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1. Introduction

Let Ω be an open domain in Un with n > 1 and consider the second

order elliptic differential operator on Ω defined by

(Eu)(x) = - Σl^iajk(x)Sjdku(x) + Σ%ibM)dAx) + Φ)u(x) (1.1)

where dΩ is the boundary of Ω. Let 1 < p < oo and let Ep denote the

ί/(Ω)-realization of this boundary value problem defined by (Epu)(x) = (Eu)(x)

with domain of definition @(EP).= W2tP(Ω)ί]W^p{Ω). The aim of this paper

is to give simple conditions for the boundedness of the purely imaginary

powers Eι

p

y and for an estimate of the form

WEyW <Keθlyl for all yeU9 (1.2)

where K = K(θ) > 0, 0 < θ < π are constants; see Section 3 for the definition

of complex powers of linear operators. We show that this holds, under some

smoothness assumptions and technical restrictions on the coefficients ajk9 bj9 c

and the domain Ω, essentially whenever the resolvent estimate

IKλ + fipΓ1!!^— for all λsΣπ_θ = {2eC: λ Φ 0, |argλ| < π - 0}, (1.3)

\M.
is satisfied. Observe that this condition for 0 < θ < π/2 implies that - Ep

generates an analytic semigroup e~tEp in LP(Ω). In Pruss and Sohr [16] it

has been shown that (1.3) is always necessary for (1.2); the difficult part is the

proof of the converse. In the paper just mentioned it is also shown that (1.2)

implies the same estimate for δ + Ep for each δ > 0, with the same constants

K and θ.

Estimates for the imaginary powers Λiy of a closed linear operator A in

a Banach space X are of interest for several reasons. One of these is related

to the determination of the domains @{Aa) of the fractional powers Aa of A,
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where 0 < α < 1. It is known (see e.g. Triebel [22]) that uniform boundedness
of Aιy for \y\ < 1 implies @>(Aa) = [X, 2$(A)\, the complex interpolation space
between @(A)9 equipped with the graph norm of A, and X. As a consequence
one then obtains via the reinterpolation theorem the identities [β(Aβ), <2>(Aa)~\θ

= 3>{AΊ), where γ = θoc + (1 - θ)β. This property in turn leads e.g. to sharp
results about the solvability behavior of evolution equations of the form

ύ{t) + Au{t)=f{t), M(0) = M0, t e [ 0 , T ) ; (1.4)

see e.g. von Wahl [23] or Giga and Sohr [10]. Thus via estimate (1.2) the
domains of the fractional powers of A are linked to complex interpolation
theory and so its tools are available in the study of (1.4).

On the other hand, property (1.2) of the purely imaginary powers Ep

y has
recently become important by a new remarkable application to evolution
equations; Dore and Venni [4] proved by means of (1.2) the important
lί-IΛestimate

Γ l u

 q

dt+ Γ I I V W I I S Λ ^ C Γ H / W H Λ (1.5)
Jo °t p Jo Jo

for evolution equations (1.4) with A = Ep, u0 = 0, and 1 < p, q < oo, whenever
Ep is boundedly invertible, T < oo, and (1.2) is valid for some θ < π/2. Here
C > 0 is a constant which depends on T > 0, in general. Such a priori
estimates are used in the theory of nonlinear equations, e.g. like

ut + Epu + N{u)=f (1.6)

where N(u) is a nonlinearity subordinate to Epu. Dore and Venni's theory
has been extended in [16], [10] in a direction which is especially important
for unbounded domains. By means of this result estimate (1.5) is also valid
for unbounded domains and with constant C independent of T. Letting
T= oo in (1.5) this yields asymptotic properties of the solution u(t) of (1.4) for
ί - o o ; [16], [10].

So far there are only a few methods available for proving (1.2). In the
Hubert space case p = 2, one may use the functional calculus for selfadjoint
linear operators and lower order perturbations to obtain (1.2). The angle θ
will be optimal in this case, and the assumptions on the coefficients of E are
quite weak; if E is taken in divergence form then, besides ellipticity, the
coefficients are only required to be of class L00.

For p Φ 2, however, there are essentially two different methods known.
The first one relies on the so-called transference method developed by Coifman
and Weiss [3]; see also Stein [19]. When combined with multiplier theory
for LP(U) it leads to the estimate
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(1.7)

whenever — Ep generates a positive strongly continuous contraction semigroup

e~Ept in LP(Ω). In this case the assumptions on the coefficients of E turn

out to be as weak as in the case p = 2, but in contrast to p = 2, the angle

π/2 in (1.7) is not optimal, in general. In fact, when E is of pure divergence

form, i.e. c(x) = 0 and b(x)= -Σ%idjajk(x)> t h e n σ(E

P)
 c C°> °°) a n d ί1-2)

should hold for any θ > 0, with X = K(θ).

Combining (1.7) with (1.2) for p = 2, via interpolation one obtains (1.2)

also for p φ 2, with some 0 < π/2, which is enough for the application of the

Dore-Venni theorem to obtain the a priori estimate (1.5) mentioned above;

see also the recent paper of Duong [6]. On the other hand, there are

problems which require for the optimal angle θ see the applications in the

paper of the authors [16], in Clement and Prϋss [2], and in Priiss [15].

In the special case of a bounded domain Ω with dΩ of class C0 0 and

E with C00-coefficients, Fujiwara [8] and Seeley [18], [17] obtained (1.2) with

optimal angle θ by means of a quite different approach; see also Triebel

[22]. Their method rests essentially on the theory of pseudo-differential

operators and is quite involved, but it also applies to higher order equations

and systems.

The motivation for this work are the following:

( i ) Our proof is direct it uses only elementary multiplier theory in Un

for the constant coefficient case and applies rather elementary perturbation

and localization arguments.

(ii) (1.2) is proved under rather mild regularity assumptions on the

coefficients and dΩ; see Section 2 for details. This is in particular important

for applications to nonlinear equations where the coefficients depend on u and

Vu\ see [15].

(Hi) Unbounded domains Ω are included. As mentioned above, this

leads to new a priori estimates (1.5) for unbounded domains.

(iv) The estimate (1.2) we obtain is best possible concerning the value of θ.

The plan for this paper is as follows. The main results are stated and discussed

in Section 2, while their proofs are carried through is Sections 4, 5 and 6, for

Ω = Mn, Ω = (R + , and Ω <= IRW arbitrary, respectively. Section 3 contains an

abstract perturbation result which allows for the passage from constant to

variable coefficients with small deviations of the main part. Finally, in Section

7 some resolvent estimates are sketched. Although these seem to be known

we have included them here for the convenience of the reader and for the

sake of future reference.

Concluding we want to mention that the method of proof presented here
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can be extended to arbitrary elliptic systems of order 2m in case Ω = Rn. But

even for a halfspace Ω = Un

+ our method is restricted to a single equation of

second order, apparently due to a weakness of the perturbation result,

Proposition 3.1. Therefore further research will be necessary.

Acknowledgement: We want to thank G. Dore for discussions on

perturbations of imaginary powers of linear operators, which were helpful in

the proof of Proposition 3.1.

2. Main results

In the following, ΩaMn is either the whole space Rn, the half space

U\ = {x = (x!,...,XΠ)GIR": * ! > 0}, a bounded domain or an exterior domain

in Rn

9 i.e. a domain which contains a neighborhood of infinity. We always

assume that the boundary dΩ of Ω is of class C 2 .

First we explain some notations. Let 1 < p < oo and let LP(Ω) denote the

usual (complex) Lebesgue space with norm | |u | | p = (\Ω\u(x)\pάxf. For meN,

Wm>p(Ω) means the usual Sobolev space with norm \\u\\mtP = (Σ | α ,< m \\d*u\\p)p

where dj = d/dxj9 ; = l,...,n, d* = d^d? . - 3 ? , and |α| = ot, + ••• + απ.

W™'P(Ω) denotes the closure of the space of test functions CQ(Ω) under the

norm of Wm'p(Ω), where as usual CQ{Ω) means the space of all smooth

functions on Ω with compact support in Ω. We set V = (dl9 d2,...,dn) and

\\ru\\p = (Σ%i\\3j»\\$*> W2u\\P = (Σlk = i\\Sjdku\\py. If a(x) - (ajk(x)) is a

matrix, b(x) = (bj(x)) a vector and c(x) a scalar, we write a(x)ξ ξ —

Σ for ί = Ki ϋ , a(x):

Then the operator Ep introduced in (1.1) can be written in the form

(Epu)(x) = - a(x): F2w(x) + b(x) Vu(x) + φ)w(x), (2.1)

UEΘ{EP)= W2'p(Ω)ΓιW0

Up(Ω).

Ep: 3{Ep)-^LP{Ω) is welldefined under the assumptions (A1)~(A3) stated

below. J^(EP), 0t(Ep), σ(Ep), p(Ep) mean null space, range, spectrum, and

resolvent set of the linear operator Ep. &(LP(Ω)) designates the space of all

bounded linear operators T: LP(Ω) -> LP{Ω) with the operator norm | | T | | .

