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1. Introduction

This paper is concerned with the Emden-Fowler differential equation
(L.1) Y + p()|y|*sgny =0, t>to.
For equation (1.1), we always assume that « >0, a # 1 and that
1.2) peC![t,, o) and p(t) > 0 for t>t,.

We are interested in the problem of the existence of infinitely many bounded
solutions y(t) of (1.1) which satisfy y(t,) =0 and have prescribed numbers of
zeros in (ty, 00). Our main result is stated as follows: Suppose that

(1.3) fim sup P® « _*+3
t=o " p(t) 2

for the superlinear case a > 1, and suppose that

(1.4) _ro tp(t)dt < o and on P'©1. dt < oo
' w P)

0

for the sublinear case 0 < a < 1, where [u], = max {0, u}. Then there exists
an infinite sequence of bounded solutions y,(t), k = 1, 2,---, of (1.1) such that
yi(t) has precisely k — 1 zeros in (to, 00) and satisfies y,(t;) = 0. Moreover
the sequence {y,(t)} can be constructed so that

0< tlim yi(t) < }im Vs (t) < 00 for a > 1
-0 =00

and

O<tlir2 Ver1(t) < }Lrg Yi(t) < o0 for 0<a< 1.

We note that, under condition (1.3) for the case « > 1, and under condition
(1.4) for the case 0 < « < 1, all nontrivial solutions of (1.1) are nonoscillatory.
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To prove the above results, we first show that, for each A > 0, equation
(1.1) has a unique solution y(t; A) existing on [t,, c0) and satisfying

(1.5) lim y(t; 7) = A

Then, we make a detailed analysis of how the qualitative behavior of y(t; A)
changes as A —» 0 or as A — oo, and make effective use of the information thus
obtained to count the number of zeros of y(t; 1) through the standard Prufer
transformation

{y(t; A) = p(t; A sin o(t; 2),
y'(t; 4) = p(t; 4) cos o(t; A).

In this procedure we need the fundamental results about the continuability
and the uniqueness of solutions of the initial value problem for (1.1) as well
as the results about the asymptotic properties of nonoscillatory solutions.

For boundary value problems in the compact interval [¢,, t,], the existence
of solutions with prescribed numbers of zeros is studied by many authors (see,
e.g., [7,9, 18,19, 21]). As an example, consider the boundary condition

(1.6) y(to) = y(t;) = 0.

It is known that, for any positive integer k, the boundary value problem
(1.1)-(1.6) has a nontrivial solution y(t) which has exactly k — 1 zeros in
(to, t;). The superlinear case of this result is due to Nehari [19] and Tal
[21], while the sublinear case has recently been proved by Naito-Naito
[18]. For a more general equation under the boundary value condition (1.6),
we refer to [7,9, 18]. It seems to the author, however, that very little is
known about the existence of solutions of (1.1) with prescribed numbers of
zeros in an infinite interval. The study of the present paper was motivated
by this observation.

Our results for the ordinary differential equation (1.1) can easily be applied
to radial solutions of the elliptic differential equation

(1.7) Au + q(|x|)|ul*sgnu = 0, xeQ,

where 4 is the n-dimensional Laplace operator, n > 3, |x| is the Euclidean
length of xeR", and 2 is either the unit ball

(1.8) Q= {xeR" |x| <1}

or the exterior domain

(1.9) Q = {xeR": |x| > 1}.
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For the case where Q2 is given by (1.8) we consider the boundary condition
(1.10) u=0 on |x|=1.

Then it is easily seen that the problem of finding radial solutions u = u(r),
r =|x|, of (1.7)—(1.10) is converted to the following problem:

(111) {(r"—lu/)/-f-r"—lq(r)'u‘“ sgnu=0, O0<r< 1’
' W(0)=0 and u(l)=0.

For the case where 2 is given by (1.9) we consider the boundary and the
asymptotic conditions

(1.12) u=0on |x| =1 and Illi—l'n X" 2u(x) =A>0 for some A.

Then, radial solutions u = u(r) of the problem (1.7)—(1.12) can be obtained by
solving

(1.13) {(r"—‘u')'+r"-lq(rnur'sgnu=o, r>1,

u(1) =0 and lim " 2u(r)=4>0 for some A.

By the change of variables, equations in (1.11) and (1.13) are reduced to
equations of the form (1.1). Then, using the results for (1.1), we can conclude
that each of the problems (1.11) and (1.13) has an infinite sequence of solutions
u(r), k=1,2,---, such that u,(r) has exactly k —1 zeros in the interval in
question.

We also consider equation (1.7) for the case 2 = R", that is, on the entire
space R". In this case we study entire solutions u satisfying
(1.14) |}|igloo [x""2u(x)=p#0  for some pu.
As in the above, the problem of finding radial entire solutions u = u(r), r = |x|,
of (1.7)-(1.14) is equivalent to the problem

(1 15) {(r"_lu’)’—f—r"_lq(r)lull"sgnu=0’ r>0,
: w(0)=0 and lim r"~*u(r) =p #0  for some p.

To investigate the problem (1.15), we use the technique of Yanagida-Yotsutani
[23]. Their idea is to divide (1.15) into the two problems

W) + g ul*sgnu =0, O0<r<l,

(1.16) {
wW(0)=0 and u(0)=4i>0,
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and
(1.17) {(’"'1”')' +r gl sgno =0, > 1,
| lim r"~*o(r) = p> 0,

and to glue u(r) and v(r) at r =1 by choosing A and u appropriately. For
this method, we also refer to Bianchi-Egnell [1] and Cheng-Chern [3]. The
results about bounded solutions y(t; 4) of (1.1) satisfying (1.5) play an importnat
role and are effectively used in studying the problems (1.16) and (1.17).

The problems (1.11) and (1.15) are discussed by several authors. For the
superlinear case of the problem (1.11) with g(r) = 1, Castro-Kurepa [2] and
Struwe [20] showed the existence of an infinite sequence of solutions with
prescribed numbers of zeros. In [10], Kajikiya obtained a similar result for
the sublinear case as well as the superlinear case. For the superlinear case
of (1.11) with q(r) =r', 1 >0, Nagasaki [15] showed the existence and the
uniqueness of an infinite sequence of solutions having the same properties as
above.

Recently the problem (1.15) was discussed by Naito-Naito [17] for the
sublinear case, and by Yanagida-Yotsutani [23] for the superlinear case. In
both papers, it is shown that, under certain conditions on a and ¢(t), the
problem (1.15) has an infinite sequence of solutions u,(r), k =1, 2,---, such
that u,(r) has exactly k — 1 zeros in (0, c0).

The outline of this paper is as follows. The main results concerning the
ordinary differential equation (1.1) are stated in Section 2. The results for
the problems (1.11), (1.13) and (1.15) are also stated in Section 2. Sections
3,4 and 5 are devoted to the study of equation (1.1). Section 3 contains the
basic result which ensures the existence and uniqueness of solution y(t; 1) of
(1.1) satisfying (1.5). The superlinear case and the sublinear case of (1.1) are
studied in Sections 4 and 5, respectively. Section 6 is concerned with the
problems (1.11), (1.13) and (1.15). The results for (1.11) and (1.13) are proved
in the subsection 6.1, and the results for the superlinear case and the sublinear
case of (1.15) are proved in the subsections 6.2 and 6.3, respectively.

2. Main results
First we state the results concerning the ordinary differential equation (1.1).

THEOREM 1. Consider equation (1.1). Let a > 1 and suppose that condition
(1.3) holds. Then, for each k =1, 2,---, there exists a bounded solution y,(t)
of (1.1) such that y,(t) has exactly k — 1 zeros in (to,, ) and satisfies y,(t,) = 0
and
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2.1) 0 < lim y,(t) < lim y,. () < 00, k=1,2,--
- =0

ReMARK 2.1. Condition (1.3) is equivalent to the following condition:
There is ¢ > 0 such that

d
E(t‘“"‘”“‘p(t)) <0 for all large t.
Therefore if (1.3) is satisfied, then all nontrivial solutions of (1.1) are

nonoscillatory (see Kiguradze [11]). It is also known that if

) _a+3
p(t) 2

then a solution y(t) of (1.1) satisfying y(t,) = 0 has an infinite number of zeros
in (ty, o0) (see Coffman-Wong [4] and Heidel-Hinton [8]).

’ tZtOs

THEOREM 2. Consider equation (1.1). Let 0 <a <1 and suppose that
condition (1.4) holds. Then, for each k = 1, 2,---, there exists a bounded solution
() of (1.1) such that y,(t) has exactly k —1 zeros in (to, 00) and satisfies
Yi(to) = 0 and

2.2 0 < lim y,,,(f) < lim y,(¢) <0,  k=1,2,

REMARK 2.2. It is known that if (1.4) is satisfied, then all nontrivial
solutions of (1.1) are nonoscillatory (see Gollwitzer [6] and Kwong-Wong

[14]).

Next we consider the problem (1.11) which arises in the search of radial
solutions of the elliptic problem (1.7)—(1.10).

THEOREM 3. Consider the problem (1.11). Suppose that o > 1 and that
(2.3) qeC[0,1]nC*(0, 1], q(r)>0  for re(0, 1].
Suppose further that

(2.4) liminf 40 s _nFt2-ar—2)
=0 q(r) 2

Then, for each k =1, 2,---, there exists a solution u,(r) of (1.11) such that u,(r)
has exactly k — 1 zeros in (0, 1) and

2.5) 0 < 1, (0) < 3 (0) < -+ < U(0) < th 4 (0) < ---.

