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1. Introduction

A space X with a continuous multiplication μ: X x X -• X with a unit

is called an //-space. A typical example of //-space is a loop space. It is

known that not all //-spaces have the homotopy type of loop spaces. The

7-dimensional sphere SΊ is one of such counter examples.

Sugawara [12] gave a criterion for an //-space to have the homotopy

type of a loop space. His criterion is a kind of higher homotopy associativity

of infinite order. Almost the same time Stasheff [9] reached the same idea,

and he defined the y4n-space which is the //-space with higher homotopy

associative multiplication of n-th order. In his sense ^-spaces a r e //-spaces,

y43-spaces are homotopy associative //-spaces, and A^-spaces are spaces with

the homotopy type of loop spaces.

In his paper, Stasheff defined the projective n-space Pn{X) associated to

a given Aπ-space X, which is considered as a generalization of the n-th stage

of the construction of the classifying space of a topological group or an

associative //-space. In fact, Pn(X) is defined inductively by Pn(X) = Pπ_1(Ar)U

C(X*n) with P0(X) = *, where X*n is the n-fold join of X. Then Stasheff

proved that if X = ΩY, then P^iX) has the homotopy type of Y, where

P^X) = UJliPitX). The name 'projective' comes from the fact that if X is

the unit sphere in the real, the complex or the quaternionic numbers, then

Pn(X) is the usual real, complex or quaternionic projective n-space.

The projective n-space has been very useful for the study of the cohomol-

ogy of ^4,,-spaces. In fact, we have the following fact.

THEOREM (Iwase [4]). Let X be a simply connected Λn-space so that

H*(X; Z/p) ^Λ(xu...,xk), dim x f : odd ,

where p is a fixed prime. Suppose that there are classes yt e H*(Pn(X); Z/p)

so that each yt restricts to the suspension of xt in H*(ΣX; Z/p) by the homo-

morphism induced by the inclusion ΣX a Pn(X). (This property is referred as

the An-primitivity of xf.) Then there is an ideal S in H*(Pn(X); Z/p) closed

under the action of the Steenrod operation, so that



584 Yutaka HEMMI

where Tn+1[yl9 ...,)>*] is the truncated polynomial algebra of height n + 1, i.e.,

the quotient algebra of the polynomial algebra Z/p[yl9..., y f c] by the ideal

generated by the n + 1-fold decomposable elements.

Iwase's original theorem in [4] is on the K-ring of Pn(X). We can also

prove the above theorem by the same method.

The above theorem is used especially for the study of the action of the

Steenrod operation on H*(X; Z/p) when n > p. In fact, the unstable condition

0>my = yP (degy = 2m) can be used to deduce a variety of results (cf. [2]).

On the other hand, the classes xt are not always ^-primitive. One

can only prove the y4n_1-primitivity of xf ([4]). If we don't assume the An-

primitivity of xh it seems to be very difficult to give a useful structure theorem

for H*(Pn(X); Z/p). Iwase [5] also studied such cases. He considered the

case that there exists a particular subspace of X called a generating subspace.

He used this subspace to construct a modified projective w-space. Then,

without assuming the ^4,,-primitivity of xi9 he gave a structure theorem for

the K-ring of the modified space which is very similar to the one for the

usual projective n-space of the ^-primitive case.

In this paper we construct another modified projective space. Then we

show that the cohomology of this space has a very similar structure to the

one in the above theorem. The advantage of our construction is that we

need not assume the ,4,,-primitivity of x( or the existence of a particular space

like a generating subspace. Our main result is as follows:

THEOREM 1.1. Let X be a simply connected Λn-space with

H*(X; Z/p) *Λ(xl9...9xk), deg xt: odd

for some odd prime p. Then there are a space Y, a map ε: ΣX -• Y, classes

yt e H*(Y; Z/p) ( l<ϊ<fc ) and an ideal M cz H*(Y; Z/p) so that the following

conditions are satisfied.

(1) ε*(y.) = Xh where we identify H*(ΣX;Z/p) with H*(X;Z/p) via the

suspension isomorphism.

(2) ε*(M) = 0.

(3) M H*(Y;Z/p) = 0.

(4) There is a subalgebra A* of H*(Y; Z/p) isomorphic to Tn+1 [yl9..., yk~] ®

M as an algebra, where 7^ + 1 [ . . . ] is the truncated polynomial algebra of height

n + 1.

