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0 Introduction

In [6] we computed path integrals on coadjoint orbits of the Heisenberg group,
SU(19 1) and SU(2) etc.. As to the Heisenberg group, we succeeded in compu-
ting the path integrals for complex polarizations as well as real polarizations.

For the complex polarizations of SU(l, 1) and SU(2)9 however, we found
it difficult to carry out the computation of path integrals, so that we computed
the path integrals without Hamiltonians. Soon after we encountered difficulty
of divergence of the path integrals along the method in [6].

For the complex polarizations of St/(l, 1) and 5(7(2), by taking the
operator ordering into account and then regularizing the path integrals by use
of the explicit form of the integrand, we computed the path integrals with
Hamiltonians in [7].

In this paper, we shall give an idea how to regularize the path integrals
for complex polarizations of any connected semisimple Lie group G which
contains a compact Cartan subgroup T and shall show, along this idea, that
the path integral gives the kernel function of the irreducible unitary
representation of G realized by Borel-Weil theory.

Our idea is roughly explained as follows. Let ί) be the Lie algebra of
Tand ί)c the complexification of ί). Denote by n+ and n~ the Lie algebras
spanned by the positive root vectors and the negative root vectors,
respectively. For any integral form A on ϊ)c we denote by ξΛ the holomorphic
character of Γc defined by A and by LΛ the associated holomorphic line
bundle on the flag manifold G/T. Let πΛ be the irrducible unitary represen-
tation of G on the Hubert space of all square integrable holomorphic sections
of LΛ which is realized by the Borel-Weil theorem.

Put λ = v/— \A. Then for any element Y of the Lie algebra of G, the
Hamiltonian on <the flag manifold G/T is defind by

Hγ(g) =
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Since the path integral of this Hamiltonian is divergent we regularize it by
replacing

by

where H and h denote the projection operators:

H:n+ + ϊ)c + τr — >f) c,

h: expn+expί) cexpn~ — >expf) c = Tc.

There are plenty of references on path integrals. For further references
see, e.g., references in [6].

1 Preliminaries

Let G be a connected semisimple Lie group such that there exists a
complexification Gc with π 1(G c)={l} and such that rank G = dim T, T a

maximal torus of G. Let K be a maximal compact subgroup of G which

contains T, and ϊ the Lie algebra of K. Note that G can be realized as a

matrix group. We denote the conjugation of Gc with respect to G, and that

of gc with respect to g, both by ".

Let g and ί) be the Lie algebras of G and T. We denote complexifications

of g and t) by gc and f)c, respectively. Then f)c is a Cartan subalgebra of gc.

Let Δ denote the set of all nonzero roots and Δ + the set of all positive

roots. Then we have the root space decomposition

Define

Let AT, N~, B and Tc be the analytic subgroups corresponding to n + , n~, b

and ί)c, respectively.

We fix an integral form Λ on l)c.

Let
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ξΛ: T >[/(!), expHl >eΛ(H)

be the corresponding unitary character of T, and

ξΛ:T
c—>CX, expf l l - e A(H)

the corresponding holomorphic character of Tc. Then ξΛ extends uniquely
to a holomorphic one-dimensional representation of B:

ξΛ:B=TcN~ - >C X , exp/f n"Ί - > eA(H\

Let LΛ be the holomorphic line bundle over GC/B associated to the

holomorphic one-dimensional representation ξΛ of B. We denote by LΛ the
restriction of LΛ to the open submanifold G/Tof GC/B:

G CL_» GB ^— * Gc

I i i
G/Γ = GB/B CL-> GC/B

and

LΛ c-+ LΛί i
G/T <=-> Gc/£

Then we can identify the space of all holomorphic sections of LΛ with

Γ(LΛ) = { f : GB

Let πΛ be a representation of G on Γ(LΛ) defined by

πΛ to)/ W =f(0~1x) for flf e G, x e GB and /e Γ(LΛ ).

For any/e.Γ(LΛ) we define

= ί
JGG

where dg is the Haar measure on G. We put

Γ2(LΛ) = { f e Γ ( L A ) ; \ \ f \ \ < + oo}.

Then the Borel-Weil theorem asserts that (πΛ, /1

2(LΛ)) is an irreducible unitary

representation of G (Bott [1], Kostant [8] and Harish-Chandra [3][4][5]).
For the moment we assume that G is noncompact.