REMARK 2.3. For the case gq(r) =r' (0 <r < 1) where [ >0, condition
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(24) becomes a<(n+2+2l)/(n—2). In this case, the existence and
uniqueness of the sequence of solutions u,(r) are proved by Nagasaki [15]. By
a result of Kusano-Naito [12, 13] we see that, under the condition

"ql(r)<_n+2—oz(n—2)

< s O<r<l1,
q(r) 2

any solution u of
(" wy + " tq(r)|ul*sgnu =0, 0<r<l,
satisfying u'(0) =0 and u(0) # 0 has no zeros in [0, 1].

THEOREM 4. Consider the problem (1.11). Suppose that 0 <a <1 and
that (2.3) holds. Suppose further that

2n-2
(2.6) f L e L™ "abH- 4 -,
q(r)
where [u] - = max {0, — u}. Then, for each k =1, 2,---, there exists a solution

u,(r) of (1.11) such that w,(r) has exactly k — 1 zeros in (0, 1) and
2.7 0< - <uy (0) <ue(0) <o < uy(0) < 1y (0).
Next we state the results concerning the problem (1.13).
THEOREM 5. Consider the problem (1.13). Assume that o> 1 and that
2.8) qeC[1, o), q(ry>0  for re[l, o).

Suppose that

/ 2~ an—2
2.9) limsup 40  _nt2-2=2)
P00 2

Then, for each k =1, 2,---, there exists a solution w,(r) of (1.13) such that w(r)
has exactly k — 1 zeros in (1, o0) and

(2.10) 0 < lim r"~?u(r) < lim r" 2wy, (1) <00,  k=1,2,

THEOREM 6. Consider the problem (1.13). Assume that 0 < a < 1 and that
(2.8) holds. Suppose that

f 1Tt dr < o and
@.11)

dr < o0,

J’ [ -n+4—-a(n—-2) (r))/]+

—n+4—a(n—2)q(r)
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where [u], = max {u, 0}. Then, for each k =1, 2,---, there exists a solution
u,(r) of (1.13) such that u,(r) has exactly k — 1 zeros in (1, ) and

(2.12) 0<limr" 2u, () < lim r"2u(r) <0, k=1,2,--
Next we consider the existence of solutions of the problem (1.15) which
arises in the search of radial entire solutions of the elliptic problem (1.7)—(1.14).
THEOREM 7. Consider the problem (1.15). Assume that o > 1 and that
(2.13) qeC[0, c0)nCL(0, ), q(r)>0  for re(0, ).

Suppose that (2.4) and (2.9) hold. Then, for each k=1, 2,---, there exists a
solution u,(r) of (1.15) such that u,(r) has exactly k — 1 zeros in (0, c0) and
satisfies (2.5).

REMARK 2.4. It is known (Kusano-Naito [12, 13]) that, under the
condition

rq’(r)>_n+2—a(n—-2)

> > 0,
) 2 '

any solution u of
(2.14) (" Y + " 1q(r) |ul* sgnu = 0, r>0,

satisfying 4'(0) =0 and u(0) # 0 has no zeros in [0, c0). It is also known
[12, 13] that, under the condition

Vql(r)< _ n+2—oan—2)
q(r) 2

, r>0,

any solution u of (2.14) satisfying #'(0) = 0 and u(0) # 0 has an infinite number
of zeros in [0, cv). Recently the following theorem has been proved by
n+2—oan-—2)

Yanagida-Yotsutani [23]: If there is a number a> — >

satisfying either

q(r) = Ar* + o(r") as r — 0  for some A4 >0

or
2.15) im0 _
r=0 q(r)
n+2—an—2)

and if there is a number b < — satisfying either

2
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q(r) = Br* + o(r’) as r —> 0 for some B> 0
or

(2.16) tim 40— p,

ree q(r)
then the problem (1.15) has solutions u,(r), k =1, 2,---, such that w,(r) has
exactly k — 1 zeros in (0, c0). Theorem 7 means that the limit as r —» 0 in
(2.15) and the limit as r —» oo in (2.16) can be replaced by the lower limit as
r— 0 and the upper limit as r — oo, respectively.

THEOREM 8. Consider the problem (1.15). Assume that 0 < a < 1 and that
(2.13) holds. Suppose that (2.6) and (2.11) hold. Then, for each k=1, 2,---,
there exists a solution w,(r) of (1.15) such that u(r) has exactly k — 1 zeros in
(0, o0) and satisfies (2.7).

REMARK 2.5. Recently, Naito-Naito [17] have showed that if

J r"~lq(r)dr < oo,
0

then there exist solutions u,(r), k = 1, 2,---, of (1.15) such that u,(r) has exactly
k — 1 zeros in (0, ).

3. Preliminaries

In this section we consider the ordinary differential equation (1.1). First
of all, we remark the following fundamental fact: For any initial condition

G.1) yt)=a, y(t)=>b,

where t; €[t,, ©0) and a, be R, the solution y(t) of (1.1) satisfying (3.1) exists
and is unique on the whole interval [t,, o0). In particular, any solution of
(1.1) is uniquely continuable to [t,, c0). This fact can be concluded under
the hypothesis (1.2) by using a theory on the uniqueness and continuability
of solutions of (1.1)—(3.1). The results concerning the uniqueness problem and
the continuability problem are found in the survey papers of Naito [16] and
Wong [22]. For a more general equation, we refer to Coffman-Wong [4]
and Naito-Naito [18].
Hereafter we assume the integral condition

(3.2) fw sp(s)ds < oo.

0
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It is well known (see, e.g., Coffman-Wong [5]) that, under (3.2), equation (1.1)
has a bounded and eventually positive solution y(t) such that lim,_, . y(t) exists
and is a positive finite value. The purpose of this section is to show that,
for each 4 > 0, equation (1.1) has a unique solution y(t) satisfying

(33) lim () = 2

and existing on the whole interval [t,, o).

It is to be noted that if y(t) is a solution of (1.1) satisfying (3.3), then
we have

(3.4 y()=4— r (s —t)p()|y(s)I*sgn y(s)ds,  t=t,,
and
(3.5) y(t) = r p(s)|y(s)|* sgn y(s)ds,  t=t,.

Let y(t) be a solution of (1.1) satisfying (3.3) with 4> 0, and let (T, o)

(= [tg, ©0)) be the largest interval such that y(t) >0 on (T, ). Then, by

(3.5) we see that y(t) is strictly increasing on (T, o), and 0 < y(t) < Afort > T.
We state the following proposition.

ProposSITION 3.1. Let a >0, a # 1. Suppose that (3.2) holds. Then, for
each A > 0, there exists a unique solution y(t) of (1.1) which exists on [t,, o)
and satisfies (3.3).

Proor. First we show the existence of a solution of (1.1) satisfying
(3.3). Choose T, > t, so large that

@ 1
f sp(s)ds < 3 Ate,

To

Let C[T,, o) denote the Fréchet space of all continuous functions on [T, )
with the topology of uniform convergence on every compact subinterval of
[Ty, o©). Consider the set

1
Y={yeC[T0, oo):EASy(t)sl for tZTo}

which is a closed subset of C[T;, o). We define an operator F on Y by

0

Fy(t) =4 — J (s —pE)y@E)ds, =T

t
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If yeY, then Fy(t) < 4, t > T, and

0

Fy(t) > 2 - J sp(s)|y(s)|* ds

t

21—2“! sp(s)dsZ%l, t>T,.

To

Thus, the operator F maps Y into itself. It is easy to see that the operator
F is continuous on Y and FY is relatively compact in the topology of
C[T,, ). By the Schauder-Tychonoff fixed point theorem, F has an element
yeY such that y = Fy, i.e., y(t) = Fy(t) for t > T,. Then, y(t) is a solution
on [T, o) of (1.1) and satisfies the asymptotic condition (3.3). As mentioned
in the first part of this section, any solution of (1.1) is continuable to
[to, o©). Thus, y(t) exists on the interval [t,, o0).

Next we verify that the solution of (1.1) satisfying (3.3) is unique. Let
y,(t) and y,(t) be solutions of (1.1) satisfying (3.3). Then, we have (3.4) with
y=y, and y =y;. Take T, >t, so that

1 1
yl(t)zle and yz(t)zzl for t > T;.

As stated above, we obtain

y:1(t) < 4 and y,(t) < 4 for t > T;.
Then it is easy to see that

[y1(t) — y. () < J (s = Op) [[yi(5)]* — [y2(s)1%] ds
< LJ sp(s)|y1(s) — ya(s)l ds, t> T,

where L=aA* ! if a > 1 and L=a[A/2]* ! if 0 <a < 1. Define the function
Y(1) by

Y() = LJ sp(s)[y1(s) — y2(s)lds, ¢t =T,.

Observe that
Y'(t) = — Ltp(t) |y, (t) — y2()| = — Ltp(t) Y(¢), t=>T,,

so that
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%[Y(t) exp <— LJ‘OO sp(s)ds>:| >0, t>T,.

Integrating the above on [t, 7], T >t > T;, we obtain

(3.6) Y(t) < Y(z) exp <LJ

t

sp(s) ds) < Y(z)exp (Lf sp(s) ds).

T,
Note here that Y(r) >0 as 7 — co. Letting 7 — oo in (3.6), we get Y(t) =0
for t > Ty, which implies that y,(t) = y,(t) for t > T,. Since any solution of
(1.1) is uniquely continuable to [t,, o0), we can conclude that the solution of

(L.1) satisfying (3.3) is unique on [t,, 00). This completes the proof of
Proposition 3.1.

