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1. Introduction

The notion of the homotopy normal subgroup was introduced by
G.S.McCarty, Jr and I.M.James in the different ways (cf. [15,8]). The
definition of homotopy-normality adopted here is weakcr than those proposed
by them. Thus, if a subgroup H of a topological group G is homotopy-normal
in G in the sense of either McCarty or James then H is homotopy-normal
in G in the sense of ours. However, the converse is not always true. The
homotopy-normality of the classical groups in their senses was investigated
by them and the author ([7, 8, 9, 15]).

Let

SU@3) = G, = Spin(7) < Spin(8) < Spin(9) c F, <« E¢ < E; < E4 (%)

be a chain of simply connected, compact, connected, simple Lie groups involv-
ing the exceptional Lie groups. These inclusions are uniquely defined to within
conjugacy (cf. [6, especially p. 192]). In this paper, we consider only the
inclusions which are the compositions of the successive natural inclusions in
(¥*). Then the following theorem is obtained.

THEOREM 1 ([7]). Every subgroup except E; = Eg of (%) is not homotopy-
normal in any group containing it in the sense of McCarty.

The main purpose of this paper is to determine the case E, < Eg. This
is done in §3 by using the Hopf algebra structures of E, and Eg as in the
following theorem.

THEOREM 2. The group E, is not homotopy-normal in Eg in the sense of
ours (as in 2.3), hence also not in the sense of both McCarty and James.

By the way we will improve some of the results in [7] in our sense by
making use of the cohomological methods in §§4-7.

The author would like to express his gratitude to Professors T. Matumoto
and A. Kono for their valuable suggestions. He also would like to thank
Professor T. Yoshida who read the manuscript and suggested a number of
improvements.
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2. Preliminaries

First, we define three notions of homotopy-normality and discuss their
relations.

DerINITION 2.1 (McCarty [15]). A subgroup H of a topologicsl group
G is homotopy-normal in G in the sense of McCarty if there exists a homotopy
v,: (G x H, H x H)— (G, H) such that v{(G x H) = H and vy(g, h) = ghg ™! for
geG, heH.

DEerFINITION 2.2 (James [8]). A subgroup H of a topological group G is
homotopy-normal in G in the sense of James if the commutator map GA H —» G
can be deformed into H where as usual G A H stands for the identification
space G x H/G x eUe x H, with newtral element e€ H.

DerINITION 2.3. A subgroup H of a topological group G is homotopy-
normal in G if there exists a homotopy v,: G x H — G such that v;,(G x H) < H
and vy(g, h) = ghg ™! for geG, he H.

It is obious that homotopy-normality in the sense of McCarty implies
the one in the sense of 2.3. Also, the homotopy-normality in the sense of
James implies the one in 2.3. In fact if there exists a homotopy ¢,: GAH - G
such that ¢,(GAH)c H and co(g A h) = ghg 'h~! where g A h denotes the
point p(g, h) by the natural projection p: G x H— G A H, then the map
v,: G x H—> G defined by v(g, h) =c,oplg, hhh for geG, he H gives the
homotopy-normality in the sense of 2.3.

Before proving Theorem 2 we fix the notation and review the facts which
will be used in §3. Let G be a Lie group with u: G x G - G the group
multiplication map and 4: G - G x G the diagonal map. Then for a prime
p, H*(G: Z,) is a Hopf algebra with the multiplication map 4*: H*(G; Z,) ®
H*(G; Z,) > H*(G; Z,) and the diagonal map u*: H*(G; Z,) > H*(G; Z,) ®
H*(G; Z,). Let p*(\)=x® 1+ 1®x + ¢(x) for xe H*(G; Z,).

As for the cohomology mod 2 of the exceptional Lie groups E, and Eg
we will use the following theorem due to [3, 10, 14, 18, 19] and [16, Chapter 7,
Theorems 6.24, 6.32 and 6.33]:

THEOREM 2.4. As an algebra
(1) H*(E;; Z,) = Z,[x3, xs, x9]/(x‘3‘, xg, X5) ® A(Xy5, X175 X3, X37)

where deg x; =i and the generators are related by Sq*x; = x5, Sq*xs = xo,
Sq8xe = x17, 84 x15 = X»3, 84*X53 = X,,. The coalgebra structure is given by
¢(x) =0 for i=3,509,17,

(xy5) = x% ® xg + x% ® xs,
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Qg(xzs) =x3® x;7 + X5 ® Xs,
<I-5(x27) =x2® X174+ X3 ® X.
(i) H*(Eg; Z,) = Z,[x3, x5, X9, x15]/(x3%, x8, x§, x1s)

