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1. Introduction

A space X with a continuous multiplication u: X x X - X with a unit
is called an H-space. A typical example of H-space is a loop space. It is
known that not all H-spaces have the homotopy type of loop spaces. The
7-dimensional sphere S7 is one of such counter examples.

Sugawara [12] gave a criterion for an H-space to have the homotopy
type of a loop space. His criterion is a kind of higher homotopy associativity
of infinite order. Almost the same time Stasheff [9] reached the same idea,
and he defined the A,-space which is the H-space with higher homotopy
associative multiplication of n-th order. In his sense A4,-spaces are H-spaces,
Aj-spaces are homotopy associative H-spaces, and A, -spaces are spaces with
the homotopy type of loop spaces.

In his paper, Stasheff defined the projective n-space P,(X) associated to
a given A,-space X, which is considered as a generalization of the n-th stage
of the construction of the classifying space of a topological group or an
associative H-space. In fact, P,(X) is defined inductively by P,(X) = P,_,(X)U
C(X*") with Py(X) =%, where X*" is the n-fold join of X. Then Stasheff
proved that if X = QY, then P,(X) has the homotopy type of Y, where
P (X) =\ )2, P(X). The name ‘projective’ comes from the fact that if X is
the unit sphere in the real, the complex or the quaternionic numbers, then
P,(X) is the usual real, complex or quaternionic projective n-space.

The projective n-space has been very useful for the study of the cohomol-
ogy of A,-spaces. In fact, we have the following fact.

THEOREM (Iwase [4]). Let X be a simply connected A,-space so that
H*(X;Z/p) = A(Xy,..., %) » dim x;: odd ,

where p is a fixed prime. Suppose that there are classes y; € H¥(P,(X); Z/p)
so that each y, restricts to the suspension of x; in H¥( XX, Z/p) by the homo-
morphism induced by the inclusion XX < P,(X). (This property is referred as
the A,-primitivity of x;) Then there is an ideal S in H*(P,(X); Z/p) closed
under the action of the Steenrod operation, so that



584 Yutaka HeEmmI

H*(P,(X), Z/p)/S = Tosilyss -5 %l »

where T,,1[ V1, ..., Vi] is the truncated polynomial algebra of height n + 1, i..,
the quotient algebra of the polynomial algebra Z/p[y,,..., yi] by the ideal
generated by the n + 1-fold decomposable elements.

Iwase’s original theorem in [4] is on the K-ring of P,(X). We can also
prove the above theorem by the same method.

The above theorem is used especially for the study of the action of the
Steenrod operation on H*(X; Z/p) when n > p. In fact, the unstable condition
P™"y = yP (deg y = 2m) can be used to deduce a variety of results (cf. [2]).

On the other hand, the classes x; are not always A,-primitive. One
can only prove the A,_,-primitivity of x; ([4]). If we don’t assume the A,-
primitivity of x;, it seems to be very difficult to give a useful structure theorem
for H*(P,(X); Z/p). Iwase [5] also studied such cases. He considered the
case that there exists a particular subspace of X called a generating subspace.
He used this subspace to construct a modified projective n-space. Then,
without assuming the A,-primitivity of x;, he gave a structure theorem for
the K-ring of the modified space which is very similar to the one for the
usual projective n-space of the A,-primitive case.

In this paper we construct another modified projective space. Then we
show that the cohomology of this space has a very similar structure to the
one in the above theorem. The advantage of our construction is that we
need not assume the A4,-primitivity of x; or the existence of a particular space
like a generating subspace. Our main result is as follows:

THEOREM 1.1. Let X be a simply connected A,-space with
H*X;Z/p) = A(xy,..., %), degx;:odd

for some odd prime p. Then there are a space Y, a map ¢: XX — Y, classes
y;€e H¥Y; Z/p) (1 <i<k) and an ideal M = H*(Y; Z/p) so that the following
conditions are satisfied.

(1) &*(y;) = x;, where we identify HX(ZX; Z/p) with H*(X; Z/p) via the
suspension isomorphism.

2) &M)=0.

(3) M-H*(Y;Z/p)=0.

(4) There is a subalgebra A* of H*(Y; Z/p) isomorphic to T, [V1,---» V] D
M as an algebra, where T,..[...] is the truncated polynomial algebra of height
n+ 1

(5) A* and M are closed under the action of the mod p Steenrod alge-
bra o4 ,. Thus T,i1[y;,..., yx] = A*/M has a structure of an unstable o/ ,-
algebra.
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Then R,(X) is the space Y and the inclusion 2X = P;(X) < R,(X) is the map
¢ in Theorem 1.1. For the construction we consider the loop space QX of
X. Since QX is an A -space, we have projective spaces

2QX = P,(QX)c P,(2X) <= -+
P (2X)=)P(RX)~X.
Hereafter, we consider P,(£2X) as a subspace of X by identifying P, (£2X) with
X. Put
C,_ = [)11 (EQX)*1 5 P(QX)  (ZQX)*" 17 <« X*n~1
Take the restriction map b,_; of B,_;: X*" ! - P,_,(X) and define R,_;(X) as
its mapping cone;
Besi Coy 2 Poos(X), Ryey(X) = Puy(X) Uy, C(Cymy) -
Let f,_;: R,_;(X) > P,_;(X) be the induced map. Put
C,=(ZQX)*" < X*".
LEMMA 2.1. There is a map b,: C,—> R,_{(X) so that
Ja-10b, = B|C, .