We fix a Cartan decomposition of g :
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We denote complexifications of ϊ and p by ϊc and pc, respectively.

Let Δc and Δn denote the set of all compact roots and noncompact roots,
respectively.

Now we assume that Γ2(LΛ) ^0. Then there exists an ordering in the
dual space of ί)R = if) so that every noncompact positive root is larger than
every compact positive root. The ordering determines sets of compact positive
roots A* and noncompact positive roots Δ* . Furthermore A satisfies the
following two conditions:

<Λ, α> ^0 for aeJ*, (l.la)

(Λ+p, α > < 0 for αeJΛ

+, (Lib)

where p = - ]Γ α.
2 αe4+

Then (Lla) assures the existence of a unique element ψΛ in Γ(LΛ) which
satisfies the following conditions:

for heT, (1.2a)

for Xen+, (1.2b)

ΛiW = I (l 2c)

where dπΛ is the complexification of the differential representation of πΛ. And
(Lib) implies that φΛ is an element of Γ2(LΛ). We normalize dg so that

Define D to be an open subset of n+ which satisfies exp D B = GBnNB,
where exp is the exponential map of n+ onto N:

exp: n+ ^ > N

U U

D »exp/λ

For each αezl, we choose an EΛ of gα such that

B(EΛ9 £..) = 1

and

Ea-E_x, y^T(£α + £
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where £(•,•) is the Killing form of gc and gu = I + >/- lp, the compact real
form of gc. Note that

— E_ α for αezf c ,
E =

f o r α e z f n .

We put w = dimn + and introduce holomorphic coordinates on n+ and

n~ by

Cm - > n + , (zα)αej - > z = £ zα£α,
αe4+

Cm - >τΓ, (wα)αe4+| - > w = X wα£_α.
αezi+

We put

n~ =exp
αe^+

Let Γ(D) be the space of all holomorphic fucntions on D. The following
correspondence gives an isomorphism of Γ(LΛ) into Γ(D):

Φ:Γ(LΛ) - >Γ(D), /I - >F, (1.3)

where

F(z)=f(n2) for ZED.

We put JtfΛ = Φ(Γ2(LΛ)). Let us denote by UΛ(g) the representation of G on
JfΛ such that the diagram

Γ2(LΛ) - >^Λ

UΛ(g)

is commutative for all geG.

We normalize the invariant measure μ on G/Γsuch that

Γ Γ / Γ λ
f(0)dg= f(gh)dh )dμ(gT) for any /eCc°°(G),

JG J G / Γ \ J Γ /
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f
where dh is the Haar measure on T such that dh = 1.

Jr

We denote the measure on D also by μ which is induced by the complex

analytic isomorphism:

By the definition of D, φ(D) is open dense in G/T. For any xeNTcN~ we

denote the N-, Tc- and N~- component by n(x\ h(x) and n~(x), respectively.

Then, for any feΓ(LA\ geG and / z e T w e have

\f(gh)\ = \f(g)\ and \

This shows that \f(g)\ and \ξΛ(h(g))\ can be regarded as functions on G/T.

We put

Then we have

\'\f(a)\2dg= ί
JG JG

\f(9)\2dg = I \f(g)\2dμ(gT)
)G J G/T

= \F(z)\2JΛ(z)dμ(z).
J D

We define

Γ2(D) = {FeΓ(D); \\F\\ < +00},

where

-ί.\\F\\2 = \F(z)\2JΛ(z)dμ(z).
)D

In case that G is compact, we remark in the above that

G = K, GB = GC, D = n+, g = ϊ, p - 0,

AC = A9 An = β, Γ2(LA) = (LΛ\

and Γ(LΛ) φ {0} if and only if A is dominant.

There are various proofs of the Borel-Weil theorem. Since ψΛ plays a

crucial role in this paper, we give a proof which exhibits the important

properties of ψΛ.

The unitarity of (πΛ, Γ2(LΛ)) is obvious. Suppose that there exists a
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nonzero subspace V of Γ2(LΛ] which is closed and invariant under the action
of G. Let /o be a nonzero element of V. Then there exists g e G such that
/0(0)^0. We put f=nλ(g~1)f0. Since V is G-in variant, fe V. We note
that

For any /z e 7^

by the invariance of V.