We denote by y(t; 1) the solution of (1.1) satisfying (3.3). By Proposition
3.1, y(t; 4) is a function of (¢, A)e[ty, ) x (0, o). Equations (3.4) and (3.5)
imply

(3.7 e, ) =4— fw (s —Op(s)y(s; A" sgn y(s; A)ds,  t>t,,
and '
(3.8) y(t; )= f p(s)|y(s; H*sgn y(s; Ads,  t>tq,

respectively. Since the initial value problem (1.1)—(3.1) has a unique solution
for each t,e[ty,, ©) and each a, beR, y(t; 1) and )'(t; A) cannot vanish
simultaneously. Hence the zeros of y(t; A) are all simple and cannot have a
cluster point in a finite interval J < [, o0). In view of (3.3), it is clear that
y(t; 2) > 0 for all sufficiently large t. Therefore, we see that, for each 1> 0,
the number of zeros of y(t; 4) in (¢y, 00) is finite.

It is proved that y(t; A) is a continuous function of (¢, 2)€[ty, o) x (0, 00).
It is also proved that lim,,,,N(4) =0 and lim,,, N(1) = oo for the
superlinear case « > 1, and that lim,;_, ., N(4) = o0 and lim,_, N(4) =0 for
the sublinear case 0 < a < 1, where N(A) denotes the number of zeros of y(t; 4)
in [t,, 00). The proofs of these facts are given in Section 4 for the superlinear
case and in Section 5 for the sublinear case. These facts play an essential
part for the proofs of Theorems 1 and 2.

4. The superlinear equation

In this section we consider equation (1.1) in the superlinear case
o> 1. Associated with every solution y(t) of (1.1), we define the function
VIy]() by



188 Yuki Narro

1 1
“.1) Viyle) = 7 '®1* + i1 pOIYOIT, =1

It is clear that

“2) Iy(t)l3<w)w“), £ 0o,
p(t)

and

43) YOI<@VDIOM, >t

Moreover we see that, for 7 >t > t,,
4.4)

VY1) exp ( - f t [”If(ss))] - ds) <VDIE < VIO exp( % ds)

(see, e.g., [18]). Inequalities (4.2)—(4.4) will be effectively used in this section.
Hereafter we assume in (1.1) that « > 1 and that (3.2) holds. These
assumptions are used without further mention. Later, it is shown that
condition (3.2) is satisfied under condition (1.3) in Theorem 1.
For A >0, let y(t; A) be the solution of (1.1) satisfying (3.3). The existence
and uniqueness of y(t; ) are ensured by Proposition 3.1. Note that y(t; A)
satisfies (3.7) and (3.8).

ProrosiTION 4.1. If >0, A(})) >0 (i=1, 2,---) and lim,_, , A(i) = A, then
lim;, , y(t: A()) = y(t; 4) and lim,_, , V' (t; A(i)) = y'(¢; A) uniformly on [t,, c0).
In particular, y(t; A) and y'(t; A) are continuous in (t, A)€[ty, ©) x (0, c0).

To prove Proposition 4.1, we prepare the next lemma.

LEMMA 4.1. Let Ay > 0. Then there exists a positive constant M (,) such
that, for any A€(0, Aq],

(4.5) ly(e; DI < M(@ho),  t=to.
Proor. Choose T, = Ty(4,) large enough so that
(4.6) J sp(s)ds < AL~
To

We claim that, for any A€(0, 5], y(t; ) >0 for ¢t > T,. Assume to the
contrary that y(¢t; 1) has a zero in [T;, ). Let T,€[T,, c0) be the largest
zero of y(t; /). Then we have

0<yt; ) <A t>T,.
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From (3.7) we see that

A= r (s — T)p(s)ly(s; Dl ds

T
<A j sp(s)ds.
To
Then we have

0

ATrgAlTrg ‘[ sp(s)ds,

To

which contradicts (4.6). Thus we conclude that, for any A€(0, 4], y(t; A)>0
for t > T,. This implies that

4.7y ly@; Dl <io, t2To,

for any 1e(0, A,]. From (3.8) and (4.7) we have

(4.8) '@ Dl < 1‘6[ p()ds=my, t>Tp,
To

for any A€(0, 4,]. By virtue of (4.7) and (4.8) we see that
1 2 1 at+1
V(- ANT) < = mi+ —— p(To)Ag™ " = my,
2 o+1
where V[y] is defined by (4.1). From (4.4) with y = y(- ; 1) we easily see that

VIy(- s A0 < V(- ; A)](To)exp( RO ds)

(O]
<m, exp( pLACIE ds), to<t<T,.
w PO
Then, on account of (4.2) with y = y(- ; 1), we obtain
4.9) [y(t; A)) < may, to<t<T,,
where

[ my(o + 1) ]1”““) ( 1 [T [p'(s)]- )
my=| — exp ds |.
min {p(t): to <t < T} a+1J, P

Let M(4,) = max {1y, m;}. ~Then, from (4.7) and (4.9), we have (4.5). This
completes the proof of Lemma 4.1.

PrROOF OF PROPOSITION 4.1. There exists a A, such that A(i) < A, for
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i=1,2---. From Lemma 4.1, there exists a positive constant M = M(4,)
such that, for i =1, 2,---,

(4.10) [y(t; A@)| < M and |y(t; )| < M, t>tp.
Then, from (3.7), we see that

4.11) [y(t; AG)) — y(t; A

< |A@G) — A| + aM* 1 Jw sp(s)|y(s; A(D)) — y(s; A)| ds, t>t,.

t

Define the function Y(t) by

o)

Y(6) = |AG) — 4] + oM f o) y(s: 20) — yis: Dlds, £ ko,

t

We easily see that

%[Y(t)exp(—aM““Jw Sp(s)ds>:| >0, t>t,.

Integrating the above on [t, 7], we have

Y(t) < Y(z) exp (ocM"’“1 J‘r sp(s)ds), T>t>t,.

t

Thus,

4.12) Y(t) < Y(r) exp <ocM°“1 f sp(s) ds), T>t>t,.

to
Note here that Y(t) » |A(i) — 1] as T — o0. Letting 1 — oo in (4.12) and using
(4.11), we get

o)

@.13)  [y(t; AG) — y(e; D < |AG) — Al exp (thM"‘_1 f

to

sp(S)dS), t>to,

which implies that y(t; A(i)) converges to y(t; A) as i— co uniformly on
[to, ). From (3.8) and (4.10) we have

o0

[y'(e; 2(0) — y'(t; Al < oM™ J p()[y(s; A(W) — y(s; Alds,  t >t

t

Then it follows from (4.13) that
V(5 A1) — y'(t; Al

< aM* 1|A(i) — Al exp <cxM"‘_1 f sp(s)ds)j p(s)ds, t>to,
t

to 0
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which means that y'(t; A(i)) converges to y'(t; ) as i— oo uniformly on
[to, ). This completes the proof of Proposition 4.1.

ProroSITION 4.2. For sufficiently small >0, y(t; A) >0 on [t,, o).
Moreover, the solution y(t; A) has the following properties:

(i) gl_r'r(l) y(t; A) =0 wuniformly on [t,, ©); and

G 1m 2 G2
420 y(t; A)

=0 wiformly on [tq, ).

Proor. Let A >0 be small enough so that

(4.14) A< l:jw sp(s) ds]”(l_a).

We claim that y(t; 1) >0 on [t,, 00). Assume to the contrary that y(t; A)
has a zero in [ty, 00). Let t; be the largest zero of y(¢; A) in [ty, 0). Then
we have )

0<y(t; A< 4, t>t.
From (3.7) we see that

A= J (s — t)p() [y(s; HI*ds

< A"J sp(s)ds.
to

Then we have

Are< J sp(s)ds,
t

(4]

which is a contradiction to (4.14). Thus we conclude that, for sufficiently
small A >0, y(t; 4) has no zeros in [¢,, o).
Let A >0 be small enough so that y(t; ) >0, t >t,. Then we have

(4.15) 0<yt; )< 4, t>t,
which implies (). From (3.7) and (4.15) we see that

e
A

1 0
] = 7[ (s = OpE)ly(s; DI ds

< pt J sp(s)ds, t>to.
11

0
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Thus we obtain

(4.16) =1 uniformly on [t,, o).

From (3.8) and (4.15), we have

’ ; /1 1 ®

pL ‘[ p(s)ds, t>t,.
t

<
y(t; 4) 0
Then, by virtue of (4.16), we obtain (ii). This completes the proof of

Proposition 4.2.

PROPOSITION 4.3.  Suppose that (1.3) holds. Then the number of zeros of
y(t; A) in [ty, o) tends to oo as A — 0.

First we show that condition (1.3) implies the integral condition

3
xt such

(3.2). Condition (1.3) guarantees the existence of t; > t, and [ >
that

4.17) E(L) < -1 t>ty,
p(t)

which is equivalent to

(4.18) (t'p®))y <0, t>t,.

Then we have

4.19) p(t) < Cyt7, t>ty,

for some positive constant C;. Hence, by virtue of /> 2, condition (1.3)
implies (3.2). In Proposition 4.3, it is to be noted that condition (1.3) ensures
the well-definedness of y(¢; A), and that, as is shown in Section 3, the number
of zeros of y(t; A) is finite for each 4 > 0.

To prove Proposition 4.3, we need a series of lemmas.

