

I+ E) I < CmIAl™r  for all i€Z,_q, |4 > 1. 2.17)

Therefore 6 + E, satisfies the assumptions of Theorem A, for each 6 >0. If
in addition Q is bounded and N (E,) =0 then E, is invertible, hence satisfies
the assumptions of Theorem A.
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(d) Let Q be unbounded, let (A4) hold, and assume in addition 1 < p <n/2 or
(2.11); suppose — E, has no eigenvalues AeZ, o Then R(E,) =L"(Q),

o(E,) = Z,U{0}, and there is a constant C,(0) > 0, such that
[(A+ E) ' < CO)|A7"  for all A€X, _,, (2.18)
and (2.11) holds. Therefore E, satisfies the assumptions of Theorem B.

‘Let us remark that the additional restrictions in (d) of Theorem D are
due to (2.11). Except for trivial cases, we have only been able to verify this
condition in case 1 < p < n/2; this then leads to the restriction n > 3 in (iii)
of Theorem C. The difficulty arises from the generalized null space of E in
the case of unbounded domains. We do not know whether this restriction
is essential or a shortcoming of the methods employed here.

The proofs of these results are carried out in several steps. First we treat
the case 2 = R". The crucial part in R" is that of variable coefficients a;(x)
which have small deviations from aj ; the main tool here is the perturbation
result stated and proved in the next section. For small variable coefficients
our result is given in Proposition 4.2; Theorems A and B are then proved
for the case 2 = R". Section 5 contains the proof of these theorems for the
halfspace 2 = R% which is based on a certain variable transformation which
allows for application of the reflection principle. General domains are treated
in Section 6 via localization and reduction to either R" or R" . Finally, in
Section 7 it is indicated how the resolvent estimates can be obtained, in
particular proofs for Theorem C and Theorem D are sketched. Actually, this
is now of only little effort since all the technmical tools have already been
employed before.

To keep the technical details to a minimum we have restricted the
statements and proofs to the case of Dirichlet boundary conditions on domains
with boundary. of class C? which are either bounded or exterior (as well as
whole and half spaces). Actually, only minor modifications of the proofs
below are needed to cover also mixed boundary conditions, where on one
part I, = 02 Dirichlet conditions are prescribed while on the remaining part
I', =09\ I'; conormal or conormal conditions of the third kind are prescribed,
provided I, and I, are strictly separated. By means of variable transforma-
tions similar to those employed in Section 5 it is also enough to assume 0Q
of class C'*2, for some a > 0. Finally, the class of domains considered here,
for simplicity, has been chosen such that always finite partitions of unity are
sufficient. Under suitable uniformity conditions on the boundary of 2 and
the coefficients a;; of the main part of E it will not be difficult to extend our
approach to more general domains, employing countable partions of unity.
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3. Imaginary powers and perturbations

Let X be a complex Banach space with norm |-|, and A a closed linear
operator in X ; then as usual 2(A4), #(4), A (A), p(A), 6(A) denote domain,
range, kernel, resolvent set, and spectrum of A respectively. A is called
sectorial if 2(A) and #(A) are dense in X, A (4) =0, (— o0, 0) = p(4), and
there is a constant M > 1 such that

tt+A)~ <M  for all t>0; (3.1)

the class of sectorial operators in X will be denoted by & (X). It is easy to
see that sectorial operators satisfy

limt(t + A) " 'x=x, lim t(t + A) " 'x=0, xeX. (32)

t— t—=0+

If X is reflexive, it is wellknown that (3.1) and (3.2) imply the decomposition
X =N(A)D Z(A); hence in this case #(A) is dense in X if and only if
N(A)=0. Let

%, = {1C\{0}: |arg | < ¢};
the spectral angle ¢, of Ae F(X) is then defined by

¢pq=inf{p: p(=A)>Z,_,, Coi= sup [AA+A) 7' <oo}). (33

A€Ln- ¢
Obviously, we have ¢,€[0, n) and o(4) = Z,.; if Ae#(X) is bounded and
invertible then ¢, = sup, .4 larg4|.
Recall that for Ae¥(X) complex powers A° of A can be defined by
means of the formula (see Komatsu [13])

sinmz (x A 'x !
A’x = — {—— +J e+ AT A xdt
n (z 14z o

(3.4)

+f f‘l(t-}-A)‘ledt} for xe2(A)nA(A), |Rez| < 1.
. ‘

A? defined by (3.4) is densely defined and closable; the closure will again be
denoted by A*. In general A* need not be bounded; however, if A*e%(X)
for each seR and sup|s|51||A“|| < o0, then A is said to admit bounded
imaginary powers. The class of all sectorial operators which admit bounded
imaginary powers will be denoted by BIP(X).

If AeBIP(X) then {A"*:seR} < #(X) forms a strongly continuous
group of bounded linear operators in X. The type 6, of this group, i.e.
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T 1 is
0A = lim |s] = 0 ml()g ”A " (35)

will be called power angle of A. It has been shown that the inequality ¢, < 6,
always holds; cp. Priss and Sohr [16]. ‘

Observe that the class BIP(X) is invariant under similarity transforms.
In fact, if Se £(X, Y) is boundedly invertible, then Ag = SAS™' satisfies the
relations

(A+ A~ =S+ A)!S™'  forall Aep(— A) (3.6)
(A5 = SA*S! for all zeC. 3.7

In particular, we have d(4s) = o(A), ¢4, = ¢, and 0,, =06,. This remark
will be quite useful in subsequent sections.

If AeBIP(X) then A, = A°(c + A)”**e B(X) is welldefined and A,x — x
as e >0+ for each xeX. This can be obtained by means of the functional
calculus for BIP(X) induced by the inverse Mellin transform; cp. Priss and
Sohr [16]. This fact will be used in the proof of Proposition 3.1 below.

It is not known whether the class BIP(X) is preserved under perturbations
with sufficiently small relative bound. Here we present only a partial answer
to this question involving a certain commutator condition. The result reads
as follows.

ProPOSITION 3.1. Let X be a complex Banach space, AeBIP(X), and
B a linear operator in X which is subject to
(i) 2(B)> 2(A) and |Bx| < B|Ax| for all xe2(A), with some B> 0;
(ii) Let 8, <n and there are Oe(0,, n) and Y e L'(R,) such that

[(A+ A)"!'Bx — B(A+ A)~ x| <y (|A])|Ax|, x€D(A), AeZ,_,;

(ii)) 1/B> Cy:=sup,, _,|AA + A)71.
Then A + B is closed with domain 2(A + B) = 9(A), A + B is sectorial and
belongs to BIP(X), and 0,,5 < max(0, + arcsin f8, 0). If merely (i) and (iii)
hold then A + Be #(X) and ¢ 4.5 < 6.