We put

/w = ̂  ί
f ( e ) J τ

ξΛ(h)(πΛ(h)f)(x)dh f o r x e G B .

Since F is closed, /e K In particular

f(e) = J
Γ

For any hίeT, since d/z is the Haar measure, we have

= ί
Jr

= ξλ(h,h)(nΛ(h)f}(x)dh
r

Using the fact that the weight space with the weight Λ is one dimensional,
we obtain that /= ψΛ. Thus \l/Λe V.

If V^Γ2(LA\ then we can show that K1 ̂  {0} is a closed invariant
subspace, which implies that ιj/Λe VL, contradicting that VΓ\ VL = {0}.
Therefore V= Γ2(LA). This shows that πΛ is irreducible.

2. Kernel Functions

We retain the notation of §1. For the rest of this paper we assume that
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Γ2(LΛ) * {0}.

We start with the case that G is noncompact. We put

P± = Σ 9°.
aeΔ*

We denote by KC

9 P+ and P_ the analytic subgroups of Gc corresponding
to ϊc, p + and p _ , respectively. Then there is a unique open subset Ω of p +
such that GB = GKCP_ =expΩK€P_. We put W=P + KCP_. Then by
(1.2a) and (1.2b), \I/A is uniquely extended to a holomorphic function on W
(which we denote also by \I/Λ) such that

ί/i W ~ 1 ΨΛ(X) for a11 teTc and xeW, (2.1)

and

ψΛ(nx) = \l/Λ(x) for all neN and xεW. (2.2)

Now we prove that

P + KCP_=B*GB, (2.3)

where (•)* = (7)-1. Since expΩKcP_ = GB, we have

P+KCP.=P + GB.

It follows that

P+KCP_ = P+KCGB = BGB

because Kc normalizes P+. Thus

W= B*GB.

In case that G is compact, obviously W= Gc, and as is easily seen, ψΛ

satisfies (2.1) and (2.2).

Henceforth, throughout the paper, the discussions are valid for the compact
case as well as for the noncompact case.

Define a scalar function JΓΛ on GB x GB by

Then JΓΛ( , g2\ with g2 fixed, can be regarded as an element of Γ2(LΛ).
We define a scalar function KΛ on D x D by

Note that KΛ(z'9 z") is holomorphic in the first variable and anti-holomorphic
in the second and that it can be regarded, with nz, fixed, as an element of jfA.
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Now we define operators Jf~Λ and KΛ on Γ2(LΛ) and J fΛ by

Pd/)(0") = ^Λ(#"> g')f(g')dg' for feΓ2(LΛ)
JG

and

(KΛF)(z") - I KΛ(z", z')F(z')JΛ(z')dμ(z') for Fe^Λ,
JD

where d#' is the Haar measure on G and dμ(z') is the invariant measure on

D given in §1. Then we have the following commutative diagram:

^I(^A) * ̂ A

JfJ I KΛ

where the horizontal maps are given by (1.3).

LEMMA 2.1. The weight vector ψΛeΓ2(LΛ) has the following property.

where denotes the complex conjugation in C.

Proof: We set

φ(x) = ψA(x*).

Since the map x i—>• x* is anti-holomorphic, φ is a holomorphic function on W.
First we show that φ also enjoys the properties (1.2a-c).

For any h e T and x e W we have

For any n e N and x e W we have
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= Φ(x)

Obviously φ(e) = 1. Thus φ satisfies (1.2a-c).
Next we show that φ is an element of Γ2(LΛ).

Note that (n~)*eJV for n ~ e J V ~ . Then for any x e W a n d b = tn~eB
TCN~

φ(xb)= ψΛ((n-)*t*x*)

= ξΛ(bΓ1Φ(χ),

because ξΛ(t) =ίΛ(ί)"1 and ψΛ(t*x*) = ξΛ(t*Γl ΨΛ(X*) for teTc.

Hence the uniqueness of the element of Γ2(LΛ) which satisfies (1.1 a-c)
implies that φ = ψΛ. This completes the proof.

Now we can prove that JfΛ and KΛ are the identity operators.

PROPOSITION 2.2. JfΛ is the identity operator on the Hίlbert space Γ2(LΛ) i.e.

*Άf = f for feΓ2(LΛ).

