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1. Introduction

Nonlinear problems arising in industrial mathematics have been extensively
investigated for a long time. In the field of the reservoir engineering, there
appear interesting phenomena, which will be explained below. In order to
recover part of the remaining oil from wells (called production wells), it is
used the way that one injects a water into another wells (injection wells),
which are located around the reservoir, so that the water pushes the oil toward
the production wells, and then the oil can be recovered. In this process, two
immiscible fluids, water and oil, can be regarded as separated by a sharp
interface during the penetration of water into oil. By laboratory studies, it
is already known that the interface is unstable; small perturbations in the
interface grow up (see [2] or Fig. 18). This phenomenon is called the fingering
instability. When the area of water reaches the production wells, pockets of
by-passed oil are created, and water is produced from production wells, which
is economically unfavorable.

Similar phenomenon is observed in the Hele-Shaw cell involving flow in
thin gaps [14], and also observed in the flow caused by Rayleigh-Taylor
instability [16]. In the former, the interface between two immiscible fluids
becomes unstable and forms fingers, when a less viscous fluid moves slowly
between two parallel horizontal plates separated by a thin gap, in which a
more viscous fluid is filled. In the latter, the interface also exhibits a fingering
pattern, when a lighter fluid fails to support a heavier fluid against the action
of gravity.

Especially, to analyze the oil recovery process, mathematical models have
been proposed and studied from numerical points of view, where the capillary
pressure between water and oil is ignored ([8], [5], [6], [18] and the references
therein). In particular, the Buckley-Leverett equations, which consist of the
one hyperbolic equation and the two elliptic equations, are well known in the
petroleum literature. Glimm et al [8] show some numerical simulations for
these equations, and indicate the occurrence of the fingering instability.
Similar simulations are done in [5], [6] and [18], where the interface with a
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small perturbation grows fingers. From the analytical points of view, Chorin
[2] proves under some special initial and boundary conditions that the interface
is linearly unstable if u = p,/p, > 3 and is linearly stable if u < 3, where g,
and pu, are the viscosities of oil and water, respectively.

When water is injected with low pressure, it is known that the capillary
pressure plays an important role to determine the behavior of the
interface. So, we can not always ignore the capillary pressure. This situation
can be easily modelled by the equations by adding the effect of the capillary
pressure to the Buckley-Leverett equations. Dahle et al in [18] introduce
Petrov-Galerkin subdomain methods for the one dimensional problem and
show some numerical simulations with the low capillary pressure. However,
the effect of the capillary pressure to the interface is not discussed there.

Motivated the above results, we consider the behavior of the interface
when the capillary pressure becomes high. For this investigation, we first
consider the one dimensional problem from numerical and analytical points
of view. We carry on the numerical simulations in two cases where the
capillary pressure is zero and is high. The numerical simulations for large
values of u (more precisely, see Remark 9) give us the following suggestions:

la) The acceleration of the interface is positive when the capillary pressure
is zero;

1b) The acceleration of the interface is negative when the capillary pressure
is sufficiently large;

1c) The interface fails to move and may stop at some point when the
acceleration is negative.

We will prove la) and Ic) for an injection with negative pressure. However,
1b) has not been able to be proved.
Next, we consider the two dimensional problem. We numerically show

the following:

2a) The fingering instability occurs when the capillary pressure is zero;

2b) The fingering instability disappears when the capillary pressure is
sufficiently large;

2¢) The interface may stop and there may exist a steady state solution
when the negative pressure is given at the injection well.

The justification of these numerical results has not been yet done.

The outline of this paper is as follows. In the next section, we present
the basic equations, and introduce a one dimensional problem of these
equations, which is treated in Section-3. In Subsection 3.1, we propose a
numerical difference scheme and prove the boundedness and the monotonicity
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preserving of numerical solutions. In Subsection 3.2, using some interface
equation, we apply the idea used in [11] and [13] to constructing an
interface-tracking difference scheme, and prove the the boundedness and the
monotonicity preserving of solutions. We demonstrate some numerical
simulations in Subsection 3.3, and show la)-1c). We justify 1a) and 1c) in
Subsections 3.4 and 3.5, respectively. In Section 4, the two dimensional
problem is discussed from points of numerical simulations.

ACKNOWLEDGMENTS. The author would like to express his gratitude to
Professor Masayasu Mimura of Hiroshima University for his inspiring
suggestion and continued encouragement. He also would like to thank
Professor Kenji Tomoeda of Osaka Institute of Technology for his help to
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Professor Toshitaka Nagai of Kyushu Institute of Technology for his
stimulating discussion. The numerical simulations in this paper were made
on a computer FX/1 in Department of Mathematics, Hiroshima University
and workstations Sun 4/490 and Sun 4/1 in Fukuoka University of Education.

2. The basic equations

In this section, we introduce the basic equations to analyze the oil recovery
process. For this purpose, we write water and oil as fluid w and fluid o,
respectively. Let the saturation s;(x, t) be the fractional amount of fluid i
(i=w, o) at point x and time t. We denote by v;(x, t) and p;(x, t) the velocity
and the pressure of fluid i, respectively. Then the equations for the oil
reservoir problem are

(2.1) S+, =1,
0 :
(2.2) =V pivi = - (np;s), 1=w,o,
ot
Kk;
(2.3) U= — “(Vpi — pi9), i=w,o,
(24) Do — Pw = D¢

(see [1] and [15]). Here, p; and u; are the density and viscosity of fluid i
(i=w,0), n and K are the porosity and absolute permeability of the
medium. g is the gravity constant. k, = k,(s,) and k, = k,(s,,) are the relative
permeabilities of fluid w and o, respectively, and p. = p.(s,) is the capillary
pressure between two fluids. The forms of these functions are given by
experiments (see Remark 1).
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The equation (2.2) expresses the conservation of fluid i, and the equation
(2.3) is Darcy’s law, which means that the flow of i is proportional to the
gradient of its pressure. The last equation (2.4) is the balance law of pressures.

