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1. Introduction

There is little known about the behavior of solutions of the differential

equation of the form

(*) x(n) + p(ί)x(/ι~υ + q(t)xin~2) + H{U x) = 0

where n > 3 is an integer and i f : 9 ϊ + x 9 ΐ - > 9 ΐ i s continuous, decreasing in

its second variable and is such that uH(t, u) < 0 for all u φ 0. Some properties

of solutions of (*) are given by the author in [5] and [6]. In [7] the author

gave two oscillation results for odd order equations with certain condi-

tions on the functions p and q. This paper is a continuation of the study

of differential equation (*). Several results concerning bounded eventually

positive solutions of (*) will be proven. The nonlinear functional which

appear in the first two theorems can become very useful when studying the

oscillatory behavior of solutions of (*). This technique in fact was used in

[7] as well as by Erbe [1], Heidel [2], Kartsatos [3], and Kartsatos &

Kosmala [4].

2. Preliminaries

In what follows 9ί is used to denote the real line and 9l+ the interval

(0, oo). Also, x(ί), t e [ί x, oo) c 9ΐ+, is a solution of (*) if it is n times continu-

ously differentiable and satisfies (*) on [tx, oo). The number tx > 0 depends

on a particular solution x(t) under consideration. We say that a function is

"oscillatory" if it has an unbounded set of zeros. Moreover, a property P

holds "eventually" or "for all large ί" if there exists T > 0 such that P holds

for all t > T. Cn(I) denotes the space of all n times continuously differentiable

functions / : / -> 9t. And we write C(I) instead of C°(/). Throughout this

paper we will assume that p e C 2 [ ί 0 , oo), ^ e C 1 ^ , oo) with
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(1) 2q(t) < p\t)

for t > t0 > 0. From [7] we quote the following lemma.

LEMMA 2.1. If x is an eventually positive solution of (*), then either

x(n~2)(t) < 0 or x{n~2)(t) > 0 for all large t.

3. Main results

THEOREM 3.1. Suppose that n is odd, p{t) < 0, p'(t) < 0, and p"(t) > 0

eventually, and let

F^xiή) = 2x(n-3)(ί)x("~1)(0 + 2p(t)x(n-3)(ήxin-2)(t) - p '(ί)[^ ( w " 3 ) W] 2

- Lχin~2)(t)¥.

// x(t) is a bounded and eventually positive solution of (*), then either

(a) x ("-2 )(0 < 0, or

(b) x^-^it) < 0 and F^xiή) > 0 eventually.

PROOF. Suppose that all the assumptions on functions p and q are

satisfied for all t>to>0, and that x(t) > 0 is a bounded solution of (*)

for t > t0. By Lemma 2.1, there exists tx > t0 such that x(n~2)(t) < 0 or

x ( " " 2 ) ( ί ) > 0 for all t>t1. If x(n~2)(t) < 0, then there is nothing to prove.

Therefore, we assume that x(n~2\t) > 0 and consider three cases.

Case 1. Suppose that x(n~υ(ί) > 0. This gives a contradiction due to

the boundedness of x.

Case 2. Suppose that x ( π " υ ( ί 2 ) = 0 for some t2>t1. Then, from (•) we

have

x(n)(t2) = -q(t2)xin-2\t2) - H(t29 x{t2)) > 0 .

Thus, x(n~1]{t) is increasing at any ί2, t2>tl9 for which it is zero. Therefore,

x{n~1}(t) cannot have any zeros larger than ί2. This takes us to the final case.

