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1. Introduction

In this article we discuss the existence of nonzero weak solutions of the
boundary value problem

—y div [(V I%I)H Vu] —)f(ou) in Q (L.1)
+ [Vu

u=0 in Q (1.2)

u=0 on 022, (1.3)

where y > 1, Q is a bounded domain in R", Fu denotes the gradient of u
and A is a positive parameter. In the case y = 1, the equation (1.1) is the
mean curvature equation or the capillary surface equation. When n = 1, this
equation describes the equilibrium state of an elastic string yielding an exterior
force f(x,u). We give the derivation of the equation (1.1) for one dimensional
elastic string in Section 2. The parameter A depends on a tension of the
string. The purpose of this paper is to investigate the dependence between
a weak solution u; and parameter A.

It is easy to see that solutions of (1.1), (1.3) correspond to critical points
of the functional

L[u] = L (/1 + [Vul® — 1ydx — 4 L F(x, u)dx (1.4)
defined on the usual Sobolev space Wy *(R2), where
Fx, 1) = L S, €z
Under appropriate growth conditions on F(x, u) we show the existence of a

local minimizer of I, in Section 3. Next we give a proof to obtain an unstable
critical point of I, by using the mountain pass lemma without Palais-Smale
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condition and the monotone operator theory in Section 4. We mention an
example in the case of f(x,u) = qu?~! to illustrate our result in Section 5.

Throughout this paper, we assume that the measure of 2 is equal to 1
without loss of generality. Further, we use a notation y* = ny/(n — y) when
y <n and y* = oo otherwise, repectively.

2. Derivation of the model equation for one dimensional case

In this section we derive the model equation (1.1) for one-dimensional
elastic string. Let us consider an elastic string with length ¢ in the free state.
We assume a constituent law between strain force F and length of extension
& as

F = k(£)é°, 2.1
where o is a positive constant and k(/) is a constant of elasticity. In the
case of ¢ = 1, it is known as Hooke’s law. Now let us consider two strings
with the length /; and ¢, in the free state. Further consider the string
constituted by connecting each one edges of these two strings which are
stretched with length of extension ¢, and &, respectively. Then the forces
yielding to the strings are k(£,)¢] and k(£,)£5 respectively. On the other
hand, since the connected string has the length of extension &, + &,, the force
which works on this string is k(£; + £,)(£, + &,)°. Since the strain force F
is fixed at each point from the law of action and reaction, the equation

F=k(£,)] = k(£2)E5 = k(41 + £2) (&5 + &5)° 22
holds. Namely,

F 1/o F 1/e F 1/o
éF(m) ’ 52:(“/2)) > and 5‘“’:(1«/1%)) - @)

By the equations (2.3), we have the relation

1 1/o 1 1/o 1 1/o
<k_(/—)> ¥ (m) = <—w1 T m) ¢4

for each 7, £, > 0. Now we assume that k(/) is continuous in ¢. Then

1 1o
this relation shows that the function (M) is linear, ie.,

1 1/o
(m) =<

with some constant ¢ > 0. Hence we have
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k(¢) = % (x: constant) . 2.5)

Thus the relation (2.1) reduces to

F= K<§)d . (2.6)

Hence, when the string with length # in the free state is stretched to £ + £,
the potential energy is given by

B & 3 K é a+1
e—L Fdé_o_+1<z> ‘. 2.7

Now consider a deformed string which was occupied in (x, y) = (¢, 0),
0<t</ in the free state. Let us denote by (x(t), y(t)) the displacement
point of the string which is at (¢, 0) in the free state. Then the length of
extension at (¢, t + dt) is given by

dé = Jdx(t)* + dy(t)*> — dt

and, from (2.7), the local potential energy caused by this extension is given by

K dé o+l
dE_—a+1<Zi> dt

Thus the potential energy of this string caused by deformation is given by

¢ K dé o+1
= L o+ 1<E) “
K 4 dx 2 dy 2 o+l
—JHL{ (m) +<E> —1} dr . (2.8)

In case more general nonlinear strain relation F = ¢<§) is considered instead

of (2.6), the potential energy is given by

_ ¢ dx 2 dy 2
- [ o JE (@) -1)a 0

where @(¢) is a primitive function of ¢(t).
If the curve of the deformed string is given by a non-parametrized form
as y =u(x), 0 < x </, then letting x =t in (2.8) we have

3 d 2 o+1
E=E[u]=;% { 1+<‘-§>—1} dx .
0



22 Nobuyoshi FukaGar and Kimiaki NARUKAWA

Hence denoting
¢
f F(x, uydx
0

the potential energy caused by an exterior force, we have the total energy
of the deformed string as

I[u] = a—-,|€-1 J/{ 1+ (j—:)z - l}dﬂdx — J: F(x, u)dx . (2.10)
0

After normalizing a constant and putting y = ¢ + 1, we easily see that the
Euler equation of (2.10) is equal to (1.1).

