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Abstract. Let W be a crystallographic group with its α-function upper bounded. In

[15], the author showed that if x ~ y in W then &(x) = &(y) and Σ(x) = Σ(y\ and

conjectured that the reverse conclusion should also be true. In the present paper,

we show this conjecture in the cases when W is an irreducible Weyl group W and

when W is an irreducible affine Weyl group Wa with the following cases excepted:

Wa has type F 4 , the element x in that conjecture satisfies $(x)e {{s0, sl9 s2}, {s3, s4}}

and a(x) e {6, 7, 9,10,13,16}.

1. Introduction

1.1. Let W = (W, S) be a Coxeter group with S its Coxeter generator set. Let
< be the Bruhat order on W. For w eW, we denote by /(w) the length of
w. Let A = Z[u] be the ring of polynomials in an indeterminate u with
integer coefficients. For each ordered pair y, w e W9 Kazhdan and Lusztig
associated a polynomial PyweA9 (known as a Kazhdan-Lusztig polynomial),
which satisfies the conditions: Py w = 0 if y ^ w, Pw w = 1, and d e g P y w <
(l/2)(*f(w) - /(J;) - 1) if y<w (see [3]). For y, weW9 we write y—w if
either deg Py > w or deg Pw § y reaches (l/2)(|/(w) - ^(y)| - 1). The following fact
is simple and useful: if x, y eW satisfy y < x and £(y) = /(x) — 1, then we
have y—x.

To each element x e W, we associate two subsets of S as below.

(1.1.1) J£?(x) = { s e S | s x < x } and ^(x) = {se S\xs < x} .

1.2. The preorders <, <, < and the associated equivalence relations ~>
L R LR

^ , £^ on VF are defined in [3]. The equivalence classes of W with respect
to ~ (resp. ~s --) are called left (resp. right, two-sided) cells. The set of
all left (resp. right, two-sided) cells of W is partially ordered under the relation
< (resp. <, <).
L R LR
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1.3. Lusztig defined a function a: W-> WUjoo} which satisfies the following

properties in the case when W is a crystallographic group (see [4]):

(1) x < y => a(x) > a(y). In particular, x ~R y => a(x) = a(y). So we may

define the α-value a(Γ) on a (left, right or two-sided) cell Γ of W by a(x)

for any xe Γ.

(2) Let x = yz with / (x) = /(y) + /(z) for x, y, z e W. Then x < z, x < y
r n

and hence a(x) > a(y), a(z).

Certain special families of crystallographic groups satisfy more properties

as below.

(3) If W is either a Weyl group or an affine Weyl group, then a(z) <

\Φ\/2 for any zeW9 where Φ is the root system determined by W;

(4) Let G be the connected reductive algebraic group over C associated

with an irreducible affine Weyl group Wa. Then there exists a bijection

u i—• c(u) from the set of unipotent conjugacy classes in G to the set of

two-sided cells in Wa. This bijection satisfies the equation α(c(u)) = dim 23M,

where u is any element in u, and dim 93M is the dimension of the variety of

Borel subgroups of G containing u.

The above properties of function a were shown by Lusztig in his papers

[4] [5] [6].

1.4. To each element xe W, we associate a set Σ(x) of all left cells Γ of

W satisfying the condition that there exists some element y e Γ with y—x,

0t(y) φ 0t{x) and a(y) = a(x). It is obvious that if W is a crystallographic

group then any Γ e Σ(x) is in the two-sided cell of W containing x.
The following result was shown in the author's previous paper [15].

THEOREM. Let W be a crystallographic group with a-function upper

bounded. If x - y in W9 then M(x) = 0t(y) and Σ(x) = Σ(y).

From now on, we always assume that W is a crystallographic group

with α-function upper bounded. Note that Weyl groups and affine Weyl

groups are such groups. By this theorem, we can use the notations Σ(Γ)

and 0l(Γ) for any left cell Γ of W9 which are by definition Σ(x) and 0t(x)

respectively for any x e Γ.

In [15], the author proposed the following conjecture by which the con-

verse of the above theorem should also be true.

CONJECTURE 1.5. Let W be a crystallographic group with a-function upper

bounded. For x, y e W, we have the equivalence:

x~yo0t{x) = 0t(y) and Σ(x) = Σ(y).

1.6. The main result of the present paper is to verify Conjecture 1.5 in the

cases when W is an irreducible Weyl group W and when W is an irreducible
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affine Weyl group Wa with the following cases excepted: Wa has type F 4 , the

element x in that conjecture satisfies 0ί(x) e {{s0, sί9 s2}, {s3, s4}} and a(x)e

{6, 7, 9, 10, 13, 16}. Conjecture 1.5 may be proved in these excepted cases

by explicitly finding a representative set of left cells of Wa of type F 4 . But

this should involve considerable amount of computation. I don't know any

simpler way to prove it.

REMARK 1.7. (1) In the above conjecture, the condition 0t{x) = 0t(y) on

the right hand side is necessary. For example, let (Wa, S) be the affine Weyl

group of type B2 with S = {s0, s 1 ?s 2} such that the order o(s0s2) of the

product s0s2 is 2. Then s0 <% s2 but Σ(s0) = Σ(s2) = {ΓSί}. Also, let x =

s o s 2 sis 2 and y = S Q ^ M O We have x * y but Σ(x) = Σ(y) = { Γ W l , ΓSQS2}.

Here the notation Γw (w E Wa) stands for the left cell of Wa containing w.