For 0 < α < 1, Cα (Ω) denotes the space of all functions u on Ω satisfying

the Holder estimate \u(x2) - wίxjl < C\x2 - x j " for all x l 5 x2eΩ, where Ω

as usual is the closure of Ω.
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Assumptions on the coefficients. Let 1 < p < oo.

(Al) a(x) = (ajk(x)) is a real symmetric matrix for all xeΩ, and there is a

constant a0 > 0 such that

ao<a(x)ξ ξ<ao1 for a l l xeΩ, ξeUn

9\ξ\ = 1.

(A2) α o eC α (£), for some αe(0, 1); if Ω is unbounded, α?? = ϋ m ^ ^ α ^ x )

exists and

\atj(x) - a%\ < C|x|~α for all xeΩ with |x | > 1, ij = l,...,/t,

where C > 0 is a constant.

(A3) bi(x), c(x) are measurable complex-valued functions which admit

representations of the form b^x) = Σ f = 1 ί > ί M , i = l,...,w, c(x) = Σ* = 1 c k (x) ,

where bkeUk{Ω)9 ckeLSk(Ω), for some numbers rk, sk which are subject to the

inequalities p < rk < oo, p < sfc < oo, rk> n, sk> n/2.

(A4) biEU(Ω), ί = l,...,n, ceU(Ω) for some r, s with 1 < r < π, 1 < s < n/2.

If Assumptions (Al) ~ (A3) are satisfied, the operator Ep defined in (2.1)

with domain of definition @(EP) = W2>P{Ω){\ W0

Up(Ω) is welldefined. This

follows from Sobolev's embedding theorem [7]. Indeed, under these

assumptions we get HαH^ = sup x e^|a(x) | < oo and the following interpolation

estimates. Holder's inequality yields with r = rk and s = sk from (A3)

\\bk V u \ \ p < \ \ b k \ \ r \ \ V u \ \ y , \ \ c k u \ \ p < \\ck\\s\\u\\β (2.2)

where y, β are defined by - = - + - , - = - + - ; note that p < y < oo,
p r y p s β

p < β < oo. On the other hand, the Sobolev embedding theorem implies

| | F i ι | | ^ C | | F 2 n | | 5 | | ι ι | | ί ^ where p(- - -) + (1 - p)- = - - -9 (2.3)
\p n) p y n

i.e. p = (1 4- n/r)/2e[l/2, 1). Similarly

l l u l l ^ C U ^ i i l i iliillJ- where τ(- - 2) + (1 - τ ) - = -, (2.4)
\p nj p β

i.e. τ = n/(2s)e[0, 1). Combining (2.2) with (2.3) and (2.4) we get the

inequalities

| |b f c Fu l l , < C, W2u\\»p\\u\\p-» < ε\\V2u\\p + C ( β ) | | i ι | | p , (2.5)

| |c k u\\ p < C21| V2u\\l||u||J"τ < ε\\ V2u\\p + C ( ε ) | | u | | p , (2.6)

where ε > 0 is arbitrary, and therefore summing over k we obtain
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\\Epu\\p<c1\\v2u\\p^c2\\u\\p<c\\u\\2fP. (2.7)

This shows that Ep is welldefined for all ue2(Ep)\ even more, the lower order

term b-Vu + cu is a strictly subordinate perturbation of the main part

-a:V2u.
Our main results read as follows.

THEOREM A. Let 1 < / ? < O O , ne/V, and let Ω c R" be either Rn, or

the half space Rn+, or a bounded domain with C2-boundary or an exterior

domain with C2-boundary. Consider the operator Ep defined in (2.1) with

Assumptions (Al) ~ (A3). Let 0 < θ < π, and suppose o{Ep) a Σθ and

\yι for all λeΣπ_θ, (2.8)

where C > 0 is a constant. Then Eρ

yE^(Lp(Ω)) and

\\Ep

y\\ <Meθlyl for all yeR, (2.9)

where M > 0 is a constant.

Observe that (2.8) implies that Ep admits a bounded inverse; for

unbounded domains this is frequently not the case. Then we need the

additional assumption (A 4).

THEOREM B. Let 1 < p < oo, we/V, and let Ω a Rn be as in Theorem

A. Consider the operator Ep defined in (2.1) with the Assumptions (Al) ~ (A4).

Let 0 < θ < π and suppose Jί(Ep) — 0, σ(Ep) a Σθ9

II (A + Epy' II ^C^λΓ1 for all λeΣπ_θ, (2.10)

and

l l ^uH^CJVII , for all ue®(Ep), (2.11)

where CuC2>0 are constants. Then Ep

ye&{Lp{Ω)) and

\\Ep

y\\<Meθ^ for all yeR, (2.12)

where M > 0 is a constant.

In applications the operator E is frequently encountered in divergence

form, i.e. Eu(x) = — Σ" j=1di(aij(x)dju(x)), xeΩ. In this situation one can use

the selfadjointness of E2 in L2(Ω)9 localization and duality arguments to verify

the resolvent estimates assumed in Theorems A and B. As a consequence we

have the following result.

THEOREM C. Let 1 < p < oo, neN, and Ω c Rn be as in Theorem A.

Suppose Ep has divergence form Ep = — Σ " f c = 1 Sjajkdk + δ, δ > 0, and let
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a = (ajk) and bk = — ( £ " = 1 djajk)9 k = 1, 2,...,n fullfill the Assumptions (Al) ~

(A3). In addition, assume either of the following.

(ϊ) δ > 0; (ii) Ω is bounded', (Hi) n>3 and (A 4) holds for bk, with c = 0;

(iv) (2.11) and (A4) hold for bk, with c = 0.

Then σ(Ep) a [0, oo), Jί(Ep) = 0, Λ(£p) = lf(Ω). For each 0 < θ < π9 there

are constants Cp(θ) > 0, Mp(θ) > 0 such that

1 /orfl// AeΣπ.θ, (2.13)

Έ%e£e(U(Ω)), \\Ep

y\\ <Mp(θ)ee^ for all yeR. (2.14)

If Ω is bounded or δ > 0 /Λe« £ p is boundedly invertible.

If £ is not of divergence form, σ(Ep) need not be restricted to the positive

halfline and so the resolvent estimates cannot be expected to be true for any

#e(0, π). However, we show in Section 7 that away from [0, oo) the spectrum

of Ep consists only of eigenvalues, and therefore the condition

+ £ p) = 0, for all AeΣπ_ θ, (2.15)

is essentially sufficient for the resolvent estimates. Actually, for λeΣπ_θ, the

kernels of λ + Ep are independent of p, and therefore condition (2.17) need

only be verified for one p, say for p = 2.

THEOREM D. Let 1 < p < oo, and let Ω be as in Theorem A. Consider

the operator Ep defined in (2.1) with coefficients subject to (A1)~(A3) with

constants rk > p, rk> n, sk > p9 sk> n/2. Then

(a) For each 0e(O, π) there is R = Rp(θ) > 0 such that Σπ_θ\BR(0) c p(- Ep)

and

II(λ + i y - Ί < C^lλΓ1 for all λeΣπ_θi \λ\ > Rp(θ)9 (2.16)

for some constant Cp(θ) > 0. In particular, δ -f Ep satisfies the assumptions of

Theorem A for any δ > Rp(θ).

(b) Assume (A4). Then J^(λ + Ep) is increasing in p, for all λeC, and for

each λφ(— oo, 0], Jί(λ + Ep) is independent of p.

(c) Assume that — Ep has no eigenvalues 0 Φ λeΣπ_θ. Then σ(Ep)czΣθ

ll{0}, and for each η > 0 there is a constant Cp(η) > 0, such that

\\(λ + £ p ) " 1 1 | <Cp(η)\λ\~ι for all λeΣπ_θ, \λ\ > η. (2.17)

Therefore δ + Ep satisfies the assumptions of Theorem A, for each δ > 0. If

in addition Ω is bounded and J^(Ep) = 0 then Ep is invertible, hence satisfies

the assumptions of Theorem A.
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(d) Let Ω be unbounded, let (A4) hold, and assume in addition 1 < p < n/2 or

(2.11); suppose — Ep has no eigenvalues λeΣn_θ. Then $(Ep) = LP(Ω),

σ(Ep) c Σθu{0}, and there is a constant Cp(θ) > 0, such that

| | μ + EJ-'W < C^lλΓ1 for all λeΣπ_θ, (2.18)

and (2.11) holds. Therefore Ep satisfies the assumptions of Theorem B.

Let us remark that the additional restrictions in (d) of Theorem D are

due to (2.11). Except for trivial cases, we have only been able to verify this

condition in case 1 < p < n/2; this then leads to the restriction n > 3 in (iii)

of Theorem C. The difficulty arises from the generalized null space of E in

the case of unbounded domains. We do not know whether this restriction

is essential or a shortcoming of the methods employed here.

The proofs of these results are carried out in several steps. First we treat

the case Ω = Un. The crucial part in Un is that of variable coefficients ajk(x)

which have small deviations from a^; the main tool here is the perturbation

result stated and proved in the next section. For small variable coefficients

our result is given in Proposition 4.2; Theorems A and B are then proved

for the case Ω = IR". Section 5 contains the proof of these theorems for the

halfspace Ω = Un

+ which is based on a certain variable transformation which

allows for application of the reflection principle. General domains are treated

in Section 6 via localization and reduction to either Un or [R+. Finally, in

Section 7 it is indicated how the resolvent estimates can be obtained, in

particular proofs for Theorem C and Theorem D are sketched. Actually, this

is now of only little effort since all the technical tools have already been

employed before.