Proof: First we show that JfΛ is a scalar operator. Since Γ2(LΛ) is an
irreducible representation of G, it is sufficient, by Schur's lemma, to show that

^to) °XΛ = *'ΛO KΛ(Q) for all g e G. (2.5)

For any/eΓ2(LΛ)

= I
JG
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(0", ggΊf(gf)dg'-L

f, 9')(πΛ(g)f)(g'W

Thus (2.5) implies that JfΛ = c/(3ceC) where / denotes the identity operator.
Now applying JfΛ to ψΛ, we have

c = \ψΛ(g')\2dg'=l
JG

where we used (1.2c) and Lemma 2.1.

COROLLARY 2.3. KΛ is the identity operator on J^Λ i.e.

KΛF = F for FeJeΛ.

3 Path Integrals

In this section we calculate path integrals on the flag maniforld G/T. Let

λ = ^/— \Λ. We extend λ to an element of the dual space of gc which
vanishes on the orthogonal complement of ί)c in gc with respect to the Killing
form.

For any geNB we can decompose it as

g = nzn~t where nzeN, n~ eN~, te Tc. (3.1)

Recall that in §1 we have parametrized nz and n~ as

"z = CXP Σ Zα£α,
<*eΔ+

n~ = exp X wα£_α.
αe4+

LEMMA 3.1. For any g e G f t N B , if we decompose it as g = nzn~t(see (3.1)),
then we can express w in terms of z and z.

Proof: For any g = nzn~t, since g*g — e,

t*(n~)*nfnzn~t = e. (3.2)
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Decomposing nfnz = nίn2t0, we substiture it into (3.2).

e = t*(n~Γnίn2t0n~t

f*/Ί*-\* M f * ~ l . f # O T * # - ! . * # * „-(+*+ λ - l . * * * 4.— t (n^) n^t t n2t t iQnw(t t0) t t0t.

Thus

HW = HI = n(n*nz) = n(n-z

 lnz]

by the uniqueness of the decomposition (3.1).

We denote w in the above lemma by w(z, z). For any zeD, we put

g ( z , z ) = nzn~(ZtZ}.
Let d denote the exterior derivative on D. We decompose it as d = d + d,

where 5 and 3" are holomorphic part and anti-holomorphic part of d,

respectively.
Define

θ = λ ( g ~ 1 d g ) = λ(n-~ln-ldnzn~) + λ(Γldt),

where g = nzn~teG. And we choose

α = λ(n~~'n~ldnzn~).

For any 7eg, the Hamiltonian function is given by

Hγ(g) = <Ad*(0μ, Y> = <Ad*fe(z, z))A, 7>,

where f̂ = ^(z, z)ίeG.

We need some lemmas to compute the path integrals.

LEEMA 3.2. For any geGftNB, if we decompose it as (3.1):

g = nzn~t where nzeN9 n~ eN~, ίe Tc,

KΛ(z, z) = £,(ί*t).

Therefore we have

JΛ(Z)=KΛ(z,zΓ1.

Proof: Clearly

lfci(n?«,) = αΛ(«?«z))~1. (3.3)

The fact that geG implies that
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(n;)*n*nzn;=(ί*t)~1, (3.4)

hence

Since (n~)*eN and ξΛ(n~) = 1, M«w)*n?»zΌ = φΛ(nfnz). Therefore

ψΛ(n*nf) = ξΛ(t*t). (3.5)

It follows from (3.3) and (3.5) that

= \ξΛ(t) 2

From (3.5) we have KΛ(z, z) = ξΛ(t*t).

PROPOSITION 3.3. If we decompose g = nzn~teGftNB as (3.1), then

= - d\ogKΛ(z, z).

Proof: From (3.4) we obtain

= - {n~~ίdn~n~~1n~ίn*~ί(n~)

because δn* = 0 and (n,;)*n?n2n~ = (ίί*)"1. Since </l, X> = 0 for Xen+ or
n~, the statement follows immediately from Lemma 3.2.

It follows from Proposition 3.3 that α = — ^/ — \d\ogKΛ(z, z).

Now we consider the Hamiltonian part of the action. Let

Kβ(z) = KΛ(z, w)

and regard it as an element of J^Λ.
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For any ^egc, we decompose it as X = X+ +H + X, with X±en±

and #ef)c. Then we put H(X) = H.

LEMMA 3.4. For any Xε$c, using the above notation, we have

UMexpε*)) = ξΛ(expεH(X)) + 0(ε2)

for sufficiently small ε.