LEMMA 4.2. Suppose that (1.3) holds. Then, there exists a positive constant
C, such that

2]

(4.20) J‘ sp(s)ds < Cztf p(s)ds, t>ty,
t

t

where t, is a constant appearing in (4.17).
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Proor. Integrating (4.18) on [r, 5], t; <1 < s, we obtain
(4.21) 'p(t)st 7! > sp(s), s>T>t.

Let t >t,. From (4.21) we see that

0

(4.22) Jm sp(s)ds < (2t)'p(2t) J stlds

2t 2t

4 2
= —t°p(2¢).
= p(2t)

Since sp(s) is nonincreasing on [t;, o), we have

2t
(4.23) J sp(s)ds = 2tp(2t) (2t — t) = 262 p(21).

By virtue of (4.22) and (4.23) we obtain
[e9) 2 2t
J sp(s)ds < j sp(s) ds.
2t [-2 t
Then we have

0

jw sp(s)ds = jzz sp(s)ds + J sp(s)ds

t 2t

2t
J sp(s)ds

1 2t
t J p(s)ds

I]\N

N
[\9]

1/‘\N

~
N

[\

l

<

|

tJ p(s)ds, t>t.
t

N

This completes the proof of Lemma 4.2.

Lemma 4.3, Suppose that (1.3) holds. Then, there exist positive constants
C; and C, such that, for any 1 >0,

0

(4.24) VIy(- s A1) + C3 > Cy J p()|y(s; AI** 1 ds,

t

where t, is a constant appearing in (4.17).

Proor. We note that y(t; 4) satisfies
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i i e 2 1 . at+1l l . (1 )
(4.25) dt( S VG + 1 tp@)y(t; A 5 Y AYE A

1 +3 1t
B [a AU

a1 2 p(t) :lp(t”y(t; AT, t>t,.

Using (3.8), we get

o0

p(s)ds < A* J sp(s)ds

t

0

[ty'(t; )] < /l“tf

t
for all sufficiently large t; and hence

lim ty'(t; 4) = 0.

1~ 0

Further, by (4.19) we have
lim ¢p(t) = 0.

t— 0

Then, integrating (4.25) on [¢, 7] and letting T — oo, we find that

i YR 2 1 . at1 _i . I(f
5 thy'(e; H1* + Y tp(@) [ y(t; Al 5 y(e; Ay (e; A

1 “[o+3 sp’(s):l
= — + ;AP ds, t>t,.
cx+1£ [ 2 ) p@s)|y(s; Al s 0

From the definition of V[y] and (4.17) we see that

1
(4.26) t V(- A1) - ~2—Y(t1; Ay'(tys 4)
1 & + 3 ? . a+1
Z [l“ 2 ]Jn p(s)y(s; AIFT " ds.

By (4.2) and(4.3) with y = y(- ; A) we have

(4.27) % (e Y (0; )

1 [o+ 1\Ve*D
= aS12\ oy V c )] ()@t a1
2172 ( o(ty) > Viv(- ;s H1()]

Now remember Young’s inequality
a Bb

(4.28) AB< — + —,
a b
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where A, B, a and b are positive numbers and (1/a) + (1/b) =1. We apply
(4.28) to the case A = [V[y(-; A)](t,)]@*32C+DI B =1, a=2(a+ 1)/(x + 3)
and b = 2(a + 1)/(e« — 1). Then we have

(429) VIV 5 1] D)
a+3 oa—1
< Viy(-; A1) + ——.
2+ DO
Combining (4.27) with (4.29), we obtain
1
(4.30) 3 [y(eys Ayt A< CsVIv(- 5 V() + Ce,
where
c._ %3 (oc+ 1>1/‘¢+”

and T 2Pa+ D\ ple)

a—1 [a+1\/erD
Com itz Iy
(o + 1\ p(ty)

From (4.26) and (4.30) it follows that

[t, + CVIy(- 5 A)1(ty) + Cs

> 1 [1—“3“ p(s)1y(s: DI+ ds,
o+ 1 2 "

which implies (4.24) with

C 1 3
t, + Cs (0 + 1)(t, + Cs) 2

LemMMA 4.4. Suppose that (1.3) holds. Then,

(4.31) lim Vy(-; H)1(,) = oo,

where t, is a constant appearing in (4.17).

Proor. First we show the following: Let A be large enough so that

P 1/(1-a)
(4.32) A= 2[J (s — tl)p(s)ds] .

1

Then there exists t, = t,(4) > ¢, such that
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1 1
4.33) vty A) = 5 A and y(t; 1) > 5 /N t>t,.
To prove this, assume to the contrary that
1
y(t;/l)>5/1, t>t,.

From (3.7) we see that

1 T
3“'1_[5'1] f (s — t,)p(s)ds.

fﬂo (s —t)p@B)ds < [% i]l—a,

Then we have

which contradicts (4.32). Thus there exists t, > t, satisfying (4.33).

(3.7) we have

[c9}

%/1 = J-w (s = t2)p(s)1y(s; MH*ds < l“f sp(s)ds,

t2
which implies

(4.34) %11_" < J sp(s)ds.
t

2

By virtue of (4.19), we see that

0 o] C
J sp(s)dssclj s“’ds=l-—l—2t§".
t

2 t2

From (4.34) it follows that

Laeeg S,
2 -2
that is,
(4.35) t, < C A0~ V=2)
where

7

2C1 1/(1-2)
<1—2> '

From
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From (4.20), (4.34) and (4.35) we obtain

J‘p(s)dszc1 f sp(s)ds > ! Ae

1 2l Jo, P12

Z 1 A(l+a—al-l)/(l—2)‘
2C,C,

Then we see that

0 1 a+ 1 0
(4.36) J p(s)|y(s; AI*+tds > [E A] J p(s)ds

t1 12

> 1 J@L=a=3)/-2)
2u+2C2C7

We note here that

2l—oc—3= 2 [l_a+3 >0
-2 -2 2

Then, letting A —» o in (4.36), we obtain

Jlim f p()|y(s; HI** ' ds = o0.
t

1

By virtue of Lemma 4.3, we obtain (4.31). This completes the proof of Lemma
44.

LEMMA 4.5. Consider equation (1.1) on a compact interval [t,,t,]. For
any integer k =1, 2,---, there exists a positive constant V, = Vy(k) such that if
y(t) is a solution of (1.1) satisfying

(4.37) Viyl@®) = W, to<t<ty,
then y(t) has at least k zeros in [ty, t,].
Proor. We define p, and p* by
py = min {p(t): to < t <1}
and
p* = max {p(t): to <t < t,},
respectively. Choose t > 0 so small that

ty — 1o
3k

(4.38) <
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Take u > 0 so large that

n

(4.39) — 5 =T,
(upy)'"?
and put
(4.40) Ho = i@V,
We define ¥, = ¥;(k) as follows:
1 [ 1o \? 1

4.41 Vo=——] + ——p*us*'.
(4.41) 0= < . ) o+ lp Ko

We verify that a solution y(t) of (1.1) satisfying (4.37) with this ¥} has at
least k zeros in [t,, t,].

Let y(t) be a solution of (1.1) satisfying (4.37) in which ¥} is given by
(4.41). Notice here that if |y(t)| < u, at a point te[t,, t,], then |y'(t)| = uo/7.
Indeed, if |y(t)| < pg, then from (4.1), (4.37) and (4.41) we have

a+1

p*us™t,

| 1 a+1 l Ho 2
E[Y(t)] +mp(t)|ym| > 2<r> +a+1

which implies |y'(t)] = po/7.

First we show that y(t) has at least one zero in an arbitrary subinterval
[Ty, T;] of [to, t;] such that T, — T, = 3t. We may assume that y(T;) >0
without loss of generality. It is convenient to distinguish the following three

cases:
(i) ¥(To) < po and y'(T,) < 0;

(i) y(To) > no;
(iii) Y(Ty) < po and y'(Tp) > 0.

(i) The case where y(Ty) < po and y'(Ty) < 0. We show that y(¢) has at
least one zero in [Ty, T, + t]. Assume to the contrary that y(¢) >0 on
[Ty, T, + t]. By equation (1.1) we have y"(t) <0 on [T,, Ty + t]. Then it
is easy to see that y(t) < y(T,) + V' (Tp)(t — Ty) on [T, Ty + t]. Thus we have

0<yt)<py To<t<Ty+r

By the above notice we obtain

V()< — uo/, T, <t<Ty+r

This implies that
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Tott

T + 1) = y(To) + '[ y()ds < y(To) — po <0,

To

which is a contradiction to y(T, + 1) > 0. Thus y(t) has at least one zero in
[Ty, Ty + 7].

(i) The case where y(T,) > po. Let us show that y(¢) has at least one
zero in [Ty, Ty + 2t]. By the argument as in Case (i), it is enough to show
that

4.42) y(t) <po and y(t,) <0
for some t, e[T,, To + t]. Assume that

(4.43) y(t) > uo, Th<t<Ty)+r.
We consider the linear differential equation

(4.44) 2"+ pup,z=0.

Equation (4.44) has a solution z(t) = sin ((up,)'/*(t — Tp)) which vanishes at
t=T, and t = T, + n/(up,)*/*>. We see that y(t) is a solution of the linear
equation

w +p@®) Iy tw=0, T,<t<T+r.
From (4.40) and (4.43) we have

pOIYOIP ' >up,, To<t<T,+r

By using Sturm’s comparison theorem, we find that y(t) has at least one zero
in [T,, Ty + n/(up,)*'*]. Then, by virtue of (4.39), we see that y(t) has at
least one zero in [T, T, + t]. However this contradicts (4.43). Thus (4.43)
does not hold. Then it is clear that there is t, € [Ty, Ty, + 1] satisfying (4.42).