® A(x17, X235 X275 X20)

where deg x; =i and the generators are related by Sq'x3 =0, Sq'x5;_; = x?
fori=3,59 15 8Sq'x,s = x2x2, Sq' x,3 = x3x3, Sq* x,, = x3x3, S4* x5 = x5,
Sq*xys = X127, Sq*X37 = X590, S¢°x; =0 for i=5,9,17,23,29, Sq*xs= xo,
Sq*x33 = X37, 5¢°%xe = X17, Sq®xys = X33, Sq*x; = Sq®x; = $q"°x; =0 for any
other i > 0. The coalgebra structure is given by

d(x) =0 for i=3,50917,
P(x15) = x3®@xo + x2 @ x5 + x3 @ x3,
(i(x23)=x§®x17+x§®x5+x§®x3’
P(x27) = xE® x17 + X3 ® Xg + X5 ® X3,
B(x20) = X3 ® X7 + X5 ® X9 + X3 ® Xs.

3. Proof of Theorem 2

Let Ad: G x G — G be the map defined by Ad(g, g) = gg'g™* for g, g'€G
and 1: G > G be the map defined by i(g) =g~ ! for geG. Then we have

Ad = po(p xidg) o (idgxg X 1) oo (4 x idg) (A)
where a(g;, 92, 93) = (91, 93, 92) for g4, g5, 9:€G, and

po(idg x 1) o 4 = the constant map (B).

LemMMA 3.1. 1*x;=x; in H(Eg; Z,) for i=3,5,9, 17.

Proor. Since x; (i=3,5,9, 17) are primitive (see Theorem 2.4 (ii)), we
have by setting id = idg,

A*(id x o)*p*(x;) = 4*(1d x )*(x; ® 1 + 1 ® x))
=4*(x;® 1+ 1 ®1*x) = x; + 1*x;.

On the other hand, by (B) we have x; + 1*x; =0. Hence 1*x; = x;. Q.E.D.

LEMMA 3.2. 1*x;5= x5+ X3 + x3 + x3xg in H'®(Eg; Z,).

Proor. By Theorem 2.4 (ii) and Lemma 3.1, we have by setting id = idg,
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A*(id x 1)* pu*(x5)
=A*%1d X 1)*(x; s ® 1 + 1 @ x5 + X3 ® X + X2 ® x5 + X3 ® x3)
=A*(x;s @1+ 1®1*x,5 + X3 ® X9 + X2 ® x5 + X5 ® x3)
= X5+ 1*X;5 + X3Xg + X3 + X3.

By (B), we have 1*x;5 = x;5 + X3 + X2 + X3X,. Q.E.D.
LeMMA 33. Ad*(x)=1®x; in H*(Eg; Z,)® H'(Eg; Z,) fori=3,5,9, 17.
Proor. By (A), Theorem 2.4 (ii) and Lemma 3.1, we have by setting

id = idy,

Ad*(x;) = (4 x id)*a*(id x id x 1)*(u x id)* u*(x;)
= (4 x id)*a*(id x id x 1)*{p*(x) ® 1 + p*(1) ® x;}
(U x i (@1 +1®x®1 +1®1®x)
—UxidF®IQI+1®1I®x+1®x%® 1)
=501 +1®0x;,+x,®1=1®x;. Q.E.D.

LEMMA 34, Ad*(x;5) = 1® x5 + X3 @ X3 + X; x5 + xI® x5 + x5 ®
X5+ x3®xg + Xo ® x3 in H*(Eg; Z,) ® H*(Eg; Z,).

