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Introduction

Let A be a group with a presentation (X |R), and let B be a subgroup
of A and Y: B—> A a monomorphism. The HNN extension of A relative to
B and y with stable letter t is the group

Axg,,.=<(X,t|R, t"'bt = y(b)(beB)),

which was introduced by G. Higman, B. H. Neumann and H. Neumann [4].
Note that G = A*p, , has a natural epimorphism A: G — Z obtained by killing
A. Information about G can be deduced from information in A4, B and
Y. However G may be expressed in a different way as an HNN extension
with same natural epimorphism A: G — Z and same stable letter . We shall
study the problem to compare more than one different such expressions. Thus
we consider the problem under the following situation:

Let G be a group, and suppose that an epimorphism A: G—Z and a
section 7: Z —» G are given. Put G, =Ker 4, t =1(1), and let ¢ denote an
inner automorphism of G, given by ¢(g) =t gt:

1—G,— G257 —0,
©.1) Yo :
t=1(1) and ¢(g)=t"1gt.

Now, let 2 denote the set of HNN decompositions of G (with given A
and t=t(l)) relative to the condition (0.1). Also Z,, denotes the set of
o = Axge P so that both 4 and B are finitely generated. In [6] we associated
to each a€2 a non-negative integer valued function v,: G > Z.,, and then,
using these functions, we defined a distance on %, which reflects differences
of combinatorial structures of the decompositions. For a decomposition
o= A*z€eP, t'ar ' (ie Z) denote its conjugate decompositions (t' At~ ") ip,- € D.
We consider an equivalence relation ‘~’ on 2: o ~ B if and only if f = tlat™*
for some ieZ. In many cases, it is more suitable to consider the set of
equivalence classes 2* = 9/~ and its subset 2}, = 9,/ ~ rather than & and
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2, themselves. In this paper we shall study several properties of 2* and
2F, by considering associated functions v¥:G—>Z,, (cf. (0.4) below).
Particularly, it is shown that a distance function d* can be also defined on
2}, under the assumption that G is not of ‘lobster pot type’.

We will state the results more precisely. For a given group G we assume
the condition (0.1). Then the set of HNN decompositions of G relative to
(0.1) is the set 2 of all subgroups 4 = G, which satisfy the following condition
(0.2) (see [6, §2]):

(0.2) The natural homomorphism i: A*g , 5 — G induced by the inclusion
A = G and satisfying i(s) = ¢t is an isomorphism, where B = AntAt~ 1.

Each element ae% will be written as o= A%z ,, (or simply Axp). We
associate to each a€ 2 a non-negative integer valued function v,: G > Z,, as
follows: Write each element ge G as a Britton’s reduced word relative to
o; g =atta,t?---a,t*a,,, (see Lemma 1.1). Then we put

vy (9) =max {0, &y, & + &5,...,8, + & + - + &,
0.3) vy (9) =min {0, &;, &; + €,,...,&, + & + -+ ¢,} and
va(g) =07 (9) — vg (9).
These values are independent of the expression of g as a reduced word. Now,

for each [a]e 2*, where [a] denotes the equivalent class of ae 2, we define
a function o (or v}): G- Z,, by

(04) b2(9) = Min v, 1,0(9) (= min v, (gt ™).

An HNN decomposition a = A*p ,, €2 is said to be properly ascending, if
A=B# @(B) or A= ¢(B)# B holds. We will say that G is of lobster pot
type relative to (0.1), if there is a properly ascending HNN decomposition
a€D,. It is shown that this condition is equivalent to the condition that
all ae 9, are properly ascending (Proposition 2.9). We also note that if G
is of lobster pot type, then vy = |A| for all [«]e 2}, (Proposition 2.2). Now
our main result is the following

THEOREM A. Let G be a group, and suppose the condition (0.1). Suppose
Surther that G is not of lobster pot type. Then, for every [a], [f]e 2},

d*([«], [F]) = sup v (9) — v3(9)] < o,

and this function d* becomes a distance on D}f,. Moreover, if a = A*g and
p = Cxp, then
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d*([a], [B]) = max {max v}(C), max v}(A)}.

Theorem A is proved in §3, and in §4 we give examples of groups which
have more than one conjugacy classes of HNN decompositions and calculate
the distances between them.

The idea of the distance d* has a motivation in our previous paper on
incompressible spanning surfaces for a knot [5]. Each equivalence class of
such surface determines a conjugacy class of HNN decomposition of the knot
group. The relation between these two objects in terms of the distance d*
will be studied in [7].