(i) The case where y(Ty) < uo and y'(Ty) > 0. Let us show that y(t)
has at least one zero in [T, Ty + 3t]. First we claim that y(t*) > u, for
some t*e[T,, T, + t]. Assume to the contrary that 0 < y(t) <y, for
T, <t<Ty+ . Then, by the above notice, we see that y'(t) > p,/t for
To <t < T, + 7, and hence

To+t
VT + 1) =y(To) + j y'(s)ds > po.
To
This contradicts our assumption. Thus, y(t*) > u, for some t*e[T,, T, + 7].
By the argument similar to Case (ii), it is seen that y(t) has at least one zero
in [t*, t* +21] < [Ty, Ty + 37].
We have showed that y(t) has at least one zero in every subinterval
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[Ty, T,] of [to, t;] such that |T, — T;| = 3t. Then, by virtue of (4.38), we
conclude that y(t) has at least k zeros in [ty, t;]. The proof of Lemma 4.5
is complete.

We are now ready to prove Proposition 4.3.

PrOOF OF PROPOSITION 4.3. We consider equation (1.1) on the compact
interval [t,, t;], where ¢, is a constant appearing in (4.17). Let k be any.
positive integer. By Lemma 4.5, there exists a positive constant ¥, = ¥ (k)
such that a solution y(t) of (1.1) satisfying (4.37) has at least k zeros in
[to, t;]. From (4.4) we see that

(4.45) VIy(-; H10)

ZV[Y(‘;)»)](H)Cxp(—— ‘e,

s), to <t<t.
to p(s)

By virtue of Lemma 4.4 and (4.45) we have

}gg) VIy(-; A)](@) = oo uniformly on [t,, t,].
Then, for all sufficiently large A, y(t; 1) satisfies
VIy@; A1) = W, l<t<ty,

which implies that y(¢; A) has at least k zeros in .[ty, t;] = [ty, ). Since k
is arbitrary, this means that the number of zeros of y(t; 1) tends to oo as
A— 0. The proof of Proposition 4.3 is complete.

To prove Theorem 1, we employ the Prifer transformation. For the
solution y(t; A) of (1.1) satisfying (3.3), we define the functions p(¢; 1) and

o(t; ) by
(4.46) y(t; 2) = p(t; A)sin o(t; 1),
(4.47) y(t; A) = p(t; A)cos o(t; A).

Note that y(¢t; 4) and y'(t; 1) cannot vanish at the same point t€[t,, o). Then
we see that p(t; A) and ¢(t; A) are given by

p(t; A =(Iy'@E; HI* + [y(t; HIH?
and

y(t; 4)
y(t; 4)

’

o(t; 1) = arctan
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respectively, and that p(t; 1) and ¢(¢; A) are determined as continuously
differentiable functions with respect to t. Moreover, by Proposition 4.1, p(t; 1)
and o¢(t; 4) are continuous in (t, A) e[y, ®©) x (0, ). By a simple caluculation
we see that

@'(t; A) = [cos (t; H1> + p(t) [p(t; VI Isino(t; HI*TY,  t >t
which implies that ¢(t; A) is increasing in t > t,. Since lim,_ . y(t; ) = 4 and
fim,..., y/(t; 4) =0, we have lim,_, , p(t; 4) = 4 and lim,., p(¢; 1) = % (mod 27).
For simplicity, we take

(4.48) lim ¢(t; 2) = g

Then it is easy to see that y(t; A) has exactly k — 1 zeros in (t,, o) if and only if

(4.49) —(k—=Dr<oty; )< —(k—2)m.
ProoF OF THEOREM 1. From Propositions 4.2 and 4.3, we see that
li s A) = !
lim ¢(to; ) = -

and
/1ll—'nolo @(to; A) = — 0.

By the continuity of ¢(t,; A) with respect to A, for each k=1, 2,---, there
exists a 4 > 0 such that
(4.50) o(ty; )= —(k — D=

Let A, denote the smallest 4 > 0 satisfying (4.50). Then we easily see that
{A,} must be a strictly increasing sequence and that y(t; 4,) has exactly k — 1
zeros in (ty, o0) and satisfies y(to; 4,) = 0. Let y(¢) = y(t; 4). Then, y,(¢) is
a solution of (1.1) such that y,(t) has exactly k — 1 zeros in (t,, o0) and satisfies
Yi(to) = 0 and

(4.51) lim y, () = .

Thus, y,(t) is a desired solution of (1.1). The proof of Theorem 1 is complete.

5. The sublinear equation

Let us now consider the case where equation (1.1) is sublinear. Through-
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out this section we assume that 0 < « < 1 and that (3.2) holds.. As is shown
in Section 3, for each A >0, there exists a unique solution y(t; 1) of (1.1)
which exists on [ty, c0) and satisfies (3.3). Moreover, y(t; A) satisfies (3.7) and
(3.9).

ProrosiTION 5.1. If >0, A(i))>0 (i=1,2---) and lim,_, , A(i) = A, then
lim;_, , y(t; A(Q)) = y(t; A) and lim,_, . y'(t; A())) = y'(t; A) uniformly on [t,, ).
In particular, y(t; ) and y'(t; 1) are continuous in (t, 2)€[ty, o©) x (0, o0).

The truth is that the statements of Propositions 4.1 and 5.1 are
identical. However the proof of Proposition 4.1 is of no use for the proof
of Proposition 5.1. Indeed, the superlinearity is essentially used in the proof
of Proposition 4.1. To prove Proposition 5.1, we prepare the next lemma.

LemMA 5.1. For each A >0, y(t; A) is estimated as follows:

(5.1 ly(t; M| < [il"“ +(1—w ﬁn sp(s)ds:ll/(lya), t>t,.
0
Proor. From (3.7) we see that
(5.2) ly@; ) <1+ J‘w sp(s)|y(s; A)|*ds, t>tg-
¢
Define the function Y(t) by
(5:3) Y(t)=41+ J‘oo sp(s)|y(s; A}*ds, t>tg.
¢

We easily see that
Y
RUNS

Integrating the above on [f, 7], t, <t <7, and letting T — co, we obtain

<tp(t), t>tg.

e}

(YOI *—A"* <1~ d)f sp(s)ds,  t=to,

t

so that
0 1/(1—a)

(5.4) Y(t) < [11”“ +(1— a)f sp(s)ds] ,  t>tg.
t

Then, from (5.2)—(5.4), we conclude that (5.1) holds. This completes the proof
of Lemma 5.1.
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Proor OF PropOsITION 5.1. We shall prove that
(5.5) lim [sup [y(¢; A() — (5 A + sup |y'(£; A() — y'(¢; D] = 0.
t=to t2to

Assume that (5.5) is false. Then there exist an ¢ > 0 and a subsequence (again
denoted by {A(i)}) of {A(i)} such that

(5.6) sup |y(t; A(0)) — y(t; )| +sup |y (t; AG) — y'(t; A)| = ¢

t=to t>to
fori=1,2,---. By Lemma 5.1, there exists a certain constant M > 0 such that
(5.7) y(E; AGDI <M, t>ty, i=1,2,-.

From (3.8) and (5.7) we see that

Iy’(t;l(i))lsM“J p(s)ds, t>ty, i=1,2,-.

to

Therefore {y(t; A(i))} is uniformly bounded and is equicontinuous on
[to, o©). According to Ascoli-Arzela’s theorem there exists a subsequence
{A(i))} of {A(i)} and a continuous function z(t) on [t,, o) such that {y(t; A(i})}
converges to z(t) uniformly on any compact subinterval of [ty, o). Note here
that {y(t; A(i;))} satisfies the equality

(5.8) y(e; AGy)) = AG) — Jm (s = Op() f(s; AE))ds,  t=to,

where f(u) = |u|*sgnu. Letj— oo in (5.8). Then, by the Lebesgue dominated
convergence theorem, we see that

z(t)= A — Jw (s — t)p(s) f(z(s)) ds, t>t,.

Thus z(t) is a solution of (1.1) satisfying the asymptotic property (3.3). By
the uniqueness of y(t; A) we find that y(t; ) =z(t) for ¢t >t,. Therefore

{y(t; A(i}))} converges to y(t; 4) uniformly on any compact subinterval of
[to, o0). Observe that

(5:9) ly(e; AGy) — y(t; D)

<I14G) — Al + _[w (s = OIS ((s; AG)) — f(v(s; A)lds

<|AG) — Al + J.w sp(s)1f (y(s; A(E)) — f((s; A)lds,  t=to,

to
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and

(5.10) ly'(t; AGEp) — y'(E; )]

< J " PO 0(s: AQ)) — £ v(s; )l ds

SJ PO f(s; A3)) — f(s; D)lds,  t = to.
to

Letting j—»> oo in (59) and (5.10), and using the Lebesgue dominated
convergence theorem, we conclude that {y(t; A(i))} and {y'(t; A(i}))} converge
to y(t;A) and y'(t; ) as j— oo uniformly on [t,, c0). This contradicts
(5.6). Hence, (5.5) holds. The proof of Proposition 5.1 is complete.

PROPOSITION 5.2. For sufficiently large A >0, y(t;A) >0 on [t,, ).
Moreover, the solution y(t; A) has the following properties:

(i) }1_210 y(t; A) = oo uniformly on [t,, o©0); and

() lim 2 AR

L =0 uniformly on [t,, o).