3. A local minimizer of the functional I,

As is stated in Introduction, we consider the functional

1,[u] =J (/1 + |7ul? — 1)ydx —zf F(x, u)dx
Q Q

defined on the Sobolev space Wy *(Q), where
F(x, u) =J Slx, &)dg .
0

In this section we show the existence of a minimizer in the neighborhood
of the origin of this functional.
At first we put assumptions on f(x, £) as follows:
(A1) f:Q x R— R is continuous,
(A2) f(x,&)>0 on Q x (0, ), f(x,£)=0 on Q x (— o0, 0],
(A3) there exists a constant g with 1 < g < y* and the inequality

fx, 8 <d & +d,

holds on @ x [0, o0) with some positive constants d,, d,.

In the beginning we see that a solution of (1.1) satisfies a weak maximum
principle, and owing to the assumption (A2), weak solutions of (1.1) with (1.3)
are necessarily nonnegative.

THEOREM 3.1. Let the function f(x, &) satisfy the assumptions (Al), (A2),
(A3). If u in W"(Q) satisfies (1.1) weakly, that is, the equality

) J LA IPUE = ) e = f £(x, ugdx 3.1)
o J1+|PupP °

holds for any ¢ € C§, then u(x) > 0 almost everywhere in .
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Proor. From the assumption (A3) and the Sobolev imbedding theorem,
it is easy to see that f(x, u) belongs to W,!'?()* (the adjoint space of Wy 7(£)).
Further the linear functional

¢ — j WPl = O b gax
Q 1+ |Vul?

is continuously extended to the space Wj'7(2). Thus the equality

1+ [Pul? =1yt

yf W+l = U7 Vvdx—-if (x, wyvdx (3.2)
J1+17u?

holds for any v(x) e Wy'*(2). Since f(x,u) >0 in £, the right hand in (3.2)

is nonpositive for any v(x) <0 in Q. Put v(x) = min {u(x),0}. Then v is

nonpositive and belongs to W;"*(R2), since ue Wy '(2). Thus we have

~ 2 _ 1yt
o> | WM =D 5 gy
Jo 1+ |Pul?

[ 1+ [Vul?— 1)yt 1+ |Pu> =1yt
( + [Pul ) Vqudx+f ( + [Vul ) VuVvdx
Jove- 1+ |Ful? oo J1+|Pu?
AL f Wl =0
= v = ’
Jo- 1+ |[Po)? Q 1+ |Po?
where Q7 = {x € Q|u(x) < 0}. Hence Vv =0 almost everywhere in 2. Not-

ing ve W;7(2) and Poincaré’s inequality [v]|L.g) < cl|Pv|Lyq), We see v="0
in . This implies that u > 0 almost everywhere in €.

Now we take weak solutions (1.1) as critical points of the functional I;.
Noting that W'?(Q2) is compactly imbedded in L%(£2) (1 < g < y*), we easily
see that the functional I, is continuously differentiable on W,''?(£2) under the
assumptions (A1), (A2), (A3). Needless to say, a local minimizer u of I, is
a critical point, and hence it satisfies the Euler equation weakly which is
equal to (1.1).

THEOREM 3.2. In addition to the assumptions (A1), (A2), (A3), let us assume
1 <q<2yin (A3) and the following.
(A4) There exists a constant r with 1 <r <2y and the inequality

fx, &) 2 dy & (3.3)

holds on 2 x [0, &) with some constants d3 >0 and &y > 0.
Then there exists a positive constant A* such that, for any 0 < A < A¥,
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there exists a nonnegative, nonzero local minimizer u,. Further
IVusll oy — 0 as A-0.

ProOOF. By Poincaré’s inequality we may adopt the norm

1/y
[l V“”u(m = <J |Vu|”dx>
Q

as the one in W!'?(2). Note the function ¢(X) = (/1 + X%’ — 1)’ is convex,
since

2/y=2

¢"(X) = ﬂ%(r)w(‘ /1 + X2 — 1y {(1 - %) /1+ X% 4 %} >0.