(2) The above conjecture could be restated in a graphic way. Given a

two-sided cell Ω of W, we define a directed graph %(Ω) as follows. Its vertex

set consists of all left cells of W in Ω. Two of its vertices, say Γ and Γ\

are jointed by an arrow: Γ-+Γ\ if for some x' e Γ\ there exists an element

XE Γ with x—x' and 0ί(x) φ 0l{x'\ In this case, the required element xe Γ

exists for any x' e Γ' by Theorem 1.4. Such a graph is called the left cell

graph of Ω. Clearly, for any left cell Γ of W, the set Σ(Γ) consists of all

left cells Γ" of W with Γ" -* Γ.

The above conjecture is equivalent to the following

CONJECTURE 1.5'. For any two-sided cell Ω of W, there exists no graphic

automorphism of the left cell graph X(Ω) of Ω which only transposes two

vertices and leaves all the other vertices fixed, where a graphic automorphism

σ of Z(Ω) consists of the following data:

(1) a permutation σx of vertices i of Z(Ω) with M{f) = 0t(σx{})\

(2) a permutation of arrows of £(Ώ) which sends an arrow i ->j to the arrow

The content of the paper is organized as follows. §§2-3 are served as

preliminaries. We introduce some results on alcove forms and sign types of

elements of affine Weyl groups and Weyl groups in §2, and on strings in

§3. Then we prove Conjecture 1.5 in the above listed cases in §§4-6. More

precisely, we do the unsaturated cases of 0t{x) in §4, do the saturated cases

of 0l(x) for Weyl groups in §5 and for affine Weyl groups in §6.

2. Some results on alcove forms and sign types of elements

2.1. Let E be the euclidean space spanned by an irreducible root system Φ

of type X E {Bf, Q , F 4 | / > 2}. Let A = {α1? α 2, , o^} be a choice of simple
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root system of Φ whose indices are compatible with the corresponding Dynkin

diagrams:

type B(:

type Q:

type F4:

Let Φ+ be the positive root system of Φ determined by A. Let Wa be the

affine Weyl group of type Xv acting on E in the usual way, where Xw is

the type dual to X (Xw = X unless X = Be, Q . In the latter cases, we have

B/ = Cj and C/ = B^). Let sf = sα. be the simple reflections on E with respect

to oci9 1 < i < *f, and s0 = sαo T_αo, where — α 0 is the highest short root of

Φ and T_αo is the translation on E by — α0. Then 5 = {s0, s1 ? •••, ŝ } forms

a set of Coxeter generators of Wa.

2.2. Let Hlk = i ί i α ; _ k = {i? e £|fc < <i?, α v > < k + 1} for any α e Φ + and

ke Z, where < , > is an inner product on E with <α, α> = 1 for any short

root oce Φ and α v = 2α/<α, α> is the dual root of α. By an alcove, we mean

a non-empty set of E of the form f] H£;ka with all ka e Z. The simply
αe Φ

transitive action of Ŵ  on the set of alcoves of E enables us to identify any

element weίf f l with an alcove:

Aw= f] H£.kiWta), for some set of integers k(w, α)
αe Φ

The latter is called the alcove form of w. This correspondence is determined

uniquely by the following properties.

(1) k(e, α) = 0, V α e Φ , where e is the identity of Wa\

(2) If w' = wSi (0<ί< ί\ then

(2.2.1) fc(w', α) = fc(w, (oίβt) + k(si9 α)

Γθ, i f α ^ l α , ;

with k(sh α) = ^ — 1 , if α = αf

[ l , if α = - α j .

where 5,- = 5 t for 1 < i < /; and 50 = sαo.

Since any alcove Q Hι

a.κ of E is determined completely by a Φ-tuple
αe Φ

(K)aeΦ or a Φ+-tuple (ka)aeφ+ over Z, we can simply write (k α ) α e φ or (k α ) α e φ +

for an alcove f] H\.κ. Not any of the Φ-tuples (k α ) α 6 φ over Z gives rise
αeΦ
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to an alcove of E. It is so if and only if the following inequality

(2.2.2) |α|2/cα + \β\2kβ + 1 < |α + β\2(K+β + 1)

<\a\na + \β\2kβ + \OL\2 + β\2 + \* + β\2 - 1

holds for any α, β E Φ with α + β e Φ (see [9]).

2.3. The Weyl group W of the root system Φ could be regarded as a

standard parabolic subgroup of the affine Weyl group Wa, which is generated

by the set S' = {sl9s2,- , s^}. Thus an element w e Wa is in W if and only

if the alcove form (k(w, α))α6φ+ of w satisfies the condition: fc(w, α)e{0, —1}

for any α e Φ + .

The following are some simple properties for the alcove form of an

element in Wa.

PROPOSITION 2.4. Let (ka)aeΦ+ be the alcove form of an element of Wa

(1) // {α, β, α -h β} forms a subsystem of Φ+ of type A29 then

k <: 0 => k < k '

kβ > 0 => /cα+^ > /cα .

(2) //* {α, j8, α + jS, 2α -f β} forms a subsystem of Φ* of type B2, then

> U => kΛ < ka+β \ka> Ό=> kβ < k2a+β

[kβ < 0 => kα > kα+^ [kα < 0 => k^ > k2α+^ .

PROOF. This could be deduced straightforward from inequality (2.2.2).

D

Analogous results also hold for a subsystem of Φ + of type G2.

2.5. For w, w' e W ,̂ we say that w' is a left extension of w if Z(w') = *f(w) +

/(w'w"1). Then the following results on the alcove form (fc(w, α)) α 6 φ of an

element w eWa are known.

PROPOSITION [9] [10]. (1) /(w) = Σ α e Φ + |k(w, α)|, where the notation \x\

stands for the absolute value of x;

(2) 0t{yί) = {Si\k(w, (Xi) < 0};

(3) Let w' = (k(w\ α)) α e Φ e Wa. Then w' is a left extension of w if and only

if the inequalities k(w\ α)/c(w, α) > 0 and |fc(w', α)| > |k(w, α)| hold for any

OLE Φ.