Proor. By (A), Theorem 2.4 (ii), Lemmas 3.1 and 3.2, we have by setting
id = idy,
Ad*(x,5) = (4 x id)*a*(id x id x o)*(u x id)* u*(x,s)
= (4 x idy*a*(id x id x * {p*(x,5) @ 1 + p*(1) ® x15 + u*(x3) ® xg
+ ¥ (x3) ® x5 + p*(x3) @ x5}
= (4 x id)y*a*(id x id X )*{(x;s @ 1 + 1 ® x5 + X3 ® Xo + X3 ® x5
+x3Rx)®1+1R®1®@x,5s+(X3R1+1®x3)® xo
+E@I+1@x)®@xs +(x3® 1+ 1®x3) ® X3}
= xid*e*{(x;s IR+ 1®x,5Q1 + xR x,® 1
+x2 QxR+ x3@x;@1 4+ 1@ 1®(x;5 + x3 + x2 + x3x,)
+ 2RI+ 1RxDRx+ (X2 R 1+ 1@ x3)® x5
+ (3 ®1+1Q®x3)® x5}
=4 xid*xsRIRI+1RI®Xx;s+X3R1®x9+xI® 1 ® x5
+x5R1®x3+1 %501 +1X3R1+1@x3IR1+1R@x3x,® 1
+xX3Rx®1+1R®x,®x3 + X3 @ xs® 1
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+1R®xs@x2+x5@x;01 + 1® x3 ®x3)
=Xs®1+1®x5+ X3 ® X + X3 @ x5+ X3 X3 + X151
+X3R1+x2 @1+ x3x® 1+ x3x,® 1 + X, ® x5 + x3® 1
+xs@x2+x3® 1+ x3® x5
=1@x;s + X3 @ X3+ X3 x5 + x2 @ x5 + x5 @ x2 + X3 ® X
+ Xxo ® x3. Q.E.D.
By Lemma 3.4, we have

LEMMA 35, Ad*(x?5) = 1@ x25 + x5@x2 + x2@x§ + xt®@xZ + x2®
X3+ x3®x3 + x5 ® x3 in H*(Eg; Z,) ® H*(Eg; Z,).
ProoF oF THEOREM 2. The homotopy normality of E, in Eg in the sense

of 2.3 would imply the homotopy commutativity of the following diagram

EsXE7fEsXEsWEs
E,
where j is a natural inclusion and k =id x j.

Since j*x,5 = x,5, we have j*x25 = 0 by Theorem 2.4 (i). On the other hand,
using j*x; = x;(i=3,5,9) (see [14, Proposition 1.1 (2)]), Lemma 3.5 and
Theorem 24, we have k*Ad*(x3)=x3@x3+x¢@x2+x3®x%3+0 in
H*(Eg; Z,) ® H*(E;; Z,). This is a contradiction. Q.E.D.

4. Eg and its subgroups

The method we used in the proof of Theorem 2 can be applied to the
other pair (G, H) of Lie groups in (*). We recall the following from [5, 10, 11]
and [16, Chapter 7, Lemma 6.5, Theorems 6.2, 6.6 and 6.18]:

THEOREM 4.1. As an algebra
(1) H*(Es; Z,) = Z,[x3]/(x3) ® A(Xs, X9, X15, X17, X33)

where deg x; =i and the generators are related by Sq*x; = x5, Sq*xs = X,
Sq®xe = x17, Sq®x,5 = X,3, Sq'x; =0 for i £5. The coalgebra structure is
given by

p(x)=0  for j=3,509,17,
(x)=x3®xj_¢ for j=15,23.

-
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(i) H*(F4; Zy) = Zz[xs]/(x‘;) ® A(xs, X5, X23)

where deg x; = i and the generators are related by Sq*x3 = x5, Sq' x5 = S¢°x;3 =
x5, 8¢° x5 = Xa3.

(i) H*(G,; Zy) = Z,[x31/(x3) ® A(xs)

where deg x; = i and the generators are related by Sq*x; = x5, Sq' x5 = Sq3xy =
x3, Sq'x; = 0 otherwise.

(iv) The algebras H*(F,; Z,) and H*(G,; Z,) are primitively generated.

Further we recall the following from [5, Theorem 12.1] and [16, Chapter 3,
Theorem 6.5]:

THEOREM 4.2. As an algebra

(i) H*(Spin(9); Z,) = Z,[x3]/(x3) ® A(xs, x5, X15),

(i) H*(Spin (8); Z,) = Z,[x31/(x3) ® A(xs, x5, x7),

(i) H*(Spin (7); Z,) = Z,[x31/(x3) ® Al(xs, x7),

(iv) H*(SU(n); Z,)=A(X3, Xs»...,Xaa_1) Where xp;_y =0 (c)eH* 1 (SU(n);
Z,) is the suspension image of the Chern class c;.

From these results we can prove the following.

THEOREM 4.3. Let H be SU (3), G,, Spin(7), Spin(8), Spin(9), F, or
Es. Then H c Eg of (%) is not homotopy normal in the sense of 2.3, hence
also not in the sense of both McCarty and James.

Proor. The homotopy normality of H in Eg in the sense of 2.3 would
imply Ad ok ~jov;, where j: H— Eg is a natural inclusion and k=id x j:
Eg x H— Eg x Eg.