Case 3. Suppose that x ( n" υ(ί) < 0 for t > t3 > tλ. Since x(ί) is bounded

and positive and n is odd, there exist ί4 > t3 such that x(π~3)(ί) < 0 and

x'(t) > 0 for all t > ί4. Now we consider the nonlinear functional F^xiή) as

defined in the statement of this theorem. We will prove that F1(x(t))>0

eventually by assuming to the contrary. So, let t5 > ί4 be such that

Fi(x(t5)) < 0. Note that if t5 like this does not exist, there is nothing to

prove. So now, we drop the last two terms in the equation (*) to obtain

xin)(ή > -

Therefore, using this inequality when differentiating F^xζt)) we obtain
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— Fx(x(t)) = 2x (""3 )(ί)[x (" )(0] + 2xin-2){t)xi"-1)(t)
at

+ 2p(t) [x ( M~2 )(ί)]2 +

- p"(ί)[x ("~3 )(ί)]2 -

< 2p(ί)[x (-"2 )(ί)]2 - p"

< for all t>t5.

Thus, Fi(x(ί)) < 0 for all ί > ί5. But now, since p(t) < 0, p'{t) < 0 and Fx is

decreasing we have that

-[x<"- 2 ) (ί)] 2 < Fdxit)) < FMu)) < 0

for t > tβ> t5. So, in view of this and the fact that x(π 2)(ί) is decreasing

and positive, there exists m > 0 such that lim x{n~2)(t) = m > 0. This implies
r->-oo

that x{n~3)(t) tends to +00 as t goes to +00, which is a contradiction. Hence,

F^xiή) > 0 for all t > tΊ > ί4.

THEOREM 3.2. Suppose that n is odd, p(t) > 0, q(t) < 0, and p{t)q(t) +

q'{t) > 0, eventually, and let

F2(x(ή) = exp p(s)ds [2x("-3)(ί)x(/I~1)(ί) - [x ( M" 2 )(ί)] 2 -

for some t0 > 0. // x(t) is a bounded and eventually positive solution of (*),

then either

(a) x ( n"2 )(i) < 0, or

(b) x(n-1](t) < 0 and F2(x(ή) > 0 eventually.

PROOF. Suppose that all the assumptions on functions p and q are

satisfied and that x(ί) > 0 is a bounded solution of (*) for t > tx > t0. Also,

there exists t2 > t1 such that x (w"2)(ί) < 0 or x(Λ~2)(ί) > 0 for all t > t2. If

x("~2)(ί) < 0, then there is nothing to prove. Therefore, we assume that

x("~2)(ή > 0 and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that x ( n " υ (ί) < 0 for t > t3 > t2. Since x(ί) is bounded

and positive and n is odd, by Lemma 2.1 there exists ί4 > ί3 such that

x(""3)(ί) < 0 and x'(t) > 0 for all t > ί4. Now we consider the nonlinear func-

tional F2(x(ή) as defined in the statement of this theorem. We will prove

that F2(x(ή) > 0 eventually by assuming to the contrary. So, let t5 > ί4 be

such that F2(x(t5)) < 0. Again, we drop the last two terms in the equation

(*) to obtain x(M)(ί) > — p(ί)x(w~υ(ί). Therefore, using this inequality when

differentiating F2(x(ί)) on [ί 5 , 00) we obtain



14 Witold A. J. KOSMALA

ίtFΛm Γ P Ί
= exp p(s)ds [2x("-3)(ί)x(n)(ί)

p(ί) exp

L
p(s)ds

Jt5 J

Γexp Γ

< 0 for all t > t5,

where K = exp \t

t

5

op(s)ds. Thus, F2(x(t)) < 0 for all t > t5. Also,

: F2(x(ή) < F2(x(t6)) < 0

for t > t6> t5. So, in view of this and the fact that x(n~2)(t) is decreasing

and positive, there exists m > 0 such that lim xin~2)(t) = m > 0. This implies

that lim x(n~3)(t) = +oo, which is a contradiction. Hence, F2(x(ή) > 0 for all

t>tΊ> ί4.

REMARK 3.3. Functions p(t) = -^ and q(t) = —3- satisfy all the conditions

in Theorem 3.2.

REMARK 3.4. Suppose that in Theorem 3.2 we further assume that

J00H(t, k)dt = -co for any positive constant k. Then, if x(ή is a bounded

and eventually positive solution of (*), then x(n~2)(t) < 0.