We shall give a certain arrangement of entries ka for the alcove form

(fcα)αeφ+ of an element in Wa of type X, X E [B^ Q , F 4 } , for the convenience

of the later use. To do this, we need only arrange the roots of Φ+ of the
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corresponding types and then the entries of the alcove form of an element
in Wa could be arranged accordingly.

2.6. X = Bt (ί > 3).
Let us do the case of £ = 5 and then the general cases could be dealt

with similarly.
i

Denote a root α = £ a^ by its coordinate form (al9 α 2, •••, α^). We

arrange the roots of Φ + , which has type C5, in the following way:

(1,1,1,1,0)

(1,1,1, 0, 0) (0,1,1,1, 0)

(1,1, 0,0,0) (0, 1, 1, 0,0) (0,0,1,1,0)

(1,0,0, 0, 0) (0,1,0,0, 0) (0, 0,1, 0, 0) (0,0,0,1,0)

(2.6.1) ( α ) α e φ+ = (2,2,2,2, l) (o, 2,2,2, l) (o, o, 2,2, l) (o, o, o, 2, l) (o, o, o, o, l) t h e m i d d l e r o w
(1, 2, 2, 2, 1) (0,1,2,2,1) (0,0,1, 2,1) (0, 0,0,1,1)

(1,1,2,2,1) (0,1, 1,2,1) (0,0, 1,1,1)

(1, 1, 1, 2, 1) (0, 1, 1, 1, 1)

(1, 1, 1, 1, 1)

Let us divide the above diamond into three parts,
( i ) The middle row.
(ii) The top triangle, which consists of all the entries above the middle row.
(iii) The lower triangle, which consists of all the entries below the middle row.

We list some properties for this arrangement of roots in Φ+.
(a) The ones lying in the middle row are all the long roots of Φ+, and

the heights of these roots are monotonously decreasing from left to right.
Thus the root at the rightend (resp. leftend) is the simple long (resp. the
highest) root of Φ+.

(b) The roots in the top triangle form a subsystem of Φ+ of type A(_u

and the roots in the i-th row from the bottom of this triangle have the same
height i. In particular, the bottom row of this triangle consists of all the
simple short roots of Φ+.

(c) The heights of roots in the lower triangle are monoteneously getting
larger along the alignment from northeast to southwest and also from south-
east to northwest. In particular, the highest short root of Φ+ is at the leftend
of the row just below the middle one.

(d) A subset of Φ+ forms a subsystem of type B2 if and only if it is
the vertex set of a subdiamond with two of its vertices lying in the middle row.

Properties (a), (b) and (d) determine the positions of roots of Φ+ in
diamond (2.6.1) completely.

2.7. X = Q {t > 2).
Again, we do the case of / = 5 as an illustration. We arrange the roots

of Φ+ of type B5 in the following way:
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(1, 1, 1, 1, 0)
(1,1, 1, 0, 0) (0, 1, 1, 1, 0)

(1,1, 0, 0, 0) (0, 1, 1, 0, 0) (0, 0, 1, 1, 0)
(1, 0, 0, 0, 0) (0,1, 0, 0, 0) (0, 0, 1, 0, 0) (0, 0, 0, 1, 0)

(2.7.1) (1, 1, 1, 1,1) (0, 1, 1, 1, 1) (0, 0, I, I, 1) (0, 0, 0, 1, 1) (0, 0, 0, 0,1)
(1, 2, 2, 2, 2) (0, 1, 2, 2, 2) (0, 0, 1, 2, 2) (0, 0, 0, 1, 2)

(1, 1, 2, 2, 2) (0, 1, 1, 2, 2) (0, 0, 1, 1, 2)
(1,1, 1, 2, 2) (0,1, 1, 1, 2)

(1, 1, 1, 1, 2)

Note that this arrangement of Φ + could be obtained from (2.6.1) by replacing
each entry by the corresponding dual root up to an overall scale factor. In
particular, the highest short root of Φ+ is placed at the leftend of the middle
row. Moreover, some properties for this arrangement of Φ + , similar to 2.6
(a)-(d), could be deduced by using duality.

2.8. Let Φ+ be any positive root system. For each α ε Φ + , we define <5(α) to
be the length t of a sequence ζ: γ± γ29 •••, γt = α in Φ+ with γxeJ such that
for every i, 1 < i < ί, there exists some β e A with fydv-i) = % and y^x < yt.
By [14], we know that the number t is only dependent on α but independent
of the choice of a sequence ξ. So <5(α) is well defined. Note that when α
is a short root in Φ + , the number <5(α) coincides with the height of α in the
usual sense.

Now let Φ+ be of type F 4 . We arrange the roots of Φ + in the following
way.

(2, 4, 3, 2) (2, 3, 2, 1)
(2,4,3,1) (1,3,2,1)
(2,4,2,1) (1,2,2,1)
(2,2,2,1) (1,2,1,1)

(2,2, 1, 1) (0,2,2, 1) (1,2,1,0) (1, 1, 1, 1)
(0,2,1,1) (2,2,1,0) (0,1,1,1) (1,1,1,0)
(0,0,1,1) (0,2,1,0) (0,1,1,0) (1,1,0,0)
(0,0,0,1) (0,0,1,0) (0,1,0,0) (1,0,0,0)

The left part of (2.8.1) consists of all the long roots of Φ+ and that the roots
in the ϊ-th row from bottom have the same <5-value i.