ProOOF. According to Stasheff [8], there is a map 2QX x 2QX — P,(2X)
so that the following diagram is homotopy commutative, where the vertical
maps are inclusions;

ZOX x 20X — P,(QX)

|

X xX — X.
Then the result follows immediately. q.ed.

We study the above map 2QX x ZQX — P,(2X) more generally in sec-
tlon 6.
Now we define R,(X) as the mapping cone of b,;

R,(X) = R,_1(X)U,, C(C,) .

To prove that R,(X) has the required properties, we need to know the co-
homology of P,(X) and P,(QX).
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6) &* induces an 4 ,-module isomorphism,
(p) 4

AToily1s--->» 1i]) = QHX(X; Z/p) ,

where Q denotes the indecomposable module.

The above theorem is the odd prime version of [3].

This paper is organized as follows. The space Y in Theorem 1.1 is con-
structed in section 2. To prove the required properties on Y, we need to
study the cohomology of projective spaces and the loop space of X. Sections
3 and 4 are devoted to it. The properties (1)—(4) are proved in section 5. In
section 6 we discuss more general constructions than that of Y. Then we
prove (5) and (6) in section 7. We give some applications in section 8.

2. Construction

In the rest of this paper the cohomology has a coefficient in Z/p for a
fixed odd prime p.

The space Y in Theorem 1.1 is constructed in an analogous way to the
projective n-space P,(X) of X. First we recall the definition of projective
spaces. The readers refer to Stasheff’s original paper [9].

The projective t-space of X, denoted by P,(X), for t < n, is defined induc-
tively by a relative homeomorphism

(Kirz x X', §) = (B(X), ,_1(X)),

where K,,, is the Stasheff complex with K,,, ~ I', S, = 0K,,, x X'UK,,, X
X1 (X" = {(x,,..., x,) € X*|x; = * for at least one i}), and the map S, - P,_,(X)
is constructed from the A,-structure of X. It is proved in Theorems 11 and
12 of [9] that P,(X) is also considered as the mapping cone of a suitable map

B X* = P_i(X);  R(X) =P _;(X)Up, C(X*),

where X*' is the t-fold join of X; X* = X x---xX. Then by definition, we
have

ZX = P/(X) € Py(X) = - = P(X)
P(X)/P—1(X) ~ ZX* ~ Z(X "),

where X "' is the t-fold smash product of X; X" =X A - A X,
Now we construct spaces R,_;(X) and R,(X) with

P,_5(X) = R,_1(X) = R,(X).
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3. Cohomology of projective spaces

Let X be an A,-space. Since P,(X)/P,_;(X)~ Z*(X"*), we have an exact
triangle for t < n;

H*(P_ (X)) —E— A*P(X))

ﬂ,-\ / :

¥ (X)®",

where dege* =0, degf*=1—1t, degp*=t, and R®¥ =R®---® R (t-fold)
for any R. Note that p¥ is equal to the suspension isomorphism. Stasheff
[9] introduced a mod p cohomology spectral sequence {E(X)**, d(X),} asso-
ciated to the filtration

Po(X) = Pi(X) =+ = P(X).
Then

AXX)®*  (t<n)

B(i* = {0 t > n)

AX)EX);* = 3 (=1 id® @ i* ® id®
=1

where mi: H*(X) » H*(X) ® H*(X) is the reduced coproduct of the H-structure
m: X x X -» X, and id®* is the s-fold tensor product id ® -** ® id.
Suppose that

H*(X) = A(xy,..., %), detx;:odd.

According to Borel [1, Theorem 4.1] we can assume that each x; is primitive
if n > 3. Let I, be the Z/p-submodule of H*(X) spanned by all s-fold multipli-
cations of generators {x; ...x;}. It is clear that

I.NI,=0 for s#t
D,H*X) = @s». I,

where D,R is the submodule of R of all t-fold decomposables. Furthermore,
D,H*(X) are closed under the action of ./, and if x; are primitive, so are
I.. Put

L= @ L,®®I, cH"X®.

Then
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NI =0 for s #r
=0 for s<t

H*X)®' =PI
s>t
It is also clear that ()., I} are o/, closed for any s, t, and I are o/, closed
if x; are primitive. By definition, E(X);* = @5, I} (t <n), and if x; are
primitive, d(X),(I!) = I!*'. Put

M(t), = p*(I5)

M) =Y, M(),.

s>t

Then
M(t),NM(); =0 for i #j
M@),=0 for s<t,

and ) M(r);, are o/, closed, and if x; are primitive, so are M(t), The

i>s
following fact is immediate from the definition (cf. [4]).