(5) A* and M are closed under the action of the mod p Steenrod alge-

bra s/{p). Thus Tn+ί\_yl9..., yk~] = A*/M has a structure of an unstable srf{p)-

algebra.
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Then Rn(X) is the space Y and the inclusion ΣX = P^X) <= Rn(X) is the map

ε in Theorem 1.1. For the construction we consider the loop space ΩX of

X. Since ΩX is an A^-space, we have projective spaces

ΣΩX = PX(ΩX) a P2(ΩX) c •

Hereafter, we consider Pt(ΩX) as a subspace of X by identifying P^ΩX) with

X. Put

(:„_! = U (ΣΩX)*'-1 *P2(ΩX)*(ΣΩX)*n-1-i c JΓ*""1 .
ί = l

Take the restriction map bn_x of jffΛ_j_: X*""1 -> Pn_2(X) and define K ^ P O as

its mapping cone;

bH.x: Cn.x -> Pn.2(X), ^ ^ ( X ) = P

Let Λ - i : Λ » - i W -^^- l f f l be the induced map. Put

LEMMA 2.1. Γ/î r^ is α map bn: Cn->RH-x(X) so that

PROOF. According to Stasheff [8], there is a map ZΪ2ΛΓ x ΣΩX -•

so that the following diagram is homotopy commutative, where the vertical

maps are inclusions;

ΣΩX x ΣΩX > P2{ΩX)

X x X • X .

Then the result follows immediately. q.e.d.

We study the above map ΣΩX x ΣΩX -• P2(ΩX) more generally in sec-

tion 6.

Now we define Rn(X) as the mapping cone of bn;

Rn(X) = Rn.ί(X)[JbnC(Cn).

To prove that Rn(X) has the required properties, we need to know the co-

homology of Pt{X) and Pt(ΩX).
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(6) ε* induces an stf^-module isomorphism,

where Q denotes the indecomposable module.

The above theorem is the odd prime version of [3].

This paper is organized as follows. The space Y in Theorem 1.1 is con-

structed in section 2. To prove the required properties on Y, we need to

study the cohomology of projective spaces and the loop space of X. Sections

3 and 4 are devoted to it. The properties (l)-(4) are proved in section 5. In

section 6 we discuss more general constructions than that of Y. Then we

prove (5) and (6) in section 7. We give some applications in section 8.

2. Construction

In the rest of this paper the cohomology has a coefficient in Z/p for a

fixed odd prime p.

The space Y in Theorem 1.1 is constructed in an analogous way to the

projective n-space Pn(X) of X. First we recall the definition of projective

spaces. The readers refer to Stasheff's original paper [9].

The projective ί-space of X, denoted by Pt(X), for t < n, is defined induc-

tively by a relative homeomorphism

where Kt+2 is the Stasheff complex with Kt+2 « I \ St = dKt+2 x XtUKt+2 x

X[t] (X[t] = {(x1? ...,xt)e X^ = * for at least one i}\ and the map St- Pt-x(X)

is constructed from the ^-structure of X. It is proved in Theorems 11 and

12 of [9] that Pt(X) is also considered as the mapping cone of a suitable map

βt: X* -+ P ^ P O ; Pt(X) = Pt-

where X*' is the ί-fold join of X; X*' = X * * X. Then by definition, we

have

ΣX = PX(X) cz P2(X) cz - -czPn(X)

where XΛt is the ί-fold smash product of X; XAt = X A ••• Λ X.

Now we construct spaces R^^X) and Rn(X) with

Pn.2(X) cz R^iX) cz Rn(X).
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3. Cohomology of projective spaces

Let X be an Aπ-sρace. Since Pt(X)/Pt^(X) ~ Σt(XAt\ we have an exact
triangle for t < n\

H*(Pt_x(X)) ^ — H*(Pt(X))

where deg ε* = 0, deg β'* = 1 - ί, deg p* = t, and R®' = R ® ® R (ί-fold)
for any R. Note that pf is equal to the suspension isomorphism. Stasheff
[9] introduced a modp cohomology spectral sequence {E(X)f'*,d(X)r} asso-
ciated to the filtration

Then

£ ( X ) l " J O (t>n)

Σ ( - 1 Γ 1 W®7'"1 ® m* (g) id®^',

where m: H*(X) -> H*(X) ® H*(X) is the reduced coproduct of the iί-structure
m: X x X -^X, and ίdΘ s is the s-fold tensor product id ® ® id.

Suppose that

H*(X) ^ ^(χ l 5 . . . , xk), det x f: odd .

According to Borel [1, Theorem 4.1] we can assume that each xf is primitive
if n > 3. Let Is be the Z/p-submodule of H*(X) spanned by all s-fold multipli-
cations of generators {xfi...xίβ}. It is clear that

Is Π It = 0 for s φ t

where DtR is the submodule of R of all ί-fold decomposables. Furthermore,
DtH*(X) are closed under the action of J/ ( P ) , and if xf are primitive, so are
Is. Put

! t
s, > l

Then
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ΓtΠΓr = O f o r s # r

I's = 0 for s < t

H*(X)®' = 0 Γs.