Further, since we assume meas (22) = 1, Jensen’s inequality

f HX(x))dx > ¢< J X(x)dx) (3.4)
Q Q2

holds for any X € L!}(2). Putting X = |Fu|’ in (3.4) leads to the inequality

J /1 + [Pul? — 1ydx > {\/1 + (J |Vu|7dx>2/y - 1}y (3.5)
Q Q

for any ue Wi''(2). From the assumptions (A3) the inequality

j |F(x, wldx < ¢, J (lul + |u|?)dx (3.6)
Q Q

holds. And further the right hand in (3.6) is dominated as

¢ J (lul + |u%dx < c, {(J |Vu|7dx)w + (f |Vu|ydx>q/y}
2 Q Q

with some positive constant ¢, by the Poincaré-Sobolev inequality. Hence
we have

LIul > (/1 + p* = 1) = c,4(p + p) (3.7

on the sphere [[Fullp,q = p. If we take p = p, = A* with a constant o sat-
isfying 0 < « < 1/(2y — 1), then

LIul = (1 + 425 — 1) — ¢, A(A* + A%%) (3.8)

on [[FullLyg = ps. Noting 2ya <a+1<gax+1 from 1 <g<2y and com-
paring the orders of A of the first and second parts of the right hand in (3.8)
as A— 0, we can choose a constant A* > 0 such that the right hand of (3.8)
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is positive for any 0 < 4 < A*. Hence I;[u] > 0 on the sphere |[Fu| Lo = ps
for any 0 < A < A*.
Next let us put

inf Iz[u]—_—ll,

ueB(p,)

where B(p;) = {ue€ Wy "(Q)||VulLxq < ps}. Since the inequality (3.7) holds,
I, # —o0. Let us take a sequence {u,} in B(p,) such that

Lu]l—->1* asn- .

Since [|Fu,ll Ly g < ps, the sequence {u,} is bounded in Wy?(Q). Noting that
Wi(Q) is compactly imbedded in L%(£2) by the assumption 1 < q < y*, we
can find out a subsequence {u, } and u, € W;"?(2) such that u,, — u, weakly
in W"(Q) and strongly in L) as k — oo. Since the norm of Wy ?(Q) is
weakly lower semicontinuous, the inequality

1Vl < iminf [Pu, |10 < ps
k— o0

holds. Thus u; belongs to B(p,;). As is stated formerly, the functional

J (/1 + [Pul? — 1ydx

is convex and continuous on W;'?(2). Hence this functional is weakly lower
semicontinuous on Wj"(22). Here we used the fact that a convex and lower
semicontinuous functional defined on a Banach space is weakly lower semi-
continuous. For the proof see e.g. Dacorogna [9, Theorem 1.2 in Chap.
3]. Thus the inequality

lim ian /1 + |Pu, |2 — 1)dx zj (/1 + [Pu,)? — 1)dx
Q 2

k—o©

holds. Further, since the functional [, F(x, u)dx is continuous on L*(Q), we
have

lim inf {j /1 +|Vu,|* — 1ydx — /'LJ F(x, u,,k)dx}
Q 2

k=

= lim inf J (/1 + [Pu, |2 — 1ydx — 4 lim f F(x, u, )dx
Q Q

k—o© k—

zf /14 |Pu,)? — I)de—/lj F(x, u)dx = L,[u,] .
Q Q

Namely, I,[u;]=1*. Hence this limit function u, is a minimizer of I, in
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B(p;). Next, in order to show that u; is an interior point of B(p,), let us
choose a nonzero function ¢(x) in C3(2)N B(p,) satisfying 0 < ¢(x) < &, in
@, and put u=¢@ in L;[u]. Then from the assumption (A4), we have

L[ep] = L) (/1 + 2 |Vo|* —1)dx — A L) F(x, ep(x))dx

2y
SS—J |V o|*dx — cﬂs'J‘ o(x)dx
2y Q Q

for any 0 < ¢ < 1 with some constant ¢; > 0. Since 1 <r < 2y by the assump-
tion, I,[ep] < 0 holds for sufficiently small ¢ > 0. This implies I* <0, and
hence u, is nonzero. And further, since I,[u] is positive on the boundary
of B(p;) (ie. [[FullLyg = pi) when 0 < 2 < A* as is stated formerly, the mini-
mizer u, is an interior point of the set B(p,). Thus u, is a local minimizer
of I, in W;"(2). Finally, [|[Fu;ll g < ps=A4A*—>0 as A—0.

THEOREM 3.3. If 1 < q <7 instead of the assumption 1 < q <2y in Theo-
rem 3.2, then the results in Theorem 3.2 holds as A* = 0 and u; in Theorem
3.2 is a global minimizer of I,.

Further we assume the following:

(AS) There exists a constant s > 1 which satisfies the inequality

fx,8)>d, & —ds  on Q x (0, ) (3.9)

with some constants d,, ds > 0.
Then, this minimizer u, satisfies

1Pull g = © as J— oo. (3.10)

Proor. The first half in the theorem is clear. We have only to notice
that I,[u] —» oo as ||Vul L, — . Hence we only show that ||[Fu,| 1., — o
as A — oo under the assumption (AS). First let us take ¢ € CP(R22), ¢(x) =0
in Q with Vo[ =1 In the assumption (AS), we may assume s <}y.
Then, using the assumption (AS), and noting the inequality

2
Siapr—1=—P0
J1+p*+1

for pe R", we have
inf {I,[u] | |7t 1y = P}
< Li[pe]

