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1. Introduction

In this paper we consider the second order ordinary differential equation

(1.1) x" + a(t)f(x) = 0

under the following conditions: a(t) is continuous on [ί0, oo), t0 > 0; f(x)
is continuous on R, f'(x) exists and is continuous on R — {0}, and

xf{x) > 0 and f\x) > 0 for every x e R - {0} .

A typical example of (1.1) is the Emden-Fowler equation

(1.2) x"

where γ is a positive constant.
Our interest here is the problem of oscillation and nonoscillation of

solutions of equation (1.1). First we give a new necessary condition for the
existence of a nonoscillatory solution x(t) of (1.1), and then, as the contra-
positive forms of the result, we establish new oscillation criteria for (1.1). The
coefficient a(t) in (1.1) is allowed to take both positive and negative values
on any interval [T, oo), T > ί0. It is known that, for such an α(ί), the integral
averages of the integral of a(t) play a crucial role. Let p e R and p > 1.
There is no need to assume that p is an integer. Then we define Ap(t) by

(1.3) Ap(t) = ^ Γ (ί - 5)^^(5)^5 , t > t0 .

The important oscillation criteria of Wintner [20]-Hartman [4] (see also
[5]) for the linear case and Butler [1] for the nonlinear case involve the
asymptotic conditions as t -• oo of the average function A2{i). In this paper
these oscillation criteria are improved by making use of the general average
function Ap(t). Among a number of papers dealing with integral averaging
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techniques in the study of second order oscillations, we refer to the papers
[2-6, 8, 19, 20] for the linear case, and [1, 7, 9,12-18, 21-26] for the nonlinear
case.

2. Statement of results

Equation (1.1) is said to be strongly superlίnear if

dvA < 0 0Γ+o° dv f~°

τ Λ < 0 ° and

Ji f(y) J-i

(2.1)

and it is said to be strongly sublinear if

Γ1 i^<oo and f '
J+o/W J-o

(2.2) I ^ < o o and | ^ < oo .

In this paper we say that equation (1.1) is strictly superlinear if it is strongly
superlinear and there is a constant c(/) > 1 such that

'(x) ί +°(2.3) /'(x) I - ^ > c(f) > 1 for all x > 0

and

(2.4) /'(x) I - ^ - > c(/) > 1 for all x < 0.

Likewise we say that equation (1.1) is strictly sublinear if it is strongly sublinear
and there is a positive constant d(f) such that

(2.5) /'(x) I - ^ > d(/) > 0 for all x > 0

and

(2.6) /'(x) I -^->d(f)>0 forallx<0.

These conditions (2.3)-(2.4) and (2.5)-(2.6) are effectively used in the papers
of Philos and Purnaras [17, 18] and Wong [25]. Equation (1.1) is linear if
f(x) = x, x e R.

Now let us consider the special case where f(x) = \x\y sgn x, xe R (y > 0).
In this case, equation (1.1) becomes the Emden-Fowler equation (1.2). It is
easy to see that if γ > 1, then (1.2) is strictly superlinear, and we can take
c(f) = γ/(y - 1) in (2.3) and (2.4). It is also easy to see that if 0 < γ < 1,
then (1.2) is strictly sublinear. We can take d(f) = y/(l — y) in (2.5) and
(2.6). If y = 1, then (1.2) is a linear equation.

We now state the main results.
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THEOREM 1. Let equation (1.1) be strictly superlinear, strictly sublinear,

or linear. If there is a nonoscillatory solution x(t) of equation (1.1), then we

have either (I) or (II) in the following:

(I) lim Λp(t) exists and is finite for any pe R with p > 2;
ί->00

(II) lim Aq(t) = — oo for any qe R with

(2.7)

q > — — — in the strictly superlinear case ,
c{f) ~ 1

q > 2 in the strictly sublinear case ,

q > 2 in the linear case ,

where c(f) is the constant appearing in (2.3) and (2.4).

For the Emden-Fowler equation (1.2), we can take c(f) = y/(y — 1).

Therefore we obtain the next corollary.