To keep the technical details to a minimum we have restricted the

statements and proofs to the case of Dirichlet boundary conditions on domains

with boundary of class C 2 which are either bounded or exterior (as well as

whole and half spaces). Actually, only minor modifications of the proofs

below are needed to cover also mixed boundary conditions, where on one

part Γdcz dΩ Dirichlet conditions are prescribed while on the remaining part

Γn = δΩ\Γd conormal or conormal conditions of the third kind are prescribed,

provided Γd and Γn are strictly separated. By means of variable transforma-

tions similar to those employed in Section 5 it is also enough to assume dΩ

of class C 1 + α , for some α > 0. Finally, the class of domains considered here,

for simplicity, has been chosen such that always finite partitions of unity are

sufficient. Under suitable uniformity conditions on the boundary of Ω and

the coefficients a(j of the main part of E it will not be difficult to extend our

approach to more general domains, employing countable partions of unity.
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3. Imaginary powers and perturbations

Let X be a complex Banach space with norm | |, and A a closed linear

operator in X; then as usual 2(A), @(A), Jί(A)r p(A), σ(A) denote domain,

range, kernel, resolvent set, and spectrum of A respectively. A is called

sectorial if 2(A) and St{A) are dense in X, Jf(A) = 0, ( - oo, 0) cz p(A), and

there is a constant M > 1 such that

Hίίί + Λ)" 1 ! ! < M f o r a l l ί > 0 ; (3.1)

the class of sectorial operators in X will be denoted by £f(X). It is easy to

see that sectorial operators satisfy

limί(ί + A)~1x = x, lim ' t(t + A)~1x = 09 xeX. (3 2 )

If X is reflexive, it is wellknown that (3.1) and (3.2) imply the decomposition

X = J^(A)@ @(A) hence in this case 9t(A) is dense in X if and only if
0. Let

the spectral angle φA of Ae^(X) is then defined by

p(-A)^Σπ_φ, Cφ:= sup \\λ(λ + A)~x \\ < oo}. . (3.3)
λeΣn-φ

 V 7

Obviously, we have φ A e [ 0 , π) and σ(Λ ) c : Σ ^ ; if Ae6f(X) is bounded and

invertible then φA = supA e σ U ) |argA|.

Recall that for AeSf(X) complex powers Az of A can be defined by

means of the formula (see Komatsu [13])

sinπz f x A *x f1

 2 + 1 / ,v Ί , i i
= < + tz+1(t + A)~1A~1xdt

π [z 1 + z Jo

f °°

Ji

(3.4)

for xe@{A)0@(A), |Rez| < 1.

Az defined by (3.4) is densely defined and closable; the closure will again be

denoted by Az. In general Az need not be bounded; however, if Aise..0S(X)

for each seU and s u p ^ ^ ! \\Ais\\ < 00, then A is said to admit bounded

imaginary powers. The class of all sectorial operators which admit bounded

imaginary powers will be denoted by BTP(X).

If AeBIV(X) then {Ais: seU} a @(X) forms a strongly continuous

group of bounded linear operators in X. The type ΘA of this group, i.e.
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θA=Mls^O0Uog\\Ais\\ (3.5)

will be called power angle of A. It has been shown that the inequality φA < ΘA

always holds; cp. Prϋss and Sohr [16].

Observe that the class BTP(X) is invariant under similarity transforms.

In fact, if Se^(X, Y) is boundedly invertible, then As = SAS'1 satisfies the

relations

(λ + Asy
ι =S(λ + A)-^-1 for all λeρ(-A) (3.6)

(As)
z = SAZS ~ * for all z e C. (3.7)

In particular, we have σ(As) = σ(A), φAs = φA, and θAs = ΘA. This remark

will be quite useful in subsequent sections.

If AGBIV(X) then Aε = Aε(ε + A)~2ts^{X) is welldefined and Aεx-+x

as ε -• 0 + for each xeX. This can be obtained by means of the functional

calculus for BTP(X) induced by the inverse Mellin transform; cp. Prϋss and

Sohr [16]. This fact will be used in the proof of Proposition 3.1 below.

It is not known whether the class BTP(X) is preserved under perturbations

with sufficiently small relative bound. Here we present only a partial answer

to this question involving a certain commutator condition. The result reads

as follows.

PROPOSITION 3.1. Let X be a complex Banach space, AeBlV(X), and

B a linear operator in X which is subject to

(ί) 3>{B) z> @{A) and \Bx\ < β\Ax\ for all xe@{A), with some β>0;

(ii) Let θA<π and there are θe(θA, n) and φeL1(R+) such that

\(λ + A)~ιBx - B(λ + A)-ιx\ < ψ(\λ\)\Ax\, xe9(A), λeΣπ_θ;

(ϋi) ί/β > C θ:= supλeΣn_θ\A(λ + A)'1].

Then A + B is closed with domain Q){A + B) = 2(A)9 A + B is sectorial and

belongs to BTP(X), and ΘA+B < max(θA + arcsin β, θ). If merely (ί) and (Hi)

hold then A + Be^(X) and φA+B < θ.

PROOF, (a) Since Jί{A) = 0 and 0t(A) is dense in X, by (i), BA~ι is well

and densely defined and bounded by β; observe that Cθ > 1 because of (3.2),

therefore 0<β< 1. Let K denote the unique extension of BA~ι to all of

X. With β < 1 it is obvious that A + B with domain ®{A + B) = 3\A) is

closed, and that Jί(A + B) = 0 and 0t(A + B) is dense in X. To show

( - oo, 0) c p(A + B) write

A)-λ){λ + A),

and observe that by (iii)
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\\B(λ + AΓ'W <\\K\\ \\A(λ + Λ Γ Ί I < βCβ < 1, AεΣπ_β,

hence Σ π _ β <= p(—(A + B)) and

Uλ + A + βy^i < uλ + Ay'wn + Biλ + AΓ'y'w

< i + ce l A e Σ

Ω/^ M l ' π ~

— p C β |/i|

in particular X + .Be^ί^), and ΦA+B^Θ-

(b) To show A + BeBTP{X) we derive an expansion of (λ + A + B)'1 of

the form

(λ + A + β)" 1 = S(A) + f An(A + A)- ( M + 1 )(- ^)w, (3.8)

λ

which is appropriate for our approach. Set Rλ = A(λ + A)'1 and Γλ = KR

- RλK; then

τλ = κ^iμ + A)-1 - Λμ + A)- 1 ^ = λ{λ + Ay^K - λκ(λ.+ Λ ) - 1 ,

hence by (ii)

| |T Λ | |<μ |^( |A |) , leΣ Π _ β . (3.9)

By means of a Neumann series we obtain

Then induction yields the identities

(KRλ)» = Σ f (KΛΛr-'RiTΛΛr ^-ΊC'- 1 + ΛIJC . (3.10)
1=1 j = 0

For n = 1, (3.10) is merely the definition of Tλ. Suppose (3.10) holds for n; then

(KRλ)
n+1 = t ^{KRjr+i-'RiTiR^-JK1-1 +KR»λ

+'Kn,
1=1 j = 0

and with

KR"λ

+1K" = Σ R{TλR
n

λ-
jKn

λ + R"λ

+1K*+ι

9

(3.10) follows for n + 1. Thus (3.10) yields (3.8) where
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n = l / = 1 j = 0

this term will be the "good" part since by (3.9)

| A | n = l / = l j = O

Cβ) Σ (βCθΓ
ιn(n + l)/2, i.e.

\\S(λ)\\<ψ{\λ\)ίΛ „ ' , ^ Σ π _ β . (3.11)

(c) Let Γ denote the contour ( + 00,0]e" i (π"β)U[0, oo)ei(π~9), and let
1/2 > ε > 0 be fixed. Define ge(λ; s) = ( - λ)is+ε(ε - λ)~2ε and

F,(s) = -— AίA sJίA + ̂  + B ) - 1 ^ , seR; (3.12)
2πiJ Γ

note that this integral is absolutely convergent. Contracting the contour to
the positive real axis, Cauchy's theorem yields

Γ
Jo

Splitting the second integral at r = 1 and using the identities

r(r + A + B)-1 = l-(r + A + B)-χ{A + B) for r > 1,

-(r + Λ 4- B)"1 = - μ + B)"1 - (r + Λ + J?)- 1 ^ + By1 for r < 1,
r r

with (3.4) it is not difficult to show

Fε(s)x—+ε^0+(A + B)isx, xe3){A

On the other hand, (3.8) yields

where

and

ε

1(5) = - ί ί Λ(A;
2πιJΓ
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^-.[ 9M\ s)A"(λ + A)-
2J

Since gε(λ; s) is bounded on Γ9 uniformly w.r.t. εe(0, 1/2), seR being fixed,
(3.11) shows by Lebesgue's dominated convergence theorem