< j [V (pp)'dx — c A J lpplidx + csA f lpeldx
Q Q Q

=p’ —ceAp® + c74p,
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where ¢, and cs are positive constants and

CG=C4J\ o%dx , c7=c5J odx .
Q Q

Hence,

I'= min L[u] < inf (p” — cgdp® + c,4p) .
p>0

ue Wi (Q)
1/(y—s)
CeS
p= (7*) ’

I* < — A=) 4 cg AL (3.11)

y/(y=s)
() )0
Y S
1/(r—s)
Cg = C7 (£> .
Y

On the other hand, from (3.7) the inequality
Ll 2 (/1 +p* = 1) —cyA(p + p%) (3.12)

holds on |[Ful|;, = p. The right hand in (3.12) is monotone decreasing on
the interval (0, (c,A/y)?~1) for each fixed 4 > 0. Let us take a constant a
with 0 < a < 1/(y — 1), then

1/(y—1) =1/(1=a(y—1))
A< (2%) it Ax (C_Z> (=4y).
b Y

If we take

then we have

where

and

Thus, if A > 4,, then the right hand in (3.12) is monotone decreasing on
(0, A*). And hence

L[u]l = (/14 p*> = 1) —c,A(p + p9)
> (V1 + 225 = 1) — (2% + 2™)

holds on |[Vullg = p with 0 < p < A% This shows that
L[u] = (/1 + A% — 1) — c, A(A* + A™9) (3.13)
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holds on the ball B(A*) = {ue Wy "(2)||VullL(q < A*} when A >4, Next
take o > 0 over again so small that 1+ ga < y/(y —s). Then by comparing
the orders of 4 as 4 — oo in the right hands in (3.11) and (3.13), we see that
the inequality

LUl = (J1+ 2% — 1) — ¢, A(A% + 49)
> — o069 4 cslll(y—s)+1

holds on B(4*) for 1 > A; with some large constant 1, greater than 1,. This
shows that u, ¢ B(A%), ie. [[Fu,l o > A* for any 4 > 4,. Hence we have

1V usll g > A% — 00 as A— 0.

4. Existence and asymptotic behavior of the secondary solution

In order to find out the second critical point of I,, we put a further
assumption on f(x, &).
(A6) There exist constants m greater than y and &; >0 such that the
inequality

0

3
J(x, 8¢ > mj f(x, m)dn 4.1)

holds on £ x [£,, o).
Then we have

THEOREM 4.1. Let the assumptions (Al), (A2), (A3), (A6) be satisfied. Fur-
ther, if y <q <y* in (A3), then there exists a postive constant A, such that,
for any 0 <A < 4,, there exists a nonnegative, nonzero critical point v, of
I,. Further, this critical point v, satisfies

||Vl);_||u(g)—>00 as i—PO.

REMARK. The asymptotic behavior [|Fv,| 1, — 0 as 4 — 0 implies that
this solution v, is different from the one obtained in Section 3. In fact we
show the existence of v; by using the mountain pass lemma without Palais-
Smale condition and the monotone operator method. This suggests that v,
is an unstable critical point, while u, obtained in Section 3 is a local minimizer,
i.e. a stable solution.

Prior to giving the proof of Theorem 4.1, recall the Ambrosetti-Rabinowitz
mountain pass lemma without Palais-Smale condition.

LeEMMA 4.1. Let I be a C*-function on a Banach space E. Suppose there
exists a neighborhood U of 0 in E and a constant o which satisfy the following:
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i) I[u] = a on the boundary of U,
i) I[0]<a,
iii) there exists a wy ¢ U satisfying I[wy] < a.
Then, for the constant
u = inf max I[w] (= a), 4.2)
vel wey

where I’ denotes the class of paths joining 0 to w,, there exists a sequence
{w;} in E such that I[u;]—> p and I'[y;] -0 in E*.

The proof of this lemma was given by Aubin and Ekeland [3], which
relies on Ekeland’s minimization principle. The brief proof is given in [5]
by Brezis.

Now we verify that Lemma 4.1 is applicable in our situation, namely
the functional I, on W *(Q) satisfies the hypotheses i), ii), iii).