COROLLARY 1. Suppose that the Emden-Fowler equation (1.2) has a non-

oscillatory solution x(t). Then we have either (I) or (II) in the following:

(I) lim Λp(t) exists and is finite for any pe R with p>2;
ί-+oo

lim Aq(ή = — oo for any qe R with

in the strictly superlinear case,

in the strictly sublinear case,

in the linear case.

= λ exists in the extended real line R =

R U {— oo, + oo}, then l im^^ Ap(t) = λ for any peR with p > 2 (see Lemma 3).

Therefore, in the statement (I) of Theorem 1 and Corollary 1, it is enough

to consider the case p = 2. Similarly, in (II) of Theorem 1 and Corollary 1,

it is enough to consider the case q = 2 provided that the equation is strictly

sublinear.

It is to be noted that (I) and (II) in Theorem 1 and Corollary 1 are

mutually exclusive. If neither (I) nor (II) is satisfied, then equation (1.1) does

not have any nonoscillatory solutions, in other words, all continuable solutions

of (1.1) are oscillatory. Thus we have the following corollary.

COROLLARY 2. Let equation (1.1) be strictly superlinear, strictly sublinear,

or linear. Suppose that

lim sup Aq(t) > —oo
ί->oo

for some qe R with (2.7).
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(i) //

lim inf Ap(t) < lim sup Ap(t)
t~*O0 t~*OD

for some peR, p > 2, then all continuable solutions of (1.1) are oscillatory.

(ϋ) //

lim sup Ap(ή = + oo
ί-*QO

for some peR9 p > 2, then all continuable solutions of (1.1) are oscillatory.

Note that the function A2(t) has the following four possibilities:

(2.8) lim inf A2(t) < lim sup A2(t)
t~*co t~*oo

(2.9) lim A2(t) exists as a finite number

(2.10) lim A2(t)= + o o ;
ί-+oo

(2.11) l i m ^ 2 ( ί ) = - o o .

As stated above, we see that if (2.11) is satisfied, then l i m , ^ Aq(t) = — oo for

any qeR, q>2; and, in particular, l im,^A q ( t ) = — oo for any qeR with

(2.7). Thus, under the condition that lim s u p , ^ Aq(t) > — oo for some qeR

with (2.7), the case (2.11) does not occur. Corollary 2 implies that, under

the same condition on Aq(t), all continuable solutions of (1.1) are oscillatory

if (2.8) or (2.10) is satisfied. For the case where (2.9) is satisfied, the oscillation

and nonoscillation of solutions of (1.2) are studied in [10, 11].

Let us discuss the special case of Corollary 2. The case p — q immedi-

ately yields the following corollary.

COROLLARY 3. Let equation (1.1) be strictly superlίnear, strictly sublinear,

or linear.

(i) //

lim inf Aq(t) < lim sup Aq(t)

for some qeR satisfying (2.7), then all continuable solutions of (1.1) are

oscillatory.

(ϋ) //

lim sup Aq(t) = +00
ί- oo

for some qeR satisfying (2.7), then all continuable solutions of (1.1) are

oscillatory.
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It is easy to see that if lim inf,^ Ar(t) > — oo for some r e R with r > 1,

then liminff _>«, Aq(t) > —oo for q = r + i, i = 0, 1, 2, and hence there

always exists a. qeR which satisfies lim sup,^Λ q(t) > — oo and (2.7). There-

fore, Corollary 2 gives the next result.

COROLLARY 4. Let equation (1.1) be strictly superlinear, strictly sublinear,

or linear. Suppose that

for some r e i , r > 1.

(i) //

lim inf Ar(t) > — oo

lim inf Ap(t) < lim sup Ap(t)

for some p e R, p > 2, then all contίnuable solutions of (1.1) are oscillatory.

(ϋ) //

lim sup Ap(t) = + oo ,
f->oo

/or some pel?, p > 2, ί/ien α// continuable solutions of (1.1) are oscillatory.

The recent results of Philos and Purnaras [17] and Wong [25] follow

from Corollary 4.