For simplicity, we assume that p;, u; (i =w, 0), n and K are uniformly
constants with respect to x and ¢, and that g=0. By putting s=s,,
v=v, + v, and p = p,, the equations (2.1)—(2.4) are rewritten as follows.

@2.5) £s+l7-[vf]——£l7-[f¢l7s]=0,
(2.6) V.v=0,
2.7) v=—[AVp — e¢Vs],
where
f=106)= k“’(s), A= As) = ky(s) + w, N
Als) I ™
k
66 = — D9 and = maxge,e P0S).
&

Here (2.6) follows from (2.1) and (2.2), and (2.7) is obtained from (2.3) by
replacing Ex by x. (2.5) is also obtained from (2.7), (2.2) and (2.3) by

w

K
replacing —t by t.
n

w
ReMark 1. It is observed by experiments [3] that p, is a monotone
decreasing function. For an example of explicit forms of k,, and k,, we take
these as

(2.8) k,(s) =s* and k,(s) = (1 —s)?,

so that

2.9) i =g+ 07 9 and 1(s) = s
7 A(s)

Taking the above information on p,, k,, f and A into considerations, we
can impose Conditions A, B and C on ¢, f and A, respectively.

CONDITION A. ¢ is a continuous function defined on [0, 1] and ¢(s) >0
holds for almost all se[0, 1].

CoNDITION B. f = f(s)e C2[0, 1] is a monotone increasing function such
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that
(2.10) fO=f1)=0, f0O)=0 and f(s)>0 0<s<1),
and there exists only one constant s*e(0, 1) satisfying
%

(2.11) 767 =f'(s%).

S*
For this constant s*,
(2.12) f"<0 on [s* 1]

holds.

ConDITION C. A= A(s)eC°[0, 1] is a poSitive function satisfying
(2.13) A(s) = A(s*) on [s*, 1],
where s* is the constant in Condition B.

We note that when A and f satisfy (2.9), Condition B holds with

s*=1//1+pu. When e¢=0, (2.5)—2.7) are called the Buckley-Leverett
equations [1].

We consider the one dimensional problem for (2.5)—(2.7) on xel =(0, 1)
and t > 0 under the boundary conditions

(2.14) s(0,t)=1, p(O,1t)=p* on t>0,
(2.15) s(,y=0, p(1,t)=0 on t>0,
with the initial condition

(2.16) s(x,0)=s%x) on xel,

where s° satisfies 0 < s < 1. (2.14) and (2.15) describe the injection of water
with the pressure p* at x=0 and the production of oil at x=1,
respectively. In this problem, (2.6) implies that v(x, t) is independent of
x. Then from (2.7), we have

vjld—x+8 lﬂfzs,cdx= —lexdx.
o Als) o As) 0

Using this equation, we can rewrite the equations (2.5)—(2.7), and boundary
conditions (2.14)—(2.15) as follows:

(2.17) s, + vf(s), — e(d(s)s,),=0 on xel, t>0,

. 1 dx -1
(2.18) v={(p —cs)(j0 m) on t>0,
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(2.19) s(0,t)=1 and s(1,t)=0 on t>0,
where
(2.20) c= 1 M do

o 4(0)

is some constant and d(s) = f(s)¢(s). The unknown variables are s(x, t) and
v(t), where p(x, t) is eliminated.

REMARK 2. From (2.17) and (2.18), we have

1 p* 1 dx -1 B
Est+<? _c><J; I‘(;‘)) f(S)x“‘(d(S)Sx)x—O.

Replacing ¢t by t, we find that the parameters p* and ¢ appear in the form
of p*/e. Therefore, changing the value of ¢ means that the value of the
pressure p*, which is given at the injection well, varies.

When ¢ > 0, because d(0) = d(1) = 0, the diffusion term &(d(s)s,), of (2.17)
degenerates at s = 0 and s = 1, so that, there possibly appear interfaces between
s=0 and s> 0 and between s=1 and s<1. On the other hand, when
¢ =0, (2.17) is a nonlinear hyperbolic equation, and a shock-interface between
s =0 and s > 0 exists (see Subsection 3.4). In both cases, the interface between
s =0 and s > 0 appears, and, in oil-reservoir problems, this interface separates
an area where water penetrates from an oil-region.

When ¢ > 0, the existence and uniqueness of the solution of (2.16)—(2.19)
are proved by Mochizuki and Suzuki [12]. However, the behavior of the
interface is not studied. For this reason, we rely on numerical methods to
understand qualitative and quantitative behaviors. In the following section,
we present two numerical methods. One is for (2.16)—(2.19) and the other is
for the interface equation (see (3.16)) derived from (2.16)—(2.19).

3. One dimensional problem
3.1. The difference scheme for numerical solutions

In this subsection, we introduce a finite difference scheme for the one
dimensional problem (2.17)—(2.18) under the boundary and the initial conditions
(2.19) and (2.16), and prove the boundedness and the monotonicity preserving
of the numerical solutions.