ProoOF. (a) Since #(4) =0 and %(A) is dense in X, by (i), BA™! is well
and densely defined and bounded by f; observe that C, > 1 because of (3.2),
therefore 0 < B < 1. Let K denote the unique extension of BA~! to all of
X. With <1 it is obvious that A + B with domain 2(4 + B) = 2(A) is
closed, and that /(A + B)=0 and #(A + B) is dense in X. To show
(— o0, 0) = p(A4 + B) write

A+ A+B=(1+ B+ A"+ A),

and observe that by (iii)
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IBA+ AT <IK[IIAA+ AT <BCo< 1,  A€Z,_,,
hence X,_, = p(—(4 + B)) and
IA+A+B)7HI<IA+A ' IIL+BA+A™ )

1
< 1+ G -—, AEZ, _,,
1—BCy |4l

in particular 4 + Be #(X), and ¢,,.5<80.

(b) To show A + BeBIP(X) we derive an expansion of (1 + A + B)™!
the form

A+A+B)'=S1)+ i A"(A + A)~ (- Ky, (3.8)
n=0

which is appropriate for our approach. Set R, = A(A + A)™! and T, = KR,
— R;K; then

T,=KAA+ A ' — AL+ A 'K=AA+ A) 'K - AKA+ A)71,
hence by (ii)
ITl <IAIWAUAD,  A€Z . (3.9)
By means of a Neumann series we obtain

A+A+B) '=A+A4)"'1+BA+A H=(A+A4)"'1+KR)!
=(A+A4)7! i (— D)"(KR))".

n=0

Then induction yields the identities

-1
(KR = 3 T (KR RiT,Ry iK' + RIK". (3.10)

1=1j=0
For n = 1, (3.10) is merely the definition of T,. Suppose (3.10) holds for n; then
(KR! = i i KR)"*'"'RIT,R\"'7IK'"! + KRI*1K",
1=1j=0
and with
KR3*1K" = i RiT,R, /K% + RyFIK"* 1,

i=0

(3.10) follows for n + 1. Thus (3.10) yields (3.8) where
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0 n -1
SH=G+A" Y (=1 ) Y (KR)"'RIT, R K'™Y
n=1

1=1j=0
this term will be the “good” part since by (3.9)

1+C 0 n I—-1 B B
Y Y YUK IR HI T

!/” n=11=1j=0

IS <

<y(ADA + Cy) i (BCo)" 'n(n + 1)/2, i.e.
1+C
(1 — BCy*’

() Let I’ denote the contour (+00,0]e " Py[0, 0)e!™ ?, and let
1/2> &> 0 be fixed. Define g,(4; s) = (— A)** (e — 1)~ % and

ISA < ¥ (Al A€Y .o (3.11)

1
F, (s)=——_f g.(A; )(A + A+ B)~1dA, seR; (3.12)
27i )

note that this integral is absolutely convergent. Contracting the contour to
the positive real axis, Cauchy’s theorem yields

F5) = — Snnlis +9) E)J rstee — )72 + A + B)"ldr
n 0

~ wj‘wri;‘-%t(r—s)_ze(r-*-}i +B)—1dr.
4 €

Splitting the second integral at r = 1 and using the identities

rr+A+B)!=1—(r+A+ B4+ B) for r>1,
1
~-r+A+B)!'= 1(A +B)!'—(r+A+B) " '(4+B)! for r<1,
r r
with (3.4) it is not difficult to show
F(s)x — o0+ (A + B)*x, xe 2(A + B)n#(A + B), seR.

On the other hand, (3.8) yields

F(s) = FX(s) + F2(s),
where

Fi(s) = 2%”[ 6.0 9)S() A,

and
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& 1

Fi(s)= Y, <—J ge.(A; s)A"(A + A)""“’d/l)(— 1y K",
n=0 \27i J -

Since g,(4; s) is bounded on I, uniformly w.r.t. £€(0, 1/2), se R being fixed,

(3.11) shows by Lebesgue’s dominated convergence theorem

1 ,
F}(s) — .0+ EJ (— A*S(HdA (3.13)
r

in #(X). To be able to pass to the limit for ¢ >0+ in F2(s), we employ
the functional calculus for BITP(X) introduced in Priiss and Sohr [16], which
is based on the inverse Mellin transform. Let f,(f)=t"A+ ) "*D, t>0,
neN,, AeX,; an easy computation leads to (. f,)(p) = l""(“',;“),—n— for

sinzp
the Mellin transform of f,. The functional calculus then yields the representa-
tion

An(l+A)—(n+l)=ij A—iyliy—1<l’y+n*'l> d']) i neN:
2i)_ o n sinh my

observe that the integral is absolutely convergent since 6, <6 and Ael[l.
Inserting this formula into the coefficients of the series for F2(s), interchanging
the order of integration and contracting I” to the negative real axis leads to

—I—J g.(A; S)A"(A + A"tV 4,
r

27i

© _ liy+n—1\/ 1 .
=1.f A'”(’“" )(—fgﬂ;sw-ldA)—.dy
2i)_ o n 2z7i Jp sinh 7y

1 (= i -1
= _— A_'V<W+n >=//lh£(iy+is+£)dy,
2T ) _ n

where h,(t) = (¢ + t)"2¢. The differentiation rule and the moment rule for the
Mellin transform yield

iy +n—1
(”’ i )«/flhs(i? +is + &) = M S, (1),
n

where

funl) = 5= 1)"<i>" [ + 1)
n! dt

= (___ 1y Z (lS + £>< - 28>tis+e+k(8 + t)—Ze—k'
k=0 n—k k
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This gives the explicit formula, again employing the functional calculus

F2(s) = A A*(e + A)~ % i P, ,(A(e + A)~HK",

n=0

where P, , denote the polynomials

P.="Y <ls+8><_2£)t", neN,, t>0, e€(0, 1/2).
k=0 n—k k

<——2£>]S1 and <15+e)
k m—k

eln*1*1C2. and so the series for F2(s) is absolutely convergent by (iii),uniformly
w.r.t. e€(0, 1/2). Passing to the limit as ¢ >0 + one obtains

Since < ellnl*l we obtain || P, ,(A(e + 47| <

F2(s) —> ,o A" Y <’S>K" = Ais(I + K)=.
n=0\ N

We have arrived at the representation formula
. . . 1 .
(4 + B)*x = A"(I + K)*x + 2—J‘ (— A)*S(A) xd4, seR, xeX. (3.14)
mi )
(d) By means of (3.14) there follows A + Be BIP(X) and

I(4 + By*Il < | A*[l (I + K)*[l + ;j Py (| A1) 1Al

TJr

< M”eISI(64+n)eISI(n+¢) + CeGISI,

since Y € L'(R,) by assumption, and

I+ K| <C@m) sup |(1 + z)| = C(n)en*oel,

lzl=1+mp

where ¢ = arcsin . The proof is now complete. []

4. Proof of theorems 4 and B for Q = R"

(i) Constant coefficients.
First we consider only the main part of E, with constant coefficients.