For the Emden-Fowler equation (1.2), Corollaries 3 and 4 include the

well-known oscillation criteria of Butler [1] (the case y > 1), Kamenev [7] and

Butler [1] (the case 0 < γ < 1), Wintner [20], Hartman [4, 5] and Kamenev

[8] (the case γ = 1), and Wong [23] (the case γ > 0). (These oscillation

criteria are summarized in [18, 21].) We must notice that, for the case f(x) =

|x|y sgn x (x E R) with 0 < y < 1, Corollary 2 is not an essential extension of

the results of Kamenev [7] and Butler [1]. As mentioned before, it is enough

to consider the case p = q = 2 for the strictly sublinear equation, and the

case p = q = 2 is already obtained in [1, 7]. For the case f(x) = \x\y sgn x

(x G R) with y > 1, Corollary 3 ensures the following result: If there is a q e R,

q > y + 1, satisfying

lim inf Aq(t) < lim sup Aq(t)
ί->oo f-»oo

or

lim sup Aq(t) = + oo ,
ί->oo

then all continuable solutions of (1.2) are oscillatory. This result is certainly

new. As an example, consider the case
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(2.12) a(t) = ^ {t"+2 cos (log ί)} , t > 1 ,

where α > 0 is a positive constant. It is easily seen that, for each i — 1, 2, ,

there are constants cf Φ 0 and θt such that

At(t) = c fί
α cos (log t + 0,) + 0(1)

as ί-»oo. Thus we conclude by the above result that if y > 1, then all

continuable solutions of (1.2) with (2.12) are oscillatory. Note that Butler's

oscillation criterion for γ > 1 [1] cannot be applied to this example since

lim inf^oo A2(ή = — oo.

3. Proof of Theorem

To prove Theorem 1, we need a few lemmas.

LEMMA 1. Suppose that b e C[ί 0 , oo) and that p, q e R, p > q + 1 > 0. //

(3-D H ^

exists in the extended real line R = RU{ — oo, +oo}, then

(3.2) lim - i Γ ( ί - sγ-«-2b(s)ds = B(q + l9p-q-l)λ,
'-><» Γ J ί o

w/iere £ is the Beta function.

PROOF. Note that

(3.3) lim - 3 τ (ί - sγ-*-2s*ds = B(q + 1, p - q - 1)
r-oo I JT

for any T > 0. We first consider the case where A is finite. Let ε > 0 be

an arbitrary positive number. By (3.1), there is a T = T(ε) > t0 such that

\b(ή- λtq\ <εtq

9 t>T.

We define T * by

(3.4) T* = T if -1 <p~q-2<09 and Γ* = ί0 i f p - g - 2 > 0 .

Then we have

ίo

(t - τ*γ-q~2

: t^^ Jίo S S S + ί i = T J τ X~
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for t > T. Taking the upper limit as t -> oo in the above, and noting that

(3.3) holds, we see that

1 P
0 < lim sup - ^ j - (ί - s)p~q~2\b(s) - λsq\ds < εB(q + 1, p - q - 1).

Since ε > 0 is arbitrary, letting ε -* 0, we conclude that

1 P
(3.5) lim — Γ (ί - s)p-q~2\b(s) - λsq\ds = 0 .

ί^°o t JtQ

Then, (3.3) with T = t0 and (3.5) together yield (3.2).

We next consider the case λ = +oo. Let G > 0 be an arbitrary number.

It follows from (3.1) that b(t) > Gt\ t > T, for some T = T(G) > t0. We find

that

[t - s)p-q~2b(s)ds
to

(t _ T*\p-q-2 ΓT G C*

-fii J \Hs)\ds + ̂ r J r (t - s)^-Vds

for ί > T, where T* is given by (3.4). Then, by (3.3), we obtain

1 P
l i m i n f - ^ (t - s)p-q-2b(s)ds > GB(q + l p - q - l ) .

ί̂ °O t J ί o

Since G > 0 is arbitrary, this implies that

l Γ r

lim - ^ r (ί - s)p-q-2b(s)ds = + oo .
'->«> f J ί 0

Thus (3.2) is also true for the case λ= +oo. The case A= — oo can be

similarly verified. The proof of Lemma 1 is complete.