1. Associated function v}: G- Z,,

Let G be a given group, and suppose the condition (0.1). In the
introduction we have associated to each [a] € 2* a non-negative integer valued
function o, (or v¥): G > Z,, by (04). Here 2* =2/~, and a ~ f if and
only if B=tat”® for some ieZ. In this section we study its several
properties. First we recall Britton’s lemma.

LemMa 1.1 (Reduced form theorem, Britton’s lemma; [2], [3, Th. 32]).
Any ge Axp ,, can be written as

g = a tat*?---a,ta,

where n>0, ¢;= £ 1, a;e A and there is no consecutive subword t™'a;t with
a;eB or ta;t™! with a;e p(B); n and ¢,,...,¢, are uniquely determined.

We call an expression as above a reduced word relative to Axp,,. The
following proposition gives a characterization of v}: G- Z,.

PROPOSITION 1.2.  Suppose [a] € 2* and oo = A*gz. Then, for each g€ G,,
v;(g) =min{q — plge A(p, q)}.
Here, A(p, q) denotes the minimal subgroup of G, containing t'At™" for p <i <q.

Proor. For a given geG,;, we suppose geA(p,q). Then t PgtPe
A0, p — q), and hence

£TPGE? = (P ayt =0 - (Pra,t ) = 91 a, 192 01 a, e 9n 01 g g
for some ajed4 and 0<6;<q—p (1 <j<n). It follows that
va (tPgt?) = max {0, &,, 8,,...,6,} and v, (t °gt’) = min {0, &,, J,,...,9,}.
Since 0 <d6;<q—p for 1 <j<n, we have

v¥(g) < v (t7PgtP) = v (t Pgt?) — v, (t Pgt?) < q—p and
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v¥(9) <min {q —plgeA(p, q)}.

Conversely, for ge G;, we can find an reZ such that
v.(t'gt™") = v} (9) (= min v,(t'gt ™).
LE.
We express t'gt—" as a reduced word relative to «; t'gt™" =a,t"a,t®---

a,t**a,,,. Note that & +¢& +---+¢,=A"gt™")=41(g)=0 since geG,.
Putting q* = v; (t'gt™") and p* = v, (t'gt”"), we have

gt =a, (P ayt ) (A TR ) (T g T T T g
e A(p*, q%).
Thus ge A(p* —r, ¢* — 1), and
Vi) =q*—p*=(g*—1r)—(p*—r)=min{g—plgeA(p, 9)}. O

PrOPOSITION 1.3. Suppose that [0]e2* and o = Axg. Then, for any
finitely generated subgroup C <= G,

max v} (C)(= max vf(g)) = min {g — p|C = A(p, q)}.

To prove Proposition 1.3 we note the following easy fact
LEmMMA 1.4. Suppose that [0] € 2* and o = Axg. If for a subset X < G,,
X c A(r,s)NA(u,v) and s—r>v—u,
then there are integers v',s' so that
XcA(r,s), r<r<s<s and v—u=s-—r.

ProOF oF ProrosITION 1.3. Since C is finitely generated subgroup of
G;, C < A(p, q) for some p < q. By Proposition 1.2, we see that, for each ge C,

v¥(g)=min {s —r|ge A(r, s)} <q —p.

Hence max v¥(C) < q — p, and then

(1.5) max v}(C) <min {qg — p|C < A(p, 9)}.

If the right hand of (1.5) is equal to O, then so is the left one, and the equality
holds. Thus we may assume that the right hand of (1.5) is positive:

(1.6) Cc A(p*, q*) and ¢* —p* =min {q—p|C < A(p, 9)} (> 0).

Then it follows that
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(1.7) (a) there is aeC so that a¢ A(p* + 1, ¢*), and
(b) there is be C so that b¢ A(p*, q*).

There are three cases.

Case 1: a¢ A(p*, g* — 1). By Lemma 1.4, this assumption and (1.7) (a)
imply that v¥*(a) = g* — p*. Hence, by (1.5) and (1.6), we have the desired
equality.

Case 2: b¢ A(p* + 1, g*). In this case the same argument as in Case 1
holds.