PROPOSITION 4.1. Let 1<p<oo, n>1, and let a=(ay) be a real
symmetric positive definite matrix, i.e. ag <af-&<ag' for all £€R" with
|€l =1, where ay >0 is a constant. Then the operator E,= — a: V2 with
D(E,) = W*P(R") belongs to the class BIP (L*(R"), in particular N (E)=0
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and R(E,) = LP(R"). Moreover, ¢g, =0y, =0, o(E,) = [0, ) and there are
constants K, = K,(p, ag, n), K, = K,(p, ay, n), K5 = K5(p, ag, n) such that

-1
I+ E)] < KI{MI for all ReA >0 @)
1+ [A/{Im AN ™2 ImA|  forall ImA # 0,
IEZ| < K,(1 +|y)'* ™2 for all yeR, 42)
1V2ull, < K5 | E, ul for all ue%(E,). 4.3)
p p 4 p

Proor. This lemma follows by applying Mikhlin’s multiplier theorem
[20], Theorem IV.3.2. Consider the Fourier transform

ﬁ(§)=97(€)=f ooei“u(x)dx, EeR", x-E=x& + -+ x,¢,

—

in the sense of distributions. Then we have (A + E))u=f if and only if
(A + a&- Ou¢) = f(8), i.e. 4(8) = my(£) f () where m;({)=(A+al-£)~"'. Thus
we get — Aep(E)) if and only if m,(¢) is an LP-multiplier. Since boundedness
of m,(&) is necessary for the latter we obtain [0, o0) = ¢(E,). Let Red>0;
then

|A+ a&-E2 =ReA+aé- &) + (ImA)?
= |4 + (ag- &) + 2Re A(ad - §)
> 417 + a3lgl*,
and therefore |m, ()| < |A|™!, for ReA > 0. Moreover we also obtain
[E]# 0% m, (&) < Cy|A|7*  for all EeR", aeNj, Red >0,
where C, = C,(|a|, ag) > 0. The Mikhlin multiplier theorem now yields
I(A+E) ' <K;lAl"*  for all Red>0,

where K, = K,(ap, p, n) >0. On the other hand, for ImA # 0, we have
similarly

|4+ a ¢l =[(Red + ag-&)* + (ImA)*]"/?
> (IIm A1/2)(1 + ao|&I?/1A1),
hence |m;(¢)| <2/|[Im4|. In addition one gets
[E]) 0% m, (&) < Co(1 + |A]/|Tm A])!/|Tm 4] forall éeR", aeN%, Imi #0,
where C, = C,(|a|, ag) > 0. The multiplier theorem then implies

(A + E,)" 'l < Ky (1 + |Al/[Tm A)* *¢/21/|Im 4| for all ImA#0
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where K, = K,(ay, p, n) >0 possibly has to be enlarged. This proves
o(E,) = [0, o) as well as (4.1).

Since a¢- & # 0 for & #0 we obtain A'(E,) = 0; reflexivity of LP(R") and
(4.1) then imply also Z(E,) = LP(R").

The multiplier for EY is given by (aé - &)? = e?'8@¢9 LeR", yeR. We
have |(a&-&)”| =1 and [£]]0%(a- )| < Cs(lal, ap)(l + |y|)™ where o=
(¢y,...,0,)eNE, |a| =0, +a, +---+ a,. The multiplier theorem now yields
4.2).

To prove (4.3) it is enough to show that 9;0,E, ' is bounded in.L?(R")
for j,k=1,2,....n. This follows again by the multiplier theorem. The
corresponding multiplier is m; (&) = — &;&,/a¢ - & and we obtain [£]'*|0%m; ()|
< Cu(lal, ap) for all (eR", aeNj. This yields (4.3) and the proof is
complete. [

(ii) Variable coefficients of small deviation
In the next step we consider the main part of E, when the coefficients are
variable, but their deviations from a* = lim, ., a(x) are small.

PROPOSITION 4.2. Let 1 <p < o0, n> 1,0 < 0 < r; suppose a(x) = (a;(x))
is a real matrix, xe R", which satisfies (A1) and (A2) for Q = R" with a, > 0,
0<a< 1, a® =(aj), and consider the operator E,= — a: V2 with 9(E)) =
W2P(R").

Then there is a constant n = n(0, p, ao, n) > 0 with the following properties.
If la—a®||l, =sup{lay(x) —ai|: xeR", j, k=1,2,...,n} <n, then E, belongs
to BIP(L?(R"); in particular E, is closed, A (E,) =0, and M} = L?(R").
Moreover, ¢y, <0, 05, <0, o(E,) = %,, and there are constants M, = M, (6, p,
ag, n), M, = M, (0, p, ag, n), M5 = M;(p, ay, n) such that

1A+ Ep)_l | <M,/|A| for all AeXZ,_,, 4.4)
IEY| < M, for all yeR, 4.5
IP2ul, < My | Eyul,  for all ued(E,). 46)

Proor. We write E, in the form E, = 4 + B considering B as a small
perturbation of A4 and apply Proposition 3.1. Let A4, B be defined by
2(A)=2(B) = W*P(R"), (Au)(x) = —a®: V?u(x), (Bu)(x) = b(x): V*u(x), where
b(x) = —a(x) + a®. Then A has the properties of Proposition 4.1 and we
may apply it to the result |[(A + A)~!|| < K,|A|"! for all AeX,_,, |A”] <
Ky(1 + [y *™2 for all yeR, |F?ul, < K;|Au|, for all ue2(A4), where
K,,K,, K3 >0 are as in (4.1), (4.2), (4.3) but K, depends also on 6, now.
In particular,
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IBull, < bl 172ull, <yl Aul, with y=|bl,Ks,

and therefore, we find a constant n = n(6, p, ag, n) >0 such that ||b], <7
implies y < (1 4+ K;)"! and arcsin y <6/2. Assumptions (i) and (iii) of
Proposition 3.1 are therefore satisfied.

The essential step is the verification of the commutator relation (i) of
Proposition 3.1. It is sufficient to show it in the special case 4 = — 4 =
— (0% + -+ + 0?) since the general case can be reduced to this one by an
appropriate linear coordinate transformation. Under such a transformation
properties (A1), (A2) remains valid with the same constant 0 <a < 1.
Supposing now 4 = — 4 we can express (4 + A)~! as a convolution integral;
cp. [14].

