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1. Introduction

The notion of the homotopy normal subgroup was introduced by

G.S.McCarty, Jr and I.M.James in the different ways (cf. [15, 8]). The

definition of homotopy-normality adopted here is weaker than those proposed

by them. Thus, if a subgroup H of a topological group G is homotopy-normal

in G in the sense of either McCarty or James then H is homotopy-normal

in G in the sense of ours. However, the converse is not always true. The

homotopy-normality of the classical groups in their senses was investigated

by them and the author ([7, 8, 9, 15]).

Let

5(7(3) cz G2 c Spίn(Ί) o Spin(8) c Spin(9) c F 4 c E6 c EΊ cz E8 (*)

be a chain of simply connected, compact, connected, simple Lie groups involv-

ing the exceptional Lie groups. These inclusions are uniquely defined to within

conjugacy (cf. [6, especially p. 192]). In this paper, we consider only the

inclusions which are the compositions of the successive natural inclusions in

(*). Then the following theorem is obtained.

THEOREM 1 ([7]). Every subgroup except EΊ c E8 of (*) is not homotopy-

normal in any group containing it in the sense of McCarty.

The main purpose of this paper is to determine the case EΊ c E8. This

is done in §3 by using the Hopf algebra structures of EΊ and E8 as in the

following theorem.

THEOREM 2. The group EΊ is not homotopy-normal in E8 in the sense of

ours (as in 2.3), hence also not in the sense of both McCarty and James.

By the way we will improve some of the results in [7] in our sense by

making use of the cohomological methods in §§4-7.

The author would like to express his gratitude to Professors T. Matumoto

and A. Kono for their valuable suggestions. He also would like to thank

Professor T. Yoshida who read the manuscript and suggested a number of

improvements.



84 Yasukuni FURUKAWA

2. Preliminaries

First, we define three notions of homotopy-normality and discuss their

relations.

DEFINITION 2.1 (McCarty [15]). A subgroup H of a topologicsl group

G is homotopy-normal in G in the sense of McCarty if there exists a homotopy

v;: (G x if, if x //) -• (G, //) such that v[(G x H) a H and vό(gf, ft) = ghg~ι for

geG.heH.

DEFINITION 2.2 (James [8]). A subgroup H of a topological group G is

homotopy-normal in G m //ze smse 0/ James if the commutator map G ί\ H -* G

can be deformed into H where as usual G Λ H stands for the identification

space G x H/G x e\je x H, with newtral element eeH.

DEFINITION 2.3. A subgroup H of a topological group G is homotopy-

normal in G if there exists a homotopy v,: G x H -• G such that v^G x H) a H

and vo(g, h) = ghg'1 for geG,h£H.
It is obious that homotopy-normality in the sense of McCarty implies

the one in the sense of 2.3. Also, the homotopy-normality in the sense of

James implies the one in 2.3. In fact if there exists a homotopy ct: G Λ H -» G

such that c1(G A H) a H and co(g Λ ft) = ghg~xh~ι where g Λ ft denotes the

point p(g, ft) by the natural projection p.GxH^GAH, then the map

vt: G x H -+ G defined by v,(gf, ft) = ct ° /?(#, ft)ft for geG, heH gives the

homotopy-normality in the sense of 2.3.

Before proving Theorem 2 we fix the notation and review the facts which

will be used in §3. Let G be a Lie group with μ: G x G ^ G the group

multiplication map and Δ\ G -• G x G the diagonal map. Then for a prime

p, H*(G: Zp) is a Hopf algebra with the multiplication map Δ*\ H*(G; Zp) (x)

i/*(G; Zp) -• //*(G; Zp) and the diagonal map μ* : tf*(G; Zp) -• H*(G; Z p) ®

H*(G;Zp). Let μ*(x) = x ® 1 + 1 ® x + ψ(x) for xsH*(G;Zp).

As for the cohomology mod 2 of the exceptional Lie groups EΊ and E8

we will use the following theorem due to [3, 10, 14, 18, 19] and [16, Chapter 7,

Theorems 6.24, 6.32 and 6.33]:

THEOREM 2.4. As an algebra

(i) H*(EΊ; Z 2) = Z 2 [ x 3 , x 5 , x9]/(xf, xj, xj) ® Λ(xί5, x 1 7 , x 2 3 , x 2 7)

where deg xf = Ϊ α«ί/ ί/ẑ  generators are related by Sq2x3 = x 5, Sq*x5 = x 9,

Sqsx9 = x 1 7 , Sg 8 x 1 5 = x23> ^ 4 ^ 2 3 = X 2 7 ^ ^ coalgebra structure is given by

φ(Xi) = 0 /or i = 3, 5, 9, 17,

0 ( X ) = X3 ® X9 + x | ® X
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x 1 7 + x\ ® x 5,

φ(χ
2Ί
) = x\ (x) χ

1 7
 + χ| ® χ

9
.