The following equality is useful:

(3.6) -λ. Γ (t - s)p-1b(s)ds = ̂  | f (ί - s)p~2 (^' b(σ)dσ^j ds ,

where b e C[ί 0 , oo), p e R, p> 1.

LEMMA 2. Lei f> e C[ί 0 , oo), and let pe R, p> 1. / /

(3.7) lim ft(5)ds=
ί->°° J ί 0 Jίo

b(s)ds
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exists in the extended real line R, then

(3.8) lim J L Γ (ί _ s)p-1b(s)ds = \ b(s)ds .

PROOF. We have (3.6). Then, an application of Lemma 1 to the case

q = 0 gives

, p - 1) f °°
J ί o

lim -^-r I (t - s)p~1b(s)ds = (p - 1)5(1, p - 1) I b(s)ds ,
fP λ I '

and so, by the equality (p — 1)5(1, p - 1) = 1, we obtain (3.8). The proof of

Lemma 2 is complete.

LEMMA 3. Let a e C[ί0, oo). //

(3.9) lim A2(t) = λ
ί->oo

exists in the extended real line R, then

(3.10) lim Ap(t) = λ
t->ao

for any pe R9 p>2. Here, Ap(t) is defined by (1.3).

PROOF. For the case p = 2, the assertion (3.10) is trivial. Let peR,

p>2. In this case, using (3.6) twice, we see that

t — s)p~3sA2(s)ds , t > t0 .

From Lemma 1 applied to the case q = 1 and b(t) = tA2(t) it follows that

lim A,(t) = (p - l)(p - 2)B{2, p-2)λ.
t

Then, because of (p - l)(p - 2)5(2, p - 2) = 1, we have (3.10). This completes

the proof of Lemma 3.

PROOF OF THEOREM 1. We suppose that equation (1.1) has a nonoscilla-

tory solution x(t) on an interval [T, oo), T >t0. There is no loss of generality

in assuming that x(t) > 0 on [Γ, oo). Let pe R, p > 2. Then, from equation

(1.1) it follows that
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for t > T. Thus, in view of

(' x"(σ) x'(T) x'(s) Csf'(x(σ))ίx'(σ)r
J r /(*(*)) f(x(T)) + f(x(s)) + J τ [/(x(σ))]2

for s > T, we find that

(3.11) ^ | ( t - .

p - 1 f

T /Ms))

for ί > T. Define weC1 [T, oo) and fe e Z by

Γ+ o° <ίy
Jx(r) j(y)

— , k = — 1 in the strictly superlinear case

fx(ί) dy
w(t) = ——, k = + 1 in the strictly sublinear case

J+o ./vJv

and

w(ί) = log x(ί), k = + 1 in the linear case .

In each case we have fcw'(ί) = x'(ί)//(x(ί)X t > T. Thus (3.11) may be rewritten
as

(3-12) - i

- ^ T Γ (ί - sy-Vί

for t > T. Now let us distinguish the two mutually exclusive cases where

the integral

•= fV(*w)i>'(*)]2

JT

is finite or is infinite.

The case where I is finite. In this case we will show that (I) occurs.
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Taking Lemma 3 into account, we have only to verify the case p = 2. To
this end, it is sufficient to prove that

l P
lim - (t - ,
r->oo t Jτ

(3.13) lim - (t — s)a(s)ds exists and is finite.
r-oo t Jτ

When p = 2, equality (3.12) becomes

(3.14)

for ί > T. We claim that

(3.15) lim^-0.
ί-*αo *

First consider the case where equation (1.1) is strictly superlinear or strictly
sublinear. Let τ > T be an arbitrary number. Then, for every t > τ, we
obtain