Let us put
V1 21y
,19=(J_q_l (>0),
c2(p + p)

where ¢, is the constant in the inequality (3.7). Then the inequality (3.7)
implies

4.3)

L[ul = (/1 + p* = 1) — c,A(p + p%)
= c3(4, — A (p + p?)

on |[[Full g =p. Thus, by taking a=c,(4,—A)(p+p? and U=
{ue W ()| |7ullLyq < p}, which are denoted by a, and U, respectively, the
hypothesis i) holds for these o, and U,. Since I,[0] = 0, the hypothesis ii) is
valid if «, >0, ie, 0 <A< 4,. Finally we check the hypothesis iii) for these
constant o, and neighborhood U,. From the inequality (4.1), the inequality
4 6 m
F(x,8) = J f(x, n)dn > F(x, CJ(—)
0 &
holds for ¢ > ¢&,. Since f(x, &) is positive for & > 0, there exist an x, € 2
and a neighborhood D of x, such that the inequality

F(x, &) 2 dol™ — ¢y (4.4)

holds on D x (0, o) with some positive constants cg, Cqq-
Now let us take a nonnegative function ¢ in CZ (L) satisfying ¢(x) > 1
on D. Then, from (4.4) the inequality

F(x, r¢(x)) = cor™d(x)" — c1o (4.5)

holds on U for r > ¢,. Hence
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L[rg] = J /1 +r2|Vg¢|? — 1)dx — lj F(x, r¢)dx
Q 2

SJ (~/1+r2|l7¢|2—1)7dx—1f F(x, r¢)dx
Q D

< ryj |P@|’dx — Acgr™ j omdx + Acqg
Q D

- —0 as r— . (4.6)

Therefore I,[r¢] <0 for large r, and hence we have check d the hypothesis
i), ii), iii) by taking « =, and U = U, in our problem when 0 <4< 4,.
Let 0 <A <4, Then Lemma 4.1 asserts that there exists a sequence
{u;} in W5""(Q) such that I;[u;] — p,;, which is the constant u defined by (4.2)
for the functional I, the neighborhood U = U, and w, = R¢ for sufficently
large R, and I;[u;] -0 in W,7(Q)*. This sequence satisfies the following.

LEMMA 4.2. Let the hypotheses in Theorem 4.1 be satisfied, 0 < A< 4,,
and {u;} be the sequence in Wy"(2) obtained in Lemma 4.1. Namely it satisfies
L[u] > p; and I3[u] >0 in Wy""(Q)*. Then this sequence {u;} is bounded
in Wl(Q).

Proor. The conditions I;[u;]— p; and I;[u;] -0 mean
J (/1 + [Pu* — 1ydx — 4 j F(x, uj)dx = p; + o(1), 4.7)
Q

|:(\/ 1\71|Vu||:7 —|21)v 1 ujjl Hemw=t, @8)
+Vu

and [|{;lwyrox =o0(1) as j— oo. Here we put I[u;] ={; Operating the
equality (4.8) to u; € Wy"(2), we have

ST+ WPu -1yt J )
J \/1 + IVu 12 |Vu |"dx — gf(X, ui)ujdx = <st uj> , (49

where {(;, u;> denotes the action of {;e Wy "(2)* to u;€ Wy""(2). From the
equalities (4.7) and (4.9), we have

A f { f(x, w)u; — yF(x, u;)}dx
Q

— '}’J‘ |:(\/ 1 + IVuj|2 — 1)7—1 qu}-|2dx _( /1 + qujIZ _ 1)7:|dx
Q 1+ [7uyl?

— L& ) + yua + o(1) . (4.10)
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Since the integrand in the right hand in (4.10) is nonnegative, the inequality
A J;J {f 0, w)u; — yF(x, uy)}dx < — <, u> + ypy + o(1) 4.11)

holds. From the assumption (A6), the left hand in (4.10) is estimated as
A J;) {f(x, u)u; — yF(x, u;)}dx > Alm — y) L) F(x,u)dx —c;y  (4.12)

with some constant ¢,;. Combining (4.7), (4.11), (4.12), and noting m —y >0
by the assumption, we have

j (,/1+ll7uj|2—1)7dx=AJ~ F(x, uj)dx + p; + o(1)
Q Q

< LU {f(x, w)u; — yF(x, u;) }dx + cn] + p; + o(1)
m-—ylJe

1

Sm—__y{_<Cj, u;) + yua+ cyg}+ py +o(l)

1
S y{”cj”WA»y(Q)# 17wl gy + VHa + €11} + pa + 0(1)

< eVl gy + €13 -

with some positive constants c¢,, and c,; which are independent on u;. Put-
ting |[Vujll o) = p; and using Jensen’s inequality, we have

/14 p} =1y SJ (/1 + [Pu* — 1)ydx
e
S Crapjt €3

Since y > 1, {p;} is bounded in j, that is, the sequence {u;} is bounded in
Wi 1(Q).

Hence we can find out v € Wy*7(22) and a subsequence of {u;}, still denoted
by {u;}, such that u;— v strongly in L(Q) for any 1<r <y* weakly in
Wy*(2), and almost everywhere.

Put

Li[u] = K[u] — AJ F(x, u)dx ,
Q

where

K[u] =J (/1 + |Pu* — 1)dx .
2
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Then each function u; of the sequence satisfies
K'[u] = I'[u;] + A (x, u;) 4.13)
in the sense of Wy "(2)* and I3[u;] -0 in Wy ’(2)*. Noting the assumption
(A3), we have
foou)— flx,0)  in LY@7D(Q),

and hence in Wy ''(Q)*. By taking the limit j — co in (4.13), the right hand
side converges to Af(x,v) in Wy '(Q)*.