Let J be a positive integer, and put 4x =1/J. We denote by sj and v"
the numerical approximations to s(x;, t,) and v(t,), respectively, where x; = jAx
(j=0,1,....,J) and {t,},-0.1,... is an increasing sequence, which will be
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determined later. Our difference scheme is written in the following form: For
all n >0,

571 =), S =15

GB1) i Ax — Dt =0 (1<j<J—1), if >0,

(3.2) S?:l”: S 4 ol S ‘;;f(sy) — D' =0 (1<j<J—1), if "<0,
1

(3.3) o = (p* — ce)[Ax(zilisg) +Y0) %51) + 2;@))] ,

(3.4 s =1 and s7=0,

(3.5) sf =) (0<j<J),

where

(3.6) 0<s°<1 on [0, 1],

1 Siy1 + 85 st s
B D= {d(%i)(s;rﬂ — s — d(’—z’—‘>(57 E s;_l)}

and d(s) = f(s)¢(s). Here, we construct the difference schemes (3.1) and (3.2)
by applying the idea of Engquist-Osher’s one-sided scheme [4] to the
convection term vf(s), of (2.17). The equation (3.3) is obtained from (2.18)
by the numerical integration.

Taking t, = 0, we inductively compute the numerical solutions {s7};-¢.1, .,
and v" at t =t, by the scheme (3.1)—(3.5), where 4t, =t,,, —t, is the variable
time step and satisfies

Ax?
at, < , ,
Ax|0"| | f']| + 2¢]d||

(3.8)

where || - || = || * llz=(0,1)-

THEOREM 1. Under Conditions A, B and C, let (3.8) be satisfied for all
n>0. Then, it follows that

(3.9 0<si<1(0<j<J) foral n=0.
Moreover, if the initial function s°(x) decreases monotonously,
(3.10) si>s7,, 0<j<J—-1) forall n>0
holds.

THEOREM 2. Let the assumptions of Theorem 1 be satisfied. Then, for
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each Ax, there exists a positive number 0 such that

Ax?
: >
Ax|" || £l + 2¢l/d||

(3.11) for all n>0.

RemMARK 3. For some constant o satisfying 0 < o < 1, we take
Ax?
at, = o — .
Ax|o"[1 /'] + 2elld |l

Then lim,, ¢, = co follows from (3.11).
We will state the proofs of Theorems 1 and 2 in Section 5.
3.2. The difference scheme for numerical interfaces

In this subsection, we construct the numerical approximations to track
the interface of the solution. We define the interface /(t) of the solution s
of (2.17)—(2.19) by

Z(t)=1inf {&;s(x, ) =0 on ¢<x<1}.

When ¢ = 0, the solution consists of a shock wave connecting s =0 and
s = s*, where s* is the constant defined by (2.11) (see Subsections 3.4 and
3.5). Then it is natural to define a numerical interface at t =t, by

*
(3.12) f,,=min{¢;s7,(x)ss3 on &<x< 1},

where sj(x) is a piecewise linear function interpolating {(x;, s7)};=0.1,. .
computed by (3.1)-(3.5).

When ¢ > 0, the shock wave disappears by the effect of the diffusion term
e(d(s)s,), of (2.17), and the solution may be continuous on 0 < x < 1. From
this, (3.12) is not available to determine the numerical interfaces. Therefore,
it is necessary to find an interface equation, from which numerical interfaces
can be obtained. For this purpose, we introduce

ConDITION D. There exist constants p > 0 and m > 1 such that

d(s)

=¢; >0 and lim,,—— =c¢;>0,
s

f(s)

sP

(3.13) lim, .,

(3.14) p=——.

Under Condition D, we can formally rewrite (2.17) as
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» 28, . .
(3.15) S+ c10(sP)y — (M =0 for sufficiently small s.
m

B. H. Gilding [7] proves that the interface /(t) of the solution of (3.15) with
(3.14) satisfies

(3.16) £ = — —25 (") — 0, 1),
m-—1

Using (3.16), we construct the numerical interfaces. Although we have not
proved that whether (3.16) is valid for (2.16)—(2.19) or not, our numerical
simulations suggest us that (3.16) is plausible.

From the above consideration, we apply the idea used in [11] and [13]
to constructing the difference scheme, which tracks the interface. Our
discretization of (2.16)—(2.19) and (3.16) is as follows: For all n >0,

n ym—1
3.17) {oi =t A, 262 LT
m—1 h,
n+1 __ n n __ n
(318) S5 4 ) f(s’_l)—ths;?=O (1<j<L,—1), if >0,
Aat, Ax
n+i
(3.19) % ’+ WS (5540 =SS —eDyst=0 (1<j<L,—1), if v"<0,
Aat, Ax
n+1 n ny _ n
(3.20) St = St |y ) = S (L) — Dy =0 if v" >0,
at, Ax
n+l _ _ n
(3.21) Stn =St 0 ZSOL) e g i <,
At, ]
sy —jdx
3.22 sitl=gntt o n*fl JT (L +1<j<L
( ) j Ln+1— 1/”1 —L,,H.Ax( J n+1)s
(3.23) S =0 (Ly,, +1<j<J),
4 4 h 1—¢,!
(3.24) v"=(p*—cs)[ P L M ] :
2A(s5) UMY 246s3,) A0
(3.25) sg=1 and s7=0,
(3.26) V=50, (0<j<]),
(3.27) lo =10,

where h, = ¢, — L,4x,
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(3.28) L,=max{jeZ;jdx < {,},

(329) D/sn=L{d(ﬁ>—Si_d<si+si_l)si—sz_l}
. h°L Ax+h 2 h 2 Ax ’

the difference operator D, is given by (3.7) and ¢°€(0, 1) is a constant satisfying

(3.30) 0<s°x)<1 on [0,/° and s°(x)=0 on [¢° 1].