It is also clear that @ i2s// are si(p) closed for any s, t, and Vs are J^ ( P ) closed
if x, are primitive. By definition, E(Xf{* = φi>,/, f (ί < n), and if x f are
primitive, d(AΓ)1(/,0c//+1. Put

M{t)s = p*(Γs)

M(t) = Σ M(ί) s.
S>t

Then

M W i Π M ί ί ^ O for iφj

M(t)s = 0 for s < t,

and 5] M(t)i are J/ ( P ) closed, and if xf are primitive, so are M(t)s. The

following fact is immediate from the definition (cf. [4]).

LEMMA 3.1. For the above spectral sequence, we have the following

properties.

(1) / f i - ^ U / ' ^ ί ^ / ^ is exact for t<n and i Φ t.

(2) d(X)1(Γt) = 0 for t<n.

(3) A*: i ί / « i ( Γ ) = DtH*(Pt(X)) for t < n.
(4) ker β*+1 Π M(ί) = 0 /or ί < n.

(5) // Xf are An-primitίve, (3) a/so Zio/ds /or t — n. Here x{ is called

An-primitive if pfxt e ej... επ* (H*(PΠ(X))).

(6) If n>3, then

E(X)Ϊ* s S £(X)?iϊ £ Tn+1 [ y l f . . . , Λ ] Θ Af (n),

vvftβrβ ŷ  = [ x j e £(X)}' d e g X i. Furthermore, if xt are An-primitive, in addition,

then the spectral sequence collapses;

From the above fact we have the following theorem (cf. [4]).

THEOREM 3.2. For any 1 < t < n — 1 and 1 < i < k, there are y(t)i e

H*(Pt(X)) so that the following facts hold.

(1) e*(y(t)t) = y(t - 1), (2 < t < n - 1).

(2) fi*(Af (ί)) = 0 (2 < t < n).
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(3) H*(Pt(X)) M(t) = O(l<t<n).

(4) D ί + 1 f ί * ( P t ( X ) ) = 0 for \ < t < n . Furthermore, if t<n-\, then

H*(Pt(X)) s Tt+ί l y ( t ) u ..., y ( ί ) J Θ M(t)

as algebras.

(5) M(ί) are closed under the action of s/ip). Thus, in particular, the

quotient algebra H*(Pt(X))/M(t) £ Tt+I[y(t)l9..., y(ί)k] are unstable s/ip) alge-

bras for t < n — 1.

(6) p*(x έ i ® (x) x i t) = j ; ^ ... y(t)it (1 < t < n - 1). 77ιus, in particular

Pi* W = y(l)ι
(7) β*(H (Pf(X))) c Γ t[y(ί - l ) l 5 . . . , y(t - l ) k ] (2 < ί < n).

(8) // xt are An-primitίve, then (1), (4), (5) and (6) also hold for t = n.

4. Cohomology of ΩX

We continue to study the space X in section 3. First note that

H*(ΩX) ^ Γlσ+iXi),..., σ*(xfc)] as coalgebras ,

where the right hand side of the equation is the divided polynomial Hopf

algebra over σ*(x1), ..., σ*(xk). (σ* is the cohomology suspension.) This

can be proved by using Eilenberg-Moore spectral sequence (cf. [7, Prop. 2.8]).

In particular, the primitive module PH*(ΩX) has {σ^xj , . . . , σ*(xfc)} as a

basis.

Now choose Z/p-submodule J of H*(ΩX) with

H*(ΩX) s J 0 PH*(ΩX).

Put

J(t) = £ ff •(βX)®'"1 ® J

Note that H*{ΩX)®1 £ J(ί) 0 P H ^ X ) ® ' . Since β X is an A^-space, we have

the same spectral sequence as in section 3 for ΩX. Then we put

S(t) = p*(J(ί)) c= H*(Pt(ΩX)) and

where εί>00: P,(

THEOREM 4.1. Under the above notations, we have the following facts.

(1) kei e*9 = Dt+1H*(X).

(2) x(l) f is σ*(xt) by identifying H*{ΣΩX) with

(3) ε*(S(ί)) = 0.

(4)



590 Yutaka HEMMI

(5) H*(Pt(ΩX)) s Tt+1(Λ(x(t)u ..., x(ί)J) ΘS(t) as algebras, where TmR is
the truncated algebra of height m of any algebra R; TmR = R/DmR.

(6) ρ?{σ*(xh) ® • <g> σ*(xίt)) = x(t)h... x(t)it {which is 0 if ij = is for some
j Φ s).

(7) kerft*+ 1ΠS(ί) = 0.
(8) ε*(H*(Pt(ΩX))) = T,(Λ(x(t - ί)u ..., x(ί - 1),))

The proof of the above theorem is easy by the standard spectral sequence
argument.

Put

P'S(ΩX) = (J PSi(ΩX) Λ Λ PSt(ΩX).