2.9. A Φ+-sign type (or a sign type in short when it is clear in the context)
is a Φ+-tuple (Xa)aeΦ+ with Xa e {O, +, - } for any α ε Φ + . To each w ε Wa

with its alcove form (fcα)αeΦ+, we associate a Φ+-sign type ζ(w) = (Xa)ΛeΦ+ by
setting

+ , if K > 0

, i f f c α < 0 ;

O , if K = 0 ,
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for any α e Φ + . Thus w -• ζ(w) is a map from Wa to the set of all Φ+-sign

types. By abuse of terminology, we identify a Φ+-sign type X with the set

ζ~ι(X) of Wa and call ζ~x{X) a Φ+-sign type (or a sign type in short) if

ζ~ι{X) φ 0 . It is known that there exists a unique shortest element in each

sign type of Wa (see [10]). It is also known that each left cell in the lowest

two-sided cell of an affine Weyl group Wa is exactly a single sign type (see

[11] [12]). For more results on sign types of elements of Wa9 we refer the

reader to [8] [10] [13].

3. Strings

3.1. A sequence of elements in W of the form

(3.1.1) ys, yst, ysts,...

is called an {s, ί}-string (or just call it a string) if s, te S and yeW satisfy

the conditions that the order o(st) of the product si is m and 0t{y) Π {s, t) = 0 .

The number m — 1 is called the length of this string. Clearly, when (3.1.1)

is an {s, ί}-string, the sequence

(3.1.2) yt9yts9ytst>...

m—1 terms

is also an {s, t}-string.

Suppose that we are given two {s, t]-strings xl9 x 2, . . . , xm-i and yί9

y2, . . . , ym-ι with o(st) = m. Then the following result is known.

PROPOSITION 3.2 [16]. In the setup of 3.1, we have

(1) // m = 3, then

(2) Ifm =
(a) x,

(b) X,

(c) Xl

(d) x 2

4, then
~ y2oχ2 γ)
~ yxoχ3 ~ j

o either

^OX2

hi
χiτy
x*ry

i or xx -

i or x3 2

oeither xx ~ yx or x3 ~ y1

or x3 ~ y3oeither xx - y3 or x3 ~ y3.

REMARK 3.3. When m > 6, the analogue of Proposition 3.2 could be

deduced.
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3.4. Fix a left cell Γ of W. Suppose that there exist some s, t e S with
t e 0t(Γ\ s φ 3t(Γ) and o(st) = m > 3. Then each element xeΓ belongs to a
unique {s, ί}-string ξx. We denote by i(x, s, t) the ordinal of x in string ξx,
i.e. x is the i(x, s, ί)-th term of ξx. Define Γ* to be the set of all elements
y of W satisfying the following condition: y is in some {5, ί}-string of W
containing a term x in Γ such that i(y, s,t) = m — i(x, s, t). Then it is known
that Γ* is also a left cell of W (see [4]). Call the map Γ->Γ* a (right)
star operation with respect to {s, ί} (or just call it a star operation if no
danger of confusion). This map is involutive. Note that the left cells Γ and
Γ* need not be distinct in general. But they are distinct in the case of
m = 3. Moreover, when m = 3, we have Γ* e Σ(Γ) and ΓeΣ(Γ*).

3.5. Given an element xe W, We consider the set M(x) of all elements y
such that there exist a sequence of elements x0 = x, x1? ..., xr = y in W
with some r > 0, where for every i, 1 < ί < r, the conditions x^XjeS and
^(*i-i) % @(Xi) are satisfied. Clearly, if x' e M(x) then x - x'.

4. Proof of Conjecture 1.5 (unsaturated cases)

4.1. By Theorem 1.4, to show Conjecture 1.5, it suffices to show the following

ASSERTION. // Γ, Γ are left cells of W with K = @(Γ) = 0ί{Γ) and
Σ(Γ) = Σ{Γ\ then Γ = Γ.

When K = 0 , the left cells Γ and Γ' of W in the above assertion are
both equal to {e}. So in the subsequent discussion, we always assume
KΦ0.

In the present section, we shall show this assertion mainly in the case
when K is an unsaturated subset of S (see the definition in 4.2).

4.2. Let D(S) be the Coxeter graph corresponding to the Coxeter generator
set S. For any subset / ^ 5, we denote by D(I) the full subgraph of D(S)
with / its vertex set and by D°(/) the graph obtained from D(I) by removing
all the non-simply-laced edges. For example, let (W, S) be the affine Weyl
group of type C5. Then D(S) is

Let I = {s0, sl9 s3, sA, s5} and /' = {sl9 s2, s3, s4, s5}. Then D(I) and D(Γ)
(resp. D°(I) and D°(J')) are
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3.ΠQ

0 1 3 4 5 1 2 3 4 5 .

(resp. o o σ~ o o and o D σ o o )»

respectively. Call a non-empty subset J ^ s to be saturated if the subgroup
of W generated by J is finite and if D°(J) consists of some connected compo-
nents of D°(S); call J to be unsaturated if otherwise. Thus in the above
example, /' is saturated but / is not.

PROPOSITION 4.3. Suppose that Γ and Γ' are left cells of W with 0t(Γ) =
m(Γ') = K. If K is unsatruated, then Σ(Γ) = Σ(Γ')oΓ=Γ

PROOF. (<=) By Theorem 1.4.
(=>) By the condition, there exist some se S — K and t e K with

o(st) = 3. Let Γ* (resp. Γ'*) be the image of Γ (resp. Γ) under the (right)
star operation with respect to {s, t] (see 3.4). Then by 3.4, Γ* is a left cell of
W belonging to Σ(Γ) and hence also to Σ(Γ). Since s e @(Γ*) - 0t(Γ') and
t e m{Γ') - ^(Γ*), this implies from 3.4 that Γ* = Γ* and so Γ = Γ. •

COROLLARY 4.4. Let Wa be an affine Weyl group of type A( (ί > 1), Dm

(m > 4) or En (n = 6, 7, 8). Then for any left cells Γ and Γ of Wa with
= m(Γ'\ the equivalence "Σ(Γ) = Σ{Γ)oΓ= Γ r" holds.