LemMmA 3.1. For the above spectral sequence, we have the following
properties.

(1) 120, e 48, i+t g exact for t<n and i #t.

2) dX),(I/)=0 for t <n.

() p*: L/d(X),(I") = D,H*(P(X)) for t <n.

4) kerx,NM(t)=0 for t <n.

(5) If x; are A,-primitive, (3) also holds for t =n. Here x; is called
A,-primitive if p’l“x,.esg‘...s,f(ﬁ*(P,,(X))).

6) If n>3, then

EX)3* = = EXp = i [y, -, il @ M),

where y; = [x;] € E(X)}*%®%. Furthermore, if x; are A,-primitive, in addition,
then the spectral sequence collapses;

EX)¥*~ -2 EX)¥*.
From the above fact we have the following theorem (cf. [4]).

THEOREM 3.2. For any 1<t<n-—1 and 1<i<k, there are y(t);e
H*(P(X)) so that the following facts hold.

1) ) =yt—-1; 2<t<n-1)

2 gM@))=02<t<n)
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(3) H*P(X))-M(@t)=0 1<t<n).
4 D,,;H*P(X))=0 for 1 <t <n. Furthermore, if t <n— 1, then

H*P(X)) = T, [y(®)1, ---, y(0] @ M(0)

as algebras.

(5) M(t) are closed under the action of . Thus, in particular, the
quotient algebra H*(P(X))/M(t) = T,1,1[y(t);, ..., y(t)] are unstable </, alge-
bras for t <n— 1.

6) p*x;, ® - ®x;)=y(@),...yt);, 1 <t<n-—1). Thus, in particular
pLx:) = y(1).

() e H*P(X)) = Tyt — Dy, ...,y —1)] 2 <t <n)

(8) If x; are A,-primitive, then (1), (4), (5) and (6) also hold for t = n.

4. Cohomology of 2X
We continue to study the space X in section 3. First note that
H*(QX) = I'[6*(xy), ..., 0*(x)] as coalgebras,

where the right hand side of the equation is the divided polynomial Hopf
algebra over o*(x;), ..., 6*(x,). (c* is the cohomology suspension.) This
can be proved by using Eilenberg-Moore spectral sequence (cf. [7, Prop. 2.8]).
In particular, the primitive module PH*(QX) has {o*(x,),...,0*(x;)} as a
basis.

Now choose Z/p-submodule J of H*(QX) with

H*QX) =~ J @ PH*QX).
Put

t ~ . ~ .

Jo) =Y HXQX)® ' @ J @ H*QX)®' .
j=1
Note that H*(QX)®' = J(t) @ PH*(X)®'. Since QX is an A, -space, we have
the same spectral sequence as in section 3 for QX. Then we put
S@) = prJ(©) < A*PQX))  and  x(t); = efo(x),

where ¢, ,: P(2X) c P,(2X) ~ X.

THEOREM 4.1. Under the above notations, we have the following facts.
(1) ker &f,, = D,y HX(X).

(2) x(1); is o*(x;) by identifying H*(ZQX) with H* 1(QX).

3) sz‘(S(t)) =0.

(4) H*(P(RX)) S() =0.
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(5) H*P(R2X)) = T, (A(x(8)4, ..., x(t))) @ S(¢) as algebras, where T, R is
the truncated algebra of height m of any algebra R; T,,R = R/D,,R.

6) p*(o*(x;,) ® - ® 0*(x;)) = x(2);, ... x(t);, (which is O if i; =i, for some
j#s).

(7) ker g%, NS(t)=0.

(8) & (H*(P(RX))) = T(A(x(t — 1)y, ..., x(t — 1))

The proof of the above theorem is easy by the standard spectral sequence

argument.
Put
P@X)= |J P, (QX)A- AP (2X).
s+ SI 'Z+lst =5
Then

PL(@X) = | Pi@X) = X

P{(QX) =« for s<t
P(QX) = (ZQX)"
Pi(QX)/P;_,(2X) V P (QX)/P,_1(QX) A - A P (QX)/P, 1 (QX)

R
<
N

R
X
K

Now we have an exact triangle of cohomology as follows;

H*(PL_ 1(9)< H*(P)(2X))
H*(©QX)®*,
s1+ +1s,—s

where deg e* =0, deg fi* =1 — 5, deg pi* = s.
Let {E'(R2X)F* d'(2X),} be the spectral sequence associated to the
filtration

Pi(2X) c Pi(R2X) < --- < P{(2X) =

Since the above filtration of X" is induced by the filtration P,(2X) <
P, (2X) < ---, we have

E@QX)¥*~x EQX)F*® - ® E(QX)** (t-fold) .
Let
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Jof= @ J)

syt ts=s
521

S(s) = ps*(J (5))
&5.0: Pi(2X) c PL(2X) = X"*.
The following theorem is clear by Theorem 4.1.

