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Introduction

A distinction between the minimal conditions for locally finite Lie algebras
over a field of characteristic 0 has been exactly drawn by the author [5] and
Stewart [7, 9]. However, very little is known concerning maximal conditions
for Lie algebras. The first purpose of this paper is to distinguish between
the maximal conditions for locally finite Lie algebras over a field of characteris-
tic 0. The second one is to distinguish between various double chain condi-
tions (i.e. maximal and minimal conditions) for Lie algebras.

In Section 2 we shall first prove that L(wser)5ΠMax-<] = 5 over any
field (Theorem 2.1), which is a generalization of [8, Theorem 6.5] and which
suggests that under stronger conditions than local finiteness all the maximal
conditions may be equivalent to each other. Secondly we shall prove that
LgΠMax-< 2 = LgΠMax-ser over a field of characteristic 0 (Theorem 2.2)
and shall exactly distinguish between the maximal conditions for locally finite
Lie algebras over a field of characteristic 0 (Corollary 2.3).

In Section 3 we shall prove that Max- < Π Min-si < Max-si over any field
(Theorem 3.2) and shall consequently draw a distinction between various
double chain conditions for Lie algebras (Corollary 3.3). In addition, we
shall prove that Max- <2 < Max-sg over a field of characteristic 0 (Proposi-
tion 3.5), where Max-s<5 is the class of Lie algebras satisfying the maximal
condition for finite-dimensional subideals.

In Section 4 we shall present a method of constructing Lie algebras
satisfying neither the maximal condition nor the minimal condition for 2-step
subideals and shall consequently prove that there exists a Lie algebra L over
any field such that L e Lg Π Max- < Π Min- < and L φ Max- <2 U Min- < 2

(Theorem 4.6(1)).

Throughout this paper we are always concerned with Lie algebras which
are not necessarily finite-dimensional over an arbitrary field ! unless otherwise
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specified. Notation and terminology is mainly based on [2]. In this section
we explain some symbols and terms which we use here.

Let L be a Lie algebra over a field ί, n a non-negative integer and α
an ordinal. The symbol H < L (resp. H < L, H <n L, #siL, H <* L, HascL)
denotes that H is a subalgebra (resp. an ideal, an n-step subideal, a subideal,
an α-step ascendant subalgebra, an ascendant subalgebra) of L. Angular brack-
ets < > denote the subalgebra generated by their contents. A subalgebra H
of L is said to be a serial subalgebra (resp. a weakly serial subalgebra) of
L, which is denoted by H ser L (resp. H wser L), if there exist a totally ordered
set Σ and a family [Λσ, Vσ:σeΣ} of subalgebras (resp. subspaces) of L such
that

(a) H^.Vσ^Λσ for all σ e Σ,
(b) Λσ £ Kτ if σ < τ,

(c) L\# = U^(4AU
(d) Fσ < Λσ (resp. [Λσ, fl] c »ς) for all σ e 27.
The transfinite derived series (resp. the transfinite lower central series, the

transfinite upper central series) of L is denoted by {L(α): α ̂  0} (resp. {Lα:
α ^ l } , {Cα(L): α ̂  0}). The intersection of all the terms of the transfinite
derived series (resp. the transfinite lower central series) of L is denoted by
L(*) (resp. L*).

A class £ is a collection of Lie algebras together with their isomorphic
copies and 0-dimensional Lie algebras. Let X be a class of Lie algebras. A
subalgebra H of L is called an X-subalgebra if H E 3E. The symbol 91 (resp.
g, ©, 2Γ, ε9l, 9ίπ, 91, RE91, κ9l) denotes the class of Lie algebras which are
abelian (resp. finite-dimensional, finitely generated, soluble of derived length
^n, soluble, nilpotent of class ^n, nilpotent, residually soluble, residually
nilpotent).

The symbol Max-< (resp. Max-<j", Max-si, Max-<α, Max-asc, Max-ser,
Max) denotes the class of Lie algebras satisfying the maximal condition for
ideals (resp. n-step subideals, subideals, α-step ascendant subalgebras, ascendant
subalgebras, serial subalgebras, subalgebras). The classes Min-o, Min-<",
Min-si, Min-<α, Min-asc, Min-ser and Min of Lie algebras satisfying the
minimal conditions are defined in the same way.