Then

Pl{ΩX) = 0 Pl(ΩX) = XAt

s=l

P'S{ΩX) = * for s < t

P\{ΩX) = (ΣΩX)Λt

I*(OX)/Pl-i(ΩX) = V K(ΩXyPst-i(ΩX)Λ---Λ P^ΩXyP^(ΩX)
Si + ---+St=S

Si>l

- V ΣS(ΩX)AS.

Now we have an exact triangle of cohomology as follows;

where deg ε,* = 0, deg β** = 1—5, deg pi* = s.
Let {^(βX)*'*, d\ΩX)r} be the spectral sequence associated to the

filtration

P'oiΩX) cz Pi (ΩX) cz c Pi(i2X) cz .

Since the above filtration of X Λ ί is induced by the filtration P0(ΩX) a
P1(ί2X)c: •••, we have

E\ΩX)ΐ>* s £(ί2X)r*'* ® ® E{ΩX)ΐ> * (ί-fold).

Let
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J(sf =

S(s)' = p»

J(s)

The following theorem is clear by Theorem 4.1.

THEOREM 4.2. Under the above notation, we have the following facts.

(1) ker(ε<,J* = X DlίH*(X)®-®DιH*(X)= £ i?
h + +lt=s+l

(2) (βί) (s(sy) = o.
(3) H*(P!(ΩX))S(s)< = 0.

(4) H*{Pl(ΩX)) s >l(s)' θ S(s)' as aίgrefcras,

(5) For z e H*(PS l(ΩZ)/PS i_1(βZ) Λ ••• Λ Ps^X)/PSt_^X)) we have

vv/iere z, w/ric/t ts identified with a class in ίί*(ΩX)®s, is denoted by σ*(Xi,)(g)

•••®σ*(xis), and Xj = xis. i+ί...xls,e H*(X).

(6) ker(ft'+ 1)*nS(s)J' = O. J

(7) (ε's)*(H*(P's(ΩX))) = X(s - 1)'.

5. Cohomology of Rn(X)

In this section we prove (1) ~ (4) of Theorem 1.1. First we study the

homomorphism f*.^. H^P^iX))-> H*(Rn-x(X)) given in section 2.

LEMMA 5.1. ker /„* x = φ s > n + 1 M(n - l) s.

PROOF. Since Rn^(X)/Pn_2(X) = ΣC^ a Σ'P -^ΩX), we have the fol-

lowing commutative diagram;

if*(Pn_2(X)) = H*(Pn.2(X))

H*(Rn-ΛX))

vfcn,oo )

= H*(Pn.2(X)).
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Let u E H*(Pn-ΛX)) = Uy(n - ί)l9..., y(n - l) k] 0 M(n - 1) with

fn*_1(u) = O. Then by the usual diagram chasing method (or the Mayer-

Vietoris type argument), there is v e ίϊ^X)®"'1 with

PΪ-1(v) = u and (εM%1)*W = 0 .

Since ker ( ε ^ 1 ) * = © ^ , , + i / Γ 1 by Theorem 4.2 (1),

© M(n-l)s.
s>n+ί

It is also clear that /„* i(M(π - l)s) = 0 for s > n + 1. q.e.d.

Let

PROPOSITION 5.2

where en: Rn-x(X) a Rn(X). Thus, in particular, there is yt e H*(Rn(X)) so that

where ε: ΣX a Rn(X).

PROOF. Since H*(ΩX) is concentrated in even dimensional, zt e ker b* =

e%(H*(Rn(X))) for dimensional reason. Note that zh...zίt = /n*i(y(w — l) f l

y(n - l) i t) = 0 if and only if t > n by Lemma 5.1. Thus

Next choose any

u e eϊ(H*(Rn(X))) Π/Λ!(£*(/>„_!(*))) = ker 6* Π/n*_ 1 (Jϊ (P l l _ 1 (*))).

Then M can be written as

u = uo+ ff-ΛuJ , where u0 e Tn[zu . . . , z k ], «! e M(n - l)n.

Since 6*M 0 = 0, we have fc* ° ff-iiuγ) = 0. Consider the following commuta-

tive diagram

/S-l

HP.-ι(X))
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Since β* is mono on M(n — 1) by Lemma 3.1 (4), and (εJJ>00)* is mono on
β*{M{n - 1)J c Γn by Theorem 4.2 (1), b* o f*_χ i s mono on M(n - l)n. Thus
uγ = 0, and ue Tn[_zu . . . , z k ] . The existence of yt is clear. q.e.d.

Put

P2H*(ΩX) = PH*(ΩX)PH*(ΩX).

Then P2//*(ΩAΓ) is the Z/p-submodule of H*(ΩX) spanned by {(j*(xί) σ*(xj)}.
Since p is an odd prime, the following fact is clear by definition.