(ii) H*(E
8
;Z

2
) = Z

2
[ x

3
, x

5
, x

9
, x ^

6
 §

deg x̂  = Ϊ and the generators are related by Sqλx3 = 0, Sq1x2i-1 = xf

for i = 3, 5, 9, 15, Sq1x15 = x2

5x\, Sq1x23 = x\x\, Sqxx21 = x^x^, Sq2x3 = x 5,

S^f2x15 = x 1 7 , 5(?2x2 7 = x 2 9 , 5^2xf = 0 > r i = 5, 9, 17, 23, 29, Sg 4x 5 = x 9 ?

Sq*x23 = x 2 7 , S^f8x9 = x 1 7 , Sq8x15 = x 2 3 , S^4xf = Sq8xt = Sq16Xt = 0 for any

other i > 0. The coalgebra structure is given by

φ(x.) = 0 for i = 3, 5, 9, 17,

0(*1$) =
 X
3 ®

 X
9 +

 X
5 ®

 X
5 +

 X
3 ®

 X
3'

= χ2 g)
 χ i 7 + χ

2 ̂
 χ 5 + χ

4 ̂
 % 3 ?

= χ
2

5
 (x) χ

1 7
 + x| (x) x

9
 + x

3
 (x) x

3
,

φ(χ
29
) = X

3
 ® X

1 7
 + X5 ® X

9
 + X3 ® X

5
.

3. Proof of Theorem 2

Let Ad: G x G -• G be the map defined by Ad(g, g') = gg'g~x for g, g'eG

and /: G-^G be the map defined by ι(g) = g~ι for geG. Then we have

Ad = μ o (μ x idG) o ( id G x G x / ) ° α ° ( ^ x idG) (A)

w h e r e <x(gl9 g2, g 3 ) = (gί9 g3, g 2 ) f o r gl9g2, g3eG, a n d

μ o (idG x 1) o A = the constant map (B).

LEMMA 3.1. ι*xt = x£ IΛ H\E^ Z2) for i = 3, 5, 9, 17.

PROOF. Since xf (i = 3, 5, 9, 17) are primitive (see Theorem 2.4 (ii)), we

have by setting id = id£ g

On the other hand, by (B) we have xt + ι*x£ = 0. Hence ι*xt = xt. Q.E.D.

LEMMA 3.2. ι*x1 5 = x 1 5 + x^ + x^ + x\χ9 in H15(E8; Z 2 ) .

PROOF. By Theorem 2.4 (ii) and Lemma 3.1, we have by setting id = id£ g
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x3 5 + x%

J*(id x ι)*μ*(x15)

— /i*i in \s 1 1 * / v" v̂̂  1 i 1 /v\ "V"

— ZJ ^lU. A If \-*Ί5 Ky 1 "Γ 1 \ζy Λ

— ZJ v * Ί 5 ^ ^ 1 ~Γ 1 \£/ I -^15 I ^ 3 ^y -^9 I Λj ki/ Λ j "Γ A^ ^y -^3/

"~ Λ 1 5 "T" ' -^lδ > X 3 Λ 9 ' X 5 ~r X 3

By (B), we have ι*xί5 = x 1 5 + X3 + X5 4- x^x9.

LEMMA 3.3. Ad* fa) = 1 ® x. in H°(E8 Z2)®Hi(E8 Z 2

Q.E.D.

•i = 3, 5, 9, 17.

PROOF. By (A), Theorem 2.4 (ii) and Lemma 3.1, we have by setting

id = id£ 8

Ad*(Xi) = (A x id)*α*(id x id x i)*(μ x \ά)*μ*(x^

= (A x id)*α*(id x id x ι)*{μ*(Xi) ® 1 4- μ*(l) ® Xj}

= (A x id)*α*(Xf ® 1 ® 1 + 1 ® X ^ ® 1 + 1 ® 1 ® X ^ )

= (A x id)*(xt ® l ® l + l ® l ® X j 4 - l ® X i ® l )

= xt ® 1 + 1 ® xt + Xι ® 1 = 1 ® xt. Q.E.D.

LEMMA 3.4. Ad*(x15) — 1 ® x 1 5 + X3 ® x 3 4- x 3 ® X3 4- x\ ® x 5 + x 5 ®

X5 4- X3 ® x 9 + x 9 ® X3 in H*(E8 Z 2) ® H*(E8 Z 2 ).

PROOF. By (A), Theorem 2.4 (ii), Lemmas 3.1 and 3.2, we have by setting

id = id£ 8

Ad*(x15) = (Ax id)*α*(id x id x ι)*{μ x id)*μ*(x1 5)

= (A x id)*α*(id x id x ή*{μ*(xι5)® 1 + μ*(l)® x 1 5 4- μ*(x3)® x 9

= (A x id)*α*(id x id x z)*{(xi5 ® 1 4- 1 ® x 1 5 + X3 ® x 9 + x\ ® x 5

-f x 1 5 + (x\ x 9

(X5 ® 1 + 1 ® xf) ®

= (A x id)*α*{(x1 5

(X x3}

1 5

x5

-f

(4<
= (A x id)*(x1 5

X3 ® x3

x9

x 3 }

(x
1 5

X3 + X5 -f

x 1 5 + X3 ® x 9

x 1 5

x 9

X3 X5 4-

X3 4-
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l ^o/ A ^ v̂ y Λ j ~r A 3 \£j A 3 vώ/ 1 "t~ 1 v£/ Λ 3 \*^ Λ3J

— *^15 ^ώ' -*• <~ -*- >ώ̂  "^15 "• *^3 ^ώ' -^9 1" A c ^^/ A- c 1" A 3 \£/ A 3 ι~ A1 c \Q/ X

A 5 Viz Λ 5 ~Γ A 3 Vθ/ A ~Γ Λ 3 V̂ y A 3

= 1 ® x 1 5 + x | ® x 3 H- x 3 (x) X3 + xf (x) x 5 + x 5 ® X5 + X3 ® x 9

+ x 9 ® X 3 . Q.E.D.