Case 3: aeA(p*,q*—1) and beA(p* + 1, qg*). Consider ¢ =abeC.
Then, by the assumptions on a, b, we see that c¢A(p* + 1, ¢g*) and
c¢ A(p*, q* — 1). By Lemma 1.4, this implies that v¥(c) = g* — p*. From
this together with (1.5) and (1.6), we have the desired equality. []

Now we define an order ‘<’ on 2 as follows: For o = A%z, f = C*,€9,

a=<p if and only if 4<=C
(note that A = C implies B < D). Then we see

LemMMA 1.8 ([6, Lemma 3.4]).

w< B if and only if v,(9) 2 05(0) g €G).

Using this order on 2, we can define a ‘partial order’ on 2* as
follows: For [a], [f]e 2*,

[«] X [B] if and only if a=<¢"ft'  for some ieZ.
Then we show the following

ProrosiTiON 1.9. For [a], [f]e 2*,
[e] = [B) if and only if vi(g) = vj(9)(g€G).

Proor. Suppose [«] < [B]. Then a < ¢t *Bt* for some keZ. By Lemma
1.8,

U,(9) = v,-xpa(g) = vy(t*gt™*) for any geG.
Hence v,(t'gt™%) > vy(t'*gt ™' %) for every ieZ, and we have
* _ : i —i : i+k —i—ky _ %
vz (9) = min v, (f'gt™") = min vy (£ gt ~"") = v5(9).

Conversely we suppose that v}(g) > vf(g) for every ge G. Since vy (g) =0
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for all ge A, we have v}(4)=0. Hence, by Proposition 1.3, 4 < ¢'Ct™' for
some ieZ. Thus we have « < ¢'ft™% and [a] X [B]. O

Recall that 9, is the subset of 2 consisting of « = Axz€ 2 so that both
A and B are finitely generated, and 2}, = 9/~ (c 2*). We close this
section by noting the following

THEOREM 1.10 (Bestvina and Feighn, Baumslag and Shalen, Miller; [1,
Th. 1], [6, Th. 2.4]). Let G be a finitely presented group, and suppose the

condition (0.1). Then, for each o€ 2, there is a ye Py, so that y = .
Since G,*g,€92, as a direct consequence of this theorem, we have

COROLLARY 1.11. Let G be a finitely presented group, and suppose the
condition (0.1). Then 9,, # @ and 2}, # Q.

2. Ascending HNN decompositions

Let G be a given group, and suppose the condition (0.1). A decomposition
o= Axp,, €9 is said to be ascending (resp. properly ascending) if B= A or
@(B) = A(resp. B= A # ¢(B) or ¢(B) = A # B) holds. In this section we study
properties of decompositions of these types. We first claim

LEMMA 2.1. For o = Axge 2D, the following three conditions are equivalent :
(1) o is ascending.

Q) ActAt™ or Act At

(3) Act*At* for some keZ — {0}.

Proor. The implications (1)<>(2)=>(3) are obvious. We will show that
(3)=(2). Suppose that A =t *At* for some k > 0 (similar argument as below
also holds in the case of k < 0). If k=1, there is nothing to do. Thus we
assume that k > 2. Consider a subgroup A(0, k — 1), -ipu-:(t *At*) = G,.
By the assumption, 4 is contained in both A(0, k — 1) and ¢t *At*. This
implies A c t' *Bt*"! < t'"*At*~'. Thus, we get A c t~ ! At by induction.
O

If xe2 is ascending (resp. properly ascending), then so are ¢t ‘at' for all
ieZ. Thus we will say that [a]e @* is ascending (resp. properly ascending) if
so is a.

PROPOSITION 2.2.  For [a]e D},
[o] is ascending if and only if v¥(g)=|A(9)| (9€G).

PrOOF. Suppose that [a]e 2}, is ascending and o = Axp. For any ge G
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we can write g = g't* for a geG,. Then, g'e A(p, q) for some p <gq. Note
that

HAt™7  (if A=B),

Alp, q) = {ﬂ’At"’ (if A= ¢(B)).

In the case of g'€t?At™¥, we have ¢ =t%at™? for some aeA. Hence
t79gt? = at* and

14(9)] < v}(g) = min v,(t™'gt) < v,(ar") < |k = [A(g)]-

The similar argument holds in the case of g'€t?At™?. Thus we have
v¥(9) =149

Conversely, we suppose v¥(g) =|A(g)| (geG). Consider a subgroup
A0, 1) = gp(AUtAt~?) of G,. Since v¥|G, =0, by Proposition 1.3,

min {q — plgp(AUtAt™") < A(p, q)} = v¥(gp(AUtAt~ 1)) = 0.