THEOREM 4.2. Under the above notation, we have the following facts.
(1) ker(elo)*= Y D H¥X)® - ®DH*X)= Y I

I+ Fly=s+1 izs+1
@ (E)*S@E))=0.
(3) H*(F(RX)) S(s) =0
4) H*PURX)) = A(s) @ S(s) as algebras, where
A(s)' = (5, (H*(X ")) .
(5) For zeﬁ*(P (2X)/P,,_1(QX) A -+ A P, (2X)/P,,_,(2X)) we have
(p)*(2) = (6,0)* (X1 ® @ X)),
where z, which is identified with a claf_s in H*(QX)®:, is denoted by a*(x;,) ®
® 0*(x;), and X; = x;, et xiaJeH*(X).
(6) ker (ﬁm)* NS =o.
(1) (e)*(H*(Pi(2X))) = A(s — 1)\

5. Cohomology of R,(X)

In this section we prove (1) ~ (4) of Theorem 1.1. First we study the
homomorphism f*;: H*P,_,(X)) - H*R,_,(X)) given in section 2.

LEMMA 5.1. ker f;*; = Pzt M(n —1),.

Proor. Since R,_,(X)/P,_,(X) = ZC,_, ~ Z"P'1(QX), we have the fol-
lowing commutative diagram;

P (X)) = HP(X)

ef-1 -1

H*R,-,(X)) = H¥(P,_,(X))

Yh-1 Phi-1
AP 0X) o AN
b%_y Bh-1

H¥P,,(X)) = H*P,-,(X)).
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Let  ue AP (X)) = T[yn—1),...,y(n —1)]®M@n—1)  with
fX¥,u)=0. Then by the usual diagram chasing method (or the Mayer-
Vietoris type argument), there is v e H*(X)®" ! with

pri@=u and  (g)*®)=0.

Since ker (7 2)* = Pysn+1 I'* by Theorem 4.2 (1),

uep,’,"_1< &) I;'“): @ M@n-1),.

s2n+1 s2n+l
It is also clear that f* (M(n—1),)=0 for s>n+ 1. q.ed.
Let
z; = fu1(y(n — 1);) € H¥R,_,(X)) .
PROPOSITION 5.2
ex (H¥R, (X)) N f£1(H¥P,-1 (X)) = T,[zy, .., 2]
where e,: R,_1(X) < R,(X). Thus, in particular, there is y; € H*(R,(X)) so that
) = X,
where ¢: X < R, (X).

PrOOF. Since H*(QX) is concentrated in even dimensional, z; € ker b} =
ex(H*(R,(X))) for dimensional reason. Note that z; ...z, = f,*,(y(n — 1);,...-
y(n—1);,) =0 if and only if t >n by Lemma 5.1. Thus

T[z21, ..., 2] < ef (H¥R,(X) N f£ 1 (H*(P,-1 (X)) -
Next choose any
u € e (H*R,(X) NS, (H¥(P,-1(X))) = ker b¥ N £, (H*(P,-1 (X)) -
Then u can be written as
u=ug+ f,¥,(u,), where ug € T,[z,,..., 2], u; e M(n —1),.

Since bfu, = 0, we have b¥ o f*,(u;) =0. Consider the following commuta-
tive diagram

H*R,_ (X)) —2— H*ZQX)®"

SE-1 (en.)*

AP, (X)) —— H*X0°".
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Since B¥ is mono on M(n —1) by Lemma 3.1 (4), and (e} )* is mono on
Bx¥(M(n — 1),) < I} by Theorem 4.2 (1), b o £* is mono on M(n — 1),. Thus
u; =0, and ue T,[z,,...,z] The existence of y; is clear. q.ed.

Put
P2H*(QX) = PH*(QX) - PH*(QX).

Then P2H*(QX) is the Z/p-submodule of H*(QX) spanned by {o*(x;) a*(x;)}.
Since p is an odd prime, the following fact is clear by definition.

LEMMA 5.3. PH*QX)NP*H*QX) =0, and PH*(2X) and P2 H*(QX) are
closed under the action of o).

Choose a submodule L of H*(QX) with
H*QX) =~ PH*QX)@® P*H*QX)® L.

Let
N(t) = 2‘; PH*QX)®! @ P2H*(QX) ® PHXQX)®
T(t) = i H¥QX)® ' @ L @ H*(QX)®
+ Y H%QX)®! ® P2H*QX) ® H*(QX)®
i
® P2 H*(QX) ® H*(QX)® 7.
Then

H*QX)® =~ PH*QX)®** @ N D T(),

and PH*(2X)®" and N(t) are closed under the action of .
Now since R,(X)/R,-;(X)=2C,~X?"1(QX)"", we have an exact triangle

A*R,_, (X)) «Z— H*R,(X))

H*©QX)®" .
Put
M =r}¥(Nm).