In general it is hopeless to obtain K'[v] = Af(x, v) because of the non-

linearity of K'[v]. But fortunately we can show this in our case owing to
the convexity of K.

LEMMA 4.3. For the limit function v of the sequence {u;} stated above,
the equality K'[v] = Af(x, v) holds in the sense of Wg '(Q)*.

The proof of this lemma is given by using the monotonicity method of
Minty and Browder. See e.g. Lions [13, Chap. 2] and Saaty [19, pp. 58-59].
Let us take A, =sup,,o4,. Then, noting

. [G/1 + 7o) =1t
K'[v] = —y div [( il ) Vv:| ,
1+ [Po?
we easily see that the limit function v given above, which we denote by v,
from now on, is the required solution stated in Theorem 4.1.
Now we show the latter part in Theorem 4.1, namely |Vv,] .o — o0 as

A—0. Recall
_W1+pP =1y

c2(p + p9)

and 4,—0 as p— 0 and oo, respectively, from the assumption y < g. Hence
4, attains its maximum A, at some point p =p,>0. Let us take the
sequence {u;} in Lemma 4.2 which converges to the solution v,. Then, for
any 4 with 0 < 4 < 4, taking p = p, in the definition of «, and noting that
F(x, &) is nonnegative, we have

a,, = (A4 — Ac2(po + p§)
< p; = lim I;[u;]

jow

= lim {J 1+ [Vu*> — 1ydx — lj F(x, uj)dx}

Jj—=oo

< limf W1+ 17wl — 1 l|17u dx . (4.14)

1+|l7u|2

p

j—oo
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Further, from (4.9) and the fact that ||{;llyyq» — 0 as j — oo, the right hand
in (4.14) is equal to

A
— lim J S, wj)u;dx = % J f(x, v;)v,dx . (4.15)
Yj-o Jo YJe

Hence we have, from the assumption (A3),

y
(Ay — Aca(po + p§) < 3 J‘Q Sf(x, v;)v,dx

A
< —{014J‘ |va|%dx + 615}
Y Q

with some positive constants c¢,, and c¢,s. This implies that

o0

j o 4dx > e = AealPo +p8) 15
Q Acyy Cia

as 41— 0. Noting the Poincaré-Sobolev inequality, we complete the proof of
Theorem 4.1.

In Theorem 3.3 we have shown the existence of global minimizer for
any 4> 0 and given the asymptotic behavior of this minimizer as A — o
under the appropriate assumption on f(x, £). Corresponding to this, we can
give the existence and asymptotic behavior of unstable solution for large A
if f(x, &) satisfies a certain behavior on &

THEOREM 4.2. Let the assumptions (Al), (A2) and (A6) be satisfied.
Further let us assume
(A3’) there exist constants p and q with 2y < p < q <y* and the inequality

fx, &) <dg(7 + &07T)

holds on Q x [0, c0) with some constant dg > 0.
Then there exists a nonzero and nonnegative critical point v, for any A > 0.
Besides these assumptions, if (A6) is valid for m > 2y with &, =0, then v,
satisfies

1Vl Loy — 0 as A— 0.
Proor. From the assumption (A3’), the inequality
LIl > (/1 + p* = 1) = ¢164(p" + p?)
holds on |[Fu|l o = p with some constant ¢, > 0. Hence if we put

LWy

T cy6(p” + p9)
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instead of (4.3), then we can find out a critical point v, of I, for any A with
0<A<sup,>o4, The proof is just the same. Noting sup,.o4, = 00, we
see that there exists a critical point for any 4 >0. Next let us take the
function ¢ stated in checking the hypothesis iii) in Lemma 4.1, namely a
nonegative function ¢ € C¥(2) with ¢(x) > 1 on D where F(x, &) satisfies the
inequality (4.4) for any £ > 0. Then we have

L[ré] =J /1 +r2|Pg|* — 1)dx — ij F(x, r¢)dx
Q Q

S(j |V¢|de>r7—lf F(x, r¢)dx
Q Q

= Ar' — AH(), (4.16)

where A = jglV¢|de and H(r) = jg F(x, rg)dx. It is easy to see that H(r) is
continuous in r >0, positive on r >0 and H(0) = 0. Further, as was seen
in (4.5),

H(r) = Br™ — ¢, for r > ¢&,,

where B = ¢, [p ¢(x)"dx > 0. Since m >y, there exists R (> 0) which is inde-
pendent on A such that

Ar' —JH(@r) <0
for A>1 and r > R.
Take the function R¢ as the w, stated in Lemma 4.1 as before, and
consider the straight line from the origin to R¢ among all paths which connect

these two points. Then from Lemma 4.1, (4.16) and the positivity of H(r)
for r > 0,

0 <pu; < max I,[r¢]

0<r<R

< max [Ar’— AH(r)]->0 as A— o0,

0<r<R

where pu,; denotes the yu stated in Lemma 4.1.
Next let {u;} be the sequence stated in Lemma 4.2. Namely,

Liw] - w s
U > v, weakly in Wy'?(2) and strongly in L%(R).