For j=0,1,...,L, — 1, the equations (3.18) and (3.19) are the same ones
as (3.1) and (3.2), respectively. Since 0 < h, < 4x holds in general, we use
(3.20), (3.21) and (3.29) instead of (3.1), (3.2) and (3.7) at j = L,, respectively.
For the same reason, we use (3.24) instead of (3.3). We also interpolate
(x,, si¥!) and (/,+,,0) by (3.22) to determine numerical solutions s}*!

(L,+1<j<L,,,), which cannot be computed by (3.18)—(3.21) and (3.23).

REMARK 4. In the case where k,, 4 and f are given by (2.8)-(2.9) and
p.(s) is negative and bounded on [0, 1], Condition D is satisfied with p =2
and m = 3. Since (3.28) can not be defined for #° = 0, we assume that 7° is

positive.

We determine the time step At, satisfying (3.8) and

(3.31) At < 12
Ty + Ty
nym-—1
(3.32) ¢4y 2 ST
m— h
nym-—1
(3.33) ar, 2 ST
1
where L= L,, h =h, and
Axs] hAx(h + 4x)

(3.34) T, = W, T, = " " " .
v zg(d(s_L)md(M)h)
2 2
Then, we obtain the result similar to that of Theorem 1.

THEOREM 3. Under Conditions A, B, C and D, let (3.8) and (3.31)—(3.33)
be satisfied for all n > 0. Then the conclusions of Theorem 1 hold.

The proof of Theorem 3 will be stated in Section 5.
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3.3. Numerical simulations

In this subsection, we carry on some numerical simulations and show
la)-1c¢) stated in Section 1. Let the functions k,(s), A(s) and f(s) be given by
(2.8)—(2.9), and p.(s) = &(1 —s). To see the behavior of interface, we use the
scheme (3.1)—(3.6) and (3.12) if ¢ =0, and the scheme (3.17)—(3.27) if ¢ > 0.

At first, let us consider the case of ¢ =0. The initial function takes
5% =0, which implies that the medium is filled by oil at initial time. Fig. 1
shows the numerical solution s with u = 20. The numerical interface is shown
in Fig. 2, which suggests us that the interface /(t) moves with gradually
increasing speed. Let us change the value of u. Figs. 3 and 4 show the
numerical solution and the interface, respectively, with u = 0.5, and the speed
of /(t) seems to decrease. These results suggest us that the acceleration of
the interface depends on u, and that there exists a constant p* such that the
speed of /(t) increases for u > u*, while it decreases for u < u*, which leads
to la). We will show in the following subsection that 1a) holds.

1

0 x 1
Fig. 1 Numerical solution of (2.17)-(2.19) with ¢=0, p=20, p*=1 and 4x =0.001 at
t=0,0.1,02,...,409.

5.5

0 x 1

Fig. 2 Interface of numerical solution in Fig. 1.
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0 X 1

Fig. 3 Numerical solution of (2.17)-(2.19) with ¢=0, u=0.5 p*=1 and 4x =0.001 at
t=0,0.02 004,...,0.74.

0.8

§>0

0 X 1
Fig. 4 Interface of numerical solution in Fig. 3.

Next, we try to compute when ¢ > 0. In this case we take u = 20 and
(3.35) s°(x) =1 if x <0.05, 5°x)=0 otherwise.

Figs. 5 and 6 demonstrate the numerical solution and interface with & = 0.01,
respectively. Since ¢ is small, the acceleration is still positive, which is the
same property as stated in the case of e =0. Let e =1. Figs. 7 and 8 show
the numerical solution and interface, respectively. In this case, the acceleration
of the interface becomes small as compared with the case of ¢ = 0.01. We
next try the numerical computations for ¢ = 100 in Figs. 9 and 10, which show
that the acceleration is negative. This means 1b). From the above
considerations, one expects that the acceleration becomes negative for large
e. However, we can not prove it.
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0 x 1

Fig. 5 Numerical solution of (2.17)—-(2.19) with ¢=001, u=20, p*=1 and 4x =0.001 at
t=0,01,02,...,44.

5
g s>0
s=0
0 X 1
Fig. 6 Interface of numerical solution in Fig. 5.

1
s

0 x 1

Fig. 7 Numerical solution of (2.17)-(2.19) with ¢=1, pu=20, p*=1 and 4x =0.001 at
t=0,0102..,35.
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0 X 1

Fig. 8 Interface of numerical solution in Fig. 7.

0

Fig. 9 Numerical solution of (2.17)~(2.19) with ¢= 100, u =20, p*=1 and 4x = 0.001 at
t =0, 0.005, 0.01,...,0.2.

0.2
t
s>0
s=0
0 X 1

Fig. 10 Interface of numerical solution in Fig. 9.
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Finally, we consider 1c). The graphs of the numerical interface suggest
us that the value of the acceleration becomes negative as & becomes
larger. Therefore, for large e, it seems that the interface fails to move. If
the interface stops, we may expect that a steady state solution exists. This
motivates us to study the existence of steady state solutions, which will be
stated in Subsection 3.5. We give a brief summary of the result. In the case
of p* > 0, there is no steady state solution, which means that the interface
never stop. Therefore, 1c) is not true for p* > 0 and the interface reaches to
x = 1. On the other hand, if p* <0, the steady state solution exists and the
interface will stop. That is, 1c) holds for p* <0 (see Figs. 11 and 12).

0 x 1

Fig. 11 Numerical solution of (2.17)—(2.19) with & = 100, u = 20, p* = — 50 and 4x = 0.001 at
t =0, 0.005, 0.01,...,0.5.