By Lemma 3.4, we have

LEMMA 3.5. Ad*(x\5) = 1 ® x\5 + X3 ® X3 + X3 ® X3 + X5 ® X5 + x\ ®
Λ5 ~r A3 ^> A 9 ~r Λ 9 (̂ y A3 lϊl Π \J-J£ 5 ^ 2 / ^^ \ 8 ' 2/

PROOF OF THEOREM 2. The homotopy normality of £ 7 in £ 8 in the sense

of 2.3 would imply the homotopy commutativity of the following diagram

E8 x EΊ c= E8 x

where j is a natural inclusion and k = id x j .

Since j * x 1 5 = x 1 5 , we have7*x?5 = 0 by Theorem 2.4 (i). On the other hand,

using j*xt = Xi(i = 3, 5, 9) (see [14, Proposition 1.1 (2)]), Lemma 3.5 and

Theorem 2.4, we have k*Ad*{x\5) = x® ® X3 + X5 ® x\ + X3 ® x | Φ 0 in

H * ( £ 8 ; Z 2 ) ® / / * ( £ 7 ; Z 2 ). This is a contradiction. Q.E.D.

4. £ 8 and its subgroups

The method we used in the proof of Theorem 2 can be applied to the

other pair (G, H) of Lie groups in (*). We recall the following from [5, 10, 11]

and [16, Chapter 7, Lemma 6.5, Theorems 6.2, 6.6 and 6.18]:

THEOREM 4.1. As an algebra

( i ) H*(E6; Z 2) = Z 2 [x 3 ]/(x^)®yl(x 5 , x 9, x 1 5 , x 1 7 , x 2 3)

where deg xf = i and the generators are related by Sq2x3 = x 5, Sq4x5 = x 9,

Sq8x9 = x 1 7 , Sq8x15 = x 2 3 , Sq1xi = 0 for i Φ 5. The coalgebra structure is

given by

φ(xj) = 0 for j = 3, 5, 9, 17,

φ{xj) = xl®Xj-6 for 7 = 15,23.
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(ii) H * ( F 4 ; Z2) = Z2[x3]/(x^)(χ)yl(x5, x 1 5 , x 2 3)

where deg xt = i and the generators are related by Sq2x3 = x5, Sq1x5 = Sq3x3 =

x 3, Sq x15 = x2 3-

(iii) tf*(G2 Z 2) = Z2[x3}/(xί) ® Λ(x5)

where deg xf = i and the generators are related by Sq2x3 = x5, Sq1x5 = Sq3x3 =

x 2, SqlXj = 0 otherwise.

(iv) Γλe algebras J7*(F 4; Z 2) and i ί * ( G 2 ; Z 2) are primitively generated.

Further we recall the following from [5, Theorem 12.1] and.[16, Chapter 3,

Theorem 6.5]:

THEOREM 4.2. As an algebra

( i ) H*(Spin (9); Z 2) = Z2[x3]/(x$) ® Λ(x5,
 xi> *ίs)>

(ii) H*{Spin{S); Z 2) = Z 2 [x 3 ]/(x£)® Λ(x5, x 7, x^),

(iii) tf *0S/w! (7); Z 2) = Z 2[x 3]/(xf) ® Λ(xS9 xf

Ί),

(iv) i/*(5t/(π);Z 2) = ^ ( x 3 9 x 5 , . . . , x 2 π _ 1 ) w ^ ^ x 2 i _ 1

Z 2) is the suspension image of the Chern class cf.

From these results we can prove the following.

THEOREM 4.3. Let H be SU (3), G 2, Spin (7), Spm(8), Spin (9), F4 or

E6. Then H a E8 of (*) w «o/ homotopy normal in the sense of 2.3,

o/ /w //ze sense of both McCarty and James.

PROOF. The homotopy normality of H in E8 in the sense of 2.3 would

imply Ad o k ~ j o v l 5 where j : H -+ E8 is a natural inclusion and k = id x 7 :

£ 8 x if -• E8 x £ 8 .