Then we have the following fact.
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PROPOSITION 5.4. M is closed under the action of ,, and
eM)=0, M- -H*R,(X))=0.

Moreover, for any y,e H*R,(X)) with &) =xi Ty, s ]®M is a
subalgebra of H*(R,(X)), and

Vigoo Vi, =1H0*(x,) ® @ 0*(x;)) .

ProoOF. Since N(n) is o, closed, so is M. Clearly we have ¢*(M) =0
and M-H*(R,(X))=0. The other properties are proved by the standard
method and Proposition 5.2. q.ed.

ProorF oF THEOREM 1.1 (1)-(4). (1) is proved in Proposition 5.2, and
(2)-(4) are in Proposition 5.4. q.e.d.

We have shown Theorem 1.1 except for (5) and (6). (6) is a consequence
of (5). Thus we need to prove (5). Furthermore, since M is &, closed by
Proposition 5.4, we prove that A* = T, [y;,..., ] ® M is ,, closed for
some choice of {y;} hereafter.

6. General constructions

In this section we give more general constructions than in the section 2.
Recall the filtration

Z2QX =P (RX)c P,(RX)c = X.

Put
F(x*)= |J P, @QX)xxP(2X).
s1+‘;i"z+lst=s
Then
v = = Fy(X*) € F(X*) = (ZQX)* < Fpy (X*) < -
F(X*) = 5L Fy(X*) = X*.
By definition
F(X*)/F_ (X*) =\ Vi . .
Syt =s
si>1

where

Vs ~ P, (QX)/P;, 1 (QX) % » P, (QX)/P,, _,(2X)

~ ZTHZQX)MS.

1reees S¢
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Note that C,_; and C, of section 2 are equal to F,(X*""!) and F,(X*"),
respectively.

Let F/(B,-,): F(X*"')> P,_,(X) be the restriction of pB,_,. Define
F(P,-1(X)) as the mapping cone of F(f,-,);

F(P,-1(X)) = P,2(X) Ur,,_, CEX*"T)) .
Then we have
R,—1(X) = F(P,-1(X)) € Foy (Pyy (X)) = -+
Fo(P,-1 (X)) = Uty F(Py-1(X)) = P,y (X) .
Furthermore,
F(P,-1(X))/Fs—1 (P, (X))
~ Z(F(X*")/Fy (X*71)

:\/S,+~--+sn_l=sz‘Vs, ..... Sp-1"°

s5i>1

The following fact is a generalization of Lemma 2.1.

ProPOSITION 6.1. There are maps F/(B,): F(X*")—> F(P,_,(X)) with
F(B,) = B, so that the following diagram is homotopy commutative,

F(X*) <  FX*)

Fe—1(Bn) Fe(By)

Fy (P (X)) = F(P-1(X)).

Furthermore, if A;: F(X*")/F,_{(X*") > F,(P,_,(X))/F,_;(P,—1(X)) is the induced
map, then by the isomorphisms

HEX)YFL (X)) = @ HYQX)®
HYE P OVEL RO = B YR,

we have that

l;“( P PH*(.QX)®‘>C @ PH¥QX)®.

s ds,=t syt o Fspog =t
si>1 s,»zi'

Proor. The existence of maps F,(f,) follows from the same reason as
in Lemma 2.1. In fact, there are maps
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ms,t: Ps(QX) X Pt(QX) - Ps+t(QX)

for any s and t, which are restrictions of the multiplication of X (see Stasheff

[11, p. 72]).
Now the map m,, induces a map

s i+ Py(Q2X)/P;_1(2X) A P(QX)/P,_,(2X)
~ P(Q2X) x P(QX)/(P(2X) x P_;(2X)UP,_,(2X) x F(2X))
- s+t(QX)/Ps+t—1(QX)'
Since P(Q2X)/P,-1(2X) ~ (22X)**, m,, is considered as a map (ZQX)"* A
(ZRX)" - (ZQ2X)***". We can describe i, by using permutations. In fact,
let L(s,t) be the set of all (s, t)-shuffles, i.e., (s, ¢t) is a subset of (s + 7)-th
symmetric group %,, so that o € &(s, t) if and only if ¢(i) < o(i + 1) for i #s.
For any o € &(s,t) we define
a*: (ZQX)"S A (ZQX)N - (ZQX)"sH
by
0*((‘11’ Ugs ..., A, us), (as+1’ Ust1s -+ o5 Qs us+x))
= (Ag-1(1)s Ug-1(1)s =+ - » Bg-1(s+1)s Yo 1(s+1)) »
where (a;, u;) € S A QX = ZQX. Then by definition of m,,
mg,~ Y ¢* (see [11, pp. 71-72]).