This implies that gp(AUtAt~ ') < t* At~ for some ieZ. Moreover, by Lemma
1.4, we have gp(AUtAt~ ') = A or gp(AUtAt~ ') < tAt~!. The former implies
tAt™! < A, and the latter implies 4 = tAt~'. Thus « is ascending. [J

Now we show the following
PROPOSITION 2.3. If there is an ascending decomposition o€ % ,, then all

BeD,, are ascending.

PROOF. Suppose that o = A*ze J;, is ascending. We only consider the
case of A ctAt™'; in the case of A4 =t~ !'At, similar argument as below
remains valid. Take any B = Cxp,e%,,. By Proposition 22, v;(C)=0.
Hence, by Proposition 1.3, C < t* 4t ~* for some ke Z. While, from A < tAt™*,

(2.4 ActAt™ for every i>0.

Thus, we have

(2.5) CctmAt™ for some m > 0.

On the other hand, since A is finitely generated,

(2.6) AcCp,p+71) for some peZ and r > 0.

Here C(p, q) denotes the minimal subgroup of G, containing t'Ct™ for
p<i<gq. In the case of p <0, we see, by (2.4) that

Act PAt?P =« C(O, r).
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This shows that, in (2.6), we can always take p to be non-negative; we assume
now p >0. We consider a subgroup
A, p + N¥p+rp-p-nAlp+r+ 1, p+2r+ 1) c G,.

Since r + 1 >0, by (2.4) and (2.6) we have

At c Ap+r+L,p+2r+1) and ActtlArrl
Then, these and (2.6) imply that
(2.7 Act?™Dt™ P Pt CTP

By (2.5), (2.6) and (2.7) together with the fact m >0, r >0, p > 0, we have
Cct"*?P*'Ct™™ P "and m+p+r>0. Thus B is ascending by Lemma 2.1.

O

As a corollary of the proof of Proposition 2.3, we have

PROPOSITION 2.8. If there is o= A*ge D, so that A =B = @(B), then
a = Gxg, and D;, = {a}.

Propositions 2.3 and 2.8 imply the following

PROPOSITION 2.9. If there is a properly ascending decomposition o€ D,
then all decompositions in 9, are properly ascending.

We will say that G is of lobster pot type relative to (0.1), if G has a
properly ascending decomposition e Z,,.

ProrosITION 2.10. Suppose that G is not of lobster pot type relative to
(0.1).  Then, for every [a], [fle 2}, [o] = [B] is equivalent to v} = vj.

Proor. We may assume that &, # {G,*¢,}. Suppose that v} = v} for
a=Axg and = Cxp. Then maxv}(C) =maxvf(C)=0, and hence Cc
t'At™" for some ieZ by Proposition 2.3. Similarly we see that A < t/Ct™/
for some jeZ. These imply that

ActiCt™ citige~i7,

If i+j#0, « is ascending by Lemma 2.1. Hence i +j=0 and A =t/Ct™.
This means that [o«] =[f]. O

By Propositions 1.9 and 2.10, we have

COROLLARY 2.11. Suppose that G is not of lobster pot type relative to
(0.1). Then the partial order ‘=’ on 2}, becomes an order.
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3. Distance on 2}, —Proof of Theorem A-

Let G be a given group, and suppose the condition (0.1). In this section
we give the proof of Theorem A. We first show the following

THEOREM 3.1.  For [a]eD},, we have
v¥(gt") = max {|k|, v¥(9)}  for every geG, and keZ.
PrOOF. Put a = Ax; and fix ge G, and keZ. Then
(3.2) v¥(g) = v (t™"gt™) for some meZ.
We put g’ =t ™gt™ and write it as a reduced word relative to «;
g =at"a,t*?---a,t’a,, .

Consider elements g; =t '(g't"t' =t 'g’'t**' (ieZ). Since v*(gt") = v¥(g't") =
min v,(g;), we will calculate the values of v} (g;), v, (g;) and v,(g,).

Since g; = t la,t"a,t*2 - a,t™a,,  t**' is a reduced word relative to a, we
have

vy (9:) = max {0, vy (¢') —i, k} and v, (g;) = min {0, v; (g') — i, k}.