First, when H = G 2, Spm (7), Spin (8), Spin (9), F4 or £ 6 , we have g*x15 =

xi5? / * x i 5 = *i5 a n d ^*^i5 = 0 for the natural inclusions G2 Λ F 4 -• £ 6 >̂ £ 8

(cf. [14, Theorem 1.5], [11, p. 70], [5, Chapter V. (22.5)]). Therefore j * x 1 5 =

x 1 5 when H = F4, E6 and 7*x1 5 = 0 when H = G 2 . So j*x\5 = 0 when H =

G 2, F 4 , £ 6 . Also j*x\5 = 0 when H = Spin (7), 5p/n(8) and Spin (9) because

x 2 = 0 for all xeH15(H; Z2) by Theorem 4.2. On the other hand, we have

k*Ad*(x2

ί5) = χ\ ® x 2 Φ 0 e i ^ 2 4 ( £ 8 Z 2 ) ® if 6 ( # ; Z 2) by Theorems 2.4 (ii), 4.1,

4.2 and Lemma 3.5, because j*xt = xf (i = 3, 5) (cf. [2, 5, 11, 14]), j*x9 =

j*Sq4x5 = Sq4j*x5 = Sq*x5 = x9 when H = E6 by Theorems 2.4 (ii), 4.1 (i),

and j*x9 = 0 when H = F4 by [10, Remark 5.6]. This is a contradiction.

Next, when H = Si/(3), we have j * X i 5 = 0. On the other hand, we have

k*Ad*{x15) = x$®x3 + x ^ ® x 5 Φ θ e t f * ( £ 8 ; Z 2 ) ® # * ( # ; Z 2 ) by using j*x3

= x 3, j*xs = x5, j * χ 9 = 0 and Lemma 3.4. This is a contradiction. Q.E.D.
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5. EΊ and its subgroups

Since XIEH^EJ; Z 2) (i = 3, 5, 9, 17) are primitive (see Theorem 2.4 (i)),

we have

LEMMA 5.1. ι*xt = xt in W(EΊ\Z2) for i = 3, 5, 9, 17.

By (A), Theorem 2.4 (i) and Lemma 5.1, we have

LEMMA 5.2. Ad*(xt) = 1 ®x, //i H°{EΊ; Z2)®Hi(EΊ Z 2 )/or i = 3, 5, 9, 17.

By Theorem 2.4 (i), Lemmas 3.2 and 3.4, we have

LEMMA 5.3. (i) ι*x15 = x15 + xl + x%x9 in H15(EΊ; Z 2 ),

(ii) Ad*(x15)= 1 ®Xi5 + X3®x 9 + x2

5®x5 4- x 9 ® X3 + x5®x2

5 in H*(EΊ;

Z2)®H*(EΊ;Z2).

From Lemma 5.3 (ii) and Theorem 2.4 (i) we have

LEMMA 5.4. Ad*(x2

15) = 0 in H*{EΊ Z 2) ® H*(E 7 Z 2 ) .

Further we can show the following four lemmas:

LEMMA 5.5. /**23 = X23 + xϊxn + ^9^5 ^ H23(EΊ; Z 2 ) .

PROOF. By Theorem 2.4 (i) and Lemma 5.1, we have by setting id = id£ ?

zf*(id x ι)*μ*(x23) = ^*(id x 0*(x23 ® 1 + 1 ® X23 + ^3 ® ^17 + x i ® ^5)

= ^*(X2 3 ® 1 + 1 ® Z*X23 + X3 ® X17 + X9 ® X5)

= X 2 3 "l~ I X 2 3 ~̂~ X3X17 ~ί~ XtjXs

By (B), we have z*x2 3 = x 2 3 + X3X17 + X9X5. Q.E.D.

LEMMA 5.6. ,4d*(x23) = 1 ® x 2 3 + x\ ® x 1 7 + x\ ® x 5 + x1Ί ® X3 + x 5 ®

x | /Λ H * ( £ 7 ; Z 2 ) ® H * ( £ 7 ; Z 2 ) .

PROOF. By (A), Theorem 2.4 (i), Lemmas 5.1 and 5.5, we have by setting

id = id£ ?

Ad*(x23)

= (Λ x id)*α*(id x id x ι)*(μ x id)*μ*(x2 3)

= (J x id)*α*(id x id x ή*(μ x id)*(x
23
 ® 1 + 1 ® x

2 3
 + x\ ® x

ιΊ
 + x% ® x

5
)

= (J x id)*α*(id x id x z)*{(^23® 1 + 1 ® x
2
3 + X3 ® X17 + A ® X5) ® 1

+ 1 ® 1 ® x 2 3 + (x\ ® 1 + 1 ® x\) ® x 1 7 + (xg ® 1 + 1 ® xl) ® x5}

= (J x id)*α*{x 2 3 ® 1 ® 1 + 1 ® x 2 3 ® 1 + X 3 ® x 1 7 ® 1 + X9® x 5 ® 1

+ 1 ® 1 ® (x 2 3 + X3Xi7 + X9X5) + X3 ® 1 ® x i 7 + 1 ® X3 ® x 1 7

+ X9 ® 1 ® x 5 + 1 ® X9 ® x5}



90 Yasukuni FURUKAWA

= x 2 3 ® 1 + 1 ® x 2 3 + X3 ® Xn + xl ® x 5 + x 2 3 ® 1 + X3X17 ® 1

+ X9X5 ® 1 + y\xχΊ ® 1 + x 1 7 ® X3 + X9X5 ® 1 + χ 5 ® xi

= 1 ® X23 + X3 ® X17 + X9 ® X5 + X17 ® X3 + X5 ® X9. Q.E.D.