F}{s)—+^0 + - ^ f (- λfS(λ)dλ (3.13)
2πιJΓ

in 0$(X). To be able to pass to the limit for ε - » 0 + in Fε

2(s), we employ
the functional calculus for BTP(X) introduced in Prύss and Sohr [16], which
is based on the inverse Mellin transform. Let fn(t) = tn(λ + ί)~ (" + 1\ t > 0,

neNθ9 λeΣπ; an easy computation leads to (Jΐfn)(ρ) = λ9'1 {p+n

n~
ι) for

sin πp
the Mellin transform of /„. The functional calculus then yields the representa-
tion

sinhπy
ΠG\

observe that the integral is absolutely convergent since ΘA<Θ and λeΓ.
Inserting this formula into the coefficients of the series for Fε

2(s), interchanging
the order of integration and contracting Γ to the negative real axis leads to

— I gε(λ;s)AH(λ + AΓiH+1)dλ

dyi f
2πιJΓ

, sinh πy

2πJ_0

where h£(t) = (ε + ί) 2 ε. The differentiation rule and the moment rule for the
Mellin transform yield

is + ε)=.J(fetn(iγ),
\ n j

where

tn ί d\n

Λ l ) f y)\t i s + ε (ε + ί)"2ε]



174 Jan PRUSS and Hermann SOHR

This gives the explicit formula, again employing the functional calculus

Ff(s) = AisAε{ε + A)~2ε £ Pε,n(A(ε + Ay^K",

where Pεn denote the polynomials

p

ε,n(t)= Σ (lS +S)(~ ] ί \ neN0, t>0, εe(0,l/2).

Since ί £ J < 1 and I™ β J < e | s |n | s | we obtain \\Pεtn{A(ε + Λ)"1)!! <

e's'n |s | + 1CJ, and so the series for F2{s) is absolutely convergent by (iii),uniformly
w.r.t. εe(0, 1/2). Passing to the limit as ε-»0+ one obtains

00

p1 (<Λ ^ _ Aιs j ^
•*• ε v / ε-^0 / j

n = 0

We have arrived at the representation formula

(A + B)isx = Ais(I 4- K)isx + — I (- λ)isS(λ)xdλ, seU, xeX. (3.14)
2πiJΓ

(d) By means of (3.14) there follows A + BeEW(X) and

\\(A + B)is\\ < \\Ais\\ \\(I + K)is\\ + ϊ- I ^"Vd^DldAI

^ iviηe e -f ^e ,

since ^6^(0^+) by assumption, and

| |(/ + X) i s | | < C(η) sup |(1 + z)is\ = C(η)eiη+φ)W,

where φ = arcsin β. The proof is now complete. •

4. Proof of theorems A and B for Ω = Rn

(i) Constant coefficients.
First we consider only the main part of Ep with constant coefficients.

P R O P O S I T I O N 4 . 1 . L e t l < p < o o , n > l , α m / /e/ α = (ajk) be a real
symmetric positive definite matrix, i.e. a0 < aξ ξ < aQ1 for all ξeffi" with
\ξ\ = 1, where ao>0 is a constant. Then the operator Ep= —a:V2 with
@(EP)= W2>p(lRn) belongs to the class BIT (Lp{Rn)), in particular JT(Ep) = Q
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and 0ί{Ep) = U(Un). Moreover, φEp = θEp = 0, σ(Ep) = [0, oo) and there are

constants K1 = Kx{p, a0, ή), K2 = K2(p9 aθ9 ή), K3 = K3(p9 a0, ή) such that

\λ\~ι for all Reλ>0

(1 + \λ\/\Imλ\)1+[nl2^/\Imλ\ foralllmλΦO,

< K2{\ + \y\)ί+[nl2] for all ysR, (4.2)

| | F 2 u | | p < K 3 | | £ p u | | p for all us2{Ep). (4.3)

PROOF. This lemma follows by applying Mikhlin's multiplier theorem
[20], Theorem IV. 3.2. Consider the Fourier transform

5(0 = ̂ ( 0 = Γ ° V «u(x)<ix, ξeR",
J — oo

in the sense of distributions. Then we have (λ + Ep)u = f if and only if
(λ + αξ ξ)iϊ(0 = /«) , i.e. -fi(ί) = mA(0/(ξ) where mA(0 = (λ + αξ {)"'. Thus
we get — λep(Ep) if and only if mλ(ξ) is an LP-multiplier. Since boundedness
of mλ(ξ) is necessary for the latter we obtain [0, oo) a σ(Ep). Let Re A > 0;
then

\λ + aξ ξ\2 = (ReA + aξ ξ)2 + (ImA)2

>\λ\2 + a2\ξ\\

and therefore |mΛ(ξ)| < Iλl"1, for Re A > 0. Moreover we also obtain

|{| | β | |θ mA(f)| ^ C J A Γ 1 for all {eR", αef^J, ReA>0,

where Cγ = Cidαl, a0) > 0. The Mikhlin multiplier theorem now yields

liμ + BpΓMl^KiUΓ 1 for all ReA>0,

where Xj = Xi(αo> P> n) > 0. On the other hand, for ImA^O, we have
similarly

\λ + aξ-ξ\ = [(Re A + α£ ξ)2 + (Im A)2]1/2

hence \mλ(ξ)\ < 2/|ImA|. In addition one gets

|ξ | | α ' |δαmΛ(ξ)|<C 2(l + |A|/|ImA|)|α|/|ImA| for all {eR", αeNJ, ImA^O,

where C2 = C2(|α|, α0) > 0. The multiplier theorem then implies

II(A + EpY
ι II < Kx(\ + |A|/|ImA|)1+[w/2]/|ImA| for all ImA ^ 0
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where Kί = K^a^, p, ή) > 0 possibly has to be enlarged. This proves

σ(Ep) = [0, oo) as well as (4.1).

Since aξ • ξφ 0 for ξ φ 0 we obtain JT(Ep) = 0; reflexivity of Lp(Un) and

(4.1) then imply also M(Ep) = Lp(Un).

T h e mult ipl ier for Ep

y is given by (aξ ξ)iy = eiylo*iaξ'ξ), ξ εUn, yeU. W e

have \(aξ.ξ)iy\ = l a n d \ξ\^ \d«{aξ • {)* | < C 3 ( | α | , ao)(l + \y\P where α =

(a1,...,<xn)eNo, | α | = α 1 + α 2 H h αΛ. The multiplier theorem now yields

(4.2).

To prove (4.3) it is enough to show that d^E'1 is bounded in LP(Un)

for j , fc = 1, 2,....n. This follows again by the multiplier theorem. The

corresponding multiplier is mjk(ζ) = — ξjζk/aξ ζ and we obtain | £ | | α | |<9amj7c(<i;)|

< C 4 ( | a | , a 0 ) for all ζeUn

9 oceNn

0. This yields (4.3) and the proof is

complete. Π

(ii) Variable coefficients of small deviation

In the next step we consider the main part of Ep when the coefficients are

variable, but their deviations from α00 = l i m i ^ ^ ^ x ) are small.

PROPOSITION 4.2. Let l<p<oo,n>l,0<θ<π; suppose a(x) = (ajk{x))

is a real matrix, xsRn, which satisfies (Al) and (A2) for Ω = Mn with a0 > 0,

0 < α < 1, α00 = {afk), and consider the operator Ep= - a: V2 with @{Ep) =

W2>p((Rn).

Then there is a constant η = η(θ, p, α 0, n) > 0 with the following properties.

If \\a- α 0 0 ! ^ = sup{\ajk(x) - a%\:xeRnJ, k = 1, 2,...,n} < η9 then_Ep belongs

to BTP{U{Rn))\ in particular Ep is closed, JT(Ep) = 0, and 0t(Ep) = U{Mn).

Moreover, φE < θ, θEp < θ, σ(Ep) a Σθ, and there are constants Mι = M1(θ, p,

a0, n), M2 = M2(θ, p, a0, n), M3 = M3(p, a0, n) such that

EPr
< M2e

βM

M3\\Epu\\p

for all λeΣπ_θ,

for all

for all

yeM,

ue®(Ep).

(4.4)

(4.5)

(4.6)

PROOF. We write Ep in the form Ep = A + B considering B as a small

perturbation of A and apply Proposition 3.1. Let A, B be defined by

@{A) = g){B) = W2<p{Un), {Au)(x)= - α 0 0 : V2u(x), (Bu)(x) = b(x): V2u{x), where

b(x) = — α(x)H-α°°. Then A has the properties of Proposition 4.1 and we

may apply it to the result | | μ + A)" 1 ! ! ^K^λΓ1 for all λeΣπ_θ, \\Aiy\\ <

K2(l + \y\)1+[n/2] for all yeU, \\V2u\\p < K3\\Au\\p for all ue@(A), where

Kl9K2,K3>0 are as in (4.1), (4.2), (4.3) but Kx depends also on θ, now.

In particular,
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lp with y=\\b\\ooκ3,

and therefore, we find a constant η = η(θ, p9 a0, n) > 0 such that || fe || ̂  < yy

implies y < ( l H - X 1 ) ~ 1 and arcsin y<θ/2. Assumptions (i) and (iii) of

Proposition 3.1 are therefore satisfied.