Moreover, we here use the following classes of Lie algebras.
L e 2ίg if L has an abelian ideal of finite codimension.
L e £)(asc, si) (resp. T)(ser, si)) if every ascendant (resp. serial) subalgebra

of L is a subideal of L.
L e fi°° (resp. 2^) if the join (resp. the intersection) of any family of

subideals of L is always a subideal of L. In particular, if L 6 £°° Π fi^ then
L has the complete lattice of subideals.

L e S (resp. 6*) if H < L (resp. //serL) always implies that either H = 0
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or H = L. In this case L is said to be simple (resp. absolutely simple).

Le3α if L = ζβ(L).
L e E(<)91 (resp. fi(<)Φ) if L(sK) = 0 (resp. L* = 0).
L e LΪ if every finite subset of L is contained in some X-subalgebra of

L. In particular, Lie algebras belonging to the class Lg (resp. LE$Ϊ, L$l) are
said to be locally finite (resp. locally soluble, locally nilpotent) Lie algebras.

L e L(wser)5 if every finite subset of L is contained in some finite-dimen-
sional weakly serial subalgebra of L.

L e Ng if L is generated by finite-dimensional ascendant subalgebras.

In this section we confine our attention to locally finite Lie algebras in
order to investigate the relation between various maximal conditions.

The classes Max-<α (α is an ordinal), Max-si, Max-asc, Max-ser, Max
and 5 are related by the series of inclusions

Max-< > Max-<2 > > Max-si > Max-<ω > Max-<ω+1

> > Max-asc > Max-ser > Max > S

Stewart [8, Theorem 6.5] has proved that over a field ϊ of characteristic 0

Max- < = 5 ,

which implies that for any N^ί-algebra over a field I of characteristic 0 all
the maximal conditions are equivalent to each other. It is well known ([2,
p. 258]) that the class Ng is a proper subclass of the class of neoclassical
Lie algebras over a field f of characteristic 0. It follows from [11, Theorem
2 a)] that over a field ϊ of characteristic 0,

Ng < L(wser)55

Therefore the following theorem is a generalization of [8, Theorem 6.5].

THEOREM 2.1. Over any field I, L(wser)gΠMax-< = 5.

PROOF. Let L £ L(wser)gnMax-<i and let H be a finite-dimensional
weakly serial subalgebra of L. We denote by λ^(H) the intersection of the
ideals / of H for which H/I is nilpotent. Using [3, Proposition 2.11] we
get AsΛ(H) <J L. Put K = ^AsΛ(H), the summation being over all finite-dimen-
sional weakly serial subalgebras H of L. If K φ 5, then we can inductively
construct a strictly ascending chain λ^H^ < λ^H^ + λ^(H2) <"' such that
H k e 5 and //kwserL for all k ̂  1. This is a contradiction. Therefore we
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have Keg. Since L e L(wser)g, we get L/K e Lfll. It follows from [2, Theo-
rem 8.6.5] that L/KeL9ϊfΊMax-< < g. Thus we obtain Leg.

By virtue of the above theorem combined with the use of Theorem 4.6
(1), which will be proved in Section 4, we can see that L(wser)g < Lg over
any field ϊ.

We now restrict our attention to locally finite Lie algebras. Then we
have the following result, which is the main theorem of this section.

THEOREM 2.2. Over a field I of characteristic 0,

Lg Π Max- < 2 = Lg Π Max-ser .

PROOF. Let LeLgΠMax-< 2 and let //serL. We denote by λ(H) the
intersection of ideals / of H for which H/I is locally nilpotent. Then we
know by [10, Theorem 5 and Corollary 6] that λ(H ) < L and H/λ(H)<
p(L/λ(H)\ where ρ(L/λ(H)) is the Hirsch-Plotkin radical of L/λ(H). Owing
to [2, Theorem 8.6.5], we have p(L/λ(H)) e L$R Π Max- < < g. Now we want
to claim that L e Max-ser. Assume, to the contrary, that there exists a strictly
ascending chain of serial subalgebras of L, say, H x < H2 < '" . Since L e Lg,
we can easily see that Hk/λ(Hk) e L$R for all fc ̂  1. It follows that H^JH^^ Π
λ(Hk)eL9l for all k ̂  2. Hence λ^) < λ(H2) < ••• and therefore λ(Hn) =
λ(Hnn) = -' for some n ̂  1. Put K = λ(Hn). Then HJK < Hn+1/K <
and HJK < p(L/K) e 5 for all k ̂  n. This is a contradiction.