LEMMA 5.3. PH*{ΩX) Π P2H*(ΩX) = 0, and PH*(ΩX) and P2H*(ΩX) are
closed under the action of s^^py

Choose a submodule L of H*(ΩX) with

H*{ΩX) ^ PH*(ΩX) © P2H*(ί2X) 0 L .

Let

-1®P2H*(ΩX)(i

T(t) =

® P2H*{ΩX) ® f

Then

^ s PH^ΩX)®1 φ N(t) © T(ί),

and Pi/*^^)®' and JV(t) are closed under the action of sΐip).
Now since Rn(X)/Rn_1(X) = ΣCn~Σ2n-1(ΩX)An, we have an exact triangle

H*(ΩX)®n.

Put

M = r*(N(n)).

Then we have the following fact.
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PROPOSITION 5.4. M is closed under the action of stf^, and

ε*(M) = 0 , M H*(Rn(X)) = 0.

Moreover, for any yi€H*(Rn(X)) with ε * ^ ) = xh ΎH+1[yl9..., yk~] ® M is a

subalgebra of H*(Rn(X)\ and

Λx yin = rί(σ*(xtί) ® ® σ*(xίn)).

PROOF. Since N(ή) is s/ip) closed, so is M. Clearly we have ε*(M) = 0

and M H*(Rn(X)) = 0. The other properties are proved by the standard

method and Proposition 5.2. q.e.d.

PROOF OF THEOREM 1.1 (l)-(4). (1) is proved in Proposition 5.2, and

(2)-(4) are in Proposition 5.4. q.e.d.

We have shown Theorem 1.1 except for (5) and (6). (6) is a consequence

of (5). Thus we need to prove (5). Furthermore, since M is stfip) closed by

Proposition 5.4, we prove that A* = Tn+1[yl9..., y k ] 0 M is s/ip) closed for

some choice of {yj hereafter.

6. General constructions

In this section we give more general constructions than in the section 2.

Recall the filtration

ΣΩX = PX(ΩX) c P2(ΩX) c - c X .

Put

F,(Jf f) = U PSl (ΩX) * * PSt(ΩX).

S i>iS t

Then

* = = rt-ι\Λ ) c rt{Λ ) = [ZiίdΛ) ci rt+ι(Λ ) a ••

By definition

FS(X*')/F,-ΛX*') = V VMl „ ,
Sι + +st=s

Si>ί

where

Ku...,St * PS,{ΩX)IPS^(ΩX) * * PSt{ΩX)/Ps^{ΩX)
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Note that Cn^ and Cn of section 2 are equal to F^X*"'1) and Fn(X*n),

respectively.

Let Ft{βn_1)\Ft{X*n-1)^Pn_2{X) be the restriction of βn_x. Define

Ft(Pn_1(X)) as the mapping cone of Ft(βn-i)\

Then we have

Furthermore,

Fs(P

* Σ{Fa(X*"-1)/Fa.1(X**-1))

Sn_1

The following fact is a generalization of Lemma 2.1.

PROPOSITION 6.1. There are maps Ft(βn): Ft(X*n) ^> F^P^X)) with

Foo(βn) = βn

 s o that the following diagram is homotopy commutative;

f -Λx*-) c Ft{x**)

Ft-l(βn)\ U

Furthermore, if λt: F^X^/F^X*'1) -^ F.iP^iX^/F^P^iX)) is the induced

map, then by the isomorphisms

H (F ί(P l l.1(X))/Fr.1(P l l_1(X))) s

we have that

( \

λ*[ 0 PH*{ΩX)9t)cz 0 PH*(ΩX)9t.
Si>l Sί>l

PROOF. The existence of maps Ft(βn) follows from the same reason as

in Lemma 2.1. In fact, there are maps
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msy. PS(ΩX) x Pt(ΩX) -+ Ps+t(ΩX)

for any s and ί, which are restrictions of the multiplication of X (see Stasheff

[11, p. 72]).

Now the map mst induces a map

x Pf(iM0/(P,(fi*) x P^ίflJSQUP.-iίίJX) x Pt(ΩX))

-+Pa+t(ΩX)/P,+t.1(ΩX).

Since Pk(flJJ0/Pk-i(i2X) ^ (ΣΩX)Λk, ms>ί is considered as a map (Γί2X)Λ S Λ

(27ί2Jr)Λί->(Γί2A:)ΛS+ί. We can describe ms>ί by using permutations. In fact,

let £f(s9 ί) be the set of all (s, reshuffles, i.e., ̂ ( s , ί) is a subset of (s + ί)-th

symmetric group £fs+t so that σ e ^(s , ί) if and only if σ(ϊ) < σ(i + 1) for i φ s.