(A=D1 f)x) = 'ﬁ—zf ky(Ix — yI/Af(p)dy, xeR", felP®R"),
where

k,,(z)=C,,J r”‘ze‘z“1+’2—L for Rez>0, n>2,

0 J1+r?
k,(z) =e"? for Rez>0, n=1.

Observe that k,() is positive and nonincreasing for ¢t > 0, and |k,(z)| < k,(Rez)
for Rez >0, [ k,(r)r’dr < oo for all p>n—2. Using Assumption (A2) we
obtain the estimates

ijk(x) - bjk(x -l < Clyl% ijk(x)l <Clx|™* for all x, yeR",
where C > 0 is a constant. A direct calculation yields for fe W*?(R")

(BAA+ A7 )() = (A + A)7'BS)(x)

=ﬁ“f k(1] Re /)

S (by(x) — balx — )2,00f(x — ) dy,
o=

1

J

and using Young’s inequality for convolutions we get
n_ 0
IBA+A)"' f—(A+A) ' Bf I, <Ci P2 f 1,142 IJ kn<|y|\/|ilcosi)|yl“dy
R"

o]

sCZI/ll'IIIAfII,,J k)P A 2dr < CoA T TR AS), for all ZeZ,

0

where C,, C,, C; >0 are constants. This yields (ii) of Proposition 3.1 for
|A] > 1.
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Next we prove the commutator relation for 0 < || <1, 1€X,_4. We
obtain |B(A+A4)"'f—(A+A) " 'BfI,<|BA+ A", +I(A+A)"'Bfll, and
use interpolation inequalities, similarly as in (2 2) ~ (2.4). Here we choose

1 1 1 . n .
py>p, pp>p such that —=— + —, p2>~; setting 6 = — we obtain
P P1 P2 2p,
2 1 . .
0<6< and 6<~——)+(1-6)—=——. Usmgp2>f,(A2) yields [[b]l,, <
2 p n P n a

oo, hence by Holder’s inequality and the interpolation inequality [7]
IBA+ A fll, < Cilibll, 1A+ AP 1l,,

SGIP2A+AT'PALINIGA+ AT S, 70
and by (4.3)

IP2A+ AP 11, < CIAQ+ ATV [, < CallP2 f1l, < CsllAf Il
IA+ATP2f, < CelAl™ P21, < CAITHIAS |,

and therefore
IBA+ A~ fll, < CelAlP  AS I,

A similar estimate holds for [[(A+ A)"'Bf|,. In this case we choose

1 1 1 12
p2>p; > 1, 0<8<2 such that —=-+—, p, <p, p2>v 5(___>+
2 Pr P P2 « \p, n

11
(1—8—=-, ie again 6 = ——. Then
pp P 2p,

I+ A7 Bf I, < CIP2G+ A BS I3, 1+ A BF IS
< C,BS I3, 1AP~ I BSIL
= C,IAP" [BS I,y < C3l AP~ b1, 17211,
< C AP | AS 1.

This implies (ii) of Proposition 3.1 for 0 < |A| < 1, and so we conclude that
(4.4) and (4.5) are valid.

To prove (4.6) note that with ||Bul, <y| Aul|, for all ue W2P(R") and
y<(1+ K,;)"! <1 we also obtain

| Au + Bull, > || Aull, — | Bull, > || Aull, — v Aul,
=1 =plAul, =1 - K3 IV?ul,.
Proposition 4.2 is proved. []

REMARK 4.3.  Proposition 4.2 remains valid if |a(x)—a®| < C|x|~%(|x| > 1)
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in Assumption (A2) is replaced by the following weaker condition: There
. n
exists some ye(l, o) with y >p, y>p' = Ll’ y > 3 and a(-)— a®eL’(R").
p —
Then we can choose p, = 7y in the above proof and all conclusions remain true.

(iii) The general case. Proof of Theorems A and B for Q = R"

Let E,= —a:V?+b-V +c be the general elliptic 2"-order differential
operator for 2 = R", let 0 < 6 < &, assume (A1), (A2), (A3), and the resolvent
estimate (2.8), for the proof of Theorem A. We carry out a localization
procedure and apply Proposition 4.2 locally. Let n = (6, p, ao, n) > 0 be the
constant of Proposition 4.2, and Bg(x) = {yeR": |y — x| < R}.

(a) First choose a large ball Bg(0) such that |a(x) — a®| < /2 for |[x|] > R
and let U, be its complement. Since Bg(0) is compact there are finitely many

balls B, (x,), B,,(x3),...,B,,(xy) such that R"= U,UB,, (x;)U---UB,,(xy) and
la(x) — a(x;)| <n/2 for all xeB,(x), j=1,...,N. We set U;= B, (x;) and
choose functions ¢;e C*(R") such that 0 < ¢; <1, supp ¢; < U;forj=0, 1,...,
N and Z _o@j(x)=1 for all xeR". Observe that ¢y(x) =1 for large |x],
say for |x| > R, > R. Within each of the sets U,,...,Uy we extend a(x) to
all of R" by reflection at the boundary; these extensions will be denoted by
a’. Then each a’ satisfies (A1), (A2) with the same values of ae(0, 1) and a,,
and ¢** = lim, ., , @/(x) = a(x;). Define the local operators E’ for j =0, 1,...,
N by means of

(Eiw)(x) = — &’(x): V?u(x), xeR",  for ueP(E])=W>P(R").
Then the assertions of Proposition 4.2 are valid for each Ef,, j=0,1,..,N
(b) Now we use (2.8) and consider the equation
Au+Eu=f
with fe LP(R"), AeX,_,. We write this equation in the form
M—a:Vu=f—b-Vu—cu

and multiply with ¢;,j =0, 1,...,N. Setting u;=@;u we get a: V?u;=a’: Vy;
=a’:V*(ou) = (a: V?@)u +2a(Ve))-Vu+ ¢;a: V?>u and obtain the local
equations

Auj + u; + Ejuj = @;f + Fi(a, b, ¢, V)u, j=0,...,N, @7

where 6€[0, 11, Fi(a, b, ¢, V)u=—¢@;b-Vu—q;cu—2aVe) - (Fu) —(a: V2p)u
+ 6pju. Observe that supp ¢; < U; implies Eju;= — a: V?u;. Proposition
4.2 yields X, _o = p(— EJ), hence applying (A + 6 + E})™" to (4.7) and summing
over j leads to the identity
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N
A+E)'f=Y A+6+E) " {o;f+FlabcV)A+E)'f} (48)
Jj=0
By (44) we have [[(A+ 6+ E)™'|| <C/(|A| + )" for AeZ,_, and some
constants C/>0. In order to estimate Fi(a, b,c,V)(A+ E,)"'f we apply
(22), (2.3), (24) and 2a(Ve;) e L'(R"), (a: Vz<pj)eLs(R") with r =r, and s=s,
in (A3); here we used |a, < oo and compactness of supp Vo;.
(c) Next (2.8) implies the estimate

ALl + lull, + 17?ull, < CIl(A + Eull,, ueD(E,), LeZ,p,  (49)
for some constant C > 0. With p, t as in (2.2) ~ (2.4) this leads to
IF(a, b, ¢, P)ull, < (@b + 2a(We) - Vull, + l@c + du + (a: V2o)ul,
S ColP2ullglully ™ + CoIP2ully llull;
hence by (4.9)

[ F3a, b, ¢, YA+ E) " fll, < Cs@ + AP IS, + Ca@+ 1A 1Sl
(4.10)

With Ff = Z;Lo(/l + EI)"'Fia, b,c,V)(A + E,)"' f, and (4.4) for each j, and
(4.10), we obtain

IFfl, <CUA+8) '@+ IAY '+ @+ A" DS, A€Z,_q, feLP(RY,
4.11)

where 0 < p, 1< 1.