First, when H = G,, Spin(7), Spin (8), Spin (9), F, or E4, we have g*x,5 =
Xys, f¥X15 = x5 and h*x,5 = 0 for the natural inclusions G, KA F4—f> E¢ 5 Eq
(cf. [14, Theorem 1.5], [11, p. 70], [5, Chapter V. (22.5)]). Therefore j*x,5 =
x5 when H=F,, Eg and j*x,5 =0 when H = G,. So j*x?5=0 when H =
G,, F4, Eg. Also j*xi5 =0 when H = Spin(7), Spin(8) and Spin (9) because
x? =0 for all xeH'*(H; Z,) by Theorem 4.2. On the other hand, we have
k* Ad*(x35) = x§ ® x3 £ 0e H**(Eg; Z,) ® H°(H ; Z,) by Theorems 2.4 (ii), 4.1,
42 and Lemma 3.5, because j*x;=x; (i=3,5) (cf. [2, 5 11, 14]), j*xo =
J*Sq*xs = Sq*j*xs = Sq*xs = xo when H = E¢ by Theorems 2.4 (ii), 4.1 (i),
and j*x, =0 when H = F, by [10, Remark 5.6]. This is a contradiction.

Next, when H = SU(3), we have j*x,5 = 0. On the other hand, we have
k* Ad*(x,5) = x3 @ x3 + x3 ® x5 + 0e H*(Eq; Z,) ® H*(H; Z,) by using j*x,
= X3, j¥X5 = X5, j¥*x9g =0 and Lemma 3.4. This is a contradiction. Q.E.D.
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5. E, and its subgroups

Since x;e H(E,; Z,) (i=3,5,9, 17) are primitive (see Theorem 2.4 (i)),
we have

LemMa 5.1. 1*x;=x; in H(E,; Z,) for i=3,5,9, 17.
By (A), Theorem 2.4 (i) and Lemma 5.1, we have

LEMMA 5.2. Ad*(x)=1Q®x; in H(E,; Z,)@ H'(E,; Z,) fori=3,5,9, 17.
By Theorem 2.4 (i), Lemmas 3.2 and 3.4, we have

LeMMA 53. () 1*x;5 = x5 + X2 + x3xy in H*3(E;; Z,),
(i) Ad*(x,5)=1® x5+ X3® X + X2 ® X5 + Xo ® X3 + xs®xZ in H*(E;;
Z,)® H*(E;; Z,).

From Lemma 5.3 (ii)) and Theorem 2.4 (i) we have

LEmMMA 54. Ad*(x35) =0 in H*(E,; Z,) @ H*(E,; Z,).
Further we can show the following four lemmas:

LEMMA 5.5. 1*X,3 = X3 + X3x,7 + x3x5 in H*3(E,; Z,).
Proor. By Theorem 2.4 (i) and Lemma 5.1, we have by setting id = id,
A*(id x 1)* u*(x,3) = 4*({d X )*(x,3 1 + 1 ® X553 + X3 ® X;7 + x5 ® Xs)
=A*(X,3 @1+ 1 ®1*x,3 + X3 ® X147 + X3 ® Xs)
= X3 + 1¥X53 + XX, + X3x5.
By (B), we have 1*x,; = x,3 + x3x,, + x3x5. Q.E.D.

LEMMA 5.6. Ad*(x33) =1 ® X33 + X3 ®@ X7 + X3 @ X5 + X, @ X3 + x5 ®
x5 in H*(E;; Z,) ® H*(E;; Z,).

Proor. By (A), Theorem 2.4 (i), Lemmas 5.1 and 5.5, we have by setting
id = id;,
Ad*(x,3)
— (4 x idy*o*(id x id x 1)* (i x id)* u* (x,3)
= (4 x id)*o*(id x id x 1)*(u X 1d)*(x,3 D 1 + 1 ® X33 + X3 ® X7 + X3 ® X5)
= (4 x id)*o*(id x id x )*{(x33® 1 + 1 ® X3 + X3 ® x17 + X3 ® x5) ® 1
+1®1®x;3+ (@1 +1®x)® X7, + (X3 ® L+ 1® x35) ® x5}
= xid)*e*{x;301R1 +1®x,301 +xI®x,®1 + x3Rxs® 1
+1®1® (X3 + X3X17 + X3%5) + X3 R 1@ X7+ 1 @ X2 ® x4
+x2®1®xs+ 1 ®x3® x5}
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=X3®1 +1® X3 +X3@ X7 + X3®@ X5+ X,3 @1 + x3x,,®1
+x3xs®@1+x3x; @1+ x;, ®x3 + x3xs @1 + x5 ® x3
=1®x33 + X3 ® X7 + X3 ® x5 + X7 ® X3 + x5 ® x3. Q.E.D.
LEMMA 5.7. 1*X,; = X57 + X3X; + x3 in H*'(E;; Z,).
ProOF. By Theorem 2.4 (i) and Lemma 5.1, we have by setting id = id,
A*(id x 1)*u*(x,7) = 4*(d X )*(x,, @ 1 + 1 ®@ X,7 + X2 ® X;7 + X3 ® Xg)
=A%, ® 1 + 1@ 1%x,, + X2 @ X7 + X3 ® Xo)
=Xy + 1*X57 + x2X17 + X3.
By (B), we have 1*x,, = x5, + x2x,, + x3. Q.E.D.