LEMMA 5.7. ί*x2 7 = x27 + xlxn + xl in H2Ί(EΊ\ Z 2 ) .

PROOF. By Theorem 2.4 (i) and Lemma 5.1, we have by setting id = id£ ?

zί*(id x ι)*μ*(x2Ί) = Λ*(id x ή*(x27 ® 1 + 1 ® x 2 7 + x\ ® x
ί7

= A*{x2Ί ® 1 + 1 ® z*x2 7 + X5 ® x 1 7 + x% ® x9)

By (B), we have /*x2 7 = x 2 7 + X5X17 + x%. Q.E.D.

LEMMA 5.8. Ad*(x2Ί) = 1 ® x 2 7 4- x\ ® x 1 7 + X9 ® x 9 + x 1 7 ® X5 H- x 9 ®

x | 1/1 H * ( £ 7 ; Z 2 ) ® H*(EΊ; Z 2 ) .

PROOF. By (A), Theorem 2.4 (i), Lemmas 5.1 and 5.7, we have by setting

id = id£ 7

Ad*(x

= {Δ

= {Δ

= (Λ

+

+

2 7 )

X

X

X

U

X

10

id)

id)

id)

id)

*α*(id

*α*(id

*α*(id

(X} X 2 7

X

X

X

+

*α*{x 2 7 '

® ( x 2 Ί

id

id

id

(x

® 1

X

X

X

u

ή*

ή*

ή*

R)l

<)1

hxlx 1 7

(μ

(μ

(0
+

+

x id)*^"

x id)*(x

c 2 7 ® 1 -

'(xn)

27 ® 1 + 1 ί

h 1 ® x 2 7 +

1 VC/ -λζ) κ?y -^17 ~Γ \-^9

1 ® x 2 7 1

xl) + x\

® 1 + x§ ®

® 1 ® x 1 7 -

<)χ2 7 + x

X5 Qy Xi7

® 1 + 1 (

x 1 7 ® 1 H

h 1 (x) X5 Q

5 \θ/ Λ

1 -y.2

1 A9

2)χl)

h χ | β

§)Xl7

_L v 2

17 ~r X 9

® X9) (>

® χ9)

y X9 \X/ -

x% ® 1 ® x 9 + 1 ® x% ® x9}

= x 9

17 ® X5 + x | ® 1 + X9 ® X9

= 1 ® x 2 7 + X5 ® x 1 7 + xl ® x9 + x 1 7 ® xl + x 9 ® x^. Q.E.D.

THEOREM 5.9. L^/ H be SU(3), G 2, Spίπ(7), Spin(8), Spin(9) or E6. Then

H cz EΊ of (*) is not homotopy normal in the sense of 2.3, hence also not in

the sense of both McCarty and James.

PROOF. The homotopy normality of H in EΊ in the sense of 2.3 would

imply Ad o k ^ j o v l 9 where 7 : H -> £ 7 is a natural inclusion and /c = id x j : EΊ

x H ->EΊ x EΊ.

First, when H = E6, we have y'*x27 = 0 for the natural inclusion
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j : E 6 -• EΊ (cf. [10]). On the other hand, we have k*Ad(x2Ί) = x\ ® x 1 7 + x\

® x 9 φ 0 e f ί * ( £ 7 ; Z2)®H*(Eβ; Z 2) by Theorems 2.4 (i), 4.1 (i) and Lemma

5.8, because j*xt = x£ for i = 3, 5, 9 and 17 (cf. [14]). This is a contradiction.

Next, in the cases H = Spin(9), Spin($) and Spin(7), y*x 2 3 =J*S(l8χi5 =

Sq8j*x15 hold. We show this is zero. For the case H = Spin(9), one can

write y*x 1 5 = α x 3 x 5 x 7 + bx[5eH15(Spίn(9); Z2) with a,beZ2. Using the

Cartan formula and Theorem 12.1 (c) of Borel [5], one obtains Sg 8(x 3x 5x 7) = 0.

Also Sq8x[5 = 0 by Borel [5, §12]. Hence j*x23 = 0. On the other hand,

we have k*Ad*(x23) = x | ® * 5 + x 1 7 ® x 3 φ 0 G / / * ( £ 7 ; Z 2 ) ® H*(Spίn(9); Z2)

by Theorem 4.2 (i) and Lemma 5.6, because j*xt = xt for ΐ = 3, 5 (cf.

[2, 11, 14]),7*x9 =j*Sq4x5 = Sq*j*x5 = ^ 4 x 5 = 0 (cf. [5, §12]) a n d j * x 1 7 =.

0. This is a contradiction. For the case H = Spin (8), one can write j * x 1 5 =

α x 3 x 5 x 7 + fcx3x5x7Gif15(Spin(8); Z 2) with a,beZ2. Since S^f8(x3x5x7) = 0

and S^f8(x3x5x7) = 0 hold by the Cartan formula and [5, §12], we have7*x 2 3

= 0. For the case H = Spίn(7), one can write j*xί5 = ax3x5x'ΊeH15(Spin(Ί);

Z2) with aeZ2. By Sςf8(x3x5x7) = 0, ; * χ 2 3 = 0 holds. This contradicts

k*Ad*(x23)ΦθeH*(EΊ;Z2)®H*(H;Z2) for H = Spin(Ί) and Spin(S) by a
similar discussion as in the proof of Spin(9).