oe F(s,t)
Now the composition X*"— P,_,(X)— P,_;(X)/P,_,(X) ~ ZX*"! induces a
homomorphism on cohomology H*(X)®"™! — H*(X)®" given by

n—1
Z (_ 1)1—1id®j—1 ® m* ® id@n—l-j .
=1

In fact, this map is equivalent to the derivation d(X),; of the spectral sequence
in section 3. The composition

F(X*") > F/(P,-1(X)) > F(P,-;(X))/P,-,(X) >~ ZF,(X*"™")

is the restriction of the above map X*"— XX*"!. Thus A* is described
by using ,,, and so it is given by appropriate shuffles. More precisely,
AX(H*(V,,. .,._,)) is included in @DH*(V, ) where (t,...,t,) runs all
the sequences with (t;,..., ¢ 1, t; + tisxgs tizgs---sty) =(Sy5--.5Sp—y) for some
1 <i<n—1. Furthermore, if (t;,..., 6 15t + tists tivas-oesby) = (S1s--vs Su—t)s
then for any z e I?*(Vs1 ,,,,, s._,)» the component of A¥(z) in ﬁ"‘(V,1 ,,) 18 given
by

,,,,,
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(-1 d® @m,,  Qid®" ) ().

Thus we have the result. q.ed.
Consider the cofiber sequence
F(X*) > F.11(X*) > F.4y (X*)/F(X*) 5 ZF(X*) .
Now
ZR(X*) > Z((ZQX)*) ~ Z2(QX)"!
Fy X*¥)F(X*) =W, v - v W,
where
W, ~ (ZQX)* 1% (Py(QX)/ZQX)* (ZQX)*!
~ JHQX)NL

(Note that W, =V, 4,31, where 2 is in the ith place.) Furthermore the
restriction of u on W, is essentially the same as

id* 1« P, »id*

where B,: QX * QX — XQX is the map in section 2 with P,(2X) = (ZQ2X) U,
Z(QX *QX). Thus (Wy,...,w,) = p*u; ® - @u,) (w; e H¥W,) = H¥QX)®'*),
for any u, ® - ® u, € H*(QX)®", is given by

wi=u @ Qu_ @m*u)Qu;y @ Quy,

where m: QX x QX — QX is the loop multiplication. Then we have the fol-
lowing fact.

LEMMA 6.2
(1) (D=1 PHHQX)® ™)
= PH*QX)®' @ ) i PH¥QX)® ' ® P2H*QX) ® PH*QX)® .
Proor. Since p is an odd prime, it is clear that
(m*)™(PH*(QX) ® PH*(2X)) = PH*(2X) ® P’ H*(2X).

Thus the result follows. q.ed.

7. Action of the Steenrod operations

In this section we prove (5) and (6) of Theorem 1.1. First we prove a
technical lemma.
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Consider the following homotopy commutative diagram, where e, e, and
e, are natural inclusions to the mapping cones of f, ¢, and ¢, respectively,
p and p, are natural projections, and h is the induced map by fixing a
homotopy between g o ¢, and ¢, o f;

X, 2 Y, —> Y,U, CX, —2— XX,

f gl h

X, —— Y, —— TV, CX,
X, U, CX,

p

ZX,.

LemMA 7.1. Let a:Y, > K, and ¢:Y,U, CX,— K, be any maps with
oey~aog. Then there is a map y: X, U,CXy,—> K, with yoe~oo @, so
that for any 0: Ky — K, and B: Y, U, CX, - K, with Boe, ~0oa, there is
a map A: XX, — K, with

lop~Boy and Qol~(Boh)yxi.
Here (B o h)* A is defined by the composition

YO U‘PO CXO b (Yo U‘Po CXO) A\ ZXO

Bohva

K, vK,-»K,,
where the left arrow is the natural coaction of XX, on YoU, CX,, and the

right one is the folding map.

Proor. First we note that we can assume that ¢ o ¢y = a 0 g by changing
¢ to a suitable homotopic map if necessary. Now the map h: Y,U, CX,—
Y,U,, CX, is given by a homotopy H between go ¢, and ¢, o f as follows;

h(y)=4g(y) yeX,

H(2t, x) 0<t<1/2,xe X,

h(t, x) =
(& x) {(Zt—l,f(x)) 12<t<lxeX,.
Define y: X, U, CX, - K, by

Y(xy) =ao @ (x;) x; € X4

Y (t, xo) = aoH(l —2t,x5) 0<t<1/2,x5€X,
T8 — 1, x0) 12<t<1,x.€X,.
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It is clear that

Yoe=wooqp,.
Now this i satisfies the required condition. In fact, for any 6 and p,
we define 1: 2X, - K, by

B(1 — 3t, f(x)) 0<t<1/3
AMt,x) =< 0oaoHQ2— 3t x) 1/3<t<2/3
0o&(3t—2,x) 23<t<1,

where we assume ffoe; =0 oa by changing f to a suitable homotopic map
if necessary. Then Ao p: X, U,CX,— K, is homotopic to the restriction of
a map A: CX,U,CX,— K, defined by

At x1) = B(t, xy) (x1 € Xy)

2(t xg) = Goao H(1 — 2t, x,) 0<t<1/2,x5€ X,
PO 00 EQ2t — 1, x,) 12<t<1,x0€X,.
Thus Aop~0oy. One can also prove 0o ¢ ~ (B o h)*x A easily. q.ed.