ProOF. Let 4 be large enough so that

© 1/(1-a)
(5.11) A> [J sp(s)ds]

We claim that y(t; 1) >0 on [t,, c0). Assume to the contrary that y(t; 1)
has a zero in [ty, o0). Then, exactly as in the proof of Proposition 4.2, we have

AtTrg f sp(s)ds.
to
This contradicts (5.11). Thus we conclude that, for sufficiently large A > 0,
y(t; A) has no zeros in [t,, 00). '
Let A>0 be large enough so that y(t;4)>0, t>t,. We have
0<y(t;A) <Afort>t,. Then, by (3.7), we easily see that

y@; 4

ll sl“_lf sp(s)ds, t>t,.
t

{i]

Thus

(5.12) lim v 4 =1 uniformly on [t,, o),

A= o0
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which implies (i). From (3.8) we have

\y(t;i)ﬁ 4 l““J‘ p(s)ds, t>tg.
ye; Al oy A ‘

By virtue of (5.12), we obtain (ii). This completes the proof of Proposition 5.2.

0

PROPOSITION 5.3. Suppose that (1.4) holds. Then the number of zeros of
y(t; A) in [ty, o) tends to oo as A — 0.

The next lemmas are necessary for the proof of Proposition 5.3.

LEMMA 5.2. Suppose that (1.4) holds. Then

(5.13) }'l—l:l’(l) y(t; ) =0 wuniformly in [t,, ).

Proor. Let {A(i)} be an arbitrary sequence such that A(i)> 0 (i=1, 2,---)

and lim;_ ,A(i) = 0. It is enough to show that {(i)} has a subsequence {A(i;)}
such that

(5.14) }ng y(t; A(i)) =0 uniformly in [¢,, c0).

Exactly as in the proof of Proposition 5.1, we can conclude that there exist
a subsequence {4(i)} of {A(i)} and a continuous function z(t) on [to, o) such
that {y(t; 4(i)} converges to z(t) as j— oo uniformly on [t,, o0) and such
that z(t) satisfies

z(t) = — J‘w (s — t)p(s)|z(s)|*sgn z(s) ds, t>tg,.

Note that z(t) is a bounded solution of (1.1) satisfying lim,_, z(t) = 0.
By the first condition in (1.4), we have

(5.15) lim ¢ jw p(s)ds = 0.

t— oo

According to the results of Gollwitzer [6] and Kwong-Wong [14], the second
condition in (1.4) and (5.15) together imply that all nontrivial solutions of (1.1)
are nonoscillatory. Further it is well known that a bounded nonoscillatory
solution of (1.1) has a nonzero finite limit as t — co. This means that z(t)
cannot be a nontrivial solution of (1.1). Thus, z(t)=0 for t>1t,. Con-
sequently we get (5.14). This completes the proof of Lemma 5.2.

LemMMA 5.3.  Consider equation (1.1) on a compact subinterval [t,, t,]. For
any integer k =1, 2,---, there exists a positive constant Yo = Yy (k) such that if
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y(t) is a nontrivial solution of (1.1) satisfying
(5.16) OI<Yy, to<t<ty,
then y(t) has at least k zeros in [ty, t,].

Proor. Take u > 0 so large that a nontrivial solution z(t) of
(5.17) " + up(t)z =0, to <t<ty,
has at least k + 1 zeros in [t,, t;]. Take a number Y, such that
(5.18) 0< Y, <put/e-b),

Let y(t) be a solution of (1.1) satisfying (5.16) in which Y, is given by
(5.18). We verify that y(t) has at least k zeros in [fo, t;]. Let s, and
Sy, tg < 8o < 8, < t;, be any successive zeros of the solution z(f) of (5.17). We
claim that y(t) has at least one zero in (s,, s;). Assume to the contrary that
y(t) has no zeros in (sy, s;). There is no loss of generality in supposing that
z(t) > 0 and y(t) > 0 on (sq, s;). Multiplying (1.1) by z(¢) and (5.17) by y(¢),
subtracting, and integrating over [s,, s,], we obtain

(5.19) y(51)2'(s1) — y(50)2'(50)

= f p(S)y(9)z(s){[y(s)1* ™" — u}ds.
Because of z(t) >0 on (sq, s;), z(sg) = z(s;) =0 and y(t) >0 on [so, 5], the
left-hand side of (5.19) is nonpositive. On the other hand, it follows from
(5.16) and (5.18) that [y(s)]*~* > u on (so, s,); and hence the right-hand side
of (5.19) is positive. This is a contradiction. Thus y(t) has at least one zero
in (sg, s;). Since y(t) has at least one zero between each successive zeros of
z(t), we conclude that y(t) has at least k zeros in [t,, t;]. This completes
the proof of Lemma 5.3.

PrOOF OF PRrROPOSITION 5.3. Let t, > t, be an arbitrary number. We fix
t, and consider equation (1.1) on [t,, t;]. Let k be any positive integer. By
Lemma 5.3, there exists a positive constant Y, = Y,(k) such that a solution
y(t) of (1.1) satisfying (5.16) has at least k zeros in [ty, t;]. By virtue of
Lemma 5.2 we have lim,,, y(t; ) =0 uniformly on [t,,¢t,]. Then, for
sufficiently small A, y(t; A) satisfies

yE; V<Y, to<t<ty,

which implies that y(t; A) has at least k zeros in [tq, t,] = [tq, ). Since k
is arbitrary, we conclude that the number of zeros of y(¢; A) in [ty, 00) tends
to oo as A —0. The proof of Proposition 5.3 is complete.
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To prove Theorem 2, we employ the Priifer transformation. For the
solution y(t; A) of (1.1) satisfying (3.3), we define the functions p(¢t; A) and
o(t; A) by (4.46)—(4.48). In the same way as in Section 4, p(t; A) and ¢(t; A)
are well defined and uniquely determined, and they are continuously
differentiable functions with respect to t. Moreover, by Lemma 5.1, p(t; )
and ¢(t; A) are continuous in (t, J)€[ty, ) x (0, 0). We see that ¢(t; A) is
increasing in te(ty, o), and that y(t; 1) has exactly k — 1 zeros in (t,, o) if
and only if (4.49) holds.

PrROOF OoF THEOREM 2. From Propositions 5.2 and 5.3, we see that
li ;A= !
lim o(to; 4) = 37
and

lim o(ty; 4) = — co.

By the continuity of ¢(ty; 4) with respect to A, for each k=1, 2,---, there
exists a A > 0 such that (4.50) holds. - Let A, denote the largest A > 0 satisfying
(4.50). Then we easily see that {4} must be a strictly decreasing sequence
and that y(¢t; 4,) has exactly k — 1 zeros in (t,, c0) and satisfies y(t,; 4,) = O.
Let y,(¢) = y(t; 4). Then, y,(t) is a solution of (1.1) such that y,(¢) has exactly
k —1 zeros in (ty, o0) and satisfies y,(t,) =0 and (4.51). Thus, y,(¢t) is a
desired solution of (1.1). The proof of Theorem 2 is complete.

6. The elliptic problems

6.1. In this subsection we consider the problems (1.11) and (1.13), and
prove Theorems 3-6.
First we consider the equation

(6.1) " wy + g |ul*sgnu=0, O0<r<l,

where n > 3, ge C[0,11nC*(0, 1] and o > 0, « # 1. We introduce the change
of variables

6.2) y(t)=u(r) and t=r>"",
which reduces (6.1) to the equation

(6.3) y+p@lylsgny=0, =1,
where = d/dt and
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(6.4) p(t) = ﬁ e TU A ite) N -

We see that if g satisfies (2.3), then p satisfies (1.2) with t, = 1. Suppose that,
for each k=1, 2,---, equation (6.3) has a bounded solution y,(t) such that y,
has exactly k — 1 zeros in (1, c0) and satisfies y,(1) = 0. We denote by u,(r)
the solution of (6.1) which corresponds to the solution y,(t). It is clear that
u,(r) has exactly k — 1 zeros in (0, 1) and satisfies u,(1) = 0. We see that

(6.5) lim w,(r) = lim y,(t) < co.

Moreover, we have

. el e
lim 77 u(r) = lim y,(t) = 0.

Then, integrating (6.1) on [r;,r], 0 <r, <r, and letting r, — 0, we obtain

u(r) = rl_"J s""1q(s) lug(s)|*sgn u,(s)ds, O<r<1.
0

Then we have

lim u(r) = 0.

Therefore, the solution u,(r) satisfies the boundary condition
u(0)=0 and u,(1)=0
and has exactly k — 1 zeros in (0, 1).

ProoF oOF THEOREM 3. Observe that, by (6.2), condition (2.4) is
transformed into condition (1.3). Then, from Theorem 1, there exists an
infinite sequence of bounded solutions y,(t), k = 1, 2,---, of (6.3) such that y,(t)
has exactly k — 1 zeros in (1, co) and satisfies y,(1) =0 and (2.1). For each
k=1,2,--, let u,(r) be the solution of (6.1) which corresponds to the solution
y.(t). As mentioned above, u,(r) is a solution of the problem (1.11) such that
u,(r) has exactly k — 1 zeros in (0, 1). By virtue of (2.1) and (6.5), we have
(2.5). The proof of Theorem 3 is complete.