The last cases are S£/(3) and G 2 . For the natural inclusions SU(3) -• G2

-*EΊ, we have j*x15 =0 by the degree reason. On the other hand, we have

k*Ad*(x15) = χ2

5®χ5 (resp. x\ ® x 5 + x 9 ® x\) Φ 0eH*(E7 Z 2) ® H*(H Z 2)

if // = SU(3) (resp. G2) by Theorems 4.1 (iii), 4.2 and Lemma 5.3 (ii), because

7*xf = Xi for i = 3, 5, and ;*x 9 = 0 by the degree reason when H = SI/(3) and

by [10, Remark 5.6] when H = G 2 . This is a contradiction. Q.E.D.

6. £ 6 and its subgroups

Since xieHi(E6; Z2) (i = 3, 5, 9, 17) are primitive (cf. Theorem 4.1 (i)), we

have

LEMMA 6.1. ι*xt = xt in Hi{E6; Z 2) for ί = 3, 5, 9, 17.

By Theorem 4.1 (i), Lemmas 5.3 (i) and 5.5, we have

LEMMA 6.2. ι*x15 = x ί 5 + x 3 x 9 in H15(E6; Z 2) and z*x2 3 = x 2 3 + *3*i7

in H23(E6;Z2).

From Theorem 4.1 (i), Lemmas 6.1, 5.3 (ii) and 5.6, we have

LEMMA 6.3. (i) Ad*(xt) = 1 ® xf for i = 3, 5, 9, 17,

(ii) Ad*(xί5) = 1 ® x 1 5 + x 3 ® x 9 + x 9 ® x | ,

(iii) i4d ( x 2 3 ) = l ® x 2 3 + x i ® x 1 7 + x 1 7 ® x i in H*(E6;Z2)®H*(E6;Z2).

THEOREM 6.4. Let H be G 2, Spin{l), Spίn(S) or Spίn(9). Then H a E6

of (*) is not homotopy normal in the sense of 2.3, hence also not in the sense
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of both McCarty and James.

PROOF. First, we consider the group G 2 . For the natural inclusion

j : G2^> E6i j*xl5 = 0 holds by the degree reason. On the other hand, we

have k*Ad*(xls) = x 9 ® x* Φ OEH9(E6; Z2) <g> H6(G2 Z 2) by Theorem 4.1 (iii)

and Lemma 6.3 (ii), because ;*x 3 = x 3 and j * x 9 = 0 (see [10, Remark 5.6]).

This is a contradiction.

Next, we consider the groups H = Spin(9), Spin(8) and Spin(7). In these

cases j*x23 = j*Sqsxί5 = Sq8j*x15 hold. For the case H = Spin(9), one can

write j*x15 = ax3x5xΊ + bx'ί5 with α, beZ2. Using the Cartan formula and

Theorem 12.1 (c) of [5], one obtains Sq8(x3x5xΊ) = 0. Also Sq8x[5 = 0 by

Borel [5, §12]. Thus j*x23 = 0. On the other hand, we have k*Ad*(x23) =

x17<g)xf φθeH
1Ί(E6; Z2)® H6{Spin{9)\ Z2) by Theorem 4.2 (i) and Lemma

6.3 (iii), because j * x 3 = x 3 by [2, 11] and j*x17 = 0 by the degree reason.

This is a contradiction. For the case H = Spin(8), one can write j*x15 =

ax3x5xΊ + bx3x5x
f

Ί with a, beZ2. Since Sg 8 (x 3 x 5 x 7 ) = 0 and Sg8(x3x5X7) =

0 hold by the Cartan formula and Theorem 12.1 of [5], one obtains

j * x 2 3 = 0. For the case H = Spίn(Ί), one can write j*x15 = ax3x5x
f

7 with

aeZ2. Since Sg8(x3x5X7) = 0, j * x 2 3 = 0 holds. Thus, by the same discussion

as in the case of Spίn(9) we have k*Ad*(x23) φ 0 e H * ( £ 6 ; Z 2 ) (x) H*(H; Z2) for

H = Spin(Ί) and Spίn(S). Q.E.D.

7. The cases (G, H) = (E7, F4), (E69 F4), ( £ 6 , 5t/(3)), ( F 4 , 5 ^ ( 8 ) ) , (F4,

Spin(Ί)) and (F 4, 51/(3))

In this section we determine the homotopy normality of the subgroups

of Ei(i = 6, 7) which are not determined in Theorems 5.9 and 6.4, by the mod 3

cohomology algebra of the exceptional Lie groups. We also prove the cases

(F 4 , H) for H = Spm(8), Spίn(7) and SU(3).