(d) For the proof of Theorem A, (4.11) with é = 1 is sufficient to estimate
E;’; for the proof of Theorem B we obtain (4.11) with 6 =0 for || > 1,
replacing (2.8) by (2.10) and (2.11). Near A =0 we have to estimate F?f
differently, here assumption (A4) comes in.

From (A2), (A3),(A4), and compactness of supp Veo; we get by =b
+2aVe;e L'(R)n L (R"), for some numbers f<n<r, and therefore b,e
L'(R") for all ye[f, r]. In virtue of #f<n<r it is possible to choose
ke(0, 1), pe(3, 1), such that k + u > 1, ye[#, r], p;, p2€(1, 00) such that 1/p =
k(1/py —2/m)+ (1 —x)/py, 1/py=1/y+1/psy 1/py=1/n+pu(l/p—2/n) +
(1 — p)/p; the interpolation inequality then yields with u= (2 + E,)"'f

1A + E})~*bo - Vull, < C V3 + ED) ™ by - Vulls, (2 + E) ™ by - Pull7*
< Col AT o - Pull,, < oA libo l, 17U,
SCAFTHIPHA+ E) GG+ E) f, ™
< Cs A2 f 1l
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A similar estimate holds for ¢;cu(aV -Vo;)u, and so we obtain with (A4)
IESfl, < CIAPIS N, A€Z,_p, fELP(RY), (4.12)

where fe(0, 1) and C > 0 are constants.
(¢) Now we use the decomposition

N
A+E) ' f=Y A+0+E) o)+ Fif, A€},  (413)
j=0

to obtain the desired estimate for the imaginary powers of E,. In fact, (3.12)
for B =0 yields

ul 1
i — j\i 3 . 9
EVf= jgo(é + E)*(o;f) + lim " Lge(i, VWFifdi,  yeR, 4.14)

where g,(4, y) = (— ) *%(e — A)"2® and I = (o0, 0]e "~ y[0, )™~ as in
Section 3. By Proposition 4.2 we have ||(6 + EJ)”|| < M;e?", yeR, hence the
first term of (4.14) is estimated. For the second term observe that |F¢|| is
integrable along I" by (4.12) and (4.11), hence by the dominated convergence
theorem

_ ”L J (— AP Ffd)
p 27i J

lim—— | g.(3; FifdA
e=027mi ) -

p

< Ceo"‘(j IF3) Idll> (WA
r

and so Theorems A and B are proved for 2 =R". [

ReEMARK 4.4. The above proof shows that for Theorem A to be valid,
the lower order term b - Vu + cu instead of (A3) needs only satisfy an estimate
of the form

16Vu + cull, < CIV2ul lull,”?,  ue W»P(R"), (4.15)

for some ye[0,1). Theorem B remains true if b-Vu + cu satisfies (4.15)
instead of (A3), (A4) and in addition

16Vu + cull,, < CIV*ulb|ul,~?, ue W»P(R"), (4.16)

I | 1 1
for some fe(0, 1], p; < p such that § + f(— - —) > 1 and E(— — —) <L
2\py p pr P



182 Jan PrUss and Hermann SOHR

5. Proof of Theorems 4 and B for 2 = R"

This case can be reduced to the previous one by the reflection
principle. Let R% = {x =(x,...,X,): x; >0}, 1<p< oo, uel’(R%). An
odd extension uye LP(R") of u is defined by ug(x,, x,,...,x,) = u(x) for x, >0,
ug(xy, Xz5..0,%,) = —u(— xy, X5,...,%,) for x; <0; an even extension u,e
LP(R" of u is defined by u,(x,,...,x,) = u(x) for x; >0, u.(x;, xs,...,%,) =
u(— xy, Xz,...,%,) for x;, <0. We call u, an odd and u, an even function of
LP(R". Let L7, (R"), W.2P(R") be the subspaces of odd and L%,,,(R"), W2.2(R")
the subspaces of even functions of LP(R"), W?2P(R"), respectively; they are
isomorphic to LP(R%), W?*P(R"%), respectively. Observe that ue W2F(R")
yields u =0 on dR" while ue W22(R") implies u,, =0 on R%; hence odd
resp. even extension to R" reflect Dirichlet resp. Neumann boundary
conditions.

Consider the operator E,= —a: V?+b-V + ¢ in Theorem A for Q =R,
assume (A1) ~ (A3) with constants a, ry, s, such that 0 <a <1, r, > p, s, = p,
r>n, s;>n/2 and let (2.8) be satisfied. We construct an extension
Ed=—a®:V?>+b°-V +c° of E, in such a way that 9(E3) = WiF(R" is
mapped into L2, (R") and the Assumptions (A1) ~(A3) are preserved in
R". For this purpose we let a5 for j=k =1, and j, k =2, 3,...,n, b3, b5,...,b;
and c® be the even extensions of ay, b,,...,b, and c¢. The mixed coefficients
ay=a,(k=2,..,n and b, have to be extended oddly. For continuity
reasons, a° will then fulfill (A2) if and only if the following condition holds

au(x)=a,y(x)=0  for all xedR" = {xeR": x, =0}, k=2,...,n
(5.1)

Under this restriction on a(x), (A1) ~ (A3) remain valid for a°, and so Theorem
A follows for Q = R from the corresponding result for R". In the same
way we see that Theorem B follows for @ = R under this restriction.

To remove (5.1) we construct a diffeormorphism of R”. onto itself leaving
the boundary invariant, which induces a similarity transform S of E, in such a
way that the coefficients of SE,S™! are subject to (5.1). This is the main
task of this section.