PROOF. Since K = 0t(Γ) = 0t{Γ') is never saturated under our assump-
tion, the result follows from Proposition 4.3 immediately. •

COROLLARY 4.5. Let (W\ S') be a Weyl group of type A( {ί > 1), Dm

(m > 4) or En (n = 6, 7, 8). Then for any left cells Γ and Γ of W with
0t(Γ) = ®{Γ\ we have Σ(Γ) = Σ(Γ)oΓ=Γ'.

PROOF. Let K = 0t(Γ\ Then K is saturated only if K = S'. But when
K = S\ we have Γ = Γ' which consists of a single element (i.e. the longest
element of W) and Σ(Γ) = Σ(Γ') = 0. So our result follows by this observa-
tion and by Proposition 4.3. •

4.6. The remaining two sections are devoted to show Conjecture 1.5 in the
cases when W is an irreducible Weyl group W and when W is an irreducible
affine Weyl group Wa with the following cases excepted: Wa has type F 4, the
element x in conjecture 1.5 satisfies the conditions 0ί(x) e {{s0, sί9 s2}, {s3, s4}}
and a(x) e {6, 7, 9, 10,13, 16}. By Theorem 1.4 and Proposition 4.3, to show
Conjecture 1.5, we need only to show Assertion 4.1 in the case when K is
saturated. By Corollaries 4.4 and 4.5, we need only to consider the types
Q (/ > 2), F 4 and G2 in the Weyl group cases and the types B, (ί > 3),
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Cm (m > 2), F 4 and G2 in the affine Weyl group cases. Our proof will proceed

by using case-by-case argument.

We record a simple fact for later use

LEMMA. // x—y and 0ί(x) 5 0ί(y) for x9 yeW, then x~ιy e S. Moreover,

if ΓoeΣ{Γ) satisfies ®{Γ)^M{Γ0) for a left cell Γ of W, then ΓeΣ(Γ0).

5. The case when W is a Weyl group (W\ Sr)

5.1. Recall that the alcove form (fc(w, α)) α e φ + of an element weW satisfies

the condition: fc(w, α) e {0, — 1} for α e Φ + .

By Corollary 4.5, to show Assertion 4.1, we need only to consider the

cases when W has type Q (β > 2), F 4 or G2 and when 0l(Γ) is saturated. The

case 0t(Γ) = S' could be treated as that in the proof of Corollary 4.5. So

in the subsequent discussion, we always assume 0 φ M(Γ) p S' and so we

have Σ(Γ) φ 0. We shall argue case-by-case and by contrary.

Let Γ and Γ be left cells of W with 0t(Γ) = 0t{Γ) = K and Σ(Γ) =

Σ(Γ). Suppose Γ Φ Γ.

5.2. First assume that W has type Q , ^ > 2. The alcove forms of elements

of W are defined over the positive root system Φ+ of type B,. In particular,

when ί > 4, the set of all long roots of Φ+ forms a subsystem of type D(

with aί9 α2, •••, α^_l5 CL{-X + 2α^ its simple root system. The possible satu-

rated proper subsets of S' are {s1? s29"
m

9 s^-i} and {s^}. First assume 0t{Γ) =

{sx, s2,'' , s,_i}. Then there exists some Γ" e Σ(Γ) = Σ(Γ') with s^ φ 0t(Γ")

and s( e 0t(Γ"\ By Lemma 4.6 and the assumption Γ φ Γ\ there exists some

{s^_i, 5^}-string x, y, z with y e Γ" such that either xeΓ, zeΓ' or xeΓ\

z e Γ. By symmetry, we may assume xe Γ9 z e Γ' without loss of general-

ity. Thus by (2.2.1) and Proposition 2.5, we have fc(z, αf) = —1 for 1 < i < £,

fc(z, α )̂ = 0 and fe(z, α^_x + α )̂ = fe(z, α^.! + 2α^) = — 1 in the alcove form

(/c(z, α)) α e φ + of z. By Proposition 2.4, this implies that for any oceΦ+,

- f - ..x i - > if α = α^

z, α) = ^ .
otherwise.

i.e. z = VVQŜ , where w0 is the longest element in W. Hence x =

Since w0 is in the center of W, this implies that both x and z are involutions.

So we get x ^ z from the fact x ~ z. But then we get /" = /"', contradict-

ing our hypothesis. Next assume <M(Γ) = {s^}. As mentioned in 2.3, W7 =

<sx, 52, ••*, ŝ > could be regarded as a subgroup of the affine Weyl group

Wa = (SQ^!, * ,s/f> of type Q . There exists a unique left cell Γo (resp. 7"ό)

of Wa containing Γ (resp. Γ'). Clearly, Γo and ΓQ are in the same two-sided

cell of Wa with @(Γ0) = 0t(Γ^) = {s,}. By [7], there exists at most one left
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cell F oί Wa satisfying ${F) = {s^} in a given two-sided cell. This implies
Γo = ΓQ and hence Γ = Γ\ contradicting our hypothesis, too.

5.3. Next assume that W has type G2.
The possible saturated proper subsets of S' are {st} and {s2}. But if

= 0t(Γ') = {sj, then Γ = Γ. This gives rise to a contradiction.