We recall the following from [1, 5, 12, 13, 19]:

THEOREM 7.1. As an algebra

( i ) / / * ( £ 8 ; Z 3 ) = Z 3 [ x 8 , x 2 O ] / ( x l , x | o )

® Λ ( X 7 , X15, X19, -^27? ^35? * 3

where deg xf = i and the generators are related by βxΊ = x 8, βx15 = — x\,
X8 β*39 = "" X20 ^^47 = x 20

jJxj = 0 for i = 3, 8, 20; ^ x x 3 = x 7, ^ x ^ = εx 1 9 wi/A ε = ± 1, ^ ^ 3 5 = εx 3 9

with ε = ± 1, ^ X ; = 0/or i = 7, 8, 19, 20, 27, 39, 47; ^ 3 x 7 = x 1 9 , <^3x8 = x 2 0 ,

0>3x15 = x 2 7 , ^ 3 x 2 7 = - χ 3 9 , ^ 3 x 3 5 = x 4 7 , 0>3xt = 0 for ί = 3, 19, 20, 39, 47;

^ 6 * i 5 = *39> &6Xi = 0/or i φ 15 »ixi = 0/or fl«j other j > 0. 77ze coalgebra

structure is given by
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φ(x.) = 0 for i = 3, 7, 8, 19, 20,

φ(x15) = x 8 ® x 7 ,

ψ ( χ 2 7 ) = χ8® χ19 + χ 2 0 (x) χ 7 ,

0 ( χ 3 5 ) = X8 <g) X 2 7 - Xl ® *19 + X2O ® *15 + *20*8 ® *7>

Φ(X39) = X 2 o®*19>

Ψ(X47) = - *8 ® *39 - *20 ® X2Ί ~ ^20^8 ® ^19 + X20 ® XΊ'

(ii) H*(EΊ; Z 3) = Z 3 [x 8 ]/ (x ! )® Λ(x3, x 7 , x n , x 1 5 , x 1 9 , x 2 7 ?

 X3s)

where deg xf = i and the generators are related by βxΊ = x 8, β x 1 5 = — x | ,
^x. = 0 for i Φ 7, 15; ^ x x 3 = x 7, &xxxι = x 1 5 , ^ ^ 1 5 = εxi 9 wzϊA ε = ± 1,
&ιχ. = Qfor iΦ 3, 11, 15; ^ 2 x t l = - εxl9 with s = ± 1, 0>2Xi = O for i φ 11;
^ 3 x 7 = x 1 9 , ^ 3 χ 1 5 = χ 2 7 ? ^ 3 χ , = 0 y o r f φ 79 i 5 ; 0>Jx. = o far any other

j > 0. The coalgebra structure is given by

φ(xd = 0 for ί = 3, 7, 8, 19,

0(x;) = x 8 (x) x, _ 8 /or 7 = 11, 15, 27,

(/>(X35) = X 8 (X) X 2 7 - X 8 ® X 1 9 .

(iii) # * ( £ 6 ; Z 3 ) = Z 3 [ x 8 ] / ( x | ) ® vd(x3, x 7, x 9, x 1 1 ? x 1 5 , χ 1 7 )

where deg xf = Ϊ and the generators are related by βxΊ = x 8, βx15 = — x | ,

βXi = 0 for i φ 7 , 15; ^ 1 χ 3 = χ 7 , ^ 1 x 1 1 = x 1 5 , ^ ^ = 0 /or / φ 3, 11;

x. = 0 /or any other j > 1. 77ze coalgebra structure is given by

φ{χi)=0 for £ = 3, 7, 8, 9,

Ψ(x, ) = x 8 ® X ; - 8 /or 7 = 11, 15, 17.

(iv) # * ( F 4 ; Z 3) = Z 3 [ x 8 ] / ( x | ) ® ^ ( χ 3 , x 7, χ n , x 1 5)

where deg xt = i α«ί/ ίAe generators are related by βxη = x8, ^ x x 3 = x 7,

&XX\\ = X15. 7%^ coalgebra structuere is given by

φ(x.) = 0 for ί = 3, 7, 8,

j - 8 for j =11, 15.

(v) i ί * ( G 2 ; Z 3 )
Further we recall the following from [5, 16]:

THEOREM 7.2. As an algebra

( i ) H*{Spίn(9); Z 3 ) = Λ(x3, x 7, x l l 9 x 1 5)

where deg xt = i and the generators are related by ^x3 = x 7, ^Xu = Xi5
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(ii) H*{Spin(S); Z 3) = Λ(x39 x7, x n , x7),

(iii) H*(Spίn(Ί); Z 3) = Λ(x3, x 7, x n ) ,

(iv) i

By a similar argument as in the mod 2 case, we have

LEMMA 7.3. (i) z*x1 9 = - x 1 9 ί/ι H19(EΊ; Z 3 ),

(ii) z*x2 7 = - x 2 7 + x8Xi9 *w H2Ί{EΊ; Z 3 ).

From Theorem 7.1 (ii) and Lemma 7.3, we have

LEMMA 7.4. ^4d*(x27) = 1 ® x 2 7 + * 8 ® x i 9 ~~ x i 9 ® X8 *w Ή * ( £ 7 ; Z 3 ) ®
H * ( £ 7 ; Z 3 ) .

From these Lemmas, we can prove the following.

THEOREM 7.5. The inclusion FA c EΊ of (*) is not homotopy normal in

the sense of 2.3, hence also not in the sense of both McCarty and James.