For any σ e έ?(s, t) we define

σ*: (ΣΩX)AS A (ΣΩX)At -+ (ΣΩX)AS+t

by

σ*((αu ul9...9αs9 us\ (αs+l9 us+u . . . , αs+t9 us+t))

= (^ff-^l)? Uσ~ί(l)9 ' ' 9 ασ-ί(s+φ Uσ-1(s+t)) »

where (αi9 wf) e S1 A ΩX = ΣΩX. Then by definition of m M

™s,t^ Σ σ * (see [11, pp. 71-72]).

Now the composition JSΓ*"->PII_1(J!O ^Pπ_1(X)/Pn_2(X) - I I * " " 1 induces a

homomorphism on cohomology H * ^ ) ® " " 1 -> H*(Jί) 0 n given by

7 = 1

In fact, this map is equivalent to the derivation d(X)1 of the spectral sequence

in section 3. The composition

F,(X*") - Ftf.ΛX)) - FXP^XWn^iX) * ΣF.iX*"-1)

is the restriction of the above map X*n -• ΣX*n~x. Thus ^* is described

by using m s ί , and so it is given by appropriate shuffles. More precisely,

λ*(H*(VSι Sn_ι)) is included in 0fl f*(7 t l J where (tl9...9tn) runs all

the sequences with (tu . . . , ί^, ίf + ίi+1, ti+2,..., tn) = ( s l 9 . . . , sw_i) for some

1 < i < n - 1. Furthermore, if ( ί l 5 . . . , U_u t{ + ίί+1, ίi+2,.. ̂  ί j = (s 1 ? . . . , s ^ ) ,

then for any z e ί * ( F S i ) _ s _ i), the component of ̂ ( z ) in H*(K l f...,in) ^ given

by
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Thus we have the result. q.e.d.

Consider the cofiber sequence

Ft{X*') -> Ft+1(X«) -> F^X^IFAX**) Λ ΣFt(X«).

Now

ΣFtiX*x) ZL ΣiίΣΩX)™) a Σ2t(ΩX)At

Ft+1(X*t)/Ft(X*t) = W1v~vWt9

where

(Note that W{ = ^i,...,i,2,i,...,i where 2 is in the ith place.) Furthermore the
restriction of μ on W{ is essentially the same as

id*i-1*Σβ2*id*t-i

9

where β2: ΩX*ΩX-+ΣΩX is the map in section 2 with P2(ΩX) = (ΣΩX)Uβ2

Σ{ΩX * ΩX). Thus (wx,..., w,) = μ*(Mx ® <g> wf) (wf e H*(W )̂ ^ H*(ΩX)®t+1),
for any MX (X) •••• ® M, 6 ίϊ*(ΩX)®\ is given by

® Mf-! ® m*(Mf) (X) Mί

ί + 1

where m: ΩX x ί2X -• ί2X is the loop multiplication. Then we have the fol-
lowing fact.

LEMMA 6.2

0 Σ<=1 PfHίMO®1-1 ® P2H*(ΩX) ®

PROOF. Since p is an odd prime, it is clear that

(m*)-\PH*[ΩX) ® PH*(ί2X)) = PH*(ΩX) 0 P2H*(ΩX).

Thus the result follows. q.e.d.

7. Action of the Steenrod operations

In this section we prove (5) and (6) of Theorem 1.1. First we prove a
technical lemma.
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Consider the following homotopy commutative diagram, where e, e0 and

ex are natural inclusions to the mapping cones of/, φ0 and φu respectively,

p and p0 are natural projections, and ft is the induced map by fixing a

homotopy between g o φ0 and φγ o / ;

ΣXt 0

LEMMA 7.1. Let oc:Yί^Ko and ξ: Y0UφoCX0 -+Ko be any maps with

ξ o e0 ̂  α o g. Then there is a map ψ: XίUf CX0 -> Ko with ψ o e ~ oco φί so

that for any θ: Ko -+ Kx and β: Yx Uφι CXX -+ Kx with β o ex ~ θ o α, there is

a map λ: ΣX0^Kί with

λo p~θoψ and θoξ~(βoh)*λ.

Here (β o h) * λ is defined by the composition

Y0UφoCX0^(Y0UφoCX0)vΣX0

βohvλ

where the left arrow is the natural coaction of ΣX0 on Y0\JφoCX0, and the

right one is the folding map.