Since I, is weakly lower semicontinuous in W '7(8), the inequality

=1, = f (/1 + [Puy)? — 1ydx — A J F(x, v,)dx 4.17)
Q2 Q
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holds. From the assumption (A6) with &, =0, we have

f F(x, v,)dx < —1— f f(x, v;)v,dx . (4.18)
2 mje

Further, since v, € W5 *(Q2) is a weak solution of (1.1), the equality

'VJ (/1 4+ |Pv,> — 1)1
Q 1+ 7,2
holds. From (4.17), (4.18) and (4.19),

Uy = f (/1 + |Vvy)2 — 1)dx — %J f(x, v;)v,dx
2 Q

j [(,/1+|Vu 7 (V l%l)ﬂ 1|2]dx. (4.20)
A

|Pu,|?dx = 4 f f(x, v;)v,dx (4.19)
Q

Now we put

o(X)=(J1+ X% -1y — (m — 1yt o

m 1+ X

Noting m > 2y, we easily see that

i(l 2y>X2 (m> 2y)

2y m
o(X) ~ .
y1+2 xzran (m = 2y)

as X -0 and
4
(p(X)~(1—E>X as X - o0 .

Further ¢(X) > 0 for X > 0. Thus there exists a monotone increasing convex
function g(X) on [0, o0) such that ¢(X) > g(X)> 0 for X >0 with g(0) =
For example, we may put

eX 2 O<X<1)

X)= )
9% s<2+§>x—e<1+%> (X>1)

with small ¢ > 0. From (4.20) and by using Jensen’s inequality, we have
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My = JQ o(|Vv,|")dx = j g(|Pv,[")dx
Q

> g< J |Vv,1|7dx> >0. (4.21)
Q

Letting A — oo in (4.21) and noting that u; -0 as 41— oo, we see that

g(j IVvllydx>—>O as A — 0.
Q

Since g is monotone increasing and ¢g(0) = 0, we have

J [Pv,)’dx — 0 as 41— .
Q

5. For the case when f(x, u) = qu?™!

To illustrate our result presented in the preceding section, we consider
the boundary value problem

1 2 _ 1yt
—y div [(V +irul — 1) Vu] —Jgu''  in (5.1)
ST+ 7ul?

u=0 in Q (5.2)

u=0 on 092, (5.3)

where 1 < g <y* In this case f(x,u)=qui! and F(x,u) = u, for which
solutions of (5.1), (5.2), (5.3) correspond to critical points of the functional

Il[u]=f (/1 +1Vu12—1)7dx—if uldx (5.4)
Q Q

defined on the Sobolev space Wy7(2), where u, = max {u, 0}. Then assump-
tions (Al), (A2), (A3), (A5) are satisfied. Further assumptions (A4), (A6) and
(A3’) hold for 1 <gq <2y, y<gq and 2y < g < y* respectively.

Thus, it follows that

(i) When 1 < q <7, there exist nontrivial weak solutions {u,}, A > 0, such
that

IWu;ll ey =0 as A-0, (5.5
and

17 ull Ly gy = o0 as A— oo . (5.6)
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(i) When y < q < 2y, there exist nontrivial weak solutions {u,}, 0 < A < A*,
and {v;}, 0 <A< 4,, such that

17usll gy — 0 as A—-0, 5.7)
and
1703l Ly = o as A—-0, (5.8)

respectively.
(iii) When 2y < q < y*, there exist nontrivial weak solutions {v,}, >0,
such that

1Vl Loy = © as A—0, (5.9
and
1703l Ly — O as A— oo . (5.10)

On the other hand, to mention the non-existence of nontrivial solutions
in problem (5.1)—(5.3) for q > 2ny/(n — 2y) and n > 2y, we recall here a general
variational identity obtained by Pucci and Serrin [17] corresponding to critical
points of the functional

I[u] = J‘ F (x, u, Vu)dx (5.11)
Q

ou ou
where x = (xy, ", x,), u=u(xy, ', x,) and Vu= (&:’ ,b—xn
sider integrands & = % (x, u, p), p = (p;, """, p,), which are of class C! on the

domain 2 x R x R", and the vector function

>. We con-

0F 0F
Fpx,u,p) =\ 53—,z (% u 5.12
(05, 1, P) (apl ap)"‘ u, p) (5.12)
is of class C' on 2 x R x R". Critical points of (5.11), which are of class
C?*(Q), satisfy the Euler equation

div {Z,(x, u, Vu)} = F,(x, u, Vu), xeQ, (5.13)
-
where £, = ai
ou
2 ou .
LEMMA 5.1. Let u = u(x) be of class C*(2) and pi=a, i=1, -, n