5.4. Finally assume that W has type F4.
The possible saturated proper subsets of Sf are {sl9 s2} and {s3, s4}. The

permutation ψ: st i—• s5_t (1 < i < 4) on S' could be extended uniquely to an
automorphism of W which induces a permutation Ψ on the set Ξ of left
cells of W with ^(Γ(Γ)) = Σ(Ψ(Γ)) for any Γ e 5 . So we need only to
consider the case when 0t(Γ) = M(Γ') = {sx, s2}. Thus by Lemma 4.6 and
the assumption ΓΦΓ\ there must exist some {s2, s3}-string x, y, z with
y G /"" such that either x e Γ, z e Γ' or x e Γf, z e Γ. Without loss of general-
ity, we may assume xeΓ and zeΓ'. Let w = s1s2s35251s2s352 and w' =
5152s354s2s1s3s2s3s45152s3s2s1s2s3s2. Then the alcove forms of these two
elements are

o o
o o
o o

0 ° 0 -!° 0
0 - 1 0 - 1
0 - 1 - 1 - 1
0 0 - 1 - 1

w

respectively. Then by applying Propositions 2.4 and 2.5 to the alcove forms
of elements, we can see that z (resp. w') is a left extension of w (resp. z) (see
2.5). We can also check that w' is in M(w) (see 3.5) and that both w and
w' are involutions. This implies w ^ W < z < w by 3.5 and 1.3(2), i.e. z ^ w.
Thus by Proposition 3.2(2), we have x ^ ws2s3. But it is easily seen that
ws2s3 e M(w) and that both w and ws2s3 are involutions. So by 3.5, we have
w ~ ws2s3 and hence z ~ x. This implies Γ=Γ\ again giving rise to a
contradiction.

6. The affine Weyl group (Wa9 S) case

6.1. To show Assertion 4.1, we need only to consider the case when Wa has
the type Bn (n > 3), Cm (m > 2), F 4 or G2. Let Γ and Γ be left cells of Wa

with 2Γ(Γ) = Σ(Γ) and with X = 0t(Γ) = ®(Γ') saturated. Then K p 5 and
there exist some t e S — K and se K with o(ts) > 3. Thus there must exist

- 1
- 1

- 1

- 1

- 1

0 -
0 -
0

0 -
-1

-1 -
0 -

w'

- 1
1

- 1

- 1

1 - 1
0 - 1
1 - 1
1 - 1
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some Γ" e Σ(Γ) = Σ(Γ) satisfying t e 0t{Γ") and s φ 0t(Γ"\ So by Lemma

4.6, we have Γ τ± Γ" <± Γ (see Remark 1.7(2)). Thus we see that each {s, ή-

string ξ intersecting one of Γ, Γ' and Γ" must intersects all the others, and

that the middle term of ξ should be in Γ" in the case when Γ Φ Γ' and m — 4.

We shall show Assertion 4.1. We argue by contrary in the case when

Wa has type Bn or Cn. Thus in 6.2-6.3, we assume Γ Φ Γ.

6.2. First assume that Wa has type Bn (n > 3).

Dynkin diagram is as below.

The corresponding extended

The possible saturated subsets K of S are {s0, sί9 •••, sπ-i} and {sn}.

Θ

(a) (b)

Figure 1

(a) First consider the case K = {s0, sl9 •••, sn_i}.

We have t = sn and s = sn_!. By Propositions 2.4 and 2.5, we see

from 6.1 and the assumption ΓφΓ that the left cell Γ" satisfies @,(Γ") =

{s0, sί9 " sM_2, sn} and that for any given element W eΓ", there exist some

elements w e Γ and w ' e Γ such that either w, w", w' or wr, w", w form an

{sn_l9 5π}-string. By symmetry, we may assume the former without loss of

generality. Thus by (2.2.1) and Proposition 2.5, in the alcove form (fc(w, α)) α e φ

of w, we have fc(w, αf) < 0, V 0 < ί < n — 1, fe(w, ocn) > 0 and fe(w, απ_x H- αn),

fe(w, 2απ_1 + απ) > 0. So by Proposition 2.4, the element w has the sign type
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as in Figure 1 (a), where the notation 0 stands for the sign + or O and *

for an undetermined sign. We see that all the entries of w in its top (resp.

lower) triangle are of negative (resp. positive) values. The entries in its middle

row weakly increase from left to right, and all the entries in this row are

non-negative with possible one exception. But this implies from (2.2.1) and

(2.6.1) that the element w' = ws^^ has the sign type as in Figure 1 (b). This

means ^(w') = {s0, sl9 -, sπ_3, sw_x} if n > 3 or $(w') = {s2} if n = 3 by Prop-

osition 2.5, contradicting the assumption $(wf) = 0t(Γ') = {s0, sί9 * , sπ-i}.

Figure 2

(b) K = {sn}.

We have t = sn_x and s = sn. By Propositions 2.4 and 2.5, we see from

6.1 and the assumption Γ Φ Γ that the left cell Γ" satisfies 0t(Γ") = {sn^}

and that for any given element w" e Γ'\ there exist some elements w e Γ and

w' G Γ such that either w, w", w' or w', w", w form an {sn-l9 sπ}-string. Again,

we may assume the former without loss of generality. So in the alcove

form (fe(w, α)) α e Φ of w, we have fc(w, αf) > 0, V 0 < i < n — 1, fe(w, αn) < 0 and

fc(w, α,,-! + αn), fe(w, 2απ_! + α j > 0 by Proposition 2.5 and (2.2.1). So by

Proposition 2.4, the element w has the sign type as in Figure 2. We see

that all the entries of w in its top (resp. lower) triangle are of non-negative

(resp. zero) values. The entries in its middle row weakly decrease from left

to right and only the rightmost entry is negative. Again by Propositions 2.4

and 2.5, we see that this holds only when w = sn. In this case, w' = wSn^Sn =
s « 5 π-i 5 «2 / W a n c * h e n c e Γ = Γf which also gives rise to a contradiction.