The essential step is the verification of the commutator relation (ii) of

Proposition 3.1. It is sufficient to show it in the special case A = — A =

— (d\ H V cl) since the general case can be reduced to this one by an

appropriate linear coordinate transformation. Under such a transformation

properties (Al), (A2) remains valid with the same constant 0 < α < 1.

Supposing now A = — A we can express (λ + A)'1 as a convolution integral;

cp. [14].

kn(\x-y\y/λ)f(y)dy,
Jfίn

where

kn(z) = Cn Γ* r»-ie-
zVγτ7~2 dY for Rez > 0, n > 2,

Jo Λ/1 + Γ2

kn{z) = e~z for R e z > 0 , π = 1.

Observe that kn(t) is positive and nonincreasing for t > 0, and |fen(z)| < /cπ(Rez)

for Rez > 0, J j kn(r)rpdr < oo for all p > n - 2. Using Assumption (A2) we

obtain the estimates

\bjk(x) - bjk(x - y)\ < C\y\\ \bjk(x)\ < C\xΓ for all x9 yeM",

where C > 0 is a constant. A direct calculation yields for fe W2tP(Rn)

j,k=l

and using Young's inequality for convolutions we get

1 ί kH^\y\^\λ\cos^j\y\'dy

<C2\λ\-ι\\Af\\p\ kn{r)rn-χr*\λ\ UrKC^λf1 *2\\Af\\p for all λeΣπ_θ9

Jo

where C l 5 C 2 , C 3 > 0 are constants. This yields (ii) of Proposition 3.1 for
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Next we prove the commutator relation for 0 < \λ\ < 1, λeΣπ_θ. We

obtain \\B(λ + Ay1f-(λ + Ay'BfW^ 11501 + 4 ) " % + \\{λ + AyιBf\\p and
use interpolation inequalities, similarly as in (2.2) ~ (2.4). Here we choose

^ ^ 1 1 1 n n
Pi> P> Pi > P s u c h t h a t - = 1 > Pi > ~\ setting o = — we obtain

P Pi Pi α 2 p 2

0<δ<-andδ(~--) + (l-δ)- = —. Using p2 > - , (A2) yields
2 \p nj p Pi α

oo, hence by Holder's inequality and the interpolation inequality [7]

\\B(λ + A)-'f\\p < Cx \\b\\P2\\{λ

2\

and by (4.3)
< c2\\r2(λ + Ay'v2/^ n μ + Ay1v2f\\1

p-\

\\V2{λ + A)-'V2f\\p < C3\\A(λ + A)~1V2f\\p < Cjr2f\\p < C5\\Af\\p9

||(A + A)~'V2f\\p < C6\λ\~' \\V2f\\p < CΊ\λ\~1

and therefore

A similar estimate holds for ||(λ + ̂ ) ~ 1 B / | | p . In this case we choose

c α 1 1 1 n J\ 2.
p 2 > Pi > 1, 0 < 5 < - such that — = - + — , px<p, p 2 > - , δ\ +

2 Pi P Pi α VPi w,

(1 - <5)— = - , i.e. again δ = . Then
Pi P 2p2

< C 1 | | F 2 ( A + A)- 1B/| |* 1 | | (A + ,

= C2\λrι \\Bf\\Pι < C,\λ\δ'1 \\b\\n W
2f\\p

< CA\λ\δ~ ι\Af\\r

This implies (ii) of Proposition 3.1 for 0 < |λ| < 1, and so we conclude that

(4.4) and (4.5) are valid.

To prove (4.6) note that with | |BM| | P < γ\\Au\\p for all ue W2 "(W) and

γ < (1 + Kj)'1 < 1 we also obtain

|| Au + Bu||p > || Au\\p - | |Bu\\p > || Au\\p -y\\Au\\p

\\r « llp

Proposition 4.2 is proved. Π

REMARK 4.3. Proposition 4.2 remains valid if \a(x)-acc\< C|x |~α( |x | > 1)
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in Assumption (A2) is replaced by the following weaker condition: There

exists some ye(l, oo) with y > p9 y > p' = , y > - and a( ) - α°°eLr(ίR").
p- 1 2

Then we can choose p2 = y in the above proof and all conclusions remain true.

(Hi) The general case. Proof of Theorems A and B for Ω = Rn

Let Ep = - a\ V2 + b F + c be the general elliptic 2πd-order differential

operator for Ω = Un, let 0 < θ < π, assume (A 1), (A2), (A3), and the resolvent

estimate (2.8), for the proof of Theorem A. We carry out a localization

procedure and apply Proposition 4.2 locally. Let η = η(θ, p, aθ9 n) > 0 be the

constant of Proposition 4.2, and BR(x) = {yeUn: \y - x\ < R}.

(a) First choose a large ball BR(0) such that |α(x) — α°°| < ^/2 for |x | > K

and let Uo be its complement. Since BR(0) is compact there are finitely many

balls Brι(xx)9 Br2(x2),...9BrN(xN) such that Un = UQUB^X^U ~-[)Brit(xN) and

\a(x)-a(Xj)\<η/2 for all xeBrj(xj)9 j = 1,...,JV. We set Uj = Br.(xj) and

choose functions φjeC^iM") such that 0 < ψj < 1, supp φj c \j. for; = 0, 1,...,

N and Σ"=o(Pλχ)= ! f o r a 1 1 ^^[Rw. Observe that φo(x) = 1 for large |x|,

say for |x| > Ro> R. Within each of the sets Uθ9...,UN we extend a(x) to

all of Un by reflection at the boundary; these extensions will be denoted by

aj. Then each aj satisfies (Al), (A2) with the same values of αe(0, 1) and ao,

and αJ'°° = lim|JC|_>oofl
 /'(x) = a(Xj). Define the local operators El

p for; = 0, 1,...,

N by means of

(Epu){x) = - ^'(x): V2u(x), xeUn

9 for ue@{Ej

p) = W2>p(Mn).

Then the assertions of Proposition 4.2 are valid for each EJ

p, j = 0, 1,...,N.

(b) Now we use (2.8) and consider the equation

λu + Epu=f

with feLp(Rn)9 λeΣπ_θ. We write this equation in the form

λu — a: V2u = f — b'Vu — cu

and multiply with φj9 j = 0, 1,..., N. Setting Uj = ψjU we get a: V2u} = aj: V2uj

= aj: V2(q)jU) = (a\ V2φ^u + 2α(PφJ ) Vu + φ^ α: P2w and obtain the local

equations

λuj + fy + £ > 7 = φjf + Ff (α, ft, c, F)ii, ; = 0,..., ΛΓ, (4.7)

where <5e[0, 1], F?(α, ft, c, F)w= - φ ^ ft Vu-(PjCU-2a{Vq)j) (FM) - ( α : F 2 φ 7 )M

+ δψjU. Observe that supp ^ c ί7; implies Ej

pUj = —a: V2u>y Proposition

4.2 yields Σ π _ θ c p ( - £j), hence applying (>i + (5 + i φ " 1 to (4.7) and summing

over j leads to the identity
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(λ + £ , ) " 7 = Σ (λ + δ + E^)" 1 {q>jf+FSj(a9 b9 c, V)(λ + E^1/}. (4.8)
; = o

By (4.4) we have ||(λ + δ + Eft'1 \\ < Cj(\λ\ + δ)'1 for AGΣπ_β and some

constants Cj>0. In order to estimate Fj(a, b, c, V)(λ + Ep)~ιf we apply

(2.2), (2.3), (2.4) and 2 a ( ^ ) e L r ( R n ) , (a: F2φ,.)GLs(Rπ) with r = rk and s = s,

in (A3); here we used Uα||^ < oo and compactness of supp Vφ-r

(c) Next (2.8) implies the estimate

\λ\ \\u\\p + | | t i | | p + \\V2u\\p < C\\(λ + £ > | | p , ue@(Ep), λeΣπ_θ, (4.9)

for some constant C > 0. With p, τ as in (2.2) ~ (2.4) this leads to

| | F > , b, c, V)u\\p < \\(φjb + 2a{VΨj))'Vu\\p + ||φ/c + δ)u + (a: V2

φj)u\\p

^ C J I ^ i i l i i l i i l l ί ^ + Q I I F ^ I i i l f iHίΛ

hence by (4.9)

II Fjte 6, c, n μ + £p)"7llp < c3(^ + μ i r ' 11/11, + c4(a + μ i r J ||/||p.
(4.10)

With Fδ

λf= χ ; = o μ + Eiy'Ffa, b, c, V)(λ + E,)-1/, and (4.4) for each;, and

(4.10), we obtain

\\F{f\\p < C(\λ\ + (J)' 1^ + μ i r x + (δ + μi p

(4.11)

where 0 < p, τ < 1.

(d) For the proof of Theorem A, (4.11) with δ = 1 is sufficient to estimate

£^;for the proof of Theorem B we obtain (4.11) with δ = 0 for μ | > 1,

replacing (2.8) by (2.10) and (2.11). Near 1 = 0 we have to estimate F°λf

differently, here assumption (A 4) comes in.