0<w(t)= [w(t

+ \ J
< 2w(τ) + l ί I ' Iw(s)y1'2w'(s)ds\2

where Schwarz's inequality has been used at the last step. From the above
inequality it follows that

for t > τ, which in the upper limit as t -* oo gives

(3.16) 0 < lim sup —

2 lim inf/'(x(£))w(ί) J τ



Oscillation and nonoscillation 667

Note that, by (2.3) and (2.5), we have

lim inf f'(x(t))w(t) > 0 .
f-*αo

Then, letting τ-*oo in (3.16), we easily see that (3.15) is true.
Next consider the linear case. By using Schwarz's inequality, we obtain

w(T)+ I w'(s)ds

1/2

( Γ [w'(< \w(T)\ + (t-
\Jτ /

α'oo \l/2

T )

for t > T. Then we easily see that (3.15) is also true.
Making use of (3.14) and (3.15), we find that

lim 1 Γ (t - s)a(s)ds = -£^±- - ί°° /'(x(s))[w'(s);
t-*ao t JT J\x\* )) JT

which proves (3.13).
The case where I is infinite. In this case we will show that (II) occurs. It

is sufficient to prove that

1 f
(3.17) lim - ^ r (ί - s)q~1a(s)ds = - oo

for any ^e/? satisfying (2.7).
First we consider the strictly superlinear case. Let q > [2c{f) — 1]/

ίc(f) - 1] (> 2). We utilize (3.12) with p replaced by q. Set

(3.18) Mi) = - 1 _ £ (* - sΓ2w'{s)ds ,

(3.19) /2(ί) = - L p (ί - ^-y(x(5))[w'(5)]2ds

for ί > T. Then, (3.12) with p = q is rewritten as

(3.20) — τ (t - sf-1a(s)ds = ^ τ 4 ^ ^ ^ - fa - W i ( 0 - /2W

for t > T. Using Schwarz's inequality, we find

(3.21) [/1( t)]2< ~ 5 * ^s /2(t), t>T.
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Since (2.3) implies

/ '

we have

1 ^ 1 (+™dy_ w(ί)

_{(, _ Γ)t-^»(T) + («-•/,(()}•/,(()
(q - 2)c(f)t"

for ί > T. Thus we obtain

fc -
l

τγ-2w(τ) iM
^/jW + / 2 (t)J

for t > T. This inequality may be regarded as a quadratic inequality with

respect to /^O/^ίO- Then we find that

where

Y l ί > Γ

By Lemma 2, /2(ί) tends t o / ( = + o o ) a s ί - > o o , and consequently we have

0 as ί -> oo .

Taking the upper limit in (3.22), we get

(3.23) I i ί 4 !
I2(t)-(q-2)c(f)'

Since the condition q > [2c(f) — l]/[c(/) — 1] is equivalent to (q — 1)/

[(g — 2)c(/)] — 1 < 0, it is possible to choose ε t > 0 such that

By (3.23), there is a Tx > T satisfying
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which implies, together with (3.20), that

(3.24) ^ j V snsϊls ϊj^^f1 + */,« , * * Ά .

Then, noting that κ < 0 and /2(ί)-> + ° ° (*-> oo), we get (3.17).

Next we consider the case where equation (1.1) is linear. We verify (3.17)

for q > 2. As in the discussion for the strictly superlinear case, we have (3.20)

and (3.21), where /x(ί) and I2(t) are defined by (3.18) and (3.19), respectively.

It follows from (3.20) and (3.21) that

Ύ'(T\ it — TV"1

i/2

for t > T. Let — 1 < κ < 0. Then, since I2(t) -> + oo as t -• oo, there is a

Tγ>T such that (3.24) holds. Thus, as in the strictly superlinear case, we

obtain (3.17) where q > 2.

Finally we consider the strictly sublinear case. In this case, it is enough

to prove

1 p
lim - (ί - ,
t-*ao t J γ

(3.25) lim - (ί - s)a(s)ds = - oo .
ί-*oo t Jj

We have (3.14). In the right-hand side of (3.14), the third term -kw(t)/t is

negative for t > T, and the last integral term tends to — / = — o o as £-• oo.

Thus (3.25) is evident.

This finishes the proof of Theorem 1.
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