6.3. Next assume that Wa has type Cn (n > 2).

The possible saturated subsets K of S are {s1? s2, •••, s ^ } ,

{so,s 1,52, ,sπ_1}, {sl9s29~';SH-l9sn}9 {s0}, {sn} and {so,sn}. It is known
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that there exists a unique left cell Γ of Wa satisfying the condition 0t(Γ) =

{s0, s 1 ,5 2 , ,sπ-i} (resp. 0ί(Γ) = {sί9s29~-9sn-l9sn}) (see [11] [12]). On the

other hand, the cases K = {s0} and K = {sn} are symmetric. It is known that

there exists at most one left cell Γ with $(Γ) = {s0} in a given two-sided

cell of Wa (see [7]). Thus we need only to consider the cases when K =

{sl9s29

m~9sn-1}9 and {s0, sn}. The cases n = 2, 3 can be checked directly

(refer to [4] [1]). So in the subsequent discussion, we always assume n > 3.

(a) First assume K = {sί9 s2, •••, sπ_i}.

By Propositions 2.4 and 2.5, we see from 6.1 and the assumption Γ Φ Γ'

that the left cell Γ" satisfies 0ί(Γ") = {sl9 s29 •••, sπ_2, sn} and that for any

w" e Γ'\ there exist some elements we Γ and w' e Γ' such that either w, w",

w' or w', wr/, w form an {sπ_1, sπ}-string. As before, we may assume w, w",

w' to be an {sπ_l9 sn}-string. Let (/c(w', α)) α e Φ be the alcove form of w\ Then

by 2.7, (2.2.1) and Proposition 2.5, we have fc(w', α{) < 0, V 1 < i < n - 1,

/c(wr, α0), feίw', α j > 0, and fc(w', απ_! -h αM), /c(wr, απ_x + 2απ) < 0. Hence by

Proposition 2.4, the sign type of w' should be as in Figure 3 (a). We see

that all but one entries of vvr indexed by roots in Φ+ are negative, the only

non-negative entry of w' is at the rightend of its middle row. Then the sign

type of the element w = w'Sn^Sn should be as in Figure 3 (b), where all the

entries of w indexed by roots in Φ+ are negative with three exceptions, these

three non-negative entries are fc(w, α j , fc(w, αn_x + απ) and fc(w, ocn^1 + 2αn).

Let y' = w's0 and y = ws0. Then y\ y have the sign types as in Figure

4 (a), (b), respectively. Let Γx be the left cell of Wa containing x for xeWa.

Then by (2.2.1), 2.7 and Proposition 2.5, we have 0t(y') = {s0, s2, s3, •••, sn^}

(a) (b)

Figure 3
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(a) (b)

Figure 4

and hence Γy. e Σ(Γ). Also, we have Γy e Σ(Γ) = Σ(Γ) with 0t(Γy) = 0t{Γy).

Since w' is the first term in the {s0, s^-string containing y\ we see from

Lemma 4.6 that Σ(Γ') contains a unique left cell F of Wa satisfying s 0 e ^ ( F )

and sx φ 0t(¥\ This implies Γy, = Γy, i.e. y ~ /• Now by Proposition 3.2

and the assumption w' ^ w, this implies w ~ y's1. But it is easily seen from

(2.2.1), 2.7 and Proposition 2.5 that ^{y's^ = {sl9 s3, •••, s^} φ

is not allowed by Theorem 1.4.

which

(b) Finally assume K = {s0, sn}.

The left cell Γ" satisfies M(Γ") = { s 0 ,5^} by the assumption n > 3.

Thus Γ, Γ ' e i ; ( Γ " ) by Lemma 4.6. Given an element w " e Γ " , there exist

some elements w e Γ and w' e Γ ' such that either w, w", w' or w', w", w form

an {sw_!, 5π}-string by the assumption Γ Φ Γ'. Again, we need only to con-

sider the case when w is the first term in this {sπ_l5 sπ}-string. Thus in the

alcove form (/c(w, α)) α e φ of w, we have fe(w, αf) > 0, V 1 < i < n — 1, fc(w, α0),

k(w, (xn) < 0 and fc(w, an^ + αn), fe(w, ocn_1 + 2αn) > 0 by the assumption n > 3.

So by Proposition 2.4, the element w has the sign type as in Figure 5. We

see that all but one entries of w indexed by positive roots are non-negative,

and that the entry at the leftend (resp. rightend) of its middle row is positive

(resp. negative).

Let

fe(w, α j
λ = fe(w, - α 0 ) fe(w, - α 0 - 2α x ) .

fc(, - α 0 - α j

Then the possible sign types λ of λ are +;f O, and +;f+, where
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Figure 5

the notation © stands for the sign + or O When λ = + T O , the element

w is the second term in the {s0, s^-string containing it. Let y = ws0 and

y' = w's = W5π_15πs, where se{ s 0 , sx} is chosen such that y' ~ y. This can

be done by Lemma 4.6 since Γy e Σ(Γ) = Σ(Γ) and @{Γy) g &(Γ'\ But then

by Proposition 3.2, we get w ~ W. Next assume λ = + S θ Then by Prop-

osition 2.4, we have w = sosn and hence wr = wsn_1sπ = s0sw5π_1sw. Clearly,

w ~ w' by the assumption n > 3. Finally assume λ = + ® + . Then w is

the third term in the {s0, s^-string containing it. Let y = ws0. Then Γy e

i7(Γ) = i7(/^). We see that the element w' is in an {s0, s^-string and that

some of its neighboring terms, say / , in this {s0, s^-string satisfies y' ~ y.