From (A 2), (A3), (A 4), and compactness of supp Vψj we get b0 = b

+ 2aV(pjeLr(Mn)nL9(Mn), for some numbers r < n < r, and therefore boe

U(Un) for all γe[r,r]. In virtue of f<n<r it is possible to choose

κe(0, 1), μe(^, 1), such that K + μ > 1, ye[r, r ] , pί9 p2e(l, oo) such that ί/p =

κ{l/Pl-2/n) + {l-κ)/pl9 1/^ = 1/7+1/^2, l/p2 = 1/n + μ(l/p - 2/n) +
(1 — μ)/p; the interpolation inequality then yields with u = (λ + Ep)~ι f

I μ ^ ) l f e < c x | | r
2 μ + ̂ - ^ o 1

1 \\F2(λ + fi^-VllS IIW +
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A similar estimate holds for ψjCu(aF -Fφ^u, and so we obtain with (A4)

(4.12)

where j?e(O, 1) and C > 0 are constants,

(e) Now we use the decomposition

(λ (4.13)

to obtain the desired estimate for the imaginary powers of Ep. In fact, (3.12)

for B = 0 yields

Eι

p

yf = £ (δ Y'iφjf) + lim -L f ft(λ y e R, (4.14)

where ^e(λ, y) = ( - λ)iy+ε(ε - A)"2ε and Γ = (oo, 0]e" ί ( π- d )u[0, oo)eί(π"β) as in

Section 3. By Proposition 4.2 we have \\(δ + ^ ) ί y | | < MJ e
β|y l, ye(R, hence the

first term of (4.14) is estimated. For the second term observe that | |F* | | is

integrable along Γ by (4.12) and (4.11), hence by the dominated convergence

theorem

lim-L f gB(λ; y)F{fdλ = -L f (- Xf'F'fdλ
«-0 2πiJ Γ p 2πιJΓ

\\Fδ

λ\\\dλ\

Dand so Theorems A and B are proved for Ω =

REMARK 4.4. The above proof shows that for Theorem A to be valid,

the lower order term b Vu + cu instead of (A3) needs only satisfy an estimate

of the form

cu\\p<C\\V2u\\l\\u\\p-\ ueW2>p(Un), (4.15)

for some y e [ 0 , 1). Theorem B remains true if b-Vu + cu satisfies (4.15)

instead of (A3), (A 4) and in addition

\\bVu^cu\\Pi<C\\V2u\\β

P\\u\\ι

p-
β, (4.16)

for some j8e(O, 1], px < p such that β + -( ) > 1 and -( I < 1.
2\Pi pj 2\
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5. Proof of Theorems A and B for Ω = Un

+

This case can be reduced to the previous one by the reflection

p r i n c i p l e . L e t Rπ+ = {x = (xί9...9xn): x1 > 0 } , 1 < p < oo, ueLp(Un

+). A n

o d d e x t e n s i o n uoeLp(Un) of u is def ined b y w o (*i> x2i...,xn) = u(x) for x x > 0,
w o ( * i > χ 2> >*π) = — u(— * i> ^2» »x«) f ° Γ * i < 0 ; a n even e x t e n s i o n w e e

LP(M") of w is def ined b y ue(xl9...9xn) = u{x) for x t > 0, ue(xu x2,...,xn) =

u(- xl9 x2,...,xπ) for xx < 0. We call w0 an odd and ue an even function of

Lp(Un). Let L^d(Rπ), W^/ίR") be the subspaces of odd and Lp

eυen(Un)9 W2

vfn(Un)

the subspaces of even functions of Lp(Un)9 W2'p(Mn), respectively; they are

isomorphic to Lp(Un+)9 W2>p(Mn

+), respectively. Observe that ueW2

dd

p(Un)

yields w = 0 on dUn+ while ueW2

vfn(Un) implies uXι = 0 on U\ hence odd

resp. even extension to R" reflect Dirichlet resp. Neumann boundary

conditions.

Consider the operator Ep= -a: V2 + b V + c in Theorem A for ί2 = R +,

assume (Al) ^ (A3) with constants α, rfc, sk such that 0 < α < 1, rfc > p, sk > p,

rk > n, sk> n/2 and let (2.8) be satisfied. We construct an extension

Ee

p = - ae\ V2 + be V + ce of £ p in such a way that ®(£$ = Wς2/(RΛ) is

mapped into Lp

odd{Un) and the Assumptions (A1)~(A3) are preserved in

Un. For this purpose we let ae

jk for) = k = 1, and;, /c = 2, 3, . . . ,H, ί?|, b%,...,be

n

and ce be the even extensions of αjfc, b2,...,bn and c. The mixed coefficients

alk = akί(k = 2,...,ή) and 2^ have to be extended oddly. For continuity

reasons, ae will then fulfill (A 2) if and only if the following condition holds

% W = % W = 0 for all xedU\ = {xeUn: xx = 0}, /c = 2,...,n.

(5.1)

Under this restriction on a(x), (Al) ~ (A3) remain valid for a\ and so Theorem

A follows for Ω = R+ from the corresponding result for Rw. In the same

way we see that Theorem B follows for Ω = R + under this restriction.

To remove (5.1) we construct a diffeormorphism of R+ onto itself leaving

the boundary invariant, which induces a similarity transform S of Ep in such a

way that the coefficients of SEpS'1 are subject to (5.1). This is the main

task of this section.

(a) Let us first recall some general properties of variable transformations.

So let Ω a Rn be a region with dΩeC2, and let geC2(Ω; Un) be injective

and such that its Jacobian Dg(x) satisfies η < \detDg(x)\ < η'1, xeΩ, for some

η>0; if Ω is unbounded we require in addition the existence of Dg(co) =

l i m j ^ ^ D ^ x ) , and boundedness of D2g(x). Such transformations will be

called admissable in the sequel. If g is admissable let Ω9 = g(Ω); then

Ω9 = g(Ω), dΩ9 = g(dΩ), g is invertible and g~γ enjoys the same properties
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as g, i.e. is admissable as well.

Given a function v: Ω9 -• Un define (Gυ)(x) = υ(g(x)); then Gv:Ω->Un

and u = Gv satisfies

= Σ ^(^W)fe,W» xefi, (5.2)

π n

uXiXj(χ) = Σ vyk(9(χ))gkXixM) + Σ ^ t o M )
* = 1 k,l=l

Therefore we obtain

(Eu)(x) = - Dg(x) a(x) Dgτ(x): V2v(g(x))

+ (D^(x)fc(x) - D2g(x): a(x)) F>fo(x)) + c(x)Ό(g(x))9 xeΩ,

i.e. operator G transforms a second order differential operator £ on β to

E9 = G~XEG defined on Ω9 with coefficients

= (Dg a Dgτ)og-\y\ b9(y) = (Dg b - D2g: a)og^{y)

(5.3)

Obviously, Dirichlet boundary conditions are transformed to Dirichlet

conditions since dΩ9 = g(dΩ). But also a conormal derivative of u at dΩ is

transferred to a conormal derivative of υ at dΩ9, since an outer normal S(x)

oϊ Ω at xsdΩ is transformed to an outer normal S9(y) of ί2^ at y = g(x)edΩ9

via the rule

99(g(x)) = [%(x)]Γ5(x), x e δ β . (5.4)

Equation (5.3) shows that the ellipticity constant α0 appearing in (Al) remains

unchanged under an admissable variable transformation g. Also, since

Dg,Dg~ι, det g, det g'1, D2g, D2g~1 are bounded, the change of variable

formula for the Lebesgue integral shows that G induces isomorphisms

Gp: Wj>p(Ω9)^Wj>p(Ω) for each pe[1, oo],j = 0, 1, 2. Thus for an admissable

variable transformation g, the ί/-realizations Ep of £, resp. ££ of E9 are

similiarity transforms of each other, i.e.

E9

p = G;ιEpGp. (5.5)

Therefore spectrum and resolvent set, in particular the spectral angle remain

unchanged and

(λ - E9,)-1 = Gp~\λ - Ep)-'Gpi λep(Ep) (5.6)

shows that the resolvent estimates (2.8) or (2.10) are satisfied simultaneously,

only the constants C, Cγ may be different. From (5.6) we then obtain
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(5.7)

and so Ep and E9

P admit bounded imaginary powers simultaneously, and their

power angles are equal.

(b) Now let Ω = R+ = R + x R""1 be the right halfspace; it is convenient

to write (ί, x) for the variable in Ω, and to split the coefficient matrix α(ί, x) as

α(ί, x) = ( ° 1, where α o eR, a1eUn~1, a2eU(n~1)2

Vfl^ί, x), a2(t, x) /

We want to construct a variable transformation g(t9 x) such that a9 satisfies

α^(0, x) = 0. For this purpose we let g{t, x) be of the special form

g(t,x)= I m

 l ) , ί > 0 , X G R " " 1 , (5.8)

where αf, α j are the limits of al9 a0 as |(ί, x)| -» oo; here ^ e C ^ ( R ) is such

that φ{t) = 1 for of | ί | < ί0, ̂ (ί) = 0 for | ί | > 2t0, 0 < φ{t) < 1, and ί0 will be

fixed later. With

- ( g J ) (5 9)

and gfo(0, x) = 0, it is easily verified that a9 satisfies a{(0, y) = 0 if

)Λfa(0, x) + fl!(0, x) • Vhk(0, x) = α u (0, x) - αo(0, x ) ^ ,
α 0

for all x e R " - 1 , fe = l , . . . , π - 1. (5.10)

We shall construct the functions /zk in such a way that

M0,x) = 0 , y 0 , x ) = 4(x), X6R"" 1 , k = l , . . . , π - l , (5.11)

where

4M = ^ ^ - % *6R-Mk-1,...,»-1. (5.12)
αo(^> ^) αo

If functions /zkeC2(R + ) can be found such that (5.11) holds, then g will be

admissable provided ί0 is chosen small enough, since det Dg = det(/ — ψPh)= 1

for t = 0.