Plotting the values of v, (g;) and v, (g;) in the (i, k)-plane, we have the
value of v] (g, as in Figure 1.

k
k

vig) —i k+i—v_(g)

v,(9) U: 9"

v, (g) 0 i
v, (g)
vi(g)—i—k i—v (9)
—-vg)] T
-k

Figure 1. v,(g)
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From Figure 1, we see that
k (k = v,(9)
v¥(gt) = v¥(g't) =minv,(g) = v:(9) (= 0.l9) <k <v,(9))
—k (k< —v,(9))

Since v,(g') = v¥(g) by (3.2), we have v¥(gt*) = max {|k|, v¥(g)} as desired. []
We now suppose that G is not of lobster pot type. For each
[a], [Ble 2},, we set

(3.3) d*([a], [A]) = sup lvz (9) — vE(9)].
ge

The boundedness d*([«], [f]) < o follows from Proposition 3.4 below. In
fact, since A and C are finitely generated, max v}(C) < oo and max vj(4) < ©
by Proposition 1.3.

PROPOSITION 3.4.  Suppose that [a], [fle D}, and o= Axg, B = Cxp.
Then

d*([oa], [f]) = max {max v}(C), max v}(A4)}.

Moreover, the following conditions are immediate from the definition of
d* and Proposition 2.10:

(3.5 For each [a], [B], [y]€ 2},

(1) d*([e], [A)) =0 if and only if [a] = [A],
(2) d*([«], [B)) = d*([A), [«]) and
() d*([ed, [v]) < d*([od, [AD) + d*([AD, [¥]).

To prove Proposition 3.4 we prepare

LemMma 3.6.  For each [a], [fle 27,

sup |vj(x) — vj(x)| = sup [v7(9) — vi(9)]-

xeG geG

Proor. Take xeG and write x = gt* where ge G,, ke Z. By Proposition
3.1, we have

v¥(x) = max {|k|, v¥(g)}, v}(x)=max {|k|, v}(g)}.
This implies that

vz (x) — v (¥)] < |07 (9) — vE (9)I.



HNN decompositions of a group 51

Thus SUP,eq [0%(x) — 0} ()| = SUPyeq, |02(9) — v} (g)] follows. [1
PRrOOF OF PROPOSITION 3.4. Take any ge G,. Then, by Proposition 1.2,
3.7 geC(r,s) and s—r=vj(g) for some r <s.
By Proposition 1.3,
(3.8) Cc A(p,q) and ¢q — p =maxv}(C) for some p <gq.
From (3.7) and (3.8), we have
geA(p+r,q+59),
and then
vi(9) < (g + ) — (p + r) = max v3(C) + v§(9).

Hence v} (g) — v} (g9) <max v}(C). Similarly we have vj(g) — v5(g9) < max v (A).
These imply |v¥(g) — v}(9)| < max {max v}(C), max vf(4)}. Thus, by Lemma
3.6,

d*([o], [A]) < max {max v}(C), max v}(A4)}.

On the other hand, choosing an element ce C with v¥*(c) = max v}(C), we see
that

d*([a], []) = |vz(c) — vj(c)| = max v7(C)

since vf(c) = 0. Similarly, by taking an element ae A with vj(a) = max v} (4),
we see that d*([a], [f]) = max vf(A4). Thus the desired equality follows. [

The proof of Theorem A is now completed.

4. Examples

In this section we give two typical examples of groups which have more
that one conjugacy classes of HNN decompositions.

EXAMPLE 4.1. Let G be a graph product of the following square diagram
of groups where ¢: B— C and y: D - A are monomorphisms:

A<—D—B
'//I lw

D —=>C.
Then G has an HNN decomposition
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o= (A*p ,C) *Doy.t

Let 2 be the set of HNN decompositions associated with natural epimorphism
1: G - Z and natural section t with 7(1) =t. Putting C' =t"'Ct, D' =t ' Dt,
o'(b) =t 'o(b)t(beB) and Y'(d") = Y(td't~')(d' e D), we can also express G as
graph product of the following diagram of groups;

A — B
V' I l ¢

D =C'.

In fact we have
G =<A,C,t|reld, relC, b= ¢(b)(beB), t~'dt = y(d)(deD))
=<{A4,C', t|relA, relC', d =y'(d)d €D, t”'bt = (p’(b)(belB)>,
and hence G has a decomposition
B=(A%p ,C)*g , €D.

If A, B, C and D are finitely generated, then o, feZ,,.

PROPOSITION 4.2. Under the above situation, suppose further that A, B, C
and D are finitely generated and that A # B and C # @(B). Then G is not of
lobster pot type, and d*([a], [B]) = 1.