It will be proved in Theorem 4.6(1) below that over any field ϊ,

Moreover, considering the Lie algebra constructed in the proof of [5, Theorem
1.7(2)], we can see that over any field f,

LJ5 Π Max-ser > L(5 Π Max = 5 (in particular, Max-ser > Max) .

Combining Theorem 2.2 and the above results, we consequently obtain the
following corollary, which exactly draws a distinction between the maximal
conditions for locally finite Lie algebras over a field f of characteristic 0.

COROLLARY 2.3. Over a field I of characteristic 0,

L5ΠMax-< > L5ΠMax-<2 = LgΠMax-< 3 = ••• = LgΠMax-si

= L5ΠMax-<ω = LgΠMax-<ιω+1 = = Lg Π Max-asc

= Lg Π Max-ser > Lg Π Max = g .

REMARK. In the case where the ground field f is of characteristic p > 0,
it is well known that
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LJ5 Π Max- < 2 > Lg n Max- <3 (in particular, Max- < 2 > Max- < 3).

For example, in [1, §5] Amayo and Stewart have constructed a locally finite

Lie algebra over ϊ whose 2-step subideals are only finite in number and which

has an infinite-dimensional, abelian 2-step subideal.

A Lie algebra belonging to the class fi^Πfi^ has the complete lattice

of subideals. Some subclasses of fi^Πfi^ have been given in [4, §3]. As

another corollary to Theorem 2.2, we can furthermore present a subclass of

fi^Πfi^ in the following

COROLLARY 2.4. Over a field I of characteristic 0,

LδίΊMax-<2 ^ f i ^ Π f l ^ .

PROOF. It is not hard to verify that Max-ser < T)(ser, si). Hence, owing

to [6, Theorem 2.3], we get Max-ser < fi^. Furthermore, we know by [4,

Theorem 8] that Max-si < fi°°. Therefore the assertion immediately follows

from Theorem 2.2.

Finally we present the structure of Lie algebras belonging to the class

LgfΊMax-< 2 in the following

PROPOSITION 2.5. Let L be a Lie algebra over a field f of characteristic

0. // L e L5 Π Max- <2, then L has a descending series of subideals whose

factors are absolutely simple.

PROOF. Let L e Lg Π Max- < 2. Using Theorem 2.2 we get L € ϊ>(ser, si).

We recursively define the terms of a descending series (Lα: α ̂  0} of subideals

of L whose factors are absolutely simple. Define L0 by L and suppose that

the terms Lβ (β < α) have been defined for some ordinal α > 0. If α is a

limit ordinal, then we may define Lα by (~]β<OLLβ. Assume that α is not a

limit ordinal and that LΛ_l / 0. Clearly LΛ^ has a proper maximal ideal,

say, M. Then by [10, Theorem 8] we get Lα_r/M e L^Π S < S*. Hence

we may define Lα by M. Now by set-theoretical considerations we can find

an ordinal σ such that Lσ = 0. This completes the proof.

REMARK. Let E(si)S* denote the class of Lie algebras which have de-

scending series of subideals with absolutely simple factors. Since infinite-

dimensional, abelian Lie algebras lie in έ(si)S*, we conclude from Proposition

2.5 that LgΠMax-< 2 <L<5ΓlE(si)S* over a field I of characteristic 0.

3

Let A1 and Δ2 be any two of the relations <, <α (α is an ordinal), si,

asc, ser. Then we say that a Lie algebra L satisfies the double chain condition
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f i and Min-zf2 if L belongs to the class Max-z/i DMin-z/2. In this sec-
tion we shall investigate the relation between various double chain conditions.

Let us recall the class Max-sg of Lie algebras satisfying the maximal
condition for finite-dimensional subideals. We here need the following lemma,
which is directly deduced from [2, Corollary 9.3.3(b)].

LEMMA 3.1. Over any field ϊ, Min-si < Max-sg.

The main theorem of this section is the following

THEOREM 3.2. Over any field f, Max- <3 Π Min-si < Max-si.

PROOF. Let L e Max- < Π Min-si and let H si L. Since //(*) is a perfect
subideal of L, it is well known (see [2, Proposition 1.3.5]) that H(*} < L.
Since L e Min-si, we can easily verify that H/H(^ e ε2l Π Min-si < g. Assume
that L has a strictly ascending chain of subideals, say, H l < H2 < ' . Then
there exists an integer n ̂  1 such that H(*} = H&\ = . Put K = H(*\ We
get a strictly ascending chain HJK < Hn+l/K < ••• of finite-dimensional sub-
ideals of L/K. However, Lemma 3.1 implies that L/K e Min-si < Max-sg.
This is a contradiction. Thus we obtain L e Max-si.