0.5

s>0 s=0

0 x 1

Fig. 12 Interface of numerical solution in Fig. 11.
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3.4 The behavior of interfaces when ¢ = 0

In this subsection, we show the behavior of the interface for the solution of

(3.36) s+ vf(s), = 0,

1 dx -1
3.37 | | &,
et 'eh U 1(s)J

under the boundary condition (2.19) and the initial condition
(3.38) s(x, 0) = s°(x).

The equations (3.36)—(3.37) are called the Buckley-Leverett equations.
Throughout this subsection, we assume p* > 0. For this problem, taking
s® =0, we investigate the behavior of the interface of the solution to
(3.36)—(3.38).

The equation (3.36) is a single conservation law with the nonlinear function
f(s). Tt is well known that (3.36) has discontinuous solutions, which are called
shock waves. When v is independent of ¢, this discontinuous solution consists
of the rarefaction wave connecting constant states 1 and s* and the shock
wave by which constant states s* and 0 are separated (see [10]). Here, s*
is the constant defined by (2.11). Taking the property of this solution into
considerations, we obtain the following theorem for solutions of (3.36)—(3.38).

THEOREM 4. Assume s°=0. Under Conditions A, B and C, the pair of
functions s(x, t) and v(t) defined by

{a“(x/V(t)) if 0<x</(),
s(x, t) =
0 if f()<x<1l,

(3.40) o(t) =1/ /2ﬁ*t+<%>2
p p

is a weak solution of (3.36)—(3.38) and (2.19), where a™! is the inverse function

of as)=f'(s) s*<s<1),

(3.39)

(3.41) V() = f v(t)dr,
[0
(3.42) (1) = alsH)V (@),
(3.43) A= j P G R S
o« o) 4(0) 4(0)

REMARK 5. By (2.12) a is a strictly monotone decreasing function on
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[s*, 1]. Therefore, a~! exists, and the function s is well-defined.

ReMARk 6. The function s(x, t) defined by (3.39) is discontinuous on
x =/(t), and s(x,t) =0 for xe(/(¢), 1]. It implies that the function Z(t)
becomes the interface of s.

Before showing the proof of the theorem, we state the definition of the
weak solution of (3.36)—(3.38) and (2.19).

DeriNITION 1. A pair of functions s(x, t) and v(f) is a weak solution of
(3.36)—(3.38) and (2.19) if

i) s is a bounded measurable function and v is continuous;

i) s and v satisfy (3.37), (3.38) and (2.19);

iy For an arbitrary number T> 0 and for any test function ¢eC! with
supp ¢ = (0, 1) x [0, T),

T 1
(3.44) f j (5@, + vf (s)p,)dxdt + jl s(x, 0)p(x, 0)dx =0
0 Jo

0

holds.

REMARK 7. We do not know the uniqueness of the weak solution defined
above.

ProoF OF THEOREM 4. It is easy to verify that s and v satisfy i) in
Definition 1, (3.38) and (2.19). First, let us show that s and v satisfy
(3.37). From (3.39), we have

J‘lix_ _ Jl(t) dx +J‘1 d_x
0o A)  Jo AaT'x/V(®)  Jow AO)
= V(t)[1 — 4l0) do + L= a5Vl
& Alo) A(0)

(3.45) = AV(t) + B,

where ¢ = a~!(x/V(t)). On the other hand, since
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holds by (3.40) and (3.41), we obtain
(3.46) v(t) {AV(¢) + B} = p*.
From (3.45) and (3.46), (3.37) holds, and ii) in Definition 1 is satisfied.

Next, we show iii). It is easily shown that s satisfies (3.36) in the classical
sense on (0, Z(t))u(Z(t), 1). To prove that s satisfies (3.44), it suffices to show
that the Rankine-Hugoniot jump condition (see (3.48)) is satisfied at points
where s is discontinuous. Since it follows from (3.42) and (3.39) that
s(Z() +0,t) =0 and s(Z(t) — 0, t) = s*, we have

v(®) f(s(Z(2) + 0, 2) — v(®) f(s(£(t) — 0, 1)) _

(3.47) s((t) + 0, 1) — sZ(t) — 0, 1) = v ()s7

Hence, we have from (2.11), (3.41), (3.42) and (3.47)

i i VOS(sE@®) + 0, 1) — () f(s(£(2) — O, 1)
(345) 70 =160 = s(Z(t) + 0, £) — s(£(t) — 0, t) ’

which is the Rankine-Hugoniot jump condition (see [9], [17], for example).
Thus, the proof is complete.

Next, we show the behavior of the interface of the solution s in Theorem 4.

THEOREM 5. Let the assumptions of Theorem 4 be satisfied. For the
interface £(t) in Theorem 4, it follows that

(3.49) t)>0 on 0<t<T,

for some constant T, > 0 satisfying £(T,) = 1. Moreover, if A(s*) > A(0), then
(3.50) "t)>0 on 0<t<T,

holds.

COROLLARY. In the case of (2.8)—(2.9), (3.50) holds for u > 3.
REMARK 8. The constant T, is called the breakthrough time [8].

Proor OF THEOREM 5. Let us prove the existence of the constant T, > 0
satisfying

(3.51) (1) = a(s*)V(T,) = 1.
When A > 0, it follows from (3.40) that

vt) — 0 as t— 0.