Put
Qp-1(X) = F 41 (Po—1 (X)) = P2 (X)U C(F, (X*"71)).
Let
9: R,—1(X) - Q,-1(X) and h: Q,_,(X) > P,_,(X)

be inclusions with hog = f,_,. Define
k
a: Py (X) > Ko = 11 K(Z/p, deg y(n — 1))

by a(w;) = y(n — 1); where w; € H*(K,) correspond to the fundamental classes
in H¥(K(Z/p, deg y(n — 1);)). Then we have the following homotopy commu-
tative diagram;

Fy(X*") —— F( (X*") —"— F, (X*)/F,(X*") —£— ZF,(X*")

by n An+1

| d
R,-1(X)—— Qpy(X) —— Q1 (X)/R,-1(X)

en h
R,(X) P,_,(X)

!
ZF,(X*") K,,
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where the left vertical and the upper two horizontal sequences are cofiber
sequences. We note that the cohomology homomorphism induced by inclu-
sions F,(X*") < F,,,(X*") = X*" is equivalent to the ones by &},,: (ZQX)*" =
PIQX) — P2y (RX) and el .0 Py (QX) > X

LeMMA 7.2. There is a map &: F,,(X*")/F,(X*")—> K, so that £on ~
aohoy, and

EXH*(K,)) =« @ PH*(QX)®"*!,

where H*(F, . (X*")/F,(X*")) is identified with @ H*(QX)®**' as described in
section 6. Moreover, there is a map Y: R,(X)—> K, with Yyoe,~aohog so
that, for any maps 0:K,— K, and B:Q,_(X)/R,_;(X)—> K, with fon~
Ooaoh, there is A: ZF,(X*")—> K, with

Aor,~6oy and  Gol=x(Bol,)*A.

Furthermore Yy*(H*(K,)) is an ./, subalgebra of H*(R,(X)) generated by some
Yi with eg(y;) = z;.

PROOF. Since deg w; is even, (g;,)* o y* o h* o a*(w;,) = 0 € H*(QX)®" for
dimensional reason. On the other hand, hoy, is a restriction of f§,: X*" —
P,_,(X). Thus, y,0 h* o a*(W;) € (5+1,,,)*(H*(X)®"), and so by Theorem 4.2 (1)
%),

7 o h* o oa¥(w;) € ker (874, )* N (711, ) (H*(X)®")
= (Ene1,w)® (Z PH*X)®"™' ® P2H*X) ® PH*(X)®"_i)
i=1

< (prs)) (D PH¥(QX)®"),

where the map 7r’:ﬁ*(Fn+1(X*")/Fn(X*"))—+}~I*(F,,+1(X*")) is identified with
(pr1)*: @D H*(QX)®"*! — H*(P?,(2X)). Thus there is a map

& B (X*)/F(X*") - K,
so that
&*(w;) e @ PH*(QX)®"*! and (om'~aohoy,.

Furthermore DH*(F, . (X*")/F,(X*")) = 0 since F,,,(X*")/F,(X*") is a suspen-
sion. Thus

EX(w) e DPH*(QX)®"  for all we H*(K,).

This proves the first part. For the second one, we can use Lemma 7.1. The
last one is clear since e} o Y*(w;) = g* o h* o a*(w,) = z;. q.ed.
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Now we prove Theorem 1.1 (5), (6).

Proor oF THEOREM 1.1 (5), (6). By Proposition 5.4, M is closed under
the action of «/,. Thus we prove that t(u)e T,,,[y;,..., ] ® M for any
ue T, [y1,..., ] and 1€ o,

Take any ue€ T,,1[y1,..., ] and 1€ o,. Now eF(u) e T,[z,...,2] =

* (H*(P,_;(X))), and so by using Proposition 5.2 we have

ey (tu) € ef (H*(R, (X)) N f2(H*(P,—1 (X)) = T,[zy, ..., 2] .
Thus there is ve T, [yy,..., yx] so that
e¥(tu—v) =

Let 6: K, — K, = K(Z/p, deg (tu — v)) be a map so that 6 oy represents
tu —v. Then

Boyoe,~x. (1)

Consider the following homotopy commutative diagram, where horizontal se-
quences are cofiber sequences;

Po(X) = R, ,(X) —— Z"'RHQX) —

Zb,-1

2P, ,(X)

—1gn—1
g Zn-lgniy

J J

Pry(X) —— 0, (X) —2— sipri@x) 2% rpLx)

- -1
h n lg:**l.w

Py(X) —— Py(X) ——  Z7IXMTL —— P, 5(X)

a

Ko —0—’ Kl .