PROOF. For the inclusions F 4 -• E6 -^ £ 7 , g*xί5 = x 1 5 and f*xί5 = x15

hold (see [1]). Therefore we have;*x 2 7 = j * ^ 3 x 1 5 =f*g*&3xί5 =f*&3g*xί5

= f*0>3x15 = 0, since ^ 3 x 1 5 = 0 in H2Ί(E6; Z 3) (see Theorem 7.1 (ii) and (iii)).

On the other hand, we have k*Ad*(x27) = - x 1 9 (x) x 8 Φ 0 e / / 1 9 ( £ 7 ; Z 3) <g>

H8{F4r; Z 3) by Theorem 7.1 (ii), (iv) and Lemma 7.4, because j * x 8 = x 8 (cf. [1])

and 7*x 1 9 = < / * ε ^ 1 x 1 5 = εf*0>ίg*xίs = εf*^xx15 = 0 for ε = ± 1, since

^ x 1 5 = 0 in H19(E6; Z 3) (see Theorem 7.1 (ii) and (iii)). This is a contradic-

tion. Q.E.D.

Similarly we obtain

LEMMA 7.6. (i) ι*xt = — xt in Hi(E6; Z 3) /or i = 3, 9,

(ii) ϊ * x n = - x u + x 8 x 3 in H11^; Z3)9

(iii) ι*x1 7 = - x 1 7 + x 8 x 9 in H1Ί{E6; Z 3 ).

From Theorem 7.1 (iii) and Lemma 7.6, we have

LEMMA 7.7. (i) Ad*(x11) = 1 ® x x l + x 8 (x) x 3 — x 3 ® x 8,

(ii) > l d * ( x 1 7 ) = l ® x 1 7 + x 8 ( 8 ) x 9 - x 9 ( 8 ) x 8 i/i H * ( £ 6 ; Z 3 ) ( x ) / / * ( £ 6 ; Z 3 ) .

THEOREM 7.8. The subgroups 5(7(3) and F 4 o/ E 6 in (*) <zre «o/ homotopy

normal in the sense of 2.3, /ze«c£ αfao «6>/ /« the sense of both McCarty and

James.

PROOF. First, we consider the group F 4 . For the inclusion j : F 4 ^ £ 6 ,

j*x1Ί = 0 holds by the degree reason. On the other hand, we have k*Ad*(x1Ί)

= - x 9 ® x 8 Φ θ e i ί 9 ( £ 6 ; Z 3 ) ( χ ) H 8 ( F 4 ; Z 3) by Theorem 7.1 (iv) and Lemma

7.7 (ii), because j * x 8 = x 8 by [1, p. 255] and j*x9 = 0 by the degree reason.
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This is a contradiction.
Next, we put H = SU(3). For the natural inclusion j : H -» £ 6 , j * x n = 0
holds by the degree reason. On the other hand, we have k* Ad*(x^) = x8 ® x3

* OeH8(E6; Z3)(g)H3(H; Z3) by Theorem 7.2 (iv) and Lemma 7.7 (i), because
j*x3 = x3 and j*x8 = 0 (cf. [1, 5]). This is a contradiction. Q.E.D.

Quite similarly we have

LEMMA 7.9. (i) ι*xt = - xt //i if£(F4; Z3) for i = 3, 7,
(ii) ι*xn = - x n + x8x3 in Hll(F4; Z3),

(iii) /*x15 = - x1 5 + x8xΊ in Hl5(F4; Z3).

From Theorem 7.1 (iv) and Lemma 7.9, we have

LEMMA 7.10. (i) Ad*(xn) = 1 <g> x n + x8 ® x3 — x3 ® x8^
(ii) Λd*(x1 5)= l ® x 1 5 + x 8 ® x 7 - x 7 ® x 8 //i H*(F4;Z3)®H*(F4;Z3).

THEOREM 7.11. The subgroups SU(3), Spin(7) and Spίn(&) of F 4 in (*) are

«oί homotopy-normal in the sense of 2.3, hence also not in the sense of both

McCarty and James.

PROOF. First, when H = SU(3), we have j * x n = 0 for the natural
inclusion j : H -+ F4. On the other hand, we have k*Ad*(xil) = x8 ® x3 =t= Oe
H8(F4; Z3)®H3{H; Z3) by Lemma 7.10 (i), because ;*x3 = x3 (cf. [5, §21])
and ;*x8 =j*β0>1x3 = β^j*x3 = jS^1x3 = 0, since HΊ(H Z3) = 0. This is
a contradiction.
Next, when H = Spin(7) or Spin(8), we have j * x 1 5 = 0 for the natural inclusion
j:H^F4 by Theorem 7.2 (ii) and (iii). On the other hand, we have
fcMd*(x15) = x 8 ® x 7 φ 0 e # 8 ( F 4 ; Z3)®H7{H; Z3) by Lemma 7.10 (ii), because
7*x7 = x7 by [5] and7*x8 = 0 by the degree reason. This is a contradiction.

Q.E.D.

REMARK. If a cohomology algebra H*(G; Zp) is primitively generated as
in the case of the classical group G and its subgroups, we cannot expect to
obtain any informations about the homotopy-normality of the subgroups of
G by the above methods.
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