(a) Let us first recall some general properties of variable transformations.
So let 2 = R" be a region with dQ2eC?, and let ge C*(2; R") be injective
and such that its Jacobian Dg(x) satisfies n < |det Dg(x)| < n~ !, x€ £, for some
n>0; if 2 is unbounded we require in addition the existence of Dg(o0) =
lim,,, Dg(x), and boundedness of D?g(x). Such transformations will be
called admissable in the sequel. If g is admissable let £¢ = g(Q); then
Q9 =g(Q), 02° = g(08), g is invertible and g~ ! enjoys the same properties
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as g, i.e. is admissable as well.
Given a function v: Q9 » R" define (Gv)(x) = v(g(x)); then Gv: Q - R"
and u = Go satisfies

ux,-(x) = kzl vyk(g(x))gkx,»(x)y xX€Q, (52)
o) = 3 0a00N o)+ 3 0 0001 (D01 (), €2

Therefore we obtain

(Eu)(x) = — Dg(x) - a(x) - Dg" (x): 7} v(g(x))
+ (Dg(x)b(x) — D*g(x): a(x)) - V,v(g(x)) + c(x)v(g(x),  xe®,

i.e. operator G transforms a second order differential operator E on 2 to
E? = G™'EG defined on Q¢ with coefficients

a®(y)=(Dg-a-Dg")og~ (), b°(y) =(Dg-b— D*g: a)og™'(y)
Sy =cl@g'(y), ye&r. (5.3)

Obviously, Dirichlet boundary conditions are transformed to Dirichlet
conditions since 0Q¢ = g(0£2). But also a conormal derivative of u at 0Q is
transferred to a conormal derivative of v at 097, since an outer normal 9(x)
of Q at xedQ is transformed to an outer normal 34(y) of 27 at y = g(x)e 0Q?
via the rule

¥(g(x)) = [Dg(x)]T H(x), x€0Q. (5.4)

Equation (5.3) shows that the ellipticity constant a, appearing in (A1) remains
unchanged under an admissable variable transformation g. Also, since
Dg, Dg™*!, det g, det g, D?g, D?’g~! are bounded, the change of variable
formula for the Lebesgue integral shows that G induces isomorphisms
G,: WP (Q9) - WiP(Q) for each pe[1, ©0],j =0, 1, 2. Thus for an admissable
variable transformation g, the LPf-realizations E, of E, resp. E§ of E? are
similiarity transforms of each other, i.e.

E{ = G;'E,G,. (5.5)

p

Therefore spectrum and resolvent set, in particular the spectral angle remain
unchanged and

(A—E) '=G;'(A—E)'G,,  Aep(E, (5.6)

shows that the resolvent estimates (2.8) or (2.10) are satisfied simultaneously,
only the constants C, C; may be different. From (5.6) we then obtain
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(E9” = G, 'EXG,,  yeR, (5.7)

and so E, and EJ admit bounded imaginary powers simultaneously, and their
power angles are equal.

(b) Now let 2 =R" =R, x R""! be the right halfspace; it is convenient
to write (¢, x) for the variable in Q, and to split the coefficient matrix a(t, x) as

T
a(t, X) - <a0(t’ X), al(t’ X)

>, where aoeR, a,eR"™!, a,e R~ 1?
al(t9 X), aZ(t’ x)

We want to construct a variable transformation g(t, x) such that a? satisfies
a4(0, x) =0. For this purpose we let g(t, x) be of the special form

0

x — 1L — y(oh(t, x)
a

0

g(t, x) = ( ! ) 120, xeR" !, (5.8)

where af’, a are the limits of a,, a, as |(t, x)] = c0; here Yy e CF(R) is such
that y(t) = 1 for of |t| < ty, Y(t) =0 for |t| = 2y, 0 < Y(t) < 1, and t, will be
fixed later. With

1 0
(5.9)
Dy(t, x) = ©
9(t, ») < 8 h—yh, T—yPh )
ao
and g,(0, x) =0, it is easily verified that a? satisfies af(0, y) =0 if
ao(0, x)hy, (0, x) + a4 (0, x) - Vh (0, x) = a1, (0, x) — ao(0, X)a—f:,
ao
for all xeR"™ ', k=1,...,n— L. (5.10)
We shall construct the functions h, in such a way that
h (0, x) = 0, h,(0, x) = di(x), xeR""' k=1,.,n—1, (5.11)
where
dy) = 20X _aik g o n— 1, (5.12)

(0, x)  ag

If functions h, e C*(R") can be found such that (5.11) holds, then g will be
admissable provided ¢, is chosen small enough, since det Dg = det (I — YV h)=1
for t =0.

() Let {P(t)},»o denote the Poisson semigroup defined by
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(P(0)f)(x) = J

R"~

p(t, x — y)f()dy, xeR"! >0, (5.13)

where the Poisson kernel p(t, x) is given by
p(t, x) = F(n/2)n~"2¢t(t* + |x|*) "2, xeR"™, t>0.
The Fourier multiplier corresponding to P(t) is
P,y =e >0, EeRL

It is wellknown that P(t) is a bounded analytic C,-semigroup in Co(R"™1),
the space of continuous functions f: R"~! — C vanishing at infinity, and that
the following estimates hold.

IPOflo <Ifles >0, feCo(R"™Y) (5.14)

<ct Mfle, >0, feCRTY (515

0
IWP(@)fl, + ’a—P(t)f
t

[ee]

<t Mfluws t>0, feCEHR"Y.  (5.16)

0

0
7Pl + IaP(t)f
t

Here and below we use the notation |- |, for the norm in L?(R"™!), 1 < p < oo,
and |- |, , for the norm in C§(R""'). (5.14) ~ (5.16) can be obtained directly
by estimating the Poisson kernel.

(d) We are now in position to define the functions h, we are looking
for. Note that d, e C3(R") by (A2). We set

h(t, x) = t(P(t)d)(x), t>0, xeR" Y, k=1,..,n—1 (517

Obviously h,(0, x) =0, and h(t, 0) = t(d/0t) P(t)d, + P(t)d, shows h,(0, x) =
d,(x) by (5.16). Moreover, we have the following estimates which are implied
by (5.14) to (5.16).

Wh(t, o + Mt -) —dil <ct®,  £>0;5 (5.18)
V2he(t, Moo + P h(t, e + et )l <™, >0, (519)

Unfortunately, (5.18) and (5.19) are not enough to ensure that g defined by
(5.8) with h given by (5.17) is an admissable transformation in the sense of
(a) of this section. All conditions for admissability are fulfilled, except for
geC?*(R%). In fact, in general g cannot be C? since this would require
d,eC§. However, as shown below, the arguments presented in (a) can be
modified in such a way that the similarity transform G still works, and so
enables the reduction of the case a,(0, x) # 0 to a{(0, y) = 0.
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(¢) The similarity G will in general not leave W??(R") invariant, unless
«>1—1/p. However, we still have GeZ(W?>?(R")nW,"?(R%)), as the
following estimate for u(t, x) = v(g(t, x)) shows. By (5.19) we obtain

[Pu(t, -)D*g(t, -)I, < [Po(t, )l,- ID?g(t, )l

<ct* HPu(t, ), t=to, (5.20)

and with v(0, y) =0,

Vo, )l <Vv(O, -)l, + JIIVU:(S, )pds
0

<t P, t>0. (5.21)

Hence for each a >y > 0 we obtain

2to i/p
I VvD2d||p=< j [Po(, -)D?g(t, -)Iﬁ;dt>

0

2to 1/p
sC(J Put, ) (P, -)ILI'”"-t‘“‘””dt)

0o

210 1/p
Sc(f le(t, ')|Z,”t(°’_1+(1_”/”')dt> “Vv'”;-v

0

2to 1/p(1—7)
t(a—1+(1—v)/p’)p/(1-v) dt ,

< CIIVv,II,‘,"’IIVvH;'(J

0

and therefore
I Vszgllp < C|Vv, [I,‘,‘y IPol, for each 0 <y <a, (5.22)

since (@ — 1+ (1 —y)/p)p/(1 —y)> — 1. This estimate shows that G maps
the domain D(E,) = W*?(R")n W5 P(R") onto W*P(R")n Wy P(RY), i.e. Z(E?)
= W2P(R")n Wy ?(R") again. Moreover the choice y = 0 in (5.22) shows also
that estimate (2.11) is preserved under G; recall n < detg <~ for some n > 0
by choice of t, > 0.