Since
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(3.52) V(t)— o0 as t—

holds by (3.46), there exists a constant T, > O satisfying (3.51). When A <0,
it follows from (3.40) that

v(t)>v(0)>0 for 0<t<T* and v({t)—> o0 as t —> T*,
where T* = — B?/(2A4). Since
t
V()= J v(t)dt — 0 as t— T*,
0

(3.51) holds for some T,(< T*). In the case when A =0, we have
v(t) = B/p*. Then, (3.52) also holds by (3.41), and then we find the existence
of T,.

(3.49) follows immediately from (3.40)—(3.42). We will show (3.50). It
follows from (3.40)—(3.42) that

" (t) = a(s*)v'(t)

Af, A B \*\ 2
p p p

Since a(s*) > 0 holds from Condition B, it suffices to show 4 <0. We see
from (3.43) and (2.13) that

A< Jl —d) . _ a6
¢ AGY) 4(0)

NI
i ){m*rm}’

which is negative by the assumption of the theorem, and the proof is complete.

REMARK 9. In the case of (2.8)—(2.9), our calculations by computer suggest
that the constant 4 defined by (3.43) is negative if and only if u > u* = 1.65---.
Therefore, we may expect that /” > 0 holds for u > u*.

3.5. The existence of the steady state solutions

In this subsection, we consider the existence of steady state solutions of
(2.17)—(2.19), which satisfy the following equations:

d d d
(3.53) vd—)—cf(s) — 85 (d(s) ES> =0,

1 dx -1
3.54 — (p* — “r i
49 = cs)(L x(s))
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(355 s(0)=1,5x)>0 on 0<x<x* and s(x)=0 on x*<x<1,

where x*e(0, 1] is some constant to be determined.
The equations (3.53) and (3.54) are obtained from (2.17) and (2.18),
respectively. We look for solutions which possess the interface x = x* in the

interval (0, 1].

THEOREM 6. Assume ¢ > 0. Under Conditions A, B and C, the solution
s(x) and v of (3.53)—(3.55) exists if and only if p* <O0.

ProOF. Suppose that the solutions s(x) and v of (3.53)—(3.55) exist. Then,
from (3.53), we see that vf(s) — e(d(s)s’) is a constant. Since f(s(x*)) =
d(s(x*)) =0 by (3.55) and (2.10), it follows that

(3.56) F($) v —eg(s)s) = vf(s) — eld(s)s) = 0.
By (2.10) and (3.55), f(s) >0 holds for xe€[0, x*). Hence, from (3.56), we
obtain v — e¢(s)s’ = 0, and find that
(3.57) s(x)= @ <3x + ¢(1)> xe [0, x*),
€

where

D(s) = js &(o)do.

0

We note that @ ! is well-defined, because @ is a strictly monotone increasing
function on [0, 1] (see Condition A). Since s(x*) =0 and x*€(0, 1], it follows
from (3.57) that

(3.58) x* = — o),
v

(3.59) v< —ed(1).
On the other hand, by using (3.57) and (3.58), we have

Udx x dx b odx
RO e e
€

1 @dé + (v + e®D(1))

o A& 4(0)

v+ ed(1)
=—c+ —",
A(0)
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where ¢ is the constant defined by (2.20) and & = ¢"<Ex + cb(l)). From
€
(3.54), it follows that

_v+ ed(1)

(3.60) p* 0

>

which implies that p* <0 by (3.59).

Suppose that p* <0. We put v = A(0)p* — ed(l) and define s(x) by
(3.57). Then s(x) and v satisfy (3.53)—(3.55), which means the existence of the
solution. Hence the proof of Theorem 6 is complete.

REMARK 10. From the proof, we find that x* = 1 if and only if p* = 0.

4. Two dimensional problem

In this section, we numerically study the behavior of the interface for the
following two dimensional problem:

4.1) %s+l7-[vf]—8|7-[f¢>l7$]:0 on (x, e, t>0,
4.2) V-v=0 on (x,y)ef, t>0,
(4.3) v=—[AWp—epVs] on (x, y)ef, t>0,

where Q = (0, 1) x (0, 1), under the boundary conditions

0 0

(4.4) BP0 on (x,1)e 1)x {0,1}, t>0,
dy Oy

(4.5) s=1,p=p* on x=0, ye0,1), t >0,

(4.6) s=0,p=0 on x=1, ye©,1), t>0,

and under the initial condition
4.7) s(x, y,0) =5%(x,y) on (x,y)eQ,

where p* is a given constant and s° satisfies 0 < s° < 1.

The equations (4.1)-(4.3) are the same one as (2.5)—(2.7). In physical
terms, the boundary conditions (4.5) and (4.6) express the injection of water
with pressure p* on (0,y) (0 <y < 1) and the production of oil on (1, y)
(0 < y < 1), respectively.

The numerical scheme, which we use in this section, will be stated in

Appendix, because it is lengthy. Throughout this section, the initial function
takes
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1—10x, if x<0.1 and |y —0.5|<0.1,
439) (, ) ={ v =03

0, otherwise.

The first case is when ¢ = 0. Fig. 13 shows the numerical solution with
u=05. The numerical interface determined in a similar way to (3.12) is
shown in Fig. 14. The perturbation given to the interface vanishes as t
increases, which means that fingering instability does not occur. On the other
hand, for u = 20, the perturbation grows up and forms fingers (see Figs. 15
and 16). Since u =10~ 20 holds in the practical problems, 2a) stated in
Section 1 seems to be true.