Proof: Decompose X as X = X+ + H + X_. Then

exp (εX) = exp (εX + ) exp (εH) exp (εX _ ) + O (ε2 ).

Since ξΛ(h( )) is holomorphic at e, the statement follows.

LEMMA 3.5. For any XEQC and g = nzn~teGr\NB, using the above notation,
we have

(l/Λexp εX)K:)(z) = K£z)ξΛ(h(g ~ 1 exp εXg)\ (3.6)

for sufficiently small ε.

Proof: The left hand side of (3.6) is equal to

This completes the proof.

We put z0 = z and ZN = z'. First we compute the path integrals without
Hamiltonians. Taking the same paths as in [6], we generalize Propositions
6.1 and 6.2 in [6] as follows:

r / — rr \
®(z,z)exp ( v - 1 7*α

J \ Jo /

r f N-i / N r%τ
= lim • - • Π dμ(zi)exp( X

^^^ JD JD « = ι \*=ι J^r

Γ Γ J V - 1 / N 1

= lim — Π W«p( Σ logN^°°Ji) JD i=ι \fc = ι î
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*-I, zk-l)ί
Γ N-l N

• ' • Π dμ(zl) Π -,
D JD i = ι k=ι ^

Γ Γ N-l N

lim ••• JΛ(z0) Π JA(ZiW(Zi} Π KΛ(zfc, z^i i J* \J / i j. /i \ I/ i x /i \ n, iv A
N °° JD JD ί=ι fc=ι

= JΛ(z)KΛ(z', z),

where we used Lemma 3.2 and Corollary 2.3.

Next, for any Yeg, we quantize the Hamilton Hγ by choosing the

following ordering:

z >z f c , z > z k _ i . (*)

In [6] we proposed to compute the path integral in the following way:

\3(z9 z)exp( y^T iΓ

 7*α - //yfe(z, z))dΛ
J \ Jo /

= lim ••• Y[ ^(Zj.Jexpί ^ log—Λ fc? fc_-1— 1
^""^ JD JD ί = ι \k = ι KΛ(zk-l9 zk-ι)J

x e x p

However, this integral diverges. Therefore we replace

by

/ / T \\\
(**)

Then our path integral, which generalizes the path integral given in [7],

becomes

lim ί ••• ί JA(zJγ[
N-^CCJD JD ί=ι

By Lemma 3.5, we see that
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KΛ(Z', z")ξΛ(h(g(z\ z")-1 exp ̂  Y g(z', z"}

is extended to the function

/ T
ι*«expl --Y]nz.

defined on D x D which is holomorphic in z' and anti-holomorphic in z". To
proceed further, we need the following

PROPOSITION 3.6. For any AT eg and g', g'ΈGB,

ϊ*expXnz)JA(z)dμ(z)ί
JD

D

Proof : Since JΓΛ ° πΛ = πΛ ° JfΛ ,

I JfΛ(g",g)χ Λ(expXg,g')dg=\
JG/T J

Rewriting both sides of (3.8) in terms of ψΛ,

, g')dg. (3.8)
G/T

!
JD

= ί
JD

ΨΛ(t*fa)*n*πpXg")\lιΛ(g'*nxn;t)dμ(z).

It follows from (2.1) and (2.2) that

ί UnfgΊU9^^pXnz)ξΛ(t^tΓ1dμ(z)
JD

= ί φA(nΪGxpXgff)ψA(gf*nx)ξΛ(t*tΓldμ(z).
JD

The proposition now follows from Lemma 3.2.

Now, applying Proposition 3.6 to the path integral by taking —(T/N)Y,
exp((T/ N)Y)nZh_l as X, g" in the proposition, for each /c, respectively, we
get that (3.7) equals
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Furthermore, by Corollary 2.3, we have

(- TY)n2.9 nΞ}F(z)dμ(z) = (UΛ(exp(TY))F)(zf)

for any

Thus we have obtained the following theorem.

THEOREM 3.7. For any Feg, choosing the ordering (*) and taking the

regularization (**), the path integral of the Hamiltonian Hγ gives the kernel

function of the operator UA(exp(TY)\

Remark. In the case that G is compact, Theorem 3.7 is valid for any Yε$c,

because Proposition 3.6 holds for any XEQC in this case.
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