Now by Lemma 7.2, cohog~yoe, Thusfoaoce,_ ~f0oaohogoe, >~
foyoe,0e,_; ~* by (1), and there is a map ﬂ xn 1X""—»K1 so that

Bopy~boa. @

Since fo X" lgnl joX"lerlor~foaohog~foyoe, ~x also by (1),
there is n: 2P,_,(X) —» K, so that

’102 ﬁ°2"1n+lwozn1n+ll'
Put B=f—noZB,_,. Then

nlnl n—1.n-1
ﬂOE n+lco°2 Envyl = ¥
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Now by Theorem 4.2 (5),
(ensd o) *HHXO® ) Nker (e171)* < (ori) M@ PH* QX)) .
Here (pp71)* is induced by the following natural map
v: 2P HQX) - 2PN QX)/ET TP (R2X)
~ Q0,1 (X)/R,-1(X).
Then we have a map f: Q,_,(X)/R,_1(X) = K, so that
BovxBoZriegil,, and  B*w)¢ DPHHQX)®,
where w e H¥(K,) is the fundamental class. This shows that
Bon=Bovop
~ BoXnignit Jop
~PBop,_yoh—noXZB,_s0p,_soh
~f@oaoh
by (2). Now we can apply Lemma 7.2, to get a map A: 2F,(X*") » K, with
Aor,~0oy and Ool~(foly)*i.
On the other hand, we have by Proposition 6.1 that
A (P PH*QX)®™) « @ PH*QX)®" .
Thus
¥ 0 A¥(w) = &* 0 0%(w) — Ay o B*(W) € PH¥(QX)®""!
by Lemma 7.2. Then by Lemma 6.2

A¥(w) e PH¥(QX)®" @ i PH*QX)®! ® P2 H*(QX) ® PH*QX)®" .
i=1

Thus
1y o A*wW) € DTy [y1s - s )@ M,
and so
wu="0v+ lp* fo) 0*(W) =+ r: [} ).*(W)E '1-;'+1[y19 ""yk] @M *

This proves Theorem 1.1 (5). Since (6) is a direct consequence of (5), this
completes the proof of Theorem 1.1. q.ed.
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8. Application

Theorem 1.1 can be used to deduce variety of results on the action of
Steenrod operations on the cohomology of A4,-spaces. For example, the main
result in [2] is still valid without the hypothesis of the A, primitivity of
generators. In this section we give some more applications. First we prove
the following fact.

THEOREM 8.1. Let H* = T,,,[y,,..., yx] be an unstable algebra over the
mod p Steenrod algebra of,. Let degy;=2n;(n; <'--<mny). Define non neg-
ative integers a, b with b # 0 mod p by n, = p°b. If b > p, then y, is detected
by primary operations modulo decomposable elements, that is, there exist opera-
tions 6, € oA, (1 <i<k—1) so that

k-1
Ye— ., 6,y;€ DH*.
i=1

Proor. We prove by contradiction. Suppose y, is not detected by pri-
mary operations. Let I be the ideal of H* generated by {y,, ..., yi—;}. Then
for any operation 0 € &/, with deg @ >0, we have 6(H*) = I + DH*. Then
the inductive argument implies

0(D,H*) < I + D, H* .

Now
W=P"y, =) & P Vi
i=0

for some a;€./,. Here o;y,€ D,H* for dimensional reasons, and then
PPy, €l since D, H* =0. This is a contradiction, and the theorem is
proved. q.ed.

The following theorem follows from the above theorem by Theorem 1.1.
THEOREM 8.2. Let X be a simply connected A,-space with
H*(X; Z/p) = A(x1, ..., Xx) deg x; =2n; — 1 ny < <m).

Let n, = p°b with b# 0 mod p. If b> p, then there exist operations 0, € o,
(1<i<k-—1) so that

k-1
x,‘ = Zl Hixi .
i=

Let (G(n), d) = (SU(n), 2) or (Sp(n), 4). Let M, be the total space of princi-
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pal G(n — 1)-bundle over G(n)/G(n — 1) = $*! induced by a degree 4 map
on S$~! from the principal bundle G(n — 1) - G(n) = G(n)/G(n — 1).

THEOREM 8.3. Let dn/2 = p°b with b % 0 mod p. If b > p, then the fol-
lowing conditions are equivalent.

(1) M, is a mod p A,-space.

(2) M; is a mod p loop space.

(3) 4# 0 modp.

Proor. We have only to prove that if 1 =0 mod p, M, is not a mod p
A,-space. But this follows immediately from Theorem 8.2. In fact, let
f: M; - G(n) be the induced map. Then

H*(G(n); Z/p) =~ A(xy, ..., Xi)
H*M;: Z/p) = A(x3, ..., X)

where k=norn—1, degx, < <degx,=dn—1, and f*x, = x{ for i <k,
and f*x, =0. This shows that x; is not detected by primary operations.
: q.e.d.

The above theorem strengthens Iwase’s results [6].
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