LEMMA 58. Ad*(xy7)=1®X37 + X2 @ X;7 + X3 ® Xg + X1, ® X2 + X, ®
x§ in H*(E;; Z,) ® H*(E;; Z,).

Proor. By (A), Theorem 2.4 (i), Lemmas 5.1 and 5.7, we have by setting
id = idE7

Ad*(x,7)

= (4 x id)*a*(@id x id x 1)*(u x id)* u*(x,-)

= (4 x idy*o*(id x id x 1)*(u x id)*(x3; @1 + 1 ® X5, + X2 ® X;7 + X2 ® Xo)

= (4 x id)*o*(id x id x 1)*{(x2, ® 1 + 1 ® X7 + X2 ® X17 + X3 ® Xo) ® 1

+1@1®x +(x3R1+1QxHR x5+ (X3® 1+ 1 ® x3) ® xo}

(4 xid)*a*{x,, @1 ®1 +1®x,;, ®1 +x2®x,®1 + x3® x, ® 1

+1R®1I® (X7 + X2x17 +x3) + X2 @1 ® X7+ 1 ®Xx2® x4

+x§®1®x9+ 1 ® x3® xo}

=X @1+ 1 ® Xy + X2 @ X7 + X5 ® X+ X, @1+ x3x, @1+ x3® 1
+x2x, @1 + X, X2+ Xx3® 1+ xo ® x3

=1®Xxy7 + X2 ® X157 + X3 ® X + X117 ® X7 + Xo ® X3. Q.E.D.

THEOREM 5.9. Let H be SU(3), G,, Spin(7), Spin(8), Spin(9) or E¢. Then
H c E; of (%) is not homotopy normal in the sense of 2.3, hence also not in
the sense of both McCarty and James.

ProOOF. The homotopy normality of H in E, in the sense of 2.3 would
imply Ad ok ~ jov,, where j: H— E, is a natural inclusion and k =id x j: E,
x H->E; x E,.

First, when H = E;, we have j*x,;, =0 for the natural inclusion
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j:E¢— E; (cf. [10]). On the other hand, we have k* Ad(x,;) = x} ® x,, + x3
®xo + 0e H*(E,; Z,) ® H*(E4; Z,) by Theorems 2.4 (i), 4.1 (i) and Lemma
5.8, because j*x; = x; for i =3, 5,9 and 17 (cf. [14]). This is a contradiction.

Next, in the cases H = Spin(9), Spin(8) and Spin(7), j*x,; = j*Sqéx,s =
Sq®j*x,s hold. We show this is zero. For the case H = Spin(9), one can
write j*x,s = ax;xsx, + bx,se H3(Spin(9); Z,) with a,beZ,. Using the
Cartan formula and Theorem 12.1 (c) of Borel [5], one obtains Sq®(x;x5x,) = 0.
Also Sq®x;s =0 by Borel [5, §12]. Hence j*x,; =0. On the other hand,
we have k* Ad*(x,3) = x2® x5 + x,, ® x3 £+ 0e H*(E,; Z,) ® H*(Spin(9); Z,)
by Theorem 4.2 (i) and Lemma 5.6, because j*x,=1x; for i=3,5 (cf.
[2, 11, 14]), j*xo = j*Sq*xs = Sq*j*xs = Sq*x5 = 0 (cf. [5, §12]) and j*x,, =
0. This is a contradiction. For the case H = Spin(8), one can write j*x,5; =
ax;xsx, + bxyxsx5€ H'3(Spin(8); Z,) with a, be Z,. Since Sq%(x3xsx;) =0
and Sq8(x3x5x5) = 0 hold by the Cartan formula and [5, §12], we have j*x,,
=0. For the case H = Spin(7), one can write j*x,5 = ax;xsx, e H!3(Spin(7);
Z,) with aeZ,. By Sq®(x3xsx;) =0, j*x,; =0 holds. This contradicts
k* Ad*(x,3) + 0e H*(E,; Z,) ® H*(H ; Z,) for H = Spin(7) and Spin(8) by a
similar discussion as in the proof of Spin(9).