By the properties of h it becomes apparent now that (A1) to (A4) are
preserved under G, as are the resolvent estimates (2.8) and (2.10), as well as
(2.11), provided we exclude the perturbation term — (D?g-a)og~!(v) arising
in EJ by the chain rule; cp. (5.2). This term cannot be shown to be subject
to (A3) and (A4) without additional restrictions on p and a. However, (5.22)
with y > 0 shows that this term is still subordinate to the main part of EY,
namely — a2, and so (2.6) is still valid for this perturbation term;
cp. Remark 4.4. Since (2.6) was the only property of the lower order terms
needed in the proof of Theorem A for Q = R" in Section 4, we see by the
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reflection principle that Theorem A is also valid for R .
Concerning Theorem B, observe that we only need to know that the
following estimate holds, by Remark 4.4.

IPvD?gl,, < CIP?0ll,,  ve W*P(RL)NW ?(RY), (5.23)

-1
p, <p. Since d,eL{(R"" ') for all q>L by (A2), by interpolation we
-1 @
obtain d, e D(Q59), o, < & — n—, where Q, denotes the negative generator of
q
the Poisson semigroup in L,(R""!). This implies |D?g(t, -)|, < Ct®~ !, for

all g>" " With 1/p, = 1/p + 1/q we therefore obtain by (5.12)
o

IPo(e, -)D?g(t, -)lp, < IPo(t, ), ID*g(t, -)l, < Ct~1[Pu(t, -)I,

< CllPo, [l et H7,

hence (5.23) is valid provided p,(x — 1+ 1/p’)> — 1, which means g >
(n — 2)/a. Thus Theorem B is proved for the halfspace R” as well. In
particular, we have extended Proposition 4.2 to the half space case.

PROPOSITION 5.1. Let 1 <p < oo, n>1,0< 0 < m; suppose a(x) = (a;(x))
is a real matrix, xe€ R, which satisfies (A1) and (A2) for Q = R with ay > 0,
0<a<1, a®=(a§), and consider the operator E,= —a:V? with 9(E,) =
W2P(R" 0 Wy P(RY).

Then there is a constant n = y(0, p, ao, n) > 0 with the following properties.
If la—a®|, =sup{laj(x) —agl: xeR", j, k =1,2,...,n} <n, then E, belongs
to BIP(LP(RY)); in particular E, is closed, A (E,) =0, and R(E,) = L*(R%).
Moreover, ¢p, <0y, <0, o(E,) < L,, and there are constants M, = M, (6, p,
aq, n), M, = M,(0, p, ag, n), M5 = M;(p, ay, n) such that

1A + Ep)_l | < M,/IA| for all AeX,_,, (5.24)
IE?| < M, for all yeR, (5.25)
||l72u||p <M, | E,ul, for all ueP(E,). (5.26)

6. Bounded and exterior domains

Before we prove Theorems A and B for bounded and exterior domains,
we apply Proposition 5.1 and an admissable variable transform to derive the
corresponding result for curved halfplanes.

ProposiTioN 6.1. Let 1<p<oo, n>1, 0<0<n, and assume he
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C*(R""1'), Vh, V?h bounded, and lim, ., Vh(y) exists. Define Q< R" by
Q={x=(t yeRx R*:t>h(y), yeR""'}. Suppose a(x)=(au(x)) is a
real matrix, xe€Q, which satisfies (A1) and (A2) with ao >0, 0<a <1, a* =
(a3) = (limy -, ay), and consider the operator E,= —a:V? with 9(E,) =
W2P(Q)n Wy P(Q).

Then there is a constant n = (0, p, ag, n) > 0 with the following properties.
If la—a®|, =sup{lau(x) —aR|: xR, j, k=1,2,...,n} <n, then E, belongs
to BIP(L*(Q2)); is particular E, is closed, A'(E,) =0, and Q—HTP) = LP(Q).
Moreover, ¢g, <0, 0, <0, o(E,)c< L, and there are constants M, =
M, p, ag, n, h), M, = M,(0, p, ag, n, h), M5 = M;(p, ay, n, h) such that

1A+ E)~ I < My/IAl for all A€Z,_,, (6.1)
IEY| < Mye™  for all yeR, (6.2)
IV2u)l, < My | Eull,  for all ueD(E,). (6.3)

Proor. The map g¢g(t, y) =(t + h(y), y) defines an admissable variable
transformation of R% onto Q in the sense of (a) of Section 5. Therefore the
result follows from Proposition 5.1. []

After this additional preparation we consider now the operator E, defined by
(2.1) on a bounded or exterior domain 2 under the assumptions of Theorem
A or B. Let 0 <@ < be fixed such that (2.8) resp. (2.10) and (2.11) are
satisfied. The localization procedure is carried out as in Section 4 (iii) with
some modifications which are due to the presence of the boundary of Q. As
there, a decomposition 2 = U,U U, U ---U Uy is obtained, where Uy,..., Uy are
the intersections of balls with € and where U, is absent if Q is a bounded
domain; some of these sets intersect the boundary. As in Section 4 we choose
cut-off functions ¢;e C*(R") for j=0,1,...,N such that 0 <¢; <1, supp
@;eU; and Z;Ll(pj(x): 1 for all xef; observe that ¢, =1 for say |x| > R.
Then consider the equation

i+ Eu=f
where AeX,_,, felP(Q), ue2(E,), i.e. u=(A+ E,)”'f Multiplying by ¢,
and setting u;=ou, Fja,b,c,V)u=—¢;b-Vu—gcu—2ale;)Vu) —
(aV*p;)u, we obtain as in Section 4 the local equations

Auj+ Elu;=o;f + Fi(a,b,c, V)u, j=0,...,N, (6.4)

where Eju; = — a: V?u;. The local operators EJ are defined as in Section 4
in case U; does not meet the boundary 9Q; otherwise they are defined by
Ej = G;E%G; "', where G; denotes the similiarity transform induced by the
C?-regularity of the boundary 9%, i.e. for these indices j, EJ are the operators
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corresponding to curved halfplanes; cp. Proposition 6.1.
This leads as before to the following representation of (A + E,)™'.