The second case is when ¢ >0 and p* > 0. Since we do not know the
interface equation in this case, the interface-tracking scheme can not be
constructed. From the profiles of numerical solutions, we find the behavior
of the interface. Fig. 17 is the numerical solution with &= 0.01 and
u=20. In the case where ¢ is small, the solution is similar to the one in
Fig. 15, and shows the fingering instability. For ¢ = 100, the perturbation will
vanish, and the interface is stabilized (Fig. 18). For ¢ = 1, the perturbation
does not vanish (Fig. 19). From the above simulations, we may say that the
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Fig. 13 Two dimensional numerical solution of (4.1)-(4.7) with ¢ = 0, u = 0.5, p* = 1 and 50 x 50
mesh points.
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Fig. 14 Interface of numerical solution in Fig. 13 at t = 0, 0.04, 0.08,...,0.68.
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Fig. 15 Two dimensional numerical solution of (4.1)-(4.7) with ¢=0, u=20, p*=1 and
100 x 100 mesh points.
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0 x 1

Fig. 16 Interface of numerical solution in Fig. 15 at t =0, 0.4, 0.8,...,3.6.

%
e
R

Fig. 17 Two dimensional numerical solution of (4.1)-(4.7) with ¢ =0.01, u =20, p*=1 and
100 x 100 mesh points.
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interface is stable for large ¢, which implies 2b). In this case, the numerical
solutions become uniform with respect to y for each fixed x, and we expect
that the interface reaches to x = 1 (see Theorem 4).

Finally, we consider when p* < 0. Fig. 20 shows the numerical solution
with ¢ = 100, ¢ = 20 and p* = — 50. The solution also becomes uniform with
respect to y. As was expected by Theorem 5, the interface will stop and
never reach to the production well, and there is a steady state solution.
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Fig. 20 Two dimensional numerical solution of (4.1)-(4.7) with ¢ = 100, u = 20, p* = — 50 and
50 x 50 mesh points.

5. Proofs of Theorems
5.1. Proof of Theorem 1

The proof will be done by induction on n(>0). We first prove (3.9).
For n=0, (3.9) follows from (3.5). Suppose that (3.9) holds for some
n. We will show

(5.1 0<s"™'<1 (0<j<J)
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in the case where v" > 0. When j=0 and j=J, (5.1) follows at once from
(3.4). In the following, we assume 1 <j<J — 1. Putting

_ Ax[o"[ L]
toAxp IS+ 2e0d)

we obtain from (3.8)

A4 Ax?
(5.2) At, < min{ g, (1 9,,)}.
[ Hf T 2elldll
It follows from (3.1) that
(5.3) S7+1 = AhS; + BhS;,
where
(5.4) ) = 0,51 — At &) =T io0),
ax
(5.5) Bys: = (1 — 8,)s" + At,eD,s".

To prove (5.1), it suffices to prove
(5.6) 0<A,s;<86,,
(5.7 0<Bsj<1-46,

From (5.4), we have

n n Atn npr n n
Ays; = 9,,Sj - Zv f (fj)(sj - Sj—l)
at, ., ny A o
(5.8) = [Hn ~ f (é,-)] i+ v S'EPsi-1,

where ¢; is some number between sj and sj_,. Since (5.2) and Condition B
yield

at, , ., at,
(59) On— -0 f(€)20 and —~10"f7(C) 20,

it follows that

n

min {s}_, 57} < A4,s} < 6, max {s}_,, s}}.

By the inductive hypothesis, we have (5.6).
Put
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o = e%d(——shl;_ sZ) (k=j—1)).
Then we have from (5.5)
(5.10) By} =a;8j, 1 + (1 — 0, —o; — o;_q)s] + o;_ 18] 5.
Since it follows from (5.2) that
1-6,

(5.11) 0<o < k=j—1,)),

(5.7) holds by the inductive hypothesis. Thus, (5.1) follows. In the case where

" <0, (5.1) can be similarly shown. Thus, the proof of (3.9) is complete.
Next, we will show (3.10). For n =0, (3.10) is follows from the assumption

of the theorem. Suppose that (3.10) holds for some n. We will prove

(5.12) s>t (0<j<J—1)

in the case where v" >0. When j=0 and j=J — 1, (5.12) follows at once
from (3.4) and (3.9). In the following, we assume 1 <j<J —2. We have
from (5.3), (5.8) and (5.10)

siii — it = As},, — As} + Bs],, — Bs],

At" n £ n At” n £ n
Ay — Ah57 = I:Hn - ~A—xv f (éj+1)jlsj+1 + E v f (fj+1)sj

Atn nrr n__ At" n £/ n
—I: n—z’;l)f(éj)jlsj Axvf(fj)sj-l
A A
= I:B" ~ A v (&4 1):| (Sj+1 —S) + h 0" f(E) (5] = sj-0),
Ax Ax

n __ n n n
Bh57+1 —Bth—(Zj+ISj+2+(1 —Hn—otj—otj+1)sj+1 +a151
n n n

-y —(1 =0, —a;_; —a)si —a;_;sf_

=0y 1 (Sfeo — Sje1) + (1 — 0, — 20) (s — 7) + o1 (s] — $j- 1)
Since

(5.13) ApSiiy — Apsi;<0 and Bysi,, — B,sj <0

holds by (5.9), (5.11) and the inductive hypothesis, (5.12) follows. In the case
where v" < 0, (5.12) can be similarly shown and the proof of (3.10) is complete.

5.2. Proof of Theorem 2

Since Condition B implies that
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As) < 6, for all se[0, 1]
holds for some constant 6, > 0, we see from (3.3) that

|0"] < |p* — cel 6.
Put
5= Ax? .
Ax|p* —celdy | f']l + 2¢]ld ||
Then § satisfies (3.11).