The last cases are SU(3) and G,.. For the natural inclusions SU(3) —» G,
— E,, we have j*x,5 = 0 by the degree reason. On the other hand, we have
k* Ad*(x,5) = x2 ® x5 (resp. X2 ® x5 + xo ® x3) £+ 0e H*(E,; Z,) @ H*(H ; Z,)
if H= SU(3) (resp. G,) by Theorems 4.1 (iii), 4.2 and Lemma 5.3 (ii), because
j¥x;=x; for i= 3,5, and j*xy = 0 by the degree reason when H = SU(3) and
by [10, Remark 5.6] when H = G,. This is a contradiction. Q.E.D.

6. Eg and its subgroups

Since x;e H(Eq; Z,) (i = 3, 5,9, 17) are primitive (cf. Theorem 4.1 (i), we
have

LEMMA 6.1. 1*x;=x; in H(E¢; Z,) for i=3,5,9, 17.
By Theorem 4.1 (i), Lemmas 5.3 (i) and 5.5, we have

LEMMA 6.2. 1*x,5= X5+ X3xg in H'3(Eg; Z,) and 1*x,3 = X3 + X3X,4
in H*3(Eg; Z,).
From Theorem 4.1 (i), Lemmas 6.1, 5.3 (ii) and 5.6, we have

Lemma 63. (1) Ad*(x)=1®x; for i=3,5,9,17,
(11) Ad*(x15)= 1®x15+x§®XQ+XQ®x§,
(i) Ad*(xz3) = 1@ X3 + X3 ® Xy7 + X1, ® x3 in H*(Eg; Z,) ® H*(Eg; Z,).

THEOREM 6.4. Let H be G,, Spin(7), Spin(8) or Spin(9). Then H < Eg
of (%) is not homotopy normal in the sense of 2.3, hence also not in the sense
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of both McCarty and James.

Proor. First, we consider the group G,. For the natural inclusion
j: G, > Eg, j*x;5 =0 holds by the degree reason. On the other hand, we
have k* Ad*(x,s) = xo ® x3 + 06 H°(E; Z,) ® H®(G,; Z,) by Theorem 4.1 (iii)
and Lemma 6.3 (ii), because j*x; = x; and j*xy, =0 (see [10, Remark 5.6]).
This is a contradiction.

Next, we consider the groups H = Spin(9), Spin(8) and Spin(7). In these
cases j*x,3 = j*Sq®x,5 = Sq%j*x,s hold. For the case H = Spin(9), one can
write j*x;5 = ax3xsx; + bxis with a, be Z,. Using the Cartan formula and
Theorem 12.1 (c) of [5], one obtains Sq®(x3xsx,) =0. Also Sq®x;s =0 by
Borel [5, §12]. Thus j*x,; =0. On the other hand, we have k* Ad*(x,;) =
X7 ® x3 +0e H(E¢; Z,) ® HS(Spin(9); Z,) by Theorem 4.2 (i) and Lemma
6.3 (iii), because j*x; = x; by [2, 11] and j*x,, =0 by the degree reason.
This is a contradiction. For the case H = Spin(8), one can write j*x,;5 =
ax;xsx,; + bxyxsx; with a, be Z,. Since Sq®(x3x5x,) = 0 and Sq®(x3x5x%) =
0 hold by the Cartan formula and Theorem 12.1 of [5], one obtains
j*¥*x,3=0. For the case H = Spin(7), one can write j*x,s5 = axzxsx; with
acZ,. Since Sq®(x3x5x5) =0, j*x,; = 0 holds. Thus, by the same discussion
as in the case of Spin(9) we have k* Ad*(x,;) ¥+ 06 H*(Eq; Z,) ® H*(H ; Z,) for
H = Spin(7) and Spin(8). Q.E.D.

7. The cases (G, H) = (E,, F,), (Eg, F,), (Eg, SUQ)), (F4, Spin(8)), (F,,
Spin(7)) and (F4, SU(3))

In this section we determine the homotopy normality of the subgroups
of E;(i = 6, 7) which are not determined in Theorems 5.9 and 6.4, by the mod 3
cohomology algebra of the exceptional Lie groups. We also prove the cases
(F4, H) for H = Spin(8), Spin(7) and SU(3).