(c) Let {P(ί)}ί>o denote the Poisson semigroup defined by
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(P(t)f) (x)=\ p(t,x-y)f(y)dy, xeU"~1,t>0, (5.13)

where the Poisson kernel p(t, x) is given by

p(t, x) = Γ(n/2)π-"l2t{t2 + \x\2y"2, xeR"" 1 , t > 0.

The Fourier multiplier corresponding to P(t) is

p(ί, {) = e- | 4 | f, ί > 0 , 1

It is wellknown that P(t) is a bounded analytic Co-semigroup in C0(W~ι),
the space of continuous functions / : R""1 -* C vanishing at infinity, and that
the following estimates hold.

\P(t)fL<\fL, t>0,fεCo(W-1) (5.14)

\rP(t)fL +
d

t>0,feCo(Un-1) (5.15)

t > 0, /GCSίffT-1). (5.16)+

Here and below we use the notation | \p for the norm in Lp(Un *), 1 < p < oo,
and I |α>00 for the norm in C^R""1). (5.14) ~ (5.16) can be obtained directly
by estimating the Poisson kernel.

(d) We are now in position to define the functions hk we are looking
for. Note that dkeCa

0(Un) by (A2). We set

hk(t, x) = t(P(t)dk)(x), ί > 0 , x e i r - 1 , Jk = 1 τi — 1. (5.17)

Obviously hk{0, x) = 0, and hkt(t9 0) = t(d/dt)P(t)dk + P{t)dk shows hkt{0, x) =
dk(x) by (5.16). Moreover, we have the following estimates which are implied
by (5.14) to (5.16).

U )loo + IM*, ) ~ dkL < ct\ t > 0; (5.18)

W2hk(t, )loo + IPMί, Olco + IΛ f̂e ')L<ce-\ r > o . (5.19)

Unfortunately, (5.18) and (5.19) are not enough to ensure that g defined by
(5.8) with h given by (5.17) is an admissable transformation in the sense of
(a) of this section. All conditions for admissability are fulfilled, except for
geC2(Mn+). In fact, in general g cannot be C2 since this would require
dkeCl. However, as shown below, the arguments presented in (a) can be
modified in such a way that the similarity transform G still works, and so
enables the reduction of the case ^(0, x) # 0 to a\(0, y) = 0.



186 Jan PRUSS and Hermann SOHR

(e) The similarity G will in general not leave W2'p{Un+) invariant, unless

α > l - l / p . However, we still have G e i ? (W2>p{Un

+)r) W0

Up(Rn+))9 as the

following estimate for u(t, x) = v(g(t9 x)) shows. By (5.19) we obtain

\Vv(t9 )D2g{U ) \ p < \ V v { U -)\p-\D2g(t9 • ) ! .

Kcf-^VυiU ) \ p , t>t0, (5.20)

and with v(0, y) = 0,

\Vυ(t9 -)\<\Fv(0, ) I P + f W * -)\pds
Jo

<Ltιlp'\\Vυt\\p9 t>0. (5.21)

Hence for each α > y > 0 we obtain

α2ίo \ l / p

|Fι;(ί, )D2^(ί, Oi ώJ

Q2ίo \ l / p

)QQ2ίo

|Fι;(ί,

and therefore

\\rvD2g\\p<C\\Vvt\\1

p-
γ\\rv\\l9 for each 0 < y < α, (5.22)

since (α — 1 + (1 — y)/p')p/(l — y) > — 1. This estimate shows that G maps

the domain D(£p) = W2>p(Rn

+)[) W0

Up{Un

+) onto W2'p(Rπ

+)n Wj 'iMt), i.e. ®(£p

= PΓ2'p(IRπ

+)n WotP(Rn+) again. Moreover the choice γ = 0 in (5.22) shows also

that estimate (2.11) is preserved under G; recall η < det # < η'1 for some ŷ > 0

by choice of ί0 > 0.

By the properties of h it becomes apparent now that (Al) to (A4) are

preserved under G, as are the resolvent estimates (2.8) and (2.10), as well as

(2.11), provided we exclude the perturbation term - (D2g cήog'1^) arising

in E9

p by the chain rule; cp. (5.2). This term cannot be shown to be subject

to (A3) and (A4) without additional restrictions on p and α. However, (5.22)

with y > 0 shows that this term is still subordinate to the main part of E9

p,

namely -a?V2, and so (2.6) is still valid for this perturbation term;

cp. Remark 4.4. Since (2.6) was the only property of the lower order terms

needed in the proof of Theorem A for Ω = IR" in Section 4, we see by the
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reflection principle that Theorem A is also valid for Un

+.

Concerning Theorem B, observe that we only need to know that the

following estimate holds, by Remark 4.4.

\\VvD2g\\Pι <C\\V2υ\\p, ve W2>p(Un

+)() W0^
p(Un

+), (5.23)

1

Pi < p. Since dkeLq(Rn~1) for all q> by (A2), by interpolation we

obtain dkeD{Qt

q

q), otq < α , where Qq denotes the negative generator of

the Poisson semigroup in L^IR"" 1 ). This implies \D2g{t, -)\q<Ctaq~x, for

all q > . With l/p1 = 1/p + 1/q we therefore obtain by (5.12)

α

\Vv(t, ) D 2 g ( t , ' ) \ P i < \ V v { U ' ) \ P \ D 2 g ( t , - ) \ q < Ct^1 \Vv(t, ) l .

hence (5.23) is valid provided p t(α - 1 + 1/p') > - 1, which means q >

(n — 2)1 OL. Thus Theorem B is proved for the halfspace R+ as well. In

particular, we have extended Proposition 4.2 to the half space case.

PROPOSITION 5.1. Let 1 < p < oo, n > 1, 0 < θ < π; suppose a(x) = (ajk(x))

is a real matrix, xe R\, which satisfies (Al) and (A2) for Ω = R\ with a0 > 0,

0 < α < 1, α00 = (afk), and consider the operator Ep= - a: V2 with @(Ep) =

W2'p(Rn)(]W0

Up(lRn

+).

Then there is a constant η = η{θ, p, a0, n) > 0 with the following properties.

If \\a- ίHloo = sup{|β,k(jc) - a%\: xeRnJ, k = 1, 2,...,n} < η.jhen Ep belongs

to nW{Lp{R\))\ in particular Ep is closed, Jί{Ep) = Q, and @(Ep) = Lp(Rn

+).

Moreover, φEp < θEp < θ, σ(Ep) a Σθ, and there are constants Mx = Mλ(θ, p,

a0, n), M2 = M2(θ, p, a0, n), M3 = M3{p, a0, n) such that

\\{λ + Ep)-'\\ < MJ\λ\ for all λsΣπ.θ, (5.24)

\\Eρ

y\\<M2e
θlyl for all yeR, (5.25)

\\V2u\\p < M 3 n^iill^ for all ue@(Ep). (5.26)

6. Bounded and exterior domains

Before we prove Theorems A and B for bounded and exterior domains,

we apply Proposition 5.1 and an admissable variable transform to derive the

corresponding result for curved halfplanes.

PROPOSITION 6.1. Let 1 < p < oo, n > 1, 0 < θ < π, and assume he
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C 2 ^ " " 1 ) , Vh, V2h bounded, and Mm^^Vhiy) exists. Define Ω a Rn by

Q = [x = (t9 y)e R x Rn'ι\t> h(y), yelRn~1}. Suppose a{x) = (ajk(x)) is a

real matrix, xeΩ, which satisfies (Al) and (A 2) with a0 > 0, 0 < α < l , α°° =

= (lim| J C |_o oα / f c), and consider the operator Ep = — a: V2 with @(Ep) =

Then there is a constant η = η(θ, p, a0, n) > 0 with the following properties.

If He - fl^llαo = sup{|fl;Λ(x) - αj ϊ | : x e f l , j , fc = 1, 2,...,n} < *j, rte/i £ p belongs

to BIV(LP(Ω)); is particular Ep is closed, Jί{Ep) = 0, and m{Ep) = U{Ω).