Since w ^ w' by assumption, this implies from Proposition 3.2 that the element

x = ysx = wsos1 satisfies x ~ w'. In particular, we have 0t(x) = {s0, sn} and

hence 0 < fe(x, α2) = —k(w, — α 0 - αx - α2) < 0 by (2.2.1), Propositions 2.4 and

2.5, i.e. fc(w, — α 0 — αx — α2) = 0. But by Proposition 2.4 and by the sign

type of w, we get w = SQSI^SQSH and hence w; = so51sosπsn_15 f l. A direct check-

ing shows w ~ w' by the assumption n > 3. So we get w ~ w ' in all the

cases, which contradicts the assumption Γ φ Γ'.

6.4. Next assume that Wa has type G2.

We now show Assertion 4.1 by a direct argument. Note that all the

left cells of Wa were described explicitly by Lusztig (see [4]). The possible

saturated subsets of S are {s0, sx} and {s2}. Let Ω be the two-sided cell of

Wa containing Γ and Γ. First assume 0ί(Γ) = @(Γ) = {s0, sx}. In this case,

the only possible values for a(Ω) are 3 and 6. There is only one left cell F

in Ω with 0t(F) = {s0, sx} in the case of a(Ω) = 3. When a(Ω) = 6, there are
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two distinct left cells F, F in Ω with 0t{F) = 0ί(Ff) = {s0, sx} but Σ(F)Π
Σ{F') = 0 as a direct checking shows. This implies Γ = Γ' since Σ(Γ) Φ 0.
Next assume 0t(Γ) = 0t(Γ') = {s2}. The possible α-values for Ω are 1, 2, 3
and 6. There is only one left cell F with ^(F) ='{s2} in Ω if α(ί2) = 1 or
3. When a(Ω) = 2 or 6, there are two distinct left cells F, F with M{F) =
M(F') = {s2} We can easily show Σ(F) Φ Σ(F') by only comparing the num-
bers of left cells P of Wa with 0t{?) = {sx} in Σ(F) and Σ(F') (one is 1 and
another is 2). So this again implies Γ = Γf.

6.5. Finally assume that Wa has type F4.
In this case, we shall only get some partial results in proving Assertion

4.1. As before, we need only to consider the case when K = 0t(Γ) = M(Γ')
is saturated. The possible saturated subsets of S are {s0, S i ^ } and {s3,s4}.
When 0t(Γ) — {s3, s4} (resp. {s0, s l 5 s2}), we have 0(7") > 3 (resp. a(Γ) > 6).
On the other hand, there exists a unique left cell Γ of Wa satisfying the condi-
tions a(Γ) = 3 and M(Γ)={s^s^} (resp. a(Γ) = 6 and &t(Γ) = {s0, sl9 s2}).
In [15], we described all the left cells Γ of Wa with a(Γ)e {4, 5}. From all
these results, it is easily seen that Assertion 4.1 holds in the cases when
a(Γ) = a(Γ) < 5 and when a(Γ) = a(Γ') = 6 with 0t(Γ) = 0t{Γ') = {s0, sl9 s2}.

Now consider the case when both Γ and Γ' are in the two-sided cell Ω
with a(Ω) = 24. (i.e. Ω is the lowest two-sided cell of Wa). Note that each
left cell of Wa in Ω is a single sign type (see 2.9 and [10] [12]). If a left
cell Γ of Ω satisfies \@t(Γ)C\ {s2, s3}| = 1, then w is in some {s2, s3}-string
with ΐ(w, 52, s3) constant as w ranges over Γ (see 3.4). Suppose that Γ, Γ' ^ Ω
satisfy ^(Γ) = ^(Γ r) = {s3, s4} and Γ(Γ) = Σ(Γ'). If Γ Φ Γ, then each ele-
ment w of ΓUΓ' is in some {s2, s3}-string ξ with Ϊ'(W, S2, S3) G {1, 3} and
\ξΓ\(Γ\JΓ')\ = 2, where the notation J stands for the set consisting of all
terms of ξ. We may assume

l , i f w e Γ ;

There exists a bijection from Γ to Γ' by sending w to ws2s3. We have
/(ws253) = /(w) -j- 2 for wef . Let x, x' be the shortest elements of Γ, Γ\
respectively (it is known that such an element is unique in Γ or Γ\ see 2.9
or [10]). Let υ = x's2. Then Γv e Σ(Γ) by 1.3(2) (3) and by the fact 0t{υ) =
{s2, s3, s4} p {s3, s4} = 0t(Γ'\ There exists a bijective map from Γ' to /^
which sends z to zs2. We have ί{z) + 1 = /(zs2) for zeΓ'. This implies
that i; is the unique shortest element of Γυ and so /(ι/) > /(x) + 3 for v' e Γv.
Since any element w with w—x and 0ί{w) φ 0t{x) satisfies /(w) < ί(x) + 1, we
have Γυ φ Σ(Γ). This implies Σ(Γ) Φ Σ(Γ'\ a contradiction. So we must
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have Γ = Γ'. By the same argument as above, we can show that if 0ί(Γ) =

0t(Γ') = {s0, sl9 s2} and Σ(Γ) = Σ(Γ') then Γ= Γ.
By 1.3(4) and by the knowledge of unipotent classes of the corresponding

algebraic group (see [2]), we see that all the possible a-values on elements

of Wa of type F 4 are 0, 1, 2, 3, 4, 5, 6, 7, 9, 10, 13, 16 and 24. So we have

completed our verification of Assertion 4.1 and hence of Conjecture 1.5 in

all the cases listed in 1.6.

NOTE ADDED IN PROOF. Recently I described all the left cells of the

affine Weyl group Wa(F^). Thus by the knowledge of these left cells, I can

verify Conjecture 1.5 in the case of W = Wa(F^) without any exception. This

makes the result of the present paper more satisfactory.
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