In the case where the ground field ϊ is of characteristic 0, it is well
known ([2, Theorem 8.1.4] and [9, Theorem]) that

Min-<2 = Min-si = Min-asc < T>(asc, si) .

In the case where the ground field f is of characteristic p > 0, it is well
known ([2, Proposition 8.1.5] and [9, Theorem]) that

Min- < 3 = Min-si = Min-asc < £>(asc, si) .

Furthermore, the Lie algebra constructed in [1, §5] satisfies neither the maxi-
mal condition nor the minimal condition for 3-step subideals but satisfies the
double chain condition Max-<ι2 and Min-<2.

In the case where the ground field t is of arbitrary characteristic, the
Lie algebra constructed in the proof of Theorem 4.6(1) below satisfies neither
the maximal condition nor the minimal condition for 2-step subideals but
satisfies the double chain condition Max-< and Min-o. Furthermore, the
Lie algebra constructed in the proof of [5, Theorem 1.7(2)] satisfies neither
the maximal condition nor the minimal condition for subalgebras but satisfies
the double chain condition Max-ser and Min-ser.

As a direct consequence of Theorem 3.2 and the above results we obtain
the following corollary, which draws a distinction between various double
chain conditions for Lie algebras.

COROLLARY 3.3. (1) Over a field I of characteristic 0,
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Max- < Π Min- < > Max- < Π Min- < 2 = Max- < 2 Π Min- < 2 =

= Max-si Π Min- < 2 = Max- < ω Π Min- < 2 = Max- < ω+1 Π Min- < 2

= ••• = Max-ascΠ Min-<2 > MaxΠMin-o 2 .

(2) Over a field I of characteristic p > 0,

Max- < Π Min- < > Max- < Π Min- < 2 > Max- < Π Min- <3

= Max-<2ΠMin-<ι3 = ••• = Max-si Π Min- <3 = Max-<ωfΊMin-< 3

= Max- <ω+1 Π Min- < 3 = = Max-asc Π Min- < 3 > Max Π Min- < 3 .

It seems to be a hard problem whether we can precisely add the class
Max-ser Π Min-<2 (resp. Max-serΠMin-<3) to the series of inclusions given
in Corollary 3.3(1) (resp. (2)).

Finally we prove the following result, which claims that if the ground
field ϊ is of characteristic 0, then in Lemma 3.1 we can replace the class
Min-si ( = Min-<2) with the class Max-<2.

PROPOSITION 3.4. Over a field I of characteristic 0, Max-<2 < Max-sg.

PROOF. Let L e Max- <2 and let H be a finite-dimensional subideal of
L. Then Hω < L and H/Hω < β(L/Hω)9 where β(L/H°>) is the Baer radical
of L/Hω. By using [2, Theorems 6.2.1, 6.3.3 and 8.6.5], we get β(L/Hω) e L91Π
Max-< < g. Then, as in the proof of Theorem 2.2, we can prove that L
has no strictly ascending chains of finite-dimensional subideals.

REMARK. In the case where the ground field ϊ is of characteristic 0, it
is not known whether the class Max-<2 coincides with the class Max-si. We
should note that the class Max-si is a proper subclass of Max-sg. In fact,
let L be a direct sum of infinitely many infinite-dimensional, simple Lie alge-
bras. Since L has no non-trivial finite-dimensional subideals, we have Le
Max-sg. However, it is clear that L $ Max-si.

In this section we shall introduce a method of constructing locally finite
Lie algebras which do not satisfy the maximal condition for 2-step subideals
but satisfy the maximal condition for ideals. No such Lie algebras may be
found in well-known examples, because of the following
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PROPOSITION 4.1 ([2, Lemma 8.6.1, Theorem 8.6.5 and Corollary 11.1.8]).
Let LeLgΠMax-<. // L e ε9I U L91U 2ίg, then Leg.

Let L be a Lie algebra over a field ϊ and let ε be the identity map of
L. For each x e L we denote by xε the image under the identity map ε.
Think of ε as a f-linear transformation of L. Then we can define an L-action
on the image Lε as follows:

χ*y = l*> yΎ (*, y e L) .

Regard the L-module U as an abelian Lie algebra and denote by L" the
split extension of Lε by L. Then we obtain the following lemma, the proof
of which is a nice exercise in the use of the definition of L~.