PROOF. First we note that we can assume that ξ o e0 = α o g by changing

ξ to a suitable homotopic map if necessary. Now the map ft: Y O U ^ C X Q - *

Yt U<Pi CX1 is given by a homotopy H between g o φ 0 and φ t o / as follows;

Define ψ: Uf CX0

Ψ(t,xo) =

fff(2ί,x)

\(2t-lJ(x))

K o by

α o if (1 - 2ί, x 0)

ξ(2t-lx0)

0<ί<l/2,xGl0

l/2<t<l9xeX0

0 < t < 1/2, x0 e Xo

1/2 < t < 1, x0 e Z o
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It is clear that

Now this ψ satisfies the required condition. In fact, for any θ and /?,

we define A: ΣX0 -* K t by

Γj8(l-3t,/(x)) 0 < ί < l / 3

λ(t9 x)= <θoaoH(2-3t, x) 1/3 < t < 2/3

[0o£(3t-2,x) 2 / 3 < ί < l ,

where we assume β o ex = θ o (χ by changing β to a suitable homo topic map

if necessary. Then A © p: Xx \JfCX0 -^K1 is homo topic to the restriction of

a map λ: CX1UfCX0^K1 defined by

λ'{t,x1) = β(t,x1) (xίeX1)

λ t ί f l o α o f f ( l - 2 t , x 0 ) 0 < ί < 1/2, x 0 e ^ 0

Thus λo p ~ θ oψ. One can also prove θoξ~(βoh)*λ easily. q.e.d.

Put

Let

0: * , _ ! ( * ) ̂  β ^ m and h: Qn_x(X)

be inclusions with ho g = fn_ί. Define

α: Pn_x Xo = Π
i l

by α(wf) = y(n — l)f where wf G H*(KO) correspond to the fundamental classes

in H*(K(Z/p, deg y(n — l)f)). Then we have the following homotopy commu-

tative diagram;

Fn(X*n) > Fn+1(X*n) ^-+ Fn+ί(X*»)/Fn(X*n) — ί ί — ΣFn(X*n)

ΣFn(X*»)
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where the left vertical and the upper two horizontal sequences are cofiber

sequences. We note that the cohomology homomorphism induced by inclu-

sions Fn(X*n) cz Fn+1(X*n) c X*n is equivalent to the ones by ε?+ 1: (ΣΩX)*n =

and εn

n+u„: i*+ 1 (ΩX) -+XAn.

LEMMA 7.2. There is a map ξ: Fn+1(X*n)/Fn(X*n)-> Ko so that ξoπ' ~
α o h o yn and

where H*(Fn+1(X*n)/Fn(X*n)) is identified with ®H*(ΩX)®n+1 as described in

section 6. Moreover, there is a map φ:Rn(X)->Ko with ψoen~<χohog so

that, for any maps Θ:KO-^K1 and β: Qn-i(X)/Rn-i(X)^ κ i with βoK~

θo<χoh, there is λ: ΣFn(X*n) -• K1 with

λorn~θoψ and θ o ξ - (β o λn+1)*λ .

Furthermore \I/*(H*(KO)) is an s/ip) subalgebra of H*(Rn(X)) generated by some

PROOF. Since deg wf is even, (εn

π

+1)* o γ* o h* o α*(wf) = 0eH*(ΩX)®n for

dimensional reason. On the other hand, hoyn is a restriction of βn: X*n ->

Pn-x(X). Thus, γHoh*o α*(wί) e (επV J*(H*(X)®W), and so by Theorem 4.2 (1)

(5),

γ* o fc o a*(wf) e ker (επ«+1)* Π (ε

t PH^X)*'-1 (x)P

where the map πr: iϊ*(Fn+ί(X*n)/Fn(X*n))-+H*(Fn+ί(X*n)) is identified with

(Pί+i)*: ®H*(ΩX)®n+1 -> H*(PZ+1(ΩX)). Thus there is a map

so that

0 +1 and

Furthermore D//*(Fll+1(X*Π)/Fn(Λr*n)) = 0 since Fn+1{X*n)/Fn(X*n) is a suspen-

sion. Thus

£*(w) e ®PH*(ΩX)®n+1 for all w € H*(K0).

This proves the first part. For the second one, we can use Lemma 7.1. The
last one is clear since e* o ι/̂ *(wί) = g* o Λ* o α*(w/) = zf. q.e.d.



On exterior >lπ-spaces and modified projective spaces 601

Now we prove Theorem 1.1 (5), (6).

PROOF OF THEOREM 1.1 (5), (6). By Proposition 5.4, M is closed under

the action of s/ip). Thus we prove that τ(u)e TH+1[yl9..., yk~\ 0 M for any

ueTn+1\_yl9...9yk] and t e ^ , .

Take any u e Tn+1 [yl9...9 y j and τ e s/^y N o w e${u) e Tn\_zu ...,zk]cz

and so by using Proposition 5.2 we have

e (τu) G

Thus there is t; G i, . . . , yk] so that

β?(τW - !>) = 0 .

Let θ: Ko^ K1 = K(Z/p, deg (τu - v)) be a map so that

τu — v. Then

represents

(1)

Consider the following homotopy commutative diagram, where horizontal se-

quences are cofiber sequences;

-2=±* ΣPn_2(X)

7i—l γΛn—1

Pn- 1
ΣPn-2(X)

Now by Lemma 7.2, <χohog~ψoen. Thus

θ o ψ o g n o en_ί ~ * by (1), and there is a m a p β:.