We recall the following from [1, 5, 12, 13, 19]:

THEOREM 7.1. As an algebra
(i) H*(Eg; Z3) = Z3[xg, x201/(x3, X30)

® A(X3, X7, X155 X109, X275 X355 X395 X47)

where deg x; =i and the generators are related by PBx, = xg, fx,5s = — x3,
Bx1o = Xz0, PBXa7=Xz0Xs, BX3s = —X30X3, BX39 = —X30, PX47 = X30Xs,
Bx; =0 for i=3,8,20; P'x3=x,, P'x,5=¢ex10 withe= %1, P x35 = £x3
withe= 1, 2'x; =0 fori=17,8,19, 20, 27, 39, 47; P3x; = X9, P>Xg = X1,
P3X1s = Xp7, P3Xy7 = — X39, P3X35 = X407, P3x; =0 for i =3, 19, 20, 39, 47;
POx1s = X39, POx; =0 for i+ 15; P’x; = 0 for any other j > 0. The coalgebra
Structure is given by
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o(x) =0 for i=3,78,19,20,

(i(xw) = Xxg ® X7,

B(x37) = X ® X19 + X320 ® X7,

B(X35) = Xg ® Xp7 — X2 ® X109 + X20 ® X1 5 + X30Xg ® X7,

(Z’(xw) = X320 ® X9,

B(x47) = — Xg ® X39 — X30 ® X27 — X20Xg ® X;9 + X30 ® X7.
(ii) H*(Eq; Z3) = Z5[x5]/(x3) ® A(X3, X7, X1, X155 X195 X275 X35)

where deg x; =i and the generators are related by Bx, = xg, fX,5s = — X3,
Bx; =0 for i+7,15; P'x3=1x,, P'x;; =X;5, P'x,5=68x,9 With e = £ 1,
Plx; =0 fori+3, 11,15, P*x;, = —ex,gowithe= £ 1, P*x; =0 for i + 11,
P3Xy = X19, P3Xy5=Xy7, Px;=0 for i+7,15; Pix;=0 for any other
j>0. The coalgebra structure is given by

$(x) =0 for i=3,17,8,19,

P(x) =xs®x;_5 for j=11,1527,

P (x35) = x5 ® X7 — X3 ® X15.
(i) H*(Es; Z3) = Z3[x5]/(x3) ® A(x3, X7, Xg, X115 X155 X17)

where deg x; =i and the generators are related by Px, = xg, fx;5 = — X3,
Bx; =0 for i+7,15; P'x3=x,, P'x;,=x15, P'x;=0 for i+3,11;
Pix; =0 for any other j > 1. The coalgebra structure is given by

d_)(xi) = 0 for l = 3’ 79 8a 97
b(x) =xs®@x;_5 for j=11,1517.
(iv) H*(Fy; Z3) = Z3[x8]/(x§)®/1(x3, X7, X115 X15)

where deg x; =i and the generators are related by Bx, = xg, P'x3= X4,
Wlxll = x,5. The coalgebra structuere is given by
é(x) =0 for i=3,7,8,

d(x)=x3®x;_g for j=11,15.

(v) H*(Gy; Z3) = A(x3, Xyy).
Further we recall the following from [5, 16]:

THEOREM 7.2. As an algebra
(i) H*(Spin(9); Z3) = A(x3, X7, X1, X;5)

where deg x; =i and the generators are related by P'xy = x;, P'x{; = Xy5s-
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(ii) H*(Spin(8); Z3) = A(x3, x5, X1, X7),
(i) H*(Spin(7); Z3) = A(x3, X, X11),
(iv) H*(SU(n); Z3) = A(x3, Xs,...5X25-1)-

By a similar argument as in the mod 2 case, we have
LEMMA 7.3. (1) 1*x,9= — X, in H'’(E;; Z5),

(i) 1*Xx37 = — Xp7 + XgX1o in H*'(E;; Z3).
From Theorem 7.1 (i) and Lemma 7.3, we have

LEMMA 74. Ad*(x,7)=1® X537 + Xg ® X19 — X, ® xg in H¥(E;; Z3)®
H*(E;; Zy).
From these Lemmas, we can prove the following.

THEOREM 7.5. The inclusion F, < E, of () is not homotopy normal in
the sense of 2.3, hence also not in the sense of both McCarty and James.