Moreover, φEp < θ, θEp < θ, σ(Ep) a Σθ, and there are constants Mι =

M^θ, p, a0, n, h), M2 = M2{θ, p, a0, n, h), M 3 = M3(p, a0, n, h) such that

WE' W

WMP<

II

l<

M

<MJ\λ\

M2e
βM

3 I I V UP

for all λeΣπ_

for all yeϋ,

for all ue3)(E

β>

)•

(6.1)

(6.2)

(6.3)

PROOF. The map g(t, y) = (t + h{y), y) defines an admissable variable

transformation of Un+ onto Ω in the sense of (a) of Section 5. Therefore the

result follows from Proposition 5.1. •

After this additional preparation we consider now the operator Ep defined by

(2.1) on a bounded or exterior domain Ω under the assumptions of Theorem

A or B. Let 0 < θ < π be fixed such that (2.8) resp. (2.10) and (2.11) are

satisfied. The localization procedure is carried out as in Section 4 (iii) with

some modifications which are due to the presence of the boundary of Ω. As

there, a decomposition Ω = UoU Uί U U UN is obtained, where U1,...,UN are

the intersections of balls with Ω and where Uo is absent if Ω is a bounded

domain some of these sets intersect the boundary. As in Section 4 we choose

cut-off functions φ i eC c 0 (R") for = 0, 1,...,JV such that 0 < φ} < 1, supp

(PjβUj and £ ^ = 1 Ψj(x) = 1 for all xeΩ; observe that φ0 = 1 for say |x| > R.

Then consider the equation

λu + Epu=f

where λsΣθ_π, feLp\Ω), ue@(Ep), i.e. u = {λ + Ep)~ιf. Multiplying by φ}

and setting Uj = ψjU, Fj(a, b, c, V)u = — ψjb Vu — φfu — 2a{Vφj)(Vu) —

(aF2(Pj)u, we obtain as in Section 4 the local equations

λuj + Eρuj = ψjf 4- Fj(a, b, c,V)u, j = 0,..., N, (6.4)

where EJ

pUj= -a: V2Uj. The local operators Ej

p are defined as in Section 4

in case Uj does not meet the boundary dΩ; otherwise they are defined by

EJ

p = GjEyGf1, where Gj denotes the similiarity transform induced by the

C2-regularity of the boundary dΩ, i.e. for these indices j , Eρ are the operators
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corresponding to curved halfplanes; cp. Proposition 6.1.

This leads as before to the following representation of (λ + Ep)'1.

(λ + Epy
1f= Σ (λ + δ + Eίr^φjf+Ffa b9 c, V){λ + EpΓ'f) (6.5)

Since according to Propositions 4.2 and 6.1 the essential estimates for the

local operators are still valid we may now follow the proofs for Theorems A

and B given in Section 4 for the case Ω = Un.

7. Resolvent estimates

PROOF OF THEOREM D.

The proof relies on the localization procedure and a compactness argument

which is wellknown. Consider Ep as defined in (2.1) with coefficients subject

to (A1)~(A3), with constants rk>p, rk>n, sk>p9 sk>n/2. We use the

localization described in Section 4 and also employ the notation used there,

(a) If uεW2>p(Ω)0Wo

Up(Ω) is a solution of (λ + Ep)u = feLp(Ω)9 then

u= Σiλ + EίΓ^φjf+Fju}, (7.1)

where Fj = Fj(a, b, c, V) is as in Section 4.

By means of (2.2) ~ (2.6) we obtain for j — 0, l,...,iV the inequality

IIF^H^εll^ull. + ^l lu l l , , (7.2)

where ε > 0 is arbitrary. For the local operators Ej

p, defined in Section 4,

we use estimate (4.4) resp. its analog for the halfplane and for the curved

halfplane. Combining this estimate with (7.2) yields the following a priori

estimate for the solution u of λu + Epu = /

\λ\ \\u\\p + \\V2u\\p < C(\\f\\p + | M | p ) , 2 e Σ π _ θ , (7.3)

where C does not depend on / and λ. For |λ| large enough, this implies

injectivity and closed range of λ + Ep. On the other hand, (7.1) can also be

used to prove that λ + Ep is surjective for λ large enough. In fact, define

Te&{W2-p{Ω)nW0

ι-p{Ω)) by means of Tu = ^{λ + Epy'Fju; then (7.2)

implies the estimates

μ | | | T W | | p + | | F 2 Γ W | | p < β | | F 2

W | | p + C(ε)| |W | |p, for all ueW2>p(Ω)() W0^(Ω).

Choosing the equivalent norm ||u| | = η\\V2u\\p + ||w||p on W2>P(Ω)9 where

η > 0 is sufficiently small, for λ sufficiently large, T becomes a contraction,

and therefore (7.1) admits a solution. Therefore λ + Ep is invertible for
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λeΣπ_θ, \λ\ > R(θ), for some R{θ) > 0. The a priori estimate (7.3) then yields

the resolvent estimate (2.16), and so (a) of Theorem D is proved.

(b) Let λeC and we W2>p(Ω)f) W0

Up(Ω)) be a solution of λu + Epu = 0;

then with some ω > 0 we have (ω + Ep)u = (ω - λ)ue W2'P{Ω)(\ W0

Up(Ω) c

Lq(Ω) for all ge(l , oo) such that 1/p > 1/q > ί/p - 2/n. Choosing ω large

enough, by (a) we conclude we W2'q(Ω)n W0

Uq(Ω)); this shows that the null

spaces Jf(λ + Ep) are increasing with p.

Conversely, we show that the null spaces are also decreasing with p. This

is obvious if Ω is bounded if Ω is unbounded this is not true for λ < 0, as

the example of the Laplacian on Un shows. So let us assume that λφ( — oo, 0]

and (A4) holds. Suppose w belongs to the null space of λ + Ep. Then w

belongs locally to W2'q(Ω)f] Wo

lι9(Ω))9 for any q < p, so we need only consider

v = φu, where ^eC°°([Rπ) denotes a cut-off function which is one in a

neighborhood of infinity, υ then satisfies (λ + E)v = [£, ψ~\ u = g, where the

bracket indicates the commutator between E and φ; observe that g has

compact support, hence belongs to Lq(Ω), for any q < p. But for |x | very

large, £ is a small perturbation of A™ = - a™: P 2 , thanks to (A1)~(A4),

hence has spectrum contained in say Σ 0, θ small; see Proposition 3.1. This

then implies v = φuG W2'q(Ω){) Wo

ίtq(Ω))9 and so w belongs to the null space

of λ + Eq, q <p, as well. This proves (b).

(c) Next we apply a well known compactness argument to prove (c) in

Theorem D. Fix any small η > 0 we claim that the second term on the

right of (7.3) can be dropped, i.e. that the following estimate holds.

\λ\\\u\\p+\\V2u\\p<C(η)\\f\\p, A e Σ π _ θ , \λ\>η. (7.4)

Suppose the contrary and choose A Π eΣ π _ β , \λn\>η, une W2-p(Ω)f) W0

Up(Ω)),

fn = λnun + Epun such that μ j ||ii,II, + | |Γ 2 w| | p = 1 for n e N , and | | / J | p - > 0 as

w->oo. Then there is a subsequence (w.l.o.g. the same sequence) such that

λn-+λ, and un tends to some ue@{Ep) weakly in W2'P{Ω)() W0

Up(Ω)) as

n -• oo (7.3) yields w Φ 0. Since Ep is weakly closed we may conclude λu +

Epu = 0. This gives a contradiction to Jf(λ + Ep) = 0.

Thus by (7.4), the range of λ + Ep is closed for any λeΣπ_θ, and since

this operator is also injective it is semi-Fredholm. The continuity of the

Fredholm index (see e.g. Kato [12]) together with (a) then yield surjectivity. If

Ω is bounded we need not exclude λ = 0, by Poincare's inequality. This

proves (c).

(d) Assume in addition (A 4), and suppose first that (2.11) holds. Then

we can show again by an interpolation argument as in Section 4 that (7.4) is

also valid near λ = 0. In fact by (4.12) which remains valid for general

domains we obtain



Imaginary powers of elliptic second order differential operators 191

\\λ{λ + £ , ) " % < C(l + \λ\'\\λ(λ + £ , ) " % ) ,

for some β > 0. This together with (2.11) yields the resolvent estimate (2.18)

near λ — 0.

On the other hand, if 1 < p < n/2, then the compactness argument from

(c) of this proof still works near λ = 0. In fact, let λn,un,fn be as in (c),

except λn-+0, now. Then, by the Sobolev embedding theorem, we obtain

un^>u weakly in Lq(Ω), where \/q = l/p — 2/n. Again by (7.3) one obtains

u Φ 0 and Eu = 0. By assumption, ^K(£p) = 0, hence as in (b), by Proposition

4.2 and the Sobolev embedding one can deduce ^V(Eq) = 0, which as before

gives a contradiction. Thus (7.4) in this case also holds for η = 0. Finally,

by reflexivity of LP(Ω) this yields also 01 (Ep) = U{Ω). This proves (d) of

Theorem D. •

PROOF OF THEOREM C. If E = - Σlk=i djajkdk = - a: V2 + b V is of

divergence form then it is wellknown that E2 is a positive selfadjoint operator

with J^(E2) = 0, and σ(E2) <= [0, oo). Therefore Theorems A, B, and D yields

the assertions of Theorem C for the cases (i), (ii), and (iv).

In case (iii) we apply a duality argument. So let first 1 < p < n/2 and

apply Theorems B and D. Consider next the case of very large p, say

p > n/(n — 2). Then the adjoint exponent p' satisfies 1 < p' < n/2, hence

Theorems B and C apply to Ep . But due to the divergence form of £, we

have the duality relation Ep = Ep; this proves the result for p > n/(n — 2).

Finally, the Riesz-Thorin interpolation theorem yields the claims for all

intermediate values of p. The proof is complete. •
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