β o Pn_x - θ o α .

3 Λ O gf O <?„_! -

[ t so that

(2)

Since j8 o Γ " " ^ ^ 1 ^ o ^ " " ^ J + J o r - f f o α o / i o g - β o ψ o β n - * also by (1),

there is f/: i 7 P w _ 2 ( X ) ^ X 1 so that

Put β = β-ηo Σβn-X. Then
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Now by Theorem 4.2 (5),

(ε-ϊ, J ^ x r - ^ Π k e r (ε^1)* c (p£l)*(®PH*(ΩX)*"+1).

Here {Pn+D* is induced by the following natural map

v: Σ^Pϊ

Then we have a map β: βw_1(Jί)/Λw_1(Λr)->X1 so that

β o v ~ β o Z 1 " - 1 ^ ; } ^ and j3* w) ^ Q P i

where w e / ί * ^ ) is the fundamental class. This shows that

p | |_ 1

by (2). Now we can apply Lemma 7.2, to get a map A: ΣFn(X*n) -> K x with

λorn~θoψ and 0°<ί; ^ ( 0 % + i W .

On the other hand, we have by Proposition 6.1 that

Thus

μ* o A*(w) = ξ* o 0*(w) - λ*+1 o j?*(w) 6 P/f *(ΩX)®n+1

by Lemma 7.2. Then by Lemma 6.2

A*(w) e PH*(ΩX)®n 0 X PH ίβJIO®'-1 ® P2H*(ΩX) ® Pif*(βX)®π" ί .

Thus

r*oλ*(w)eDH(Tn+1lyl9...9yk ])®M9

and so

τii = i; + ^ o θ*(w) = i; + r„* o A*(w) e T B + 1 [ y i , . . . , y k] φ M .

This proves Theorem 1.1 (5). Since (6) is a direct consequence of (5), this

completes the proof of Theorem 1.1. q.e.d.
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8. Application

Theorem 1.1 can be used to deduce variety of results on the action of
Steenrod operations on the cohomology of Ap-spaces. For example, the main
result in [2] is still valid without the hypothesis of the Λp primitivity of
generators. In this section we give some more applications. First we prove
the following fact.

THEOREM 8.1. Let H* = Tp+1lyί, ...,}>*] be an unstable algebra over the

mod p Steenrod algebra s/ip). Let deg yt = 2n, (nx <-- < nk). Define non neg-

ative integers a, b with b φθ mod p by nk = pab. If b > p, then yk is detected

by primary operations modulo decomposable elements, that is, there exist opera-

tions θι e s/(p) (1 < i < k — 1) so that

k-l

y k -

PROOF. We prove by contradiction. Suppose yk is not detected by pri-
mary operations. Let / be the ideal of H* generated by {yl9..., yk-i} Then
for any operation θ e s#ip) with deg θ > 0, we have Θ(H*) c / + DH*. Then
the inductive argument implies

Now

ί=0

for some αf e s/ip). Here αfyk e DpH* for dimensional reasons, and then
^plOLiykeI since Dp+1H* = 0. This is a contradiction, and the theorem is
proved. q.e.d.

The following theorem follows from the above theorem by Theorem 1.1.

THEOREM 8.2. Let X be a simply connected An-space with

H*(X; Z/p) s Λ{xl9 ...,xk) deg xt = 2n{ - 1 ( ^ < < nk).

Let nk = pab with b φ 0 mod p. If b > p, then there exist operations 0,- e s&{p)

(1 < i < k - 1) so that

k-ί

X* = Σ θiχi -
1=1

Let (G(n), d) = (Sl/(n), 2) or (Sp(n\ 4). Let MA be the total space of princi-



604 Yutaka HEMMI

pal G(n — l)-bundle over G(ή)/G(n — 1) = S*"'1 induced by a degree λ map

on S*"-1 from the principal bundle G(n - 1) -• G(n) -> G(n)/G(n - 1).

T H E O R E M 8.3. Let dn/2 = pαfc with bφO m o d p. // b > p, then the fol-

lowing conditions are equivalent.

(1) Mλ is a mod p Ap-space.

(2) Mλ is a mod p loop space.

(3) A φ 0 mod p.

PROOF. We have only to prove that if λ = 0 mod p, Mλ is not a mod p

Ap-space. But this follows immediately from Theorem 8.2. In fact, let

/ : Mλ -• G(ή) be the induced map. Then

H*(G(n);Z/p)^Λ(xu...9xk)

H*(Mλ:Z/p)^Λ(x'u...,x'k)

where k = n or n — 1, deg xx < < deg xk = dn — 1, and /*x4 = x for i < k,

and /*χ k = 0. This shows that x'k is not detected by primary operations.

q.e.d.

The above theorem strengthens Iwase's results [6].
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