5.3. Proof of Theorem 3

The proof will be done by induction on n(> 0). We first prove (3.9).
For n =0, (3.9) follows from (3.5). Suppose that (3.9) holds for some
n. We will show
(5.14) 0<s"t <1

J

in the following cases:

Case(a). 0<j<L,— 1; Case(b). j=L,; Case(c). L,+1<j<L,.q;
Case(d). L,,, +1<j<J.
By the same argument as the one used in the proof of Theorem 1, (5.14) can
be shown in Case(a). Consider Case(b). Assume v">0. Let 6,=1,/
(t; + 7). Then we have from (3.31)

(5.15) At, < min {0,1,, (1 — 6,)1,}.
It follows from (3.20) that
it = A,s" + Bsh,
where L= L,, A, is the operator defined by (5.4) and
Byst = (1 — 6,)s} + edt,Dys}.
By the same argument as the one used in the proof of (5.6), we have
(5.16) 0<4,s1<8,.

Putting

n n 2 n
w_ = At d(S“LSL‘l) and ai:Atn—£d<S_L>’
Ax(h + 4x) 2 hh + 4%) \ 2

we obtain

(5.17) Bisp = (1 — 6, —op_y —op)sp + % ySp—y-
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Since (3.34) and (5.15) imply

At
(5.18) o1 +oap=—<1-—6, and a;_,; >0,
T2

it follows from (5.17) and the inductive hypothesis that
(5.19) 0<Bysp<1-—86,.

From (5.16) and (5.19), (5.14) holds. When v" <0, (5.14) can be similarly
shown in this case. In Cases (c) and (d), (5.14) follows from (3.22) and (3.23),

and the proof of (3.9) complete.
Next, we show (3.10). For n =0, (3.10) follows from the assumption of

the theorem. Suppose that (3.10) holds for some n. We will prove
(5.20) sttt > st

in the following cases:
Case(a). j=0; Case(b). 1 <j<L,— 2; Case(c). j=L,—1;
Case(d). L,<j<L,,,; Case(e). L,,, <j<J-—1
In Case (a), (5.20) follows from (3.9) and (3.25). By the same argument as the
one used in the proof of Theorem 1, (5.20) can be also shown in
Case(b). Consider Case(c). Assume v" > 0. We have from (3.18) and (3.20)

n+1 n+1 __ n n ron n
ST — syl = ApSp — ApSp -1 + Bpsp — Bysp- 1

where A,, B, and B, are the operators defined by (5.4),(5.5) and (5.17),
respectively, and L= L,. We obtain

(5.21) Ayst — A,st_, <0

by the same argument as the one used in the proof of (5.13). It follows from
(5.10) and (5.17) that

Bsp — Bysp—y =(1 =0, —ap_y —op)sp +ap_ 1S,y
—opsp— (1 =6, —ap 5 —op 1)Ly — L8
=—oasp+(1—0,—oap_y —a)(SL—sp- )+ g1 (L1 —Sp-2)
Since h < Ax implies a; < ap, (5.18) yields
1-0,—ay_y—a,>1—-6,—o0;_y —oa;p =>0.
Then, by the inductive hypothesis we obtain
(5.22) Bis} — B,s;_, <0.

From (5.21) and (5.22), (5.20) follows. When v" <0, (5.20) can be similarly
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shown in this case. In Cases(d) and (e), (5.20) follows from (3.22) and (3.23),
and the proof of (3.39) is complete.

6. Appendix

In this appendix, we state the outline of the scheme of the two dimensional
problem (4.1)—(4.7). In this problem, v depends on (x, y) in general, and it
is not easy to eliminate p. To construct an approximation of p, we use

6.1) V. [AWp]= —eV - [¢Vs],

which is obtained by (4.2) and (4.3).
Let I and J be positive numbers and put 4x = 1/I and 4y =1/J. We
determine s} ;, which denotes the numerical approximation of s at (x, y, t) =

si=s1,0=)=
si=I,U=sJ=<

sisl,U=sJ=s

6.2) sﬁ}” = (I, + edt, D)™ 4™(I, + At, C U, + 4t,Ci)st
(6.3) o= — LML)V Py — ed(s )P s 1,

(6.4) VLAt )Ppe]=—e - [p(st)Pst ],

6.5) soj=1,s1;=0 (j=0,1,...,J),

(6.6) Po;=pr* p1;=0 (j=0,1,.,J)

6.7) o1 =501, Styer =58ty ((=0,1,...,1),

(6.8) Pi-1 =Dt Pigs1=DPij-1 (i=0,1,..1I),
6.9) the1 =t, + A4t,,

where V, D,, C; and C} are operators approximating V, V- [ f¢V], — (ui;f),
and — (w};f),, respectively, p; and v} ; = '(u} ;, w ;) are numerical approxima-
tions for p and v at (x, y, t) = (idx, j4y, t,), respectively, and I, is the identity
operator.

(6.2) is constructed by splitting the equation (4.1). The equations (6.3)
and (6.4) follow from (4.3) and (6.1), respectively. (6.5)—(6.8) are numerical
boundary conditions obtained by (4.5)—(4.6), respectively. We note that (6.2)
is a linear equation with respect to {p}}.

The time step A4t, is determined to satisfy the stability conditions for
I, + 4t,Cy and I, + 4t,C}, that is
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Ax Ay }

At,,smin{ ,
LS W LS

We also determine 4z, satisfying the stability condition of I, + ¢4t,D,, that is
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(31
[4]

[5]
(61

[7]
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[9]

[10]
[11]
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[13]
[14]
[15]
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(18]

. min {4x, 4y}

T, < and A4t,/47, is an integer.
deld|l
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