N

A+E)'f=Y A+6+E) {of+Flabc,V)A+E)'f} (65
j=0

Since according to Propositions 4.2 and 6.1 the essential estimates for the

local operators are still valid we may now follow the proofs for Theorems A

and B given in Section 4 for the case 2 = R".

7. Resolvent estimates

PROOF OF THEOREM D.

The proof relies on the localization procedure and a compactness argument

which is wellknown. Consider E, as defined in (2.1) with coefficients subject

to (A1) ~(A3), with constants r, >p, r,>n, s, =>p, s, >n/2. We use the

localization described in Section 4 and also employ the notation used there.
(@) If ueW>P(Q)nW,"?(Q) is a solution of (A + E,)u = fe L?(R2), then

N
u= Y (A+E) "{o,f + Fu}, (1.1)
j=0
where F; = F(a, b, ¢, V) is as in Section 4.

By means of (2.2) ~ (2.6) we obtain for j =0, 1,..., N the inequality

IFjull, < ellP?ull, + C@) lull, (7.2)

where ¢ > 0 is arbitrary. For the local operators EJ, defined in Section 4,
we use estimate (4.4) resp. its analog for the halfplane and for the curved
halfplane. Combining this estimate with (7.2) yields the following a priori
estimate for the solution u of Au + E,u = f.

[ALull, + 172ull, < CULLI, + llull),  A€Z oy, (7.3)

where C does not depend on f and A. For || large enough, this implies
injectivity and closed range of A + E,. On the other hand, (7.1) can also be
used to prove that A+ E, is surjective for A large enough. In fact, define
Te L (W>P(Q)nW,"?(2)) by means of Tu=Y.(A+ E)"'Fu; then (7.2)
implies the estimates

[A I Tull, + 17*Tull, < ellV2ull, + C(e)llull, for all ue W?(Q)n W,"7().

Choosing the equivalent norm |lull = #|V?ull, + |ul, on W2P(Q), where
n > 0 is sufficiently small, for A sufficiently large, T becomes a contraction,
and therefore (7.1) admits a solution. Therefore A+ E, is invertible for
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A€X, _y, |4l > R(H), for some R(f) > 0. The a priori estimate (7.3) then yields
the resolvent estimate (2.16), and so (a) of Theorem D is proved.

(b) Let AeC and ue W*P(Q)n W,""?(22)) be a solution of Au + E,u=0;
then with some w >0 we have (v + E))u = (0 — Hue W2P(Q)n Wyl ?(Q) =
LY(Q) for all ge(1, o) such that 1/p>1/q>1/p—2/n. Choosing w large
enough, by (a) we conclude ue W21(Q)nW,'%(Q)); this shows that the null
spaces A'(A + E,) are increasing with p.

Conversely, we show that the null spaces are also decreasing with p. This
is obvious if Q is bounded; if Q is unbounded this is not true for A <0, as
the example of the Laplacian on R" shows. So let us assume that A¢(— oo, 0]
and (A4) holds. Suppose u belongs to the null space of A+ E,. Then u
belongs locally to W24(Q)n W,!%(£2)), for any q < p, so we need only consider
v=Yu, where YyeC®(R") denotes a cut-off function which is one in a
neighborhood of infinity. v then satisfies (A + E)v = [E, Yy ]Ju = g, where the
bracket indicates the commutator between E and ; observe that g has
compact support, hence belongs to L), for any q < p. But for |x| very
large, E is a small perturbation of A® = —a®:V?, thanks to (A1) ~ (A4),
hence has spectrum contained in say Z,, § small; see Proposition 3.1. This
then implies v = Yyue W4(Q)n W,'9(Q)), and so u belongs to the null space
of A+ E,, q<p, as well. This proves (b).

(c) Next we apply a well known compactness argument to prove (c) in
Theorem D. Fix any small # > 0; we claim that the second term on the
right of (7.3) can be dropped, i.e. that the following estimate holds.

Al lull, + 172ull, < Co)If I, A€Zo_g, 141 > 1. (7.4)

Suppose the contrary and choose 4,€Z,_,, |4, > 1, u,€ W*P(Q)n W'P(Q)),
fo = Antty + Eu, such that |4, |lu,|, + |V?ull, =1 for neN, and | f,]|, -0 as
n— co. Then there is a subsequence (w.l.o.g. the same sequence) such that
An— 4, and u, tends to some ueP(E,) weakly in w2r(Q)n Wyl'P(Q)) as
n— o0;(7.3) yields u # 0. Since E, is weakly closed we may conclude iu +
E,u=0. This gives a contradiction to A'(1+ E,) = 0.

Thus by (7.4), the range of 4+ E, is closed for any AeX,_,, and since
this operator is also injective it is semi-Fredholm. The continuity of the
Fredholm index (see e.g. Kato [12]) together with (a) then yield surjectivity. If
Q is bounded we need not exclude A =0, by Poincaré’s inequality. This
proves (c).

(d) Assume in addition (A4), and suppose first that (2.11) holds. Then
we can show again by an interpolation argument as in Section 4 that (7.4) is
also valid near A =0. In fact by (4.12) which remains valid for general
domains we obtain
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1AG + E,) " I, < CA + 1P NAG + E) ™" ,),

for some f > 0. This together with (2.11) yields the resolvent estimate (2.18)
near A =0.

On the other hand, if 1 < p < n/2, then the compactness argument from
(c) of this proof still works near 4 =0. In fact, let 4,, u,, f, be as in (c),
except 4, — 0, now. Then, by the Sobolev embedding theorem, we obtain
u, - u weakly in L), where 1/q =1/p —2/n. Again by (7.3) one obtains
u#0and Eu=0. By assumption, A"(E,) = 0, hence as in (b), by Proposition
4.2 and the Sobolev embedding one can deduce A'(E)) = 0, which as before
gives a contradiction. Thus (7.4) in this case also holds for # = 0. Finally,
by reflexivity of L?(Q2) this yields also #(E,) = LP(Q). This proves (d) of
Theorem D. O
ProoF oF THEOREM C. If E=—3)" _ d,a3d=—a:V>*+b-V is of
divergence form then it is wellknown that E, is a positive selfadjoint operator
with A (E;) =0, and o(E,) = [0, c0). Therefore Theorems A, B, and D yields
the assertions of Theorem C for the cases (i), (it), and (iv).

In case (iii) we apply a duality argument. So let first 1 < p <n/2 and
apply Theorems B and D. Consider next the case of very large p, say
p>n/(n—2). Then the adjoint exponent p’ satisfies 1 <p < n/2, hence
Theorems B and C apply to E,. But due to the divergence form of E, we
have the duality relation E} = E,; this proves the result for p >n/(n — 2).
Finally, the Riesz-Thorin interpolation theorem yields the claims for all
intermediate values of p. The proof is complete. [J
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