Proor. By the assumption that 4 # B and C # ¢@(B), we see that
D # AxgC and ¢(D) # A*gC, and hence a is not ascending. This implies
that G is not of lobster pot type by Proposition 2.3. We next note that

gp(t™ 1 (A*pC)tUA%5C) = gp(t ™ At*,-15t ™ CtUA*pC)
> Ax*p C’, and
gp(A*p C'Ut(A*p C)t™ 1) > Ax,C.

Hence we have d*([a], [f]) < 1. To see d*([a], [f]) = 1, it suffices to find
an element g € G satisfing the condition |vy(g) — vj(g)| = 1. By the assumption
that 4 # B and C # ¢(B), we take aec A — B and ce C — ¢(B). Putting g = ac,
we have v¥(g)=0. On the other hand g =atc't™! (¢ =t 'ateC’) is an

expression of g relative to B. Consider the elements t'gt™ = t'atc’t !
(ieZ). We show that the right hand is a reduced word relative to . We
see that aeA*, C'— B by aeA— B, and tatc't ' "=tV it tar)y "7 s

reduced relative to B for i< — 1. Also c'eAx, C' — ¢'(B) by ceC — ¢(B),
and hence t'atc’t™ '~ =ta(tc’'t ')t™" is reduced relative to B for i>0. It
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follows that

i+1 (i=0)
—i i<-1),

vp(tigt™) = {

and then we have vf(g) =1. Thus the assertion d*([«], [f]) =1 is proved.
O

Next we give an example of group which has infinitely many HNN
decompositions.

EXAMPLE 4.3 (compare with [6, Example 6.4]). Let G, (i = 1, 2) be groups
which have HNN decompositions a; = A4;*p, ., With common stable letter
t. Let G be the amalgamation of G, and G, by the common infinite cyclic
subgroup <t)>; G = G, *,G,. Then G has an HNN decomposition

B=o*xa, = (AI*AZ)*(BHBZ)APJ

where ¢|B;=¢; (i=1,2). Let 2 be the set of HNN decompositions
associated with natural epimorphism G — Z and the stable letter t. Using

conjugate decompositions tfa;t”* (keZ) of G,, we have a family of
decompositions of G;

B = (ot ™ xa, = (A t™9)% A) %, - kaBy), 0 €D
If A; and B; (i =1, 2) are finitely generated, then f,e€2,, for every keZ.

PROPOSITION 4.4.  Under the above situation, suppose further that fe %;,,
neither o, nor o, are ascending. Then G is not of lobster pot type, and
d*([B), [B)) =k —j for k=].

Proor. By the assumption, A; # B; and A, # ¢,;(B;) (i =1,2). Hence we
have A4,%A, # B,*B, and A;*A, # ¢,(B,)*¢,(B,) = ¢(B,*B,), and then S
is not ascending. Thus G is not of lobster pot type by Proposition 2.3. To

prove the latter half of the proposition, it suffices to show the following
assertion:

(4.5) d*([B], [F)) =k for every k> 1.

Now, by the definition of f;, we see that
gp((F~ YA i AUt At Tix AT )Y D i At ix A, and
gp(t™ (FA T % A)tU(F At TxA,)) D i At ik A,

Hence d*([B;], [B;-1]) <1 for every j. Thus d*([B.], [B]) <k for every
k> 1. To see the desired equality, it suffices to find an element ge G so that
lvg(g9) — vj. (@)l = k. We choose elements xe 4, — B, and ye 4, — ¢,(B,), and
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put g = xy. Then vf(g9) =0 since ge4,*A4,. We will show that v} (9) = k.
We express g as a word relative to f,; g =1t *x,t*y where x, = t*xt “*etk 4, t7*.
Consider elements

(4.6) tgt ' =tk x, t'yt™! (ieZ).
If the right hand of (4.6) is not reduced relative to f,, then one of the following
conditions hold since k > 1:

(1) i<k—1 and x,et*B;t *+B,.

(2 i=1 and yet !(t*B;t *xB,)t.

However, by the assumption that xe A, — B; and ye A, — ¢,(B,), neither (1)
nor (2) are satisfied. Hence the right hand of (4.6) is a reduced word relative
to B,. It follows from this that

i (i > k)
v (gt =< k (1<i<k-1)
k—i (i<0).

Hence we have v, (g9) = min, v, (t'gt ™) = k. Thus (4.5) is proved. [
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