ProoF OF THEOREM 4. Observe that, by (6.2), the first condition in (1.4)
corresponds to the condition

(6.6) Jl rq(r)dr < oo,

0
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and the second condition in (1.4) corresponds to (2.6). Since qeCJ[O0, 1],
condition (6.6) is always satisfied. Thus, under condition (2.6), we have
(1.4). Then, from Theorem 2, there exists an infinite sequence of bounded
solutions y,(¢), k =1, 2,---, of (6.3) such that y,(¢) has exactly k — 1 zeros in
(1, o0) and satisfies y,(1) =0 and (2.2). For each k=1, 2,---, let u,(r) be the
solution of (6.1) which corresponds to the solution y,(t). As mentioned above,
u,(r) is a solution of the problem (1.11) such that u,(r) has exactly k — 1 zeros
in (0,1). By (22) and (6.5) we have (2.7). The proof of Theorem 4 is
complete.

Next we consider the equation
6.7 " *wy + m lq@r)|ul*sgnu=0, r>1,

where n >3, geC*[1, o) and « >0, « # 1. In this case, we introduce the
change of variables
(6.8) yt)=r"%u(r) and t=r""2

’

which reduces (6.7) to equation (6.3) with

(6.9) pt) =

( 2)2 t(—n+4—am+2a)/(n-—2)q(tl/(n—Z))’ t Z 1
n —

We see that, under condition (2.8), p satisfies (1.2) with t, = 1. Suppose that
y(t), k=1, 2,---, are bounded solutions of (6.3) such that y,(¢t) has exactly
k — 1 zeros in (1, o) and satisfies y,(1) =0. We denote by u,(r) the solution
of (6.7) which corresponds to the solution y,(t). It is clear that u,(r) has
exactly k — 1 zeros in (1, c0) and satisfies u,(1) =0 and
(6.10) lim " 2u(r) = lim y,(t) < oo.

ProoF oOF THEOREM 5. Observe that, by (6.8), condition (2.9) is
transformed into condition (1.3). Then, from Theorem 1, there exists an
infinite sequence of bounded solutions y,(t), k = 1, 2,---, of (6.3) such that y,(t)
has exactly k — 1 zeros in (1, o) and satisfies y,(1) =0 and (2.1). For each
k=12, let u,(r) be the solution of (6.7) which corresponds to the solution
y(t). As mentioned above, u,(r) is a solution of the problem (1.13) such that

u,(r) has exactly k — 1 zeros in (1, c0). By virtue of (2.1) and (6.10), we have
(2.10). This completes the proof of Theorem 5.

PROOF OF THEOREM 6. Observe that, by (6.2), condition (1.4) corresponds
to condition (2.11). Then, from Theorem 2, there exists an infinite sequence
of bounded solutions y,(t), k=1, 2,---, of (6.3) such that y,(t) has exactly
k — 1 zeros in (1, o) and satisfies y,(1) =0 and (2.2). For each k=1, 2,---,
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let u,(r) be the solution of (6.7) which corresponds to the solution y,(t). As
mentioned above, u,(r) is a solution of the problem (1.13) such that u,(r) has
exactly k—1 zeros in (1, c0). By virtue of (2.2) and (6.10), we have
(2.12). The proof of Theorem 6 is complete. ‘

6.2. In this subsection we consider the problem (1.15) in the superlinear
case « > 1 and prove Theorem 7 by employing the method used in [23]. We
devide (1.15) into the two problems (1.16) and (1.17), and glue solutions of
(1.16) and (1.17) at r = 1.

First we deal with the problem (1.16) and consider equation (6.1). In
the subsection 6.1 we have shown that, by the change of variables (6.2),
equation (6.1) is reduced to equation (6.3) in which p(t) is given by (6.4). We
note that condition (3.2) is always satisfied, and that condition (1.3) corresponds
to condition (2.4). From Proposition 3.1, for each 4 > 0, there exists a unique
solution y(t; A) of (6.3) satisfying

(6.11) ,llm y(t; A) = A
We denote by u(r; 1) the solution of (6.1) which corresponds to the solution
y(t; 4). In the same way as in the subsection 6.1, we have

u@; A)=41 and u'(0; 1) =0.

Thus u(r; 1) is a solution of the problem (1.16). From Propositions 4.1-4.3,
we obtain the following lemmas.

LEMMA 6.1. u(r; A) and u'(r; A) are continuous in (r, A)€[0, 1] x (0, c0).

LEMMA 6.2. For sufficiently small A >0, u(r; A) > 0 on [0, 1]. Moreover,
the solution u(r; 1) has the properties:

(6.12) }1% u(r; A) =0 uniformly in [0, 1]; and

Y (r; A)

=0 uniformly in [0, 1].
o ) iformly in [0, 1]

(6.13)
LEMMA 6.3. Suppose that (2.4) holds. Then the number of zeros of u(r; 1)
in [0, 1] tends to oo as A — oo.

We employ the Prifer transformation. For the solution u(r; 1), we define
the functions p(r; 1) and ¢(r; 1) by

(6.14) u(r; A) = p(r; A)sin o(r; 1),
(6.15) Y (r; A) = p(r; A)cos o(r; 4).
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Note that u(r; A) and /(r; A) cannot vanish at the same point re[0, 1]. Then
we see that p(r; 1) and ¢(r; 1) are given by

(6.16) plrs &) = (0~ (e DT + [utrs D12
and
6.17) o(r: ) = arctan 34

"l (e )

respectively, and that p(r; ) and ¢(r; ) are determined as continuously
differentiable functions with respect to r. Moreover, by Lemma 6.1, p(r; 4)
and ¢(r; A) are continuous in (r, A)e[0, 1] x (0, o0). By a simple calculation
we see that

@'(r; 2) =r'""[cos o(r; 1)]?
+ g [p(r; )1 Ysin o(r; HP*HY,  O<r<],
which implies that ¢(r; 1) is increasing in re(0, 1). Since u(0; 4) =4 and

1
w(0; 1) =0, we get ¢(0; 1) = En (mod 2#). For simplicity, we take

(6.18) 0(0; ) = —m.

Then it is easy to see that u(r; 1) has exactly k — 1 zeros in (0, 1) if and only if
(6.19) (k—Dr < o(l; 1) <kn
We have the next lemma.

LEMMA 6.4. Suppose that (2.4) holds. Then, p(r; A) and @(r; A) have the
following properties:

. 1
(6.20) lim o(1; 4) = 7%
(6.21) lim o(1; 1) = 00; and
(6.22) lim p(1; 2) = 0.

Proor. From Lemma 6.2, for sufficiently small 4 > 0, u(r; A) is positive
on [0, 1], which implies that

(6.23) %n <o(; )<
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From (6.13) we obtain
fim YA _ g
4=0 y(1; A)

Then, by virtue of (6.17) and (6.23), we have (6.20). Note that u(r; 1) has
exactly k — 1 zeros in (0, 1) if and only if (6.19) is satisfied. Then, using
Lemma 6.3, we see that (6.21) holds. By (6.12) and (6.13), we have

/lll_r'r(l) u(l; A) = }gr(l) u(l; A)=0.

Then, by virtue of (6.16), we obtain (6.22). The proof of Lemma 6.4 is
complete.

Next we deal with the problem (1.17) and consider equation (6.7). By
the change of variables (6.8), equation (6.7) is reduced to equation (6.3) in
which p(t) is given by (6.9). We note that conditions (3.2) and (1.3) correspond
to conditions '

(6.24) f T () dr < o0
1

and (2.9), respectively. Assume that condition (6.24) holds, that is, condition
(3.2) holds. Then Proposition 3.1 ensures that, for each y > 0, there exists a
unique solution y(t; p) of (6.3) satisfying

(6.25) lim y(t; p) = p.
We denote by v(r; u) the solution of (6.7) which corresponds to the solution
y(t; n). We have

(6.26) lim " 2o(r; p) = u,

r— o

which implies that v(r; p) is a solution of the problem (1.17). We note that
v(r; ) has the properties

6.27) rllrg YW, p=—(@n-—2)pu and
(6.28) A NNy (CY NP
v(r; p) y(t; w

From Propositions 4.1-4.3, we obtain the following lemmas.

LEMMA 6.5. Suppose that (6.24) holds. Then, v(r; u) and v'(r; u) are
continuous in (r, p)e[1, oo) x (0, o).
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LEMMA 6.6. Suppose that (6.24) holds. Then, for sufficiently small p > 0,
v(r; W)>0 on [1, ). Moreover, the solution v(r;pu) has the following
properties:

(6.29) ,I;i-% v(r; ) =0 wuniformly in [1, o©); and
(s )
(6.30) lim ——= = —(n—2)r""% for each fixed r>1.

#=20 u(r; w

LEMMA 6.7. Suppose that (2.9) holds. Then the number of zeros of v(r; w)
in [1, o0) tends to oo as p— 0.

We employ the Priifer transformation. For the solution v(r; u), we define
the functions o(r; u) and Y(r; u) by

(6.31) v(r; W) =o(r; p)siny(r; p),
(6.32) ™" (r; p) = o(r; p)cos Y(r; ).

We see that o(r; u) and Y (r; p) are given by

(6.33) o(r; W= ("' W1 + [o(r; w12
and

(6.34) Y(r; p) = arctan rn—_vl(—rﬁ,)-;) ,

respectively, and that o(r; y) and y(r; u) are determined as continuously
differentiable functions with respect to r. Moreover, by Lemma 6.5, a(r; u)
and Y (r; ) are continuous in (r, y)e[1, o) x (0, c0). By a simple calculation
we see that

Y'(r; p)=r'""[cos y(r; p1?
+ g [o(r; w1*~ Hsing(r; p**t,  r>1,

which implies that y(r; p) is increasing in re[1, c0). By virtue of (6.26) and
(6.27), we have lim,, o(r; u)=n—2)u and lim,,  Y(r; u) =n (mod 27).
For simplicity, we take

(6.35) lLrg Y(r; p=m.
Then it is easy to see that v(r; u) has exactly k — 1 zeros in(1, o) if and only if

(6.36) —k—Dr<y(l;p < — (k-2

We have the following lemma.
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LEMMA 6.8. Suppose that (29) holds. Then, o(r; 1) and Y(r; 1) have the
properties

(6.37) lim y(1; p) = Arctan (— ! ) + 7,
k=0 n—2

(6.38) }Lngo v(l; n)= — oo, and

(6.39) lim o(1; u) =0.
u—=0

T T
Here, Arctan x denotes the principal value of arctan x: — ) < Arctan x < 5
for all xeR.