PrOOF. For the inclusions F, 5 Eq 5 E,, g*x,s = x,5 and f*x,5 = X5
hold (see [1]). Therefore we have j*x,, =j*P3x,5s = f*g*P3 x5 = f*P3g*x, 5
=f*P3x,5 =0, since #3x,5 = 0 in H?7(Eq; Z,) (see Theorem 7.1 (ii) and (iii)).
On the other hand, we have k*Ad*(x,,) = — X10® xg + 0 H*°(E,; Z;) ®
H&(F,; Z,) by Theorem 7.1 (ii), (iv) and Lemma 7.4, because j*xs = x5 (cf. [1])
and j*x,o =j*eP x5 =ef*Pg*x,s =ef*P'x;5=0 for ¢= £ 1, since
P'x,s =0in H'°(E; Z,) (see Theorem 7.1 (ii) and (iii)). This is a contradic-
tion. Q.E.D.

Similarly we obtain

LEMMA 7.6. (i) 1*x;= — x; in H(Eg; Z;) for i =3, 9,
(i) 1*x;3 = —x;1 + Xgx3 in H''(Eg; Z3),
(i) 1*x,, = — X117 + XgXo in H''(Eg; Z5).

From Theorem 7.1 (iii) and Lemma 7.6, we have

LEMMA 7.7. (1) Ad*(x1))=1® x;; + xg ® X3 — x3 ® xg,
(i) Ad*(x;7) = 1@ xy7 + X5 @ X9 — Xo ® Xg in H*(Eq; Z3) @ H*(Eg; Z3).

THEOREM 7.8. The subgroups SU(3) and F, of E¢ in (%) are not homotopy
normal in the sense of 2.3, hence also not in the sense of both McCarty and
James.

Proor. First, we consider the group F,. For the inclusion j: F, — Eq,
j*x,7 = 0 holds by the degree reason. On the other hand, we have k* Ad*(x,)
= —Xxo®xg + 06 H°(Eq; Z;) ® H3(F,; Z5) by Theorem 7.1 (iv) and Lemma
7.7 (ii), because j*xg = x5 by [1, p. 255] and j*x, = 0 by the degree reason.
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This is a contradiction.

Next, we put H=SU(3). For the natural inclusion j: H— E4, j*x;;, =0
holds by the degree reason. On the other hand, we have k* Ad*(x,,) = xg ® X3
+0ecH8(Ey; Z) ® H3(H; Z5) by Theorem 7.2 (iv) and Lemma 7.7 (i), because
j¥x3 = x5 and j*xg =0 (cf. [1, 5]). This is a contradiction. Q.E.D.

Quite similarly we have

LEMMA 7.9. (i) 1*x;= —x; in H(F,; Z3) for i =3, 7,
(i) 1*x;; = — x;1 + Xgx3 in H''(Fy; Z3),
(i) 1*x,5 = — X15 + XgXx, in H(Fy; Z3).

From Theorem 7.1 (iv) and Lemma 7.9, we have

LEMMA 7.10. (1) Ad*(x;;) =1® x;; + xg ® x5 — X3 ® Xg,
(i) Ad*(x15)=1®xy5 + Xg @ X7 — X, @ xg in H*(Fy; Z3) ® H*(Fy; Z3).

THEOREM 7.11.  The subgroups SU(3), Spin(7) and Spin(8) of F, in (*) are
not homotopy-normal in the sense of 2.3, hence also not in the sense of both
McCarty and James.

Proor. First, when H = SU(3), we have j*x,; =0 for the natural
inclusion j: H —» F,. On the other hand, we have k* Ad*(x,;) = xg ® x3 + O€
H%F,; Z;)® H*(H; Z;) by Lemma 7.10 (i), because j*x; = x5 (cf. [5, §21])
and j*xg = j*BP x3 = PP j*x3 = fP x5 =0, since H'(H; Z;) =0. This is
a contradiction.

Next, when H = Spin(7) or Spin(8), we have j*x,5 = 0 for the natural inclusion
j:H—F, by Theorem 7.2 (ii) and (iii). On the other hand, we have
k*Ad*(x,5) = xs®x,+0cH8(F,; Z,))QH(H; Z5) by Lemma 7.10 (ii), because
j*x, = x; by [5] and j*xg = 0 by the degree reason. This is a contradiction.
Q.E.D.

REMARK. If a cohomology algebra H*(G; Z,) is primitively generated as
in the case of the classical group G and its subgroups, we cannot expect to
obtain any informations about the homotopy-normality of the subgroups of
G by the above methods.
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