LEMMA 4.2. (1) // H < ZΛ then H Π Lε = P for some I < L.
(2) (L^γ = (L*)ε + LΛ for all ordinals α ̂  1.
(3) (ZΛ)(α) = (L(α))ε + L(α) for all ordinals α.

(4) ίβ(L~j = Cα(L)ε + C.(L) far all ordinals α.

We can show that several structures of Lie algebras are hereditary under
the ~ -formation.

PROPOSITION 4.3. Let £ be one of the following classes of Lie algebras:

5, (5, Max-<, Min-<, 9ίc, 2Id, 3α, R91, RE9I, E(<)&, E(<)21,

where c and d are non-negative integers and α is an ordinal. If L e 3£, then
L~e*.

PROOF. In the case £ = g the assertion clearly holds. If L =
<x l 5 . . . , xπ>, then L" = <*ί,..., xε, x 1 ? . . . , xπ>. Hence in the case X = (5 the
assertion holds. We now consider the case ϊ = Max-< (resp. Min-<). Let
L e Max-< (resp. Min-<). Since L~/Lε s L, {(H + Lε)/Lε: H < L~} satisfies
the maximal (resp. minimal) condition. We know by Lemma 4.2(1) that
{HΓιLε:H < L^} satisfies the maximal (resp. minimal) condition. Therefore
by [2, Theorem 1.7.3] we get L^ e Max-< (resp. Min-<). In the other cases
the assertion is directly deduced from Lemma 4.2.

LEMMA 4.4. Let Hi be a class of Lie algebras such that L e 3E always
implies L~~ e £. If Lε L£, then L" € L£.

PROOF. Let L e L £ and let A' be a finite subset of L". Take elements
xl9 yt ( l ^ i ^ n) such that X = {xf + yt: 1 ̂  ί ̂  n}. Then there exists an
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X-subalgebra H of L such that {xi9 yt : 1 ̂  i ̂  n} c H . Since X ^ Hε -\- H ̂
H~ e £, we get L" e L £.

By combining Proposition 4.3 and Lemma 4.4, we can immediately obtain
the following result.

PROPOSITION 4.5. Let X be one of the following classes of Lie algebras:

L& L9Ϊ, LE«I, LR91, LRE<H, LE(<)Φ, LE(<)21 .

// L e £, ίhen L~ e £.

Let L be an infinite-dimensional Lie algebra. Then Lε is an infinite-
dimensional, abelian ideal of L". It follows that L~ satisfies neither the
maximal condition nor the minimal condition for 2-step subideals. Con-
sequently we arrive at the main theorem of this section.

THEOREM 4.6. (1) Over any field f, there exists a Lie algebra L such that

L e Lg Π Max- < Π Min- < and L φ Max- < 2 U Min- < 2 .

(2) Over a field f of characteristic 0, there exists a Lie algebra L such that

L € © Π Max- < Π Min- < and L φ Max- < 2 U Min- < 2 .

(3) Over a field I of characteristic 0, there exists a Lie algebra L such that

Le<5ΠR9inMax-< and L φ Max-<2 UMin-< .

PROOF. (1) Let L be an infinite-dimensional, locally finite, simple Lie
algebra over a field f. For example, the Lie algebra of all trace-zero transfor-
mations of finite rank of an infinite-dimensional vector space over f (see [7,
§4]) or the Lie algebra over ! constructed in the proof of [5, Theorem 1.7
(2)] is such a Lie algebra. Then we know by Proposition 4.3 and 4.5 that
L~ e L(5 Π Max- < Π Min- < . Since L φ g, we get L" φ Max- < 2 U Min- < 2.

(2) Let W be a generalized Witt algebra i^z (see [2, § 10.3]), that is,
let W be a Lie algebra over ! with basis {w£ : i e Z] and multiplication

[wf, w,.] = (i - j)wi+j (i, j e Z) .

Then we know by [2, Theorem 10.3.1] that W e S < Max-< ΠMin-<.
Clearly we have W = <w_2, w1? w2> € (5. It follows from Proposition 4.3 that
W~ e(5ΠMax-< ΠMin-0.

(3) Let W be a generalized Witt algebra ϋ^z as in (2) and L the sub-
algebra of W generated by {w1,w2}. Then we know by [2, Theorem 8.7.1]
that L> L2 >"- and L e RΪIΠ Max-si. It follows from Lemma 4.2(2) and
Proposition 4.3 that L~ > (IT)2 > and L~ e ©ΠR9lΠMax-<.
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