Proor. From Lemma 6.6, for sufficiently small u > 0, v(r; p) is positive
on [1, oo0), which implies that

(6.40) O0<vy(l; p<m.
From (6.30) we obtain

im V(s ) = —(n—2).
w0 y(1; p)

Then, by virtue of (6.34) and (6.40), we have (6.37). Noticing that v(r; u) has
exactly k — 1 zeros in (1, o0) if and only if (6.36) holds, and using Lemma
6.7, we get (6.38). By (6.29) and (6.30), we have

lim o(1; @) = lim v (1; w) = 0.
u—0 n—0

Then, by virtue of (6.33), we have (6.39). The proof of Lemma 6.8 is complete.

We are now in a position to prove Theorem 7.

ProOOF OF THEOREM 7. Let I' be a continuous curve defined by
(6.41) I'={(p(1; 4), o(1; 4)): 2€(0, 00)}.

Then, because of the uniqueness of solutions of initial value problems for (6.1),
I" does not intersect itself. Further, let I, k=1, 2,---, be continuous curves
defined by

(6.42) Iy ={((1; w), y(1; ) + (k — Dm): pe(0, c0)}.

Then, by the uniqueness of solutions of initial value problems for (6.7), I,
and I'; do not intersect for any k and j. By Lemma 6.4, we have
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(P(l;}»),@(l;i))—)(O,%n) 25 1 —0

and
o(l; ) — as A — o0.

By Lemma 6.8, we have

(e(1; w, y(1; W+ (k—Dm) —><0, Arctan (— ) + kn) as u—0

n—2
and
y(l;p) — —o0  as u— .

It follows from these facts that I intersects I, for each k=1, 2,---.

For k=1, 2,---, let 4, denote the smallest A such that (p(1; A), ¢(1; 1))
is on the curve I,. We easily see that {lk} must be a strictly increasing
sequence. Further, since (p(1; 4,), ¢(1; 4,)) is on the curve I, there exists a
positive constant u, such that

(6.43) p(L; 4) = a(1; wo),

(6.44) o(1; 4) = o(1; ) + (k — D,

that is,

(6.45) u(l; &) = (= Dol w),

(6.46) w(ls A) = (= D115 w).

Let

(647) () = {:‘(_”lf;‘flv(r; " igi (: = b

Then u,(r) is a solution of the equation in (1.15). The solution u,(r) satisfies
the following properties:

(0) = 4, u(0)=0 and lim M2y (r) = (= 1y,
Therefore, u,(r) is a solution of the problem (1.15) and satisfies (2.5). Moreover,
the solution u,(r) can be written as '
u, (r) = pi(r) sin @, (r) for 0 <r< oo,

where



216 Yuki Naito

_ p(r; A for 0<r<i,
pilr) = )
a(r; w) for r>1,

and

)_{40(’;1;() for 0<r<il,
K0 = Vi, w) + k- for r>1.

We see that ¢,(r) is increasing in re(0, c0). By virtue of (6.18) and (6.35),
we have

1
0(0) = 3 n and rlirg @i (r) = km.

Then, u,(r) has exactly k — 1 zeros in (0, ). The proof of Theorem 7 is
complete. ‘

6.3. In this subsection we consider the problem (1.15) in the sublinear
case 0 <o < 1, and prove Theorem 8 by using the same arguments as in the

subsection 6.2.

First we deal with the problem (1.16) and consider equation (6.1). We
make the change of variables (6.2). Then, equation (6.1) is reduced to equation
(6.3), where p(t) is given by (6.4). We note that condition (3.2) is always
satisfied, and that if (2.6) holds, then (1.4) holds. From Proposition 3.1, for
each 1 > 0, there exists a unique solution y(t; ) of (6.3) satisfying (6.11). We
denote by u(r; 4) the solution of (6.1) which corresponds to the solution
y(t; A). We see that u(r; A) is a solution of the problem (1.16). From
Propositions 5.1-5.3, we obtain the following lemmas.

LEMMA 6.9. u(r; A) and u'(r; A) are continuous in (r, )€ [0, 1] x (0, c0).

LemMa 6.10. For sufficiently large A > 0, u(r; ) > 0 on [0, 1]. Moreover,
the solution u(r; A) has the properties:

lli_)m u(r; A) = oo uniformly in [0, 1]; and

" ru(r; A) B

hm—h 0 uniformly in [0, 1].

LEMMA 6.11.  Suppose that (2.6) holds. Then the number of zeros of u(r; A)
in [0, 1] tends to oo as A — 0.

We employ the Priifer transformation. For the solution u(r; 1), we define
the functions p(r; ) and ¢(r; A) by (6.14), (6.15) and (6.18). As in the
subsection 6.2, we see that p(r; A) and ¢(r; A) are well defined and uniquely
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determined, and that they are continuous in (r, A)e[0, 1] x (0, «©). Moreover,
@(r; A) is increasing in re(0, 1), and u(r; ) has exactly k — 1 zeros in (0, 1)
if and only if (6.19) holds. Using Lemmas 6.10 and 6.11, we have the following
lemma.

LEMMA 6.12. Suppose that (2.6) holds. Then, p(r; A) and @(r; 1) have the
following properties:

. 1
}l_{l:)(p(l,l)= En’
}11_1}(1)40(1;1) = 00; and
}Lm p(1; ) = oo.

Next we deal with the problem (1.17) and consider equation (6.7). By
the change of variables (6.8), equation (6.7) is transformed to equation (6.3)
in which p(t) is given by (6.9). We note that condition (1.4) corresponds to
condition (2.11), and that condition (3.2) corresponds to (6.24). Assume that
condition (6.24) holds, that is, condition (3.2) holds. Then, it follows from
Proposition 3.1 that, for each u >0, equation (6.3) has a unique solution
y(t; p) satisfying (6.25). We denote by v(r; u) the solution of (6.7) which
corresponds to the solution y(¢; u). Then we find that v(r; u) is a solution
of the problem (1.17) and satisfies (6.27) and (6.28). From Propositions 5.1-5.3,
we obtain the following lemmas.

LemMMma 6.13. Suppose that (6.24) holds. Then, v(r; u) and v'(r; u) are
continuous in (r, u)e[1l, o) x (0, o0).

LEMMA 6.14. Suppose that (6.24) holds. Then, for sufficiently large u > 0,
v(r; ) >0 on [1, ©). Moreover, the solution v(r; u) has the properties:

lim v(r; ) = © uniformly in [1, ©); and
]
n—1_r¢..
lim r—M =—(n—-2r? for each fixed r > 1.
e (s )

LEmMMA 6.15. Suppose that (2.11) holds. Then the nomber of zeros of
v(r; p) in [1, o0) tends to oo as u—0.

We employ the Prifer transformation. For the solution v(r; u), we define
the functions o(r; ) and Y¥(r; ) by (6.31), (6.32) and (6.35). We find that
a(r; u) and Y(r; p) are well defined and uniquely determined, and they are
continuous in (r, u)€[1, o) x (0, c0). Moreover, Y(r; u) is increasing in
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re[l, o), and v(r; p) has exactly k — 1 zeros in (1, o) if and only if (6.36)
holds. The following lemma is obtained from Lemmas 6.14 and 6.15.

LEMMA 6.16. Suppose that (2.11) holds. Then, o(r; w) and Y (r; p) satisfy
the properties:

Iim y(1; p) = Arctan(— ! >+ T
poreo n—2
limy(1; u) = —o0; and

u=0

lim o(1; p) = oo.

pn— o0

Here, Arctan x denotes the principal value of arctan x.
We are now in a position to prove Theorem 8.

ProoF oF THEOREM 8. Let I' be a continuous curve defined by
(6.41). Then I' does not intersect itself. Similarly, let I}, k=1, 2,---, be
continuous curves defined by (6.42). Then, I, and I'; do not intersect for
any k and j. By Lemma 6.12, we have

(p(1; ), o(1; 4) ——><oo, %n) as A —> o0

and
o(1; ) — o0 as 1 ——0.

By Lemma 6.16, we have

(o(1; w, ¥(1; W+ k—1)n) —»(oo, Arctan (— > + kn> as py— o0

n—2
and
v(; p)— — as u—0.

Then these facts imply that I” intersects I, for each k=1, 2,---.

Let 4, denote the largest A such that (p(1; 1), ¢(1; 4)) is on the curve
I,. We easily see that {4,} must be a strictly decreasing sequence. Moreove,
since (p(1; 4), o(1; A4)) is on the curve I, there exists a positive constant pu,
such that (6.43) and (6.44) hold, that is, (6.45) and (6.46) hold. Define u, (r)
by (6.47). As in the subsection 6.2, we can conclude that u,(r) is a solution
of the problem (1.15) such that u,(r) has exactly k — 1 zeros in (0, c0) and
satisfies (2.7). The proof of Theorem 8§ is complete.
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