PROOF. Suppose that all the assumptions on functions p and q are

satisfied and that x(t) > 0 is a bounded solution of (*) for t > t0 > 0. By

Lemma 2.1, there exists tx > t0 such that x{n~2\t) < 0 or xin~2)(t) > 0 for all

t>tί. If x(n~2)(t) < 0, then there is nothing to prove. Therefore, we assume

that x(n~2)(t) > 0 and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that x ( M"υ(ί) < 0 for t>t3>tx. Observe that the

differential equation (*) can be written as
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{x' -»<ί) exp Γ f' PM&IJ' + q{l)x'-"(t) exp Γ f' p<s)<fel

+ H(t, x(ί)) exp

Dropping the second term we get

^(0 exp p(s)ds 1 + Hit, x(ί)) exp p(s)ds > 0 .

Since x'(t) > 0 we have 0 < k = x(ί3) < x(t) for all t > ί3, and the above line

can be rewritten as

x{n~ι\t) exp Γ Γ p(s)ds| 1 + H(t, k) exp M ' p{s)ds\ > 0 .

Integrating this inequality from ί3 to ί, t > ί3, we get

— xtπ ^(ίjexp p(s)αs < —x( '(ί3) H- iί(s,/c) exp I p(u)du
LJt3 J Jt3 L \Jί3

Due to the integral condition on H, the right hand side tends to — oo, and

thus, so does the left-hand side. Therefore, lim x ( n - 1 )(ί) = + oo, which con-

tradicts the fact that x ( π" υ(ί) < 0. Hence, xin~2)(t) > 0 eventually prevents

x*""1^) from existing. This proves Remark 3.4.

THEOREM 3.5. Suppose that n is odd, p(t) < 0, q(t) < 0, and

(3) q(t) < p'(t)

eventually, and suppose that

r H(t, k)dt = - oo

for any positive constant k. If x(t) is a bounded and eventually positive solution

of (*), then x(n~2)(t) < 0 eventually.

Note that condition (3) implies condition (1) but condition (3) is not

implied by condition (1). For example, two eventually nonpositive functions

- 2 - 3
p and q with p'(t) = and q(t) = —— satisfy condition (1) but not condition

(3).

PROOF. Suppose that all the assumptions on functions p and q are

satisfied and that x(t) > 0 is a bounded solution of (*) for t > t0. By Lemma
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2.1, there exists tι > t0 such that x(n~2)(ή < 0 or x{n~2){t) > 0 for all t > tx.

If xin~2)(t) < 0, then there is nothing to prove. Therefore, we assume that

x{n~2)(t) > 0 and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that xί"~1)(ί) < 0 for t>t3>tί. Since n is odd,

xf{t) > 0 for all t > ί4 > ί3 and so k = x(t4) < x(t) for all t > t4. Now we

integrate (*) from ί4 to ί, t > ί4, to get

x ( "" υ (0 + p(t)x(n-2)(t) = x*"- 1 ^) + p(U)xin~2)(u)

- ί' H(s, x(s))ds
Jί4

f
Jί4

Jί4

where M is a constant and f(t) is the first integral in the above expression. If

z(ή = x{n~2)(t\ then z satisfies a first-order linear differential equation and

thus can be written as

z(t) = exp [ - £ p(s)ds^ |z(ί4) + £ |̂ exp J ' p(r)</sj

Since f(t) > 0 and x(ί) > k > 0, the above equality can be written as

Γ T I V M Γ Γs Ί
z ( ί ) > e x p I — p(r)dr M M — H(r, k)dr ds .

Jί4 L \ Js / J L Jί4 J
Due to the integral assumption on H, there exists s0 e 91+ such that

H(ί, k)dί < M - 1 .

Jr4

Therefore,

z(ί) > J Γ exp ( - j ' p(r)drj] [Af - (M -

= expί - p(r)ίίr jds
Jt4 \ Js J

> Ids = t — ί4-^+oo as ί-^+oo
J
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Thus, lim xin~2){t) = + oo which contradicts the fact that x(t) is bounded.
ί->oo

Hence, xin~2)(ή < 0 eventually.
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