Then, the following identity holds in Q:
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—div [{(X p) + au}g;p()@ u, p) - x'-a/'—(x9 u, p)]
= nF(x, u, p) + x* F(x, u, p) — (1 + a)p- F,(x, u, p)
— au div {Z,(x, u, p)} — (x* p)(div {Z,(x, u, p)} — Zu(x, u, p)), (5.14)

. ) 0F 0F
where a is an arbitrary constant and F,=\——, "', —|.
0x, 0x,

Proor. It is easy to see that

div {(x* p)Z,(x, u, p)} _Zax {Z p]%g; (x, u, p)}

’u O0F

=p- J(xup)+z ’6x6 - —(x, u, p) + (x-p) div {F,(x, u, )}, (5.15)

. 0 oF
div {u‘g;p(x, u, p)} - Z a—xl {ub?i(x’ u, p)}
= p-Z,(x,u, p) + udiv {Z,(x, u, p)} , (5.16)

) 0
div {x# (x,u, p)} = Z . {x; 7 (x, u, p)}

= nF (x, u, p) + x* F(x, u, p) + (x* p)Z,(x, u, p)
u 0F
i 5.17
+ % x) axlaxj apl (xs u‘} p) > ( )
and, subtracting (5.15) and a times (5.16) from (5.17) implies (5.14).

LEMMA 5.2. Let ue C*2) be a solution of (5.13) with u =0 on 0Q and
a be an arbitrary constant. Let

P(x,p) = p- %,(x,0,p) — F(x,0, p) (5.18)
O(x, u, p) = nF (x, u, p) + x* F.(x, u, p)
— (1 + a)p- F,(x, u, p) — auZ,(x, u, p) (5.19)
then the identity
— f P(x, Vu)(x-v)ds = j O(x, u, Vu)dx (5.20)
o Q

holds, where v is the outer normal vector on 0.

. . 0
Proor. Since u satisfies (5.13) on Q and Vu = a—':v on 0%,
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(x - Pu)(F,(x, u, Pu)-v) = (x - v)(F,(x, u, Vu)- Vu) on 0Q. (5.21)

The identities (5.13), (5.14), (5.21) and the divergence theorem imply

- J (x W {(ZF,(x, u, Pu)-Vu) — F (x, u, Vu)}ds
2Q

=f {nF (x, u, Vu) + x* F,(x, u, Vu)
Q

— (1 + a)Vu- Fy(x, u, Vu) — auZ,(x, u, Vu)}dx . (5.22)
This shows (5.20).

LEMMA 5.3 (Pucci and Serrin [17, Theorem 1]). Assume Q is bounded
and star-shaped with respect to the origin. Suppose also that

P(x,p)>0 for all (x,p)e o2 x R", (5.23)
and that there exists a real number a such that
Q(x,u,p) =0 for all (x,u,p)e 2 x R x R", (5.24)

where P and Q are defined by (5.18) and (5.19), respectively. Assume finally
that either u=0 or p =0 whenever the equality in (5.24) holds. Then the
variational equation (5.13) has no nontrivial solution ue C*(2)NC*(Q) which
vanishes on 09.

Proor. Since x:v>0 on 0Q, (520), (5.23), (5.24) imply Q(x,u,p)=0
and hence u=0 or p=0 in Q. It follows that u=0 in Q.

Now we apply Lemma 5.3 to the problem (5.1)—(5.3). In this case,

Fx,u,p)=(/1+p* = 1) — du?,

for which the relation

1 |p? Ip|?
P i+ pP-1<
2. /1+pP J1+1p)?

implies that

P(-xa P) = p‘,}’_"p(_x, Oa P) - 'g'—(xa 09 p)
2
— (/T 1P = I)H\/%W (ST =1y
> (- D/ =1y >0, (5.25)

and
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Q(x, u, p) = nF (x, u, p) + x - F(x, u, p)

- (1 + a)p ’ %(X, u, P) - au‘%‘(x’ u, P)

=n{(/1 +|p* = 1) — %}

2
~ (1 + (/T ol = 1y —\/1|—I-)l-—l—:|p|2 + Jaqu®

>n—21+ayR/1+Ipl*—1) + Aag — n)ur. (5.26)

Taking a =n/(2y) — 1 the assumption of Lemma 5.3 is satisfied for a >0
and g > n/a. Hence, there exist no nontrivial solutions for n>2y and

q > 2ny/(n — 2y).
We have no result about our problem concerning the existence of solu-
tions in the case y* < q < 2ny/(n — 2y).
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