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1. Introduction

There is little known about the behavior of solutions of the differential
equation of the form

(*) x™ + p(e)x" ™V + q()x""? + H(t,x) =0

where n >3 is an integer and H:R* x R - R is continuous, decreasing in
its second variable and is such that uH(t, u) < 0 for all u % 0. Some properties
of solutions of () are given by the author in [5] and [6]. In [7] the author
gave two oscillation results for odd order equations with certain condi-
tions on the functions p and q. This paper is a continuation of the study
of differential equation (*). Several results concerning bounded eventually
positive solutions of (¥) will be proven. The nonlinear functionals which
appear in the first two theorems can become very useful when studying the
oscillatory behavior of solutions of (x). This technique in fact was used in
[7] as well as by Erbe [1], Heidel [2], Kartsatos [3], and Kartsatos &
Kosmala [4].

2. Preliminaries

In what follows R is used to denote the real line and R* the interval
0, ). Also, x(t), t € [t,, 0) = R*, is a solution of (x) if it is n times continu-
ously differentiable and satisfies (*) on [t,, c0). The number ¢, > 0 depends
on a particular solution x(f) under consideration. We say that a function is
“oscillatory” if it has an unbounded set of zeros. Moreover, a property P
holds “eventually” or “for all large t” if there exists T > 0 such that P holds
for all t > T. C"(I) denotes the space of all n times continuously differentiable
functions f:I1—R. And we write C(I) instead of C°(I). Throughout this
paper we will assume that p e C2[t,, ), q € C'[t,, c0) with
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(1) 29(t) < p'()
for t >ty >0. From [7] we quote the following lemma.

LemMma 2.1. If x is an eventually positive solution of (x), then either
x® () <0 or xX"(t)>0 for all large t.

3. Main results

THEOREM 3.1. Suppose that n is odd, p(t) <0, p'(t) <0, and p"(t)=>0
eventually, and let

Fy (x(0)) = 2x"9(0x"D(0) + 2p(0x"2(0x"2() — p' () [x" IO’
— X" 21

If x(t) is a bounded and eventually positive solution of (%), then either
(a x"2)<0, or
(b) x" V() <0 and F,(x(t)) >0 eventually.

ProoF. Suppose that all the assumptions on functions p and g are
satisfied for all t >t, >0, and that x(t) >0 is a bounded solution of (x)
for t >t,. By Lemma 2.1, there exists t; >t, such that x" 2(t)<0 or
x" () >0 for all t>t,. If x" ?(t) <0, then there is nothing to prove.
Therefore, we assume that x®" 2 (t) > 0 and consider three cases.

Case 1. Suppose that x"!(t) > 0. This gives a contradiction due to
the boundedness of x.

Case 2. Suppose that x" 1(t,) = 0 for some t, >t,. Then, from () we
have

x(ty) = —q(t)x""2(t,) — H(t,, x(t5)) > 0.

Thus, x®~1)(t) is increasing at any t,, t, > t;, for which it is zero. Therefore,
x"~1(¢) cannot have any zeros larger than t,. This takes us to the final case.
Case 3. Suppose that x"™(t) <0 for t > t3 >t,. Since x(t) is bounded
and positive and n is odd, there exist t, >t; such that x" 3 (t) <0 and
x'(t) >0 for all t >¢t,. Now we consider the nonlinear functional F,(x(t)) as
defined in the statement of this theorem. We will prove that F,(x(¢)) >0
eventually by assuming to the contrary. So, let ts>1t, be such that
F(x(t5)) < 0. Note that if t5 like this does not exist, there is nothing to
prove. So now, we drop the last two terms in the equation () to obtain

xM(t) > —p()x" V(1) .

Therefore, using this inequality when differentiating F,(x(t)) we obtain
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©F(x(0) = 26O L] + 26 (060 + 20005 0x )

+ 2p() X" DO + 29 (X" IOX () — 29 OX"IOX" ()
— PO IX"VOT — 2x" D ()x"(0)
< 2pO X" - p" () [x" VO]’

<for all t>1t5.

Thus, F;(x(t)) <O for all t > ts. But now, since p(t) <0, p'(t) <0 and F; is
decreasing we have that

—[x""2(1)]* < Fy(x(t)) < Fy(x(tg)) < 0

for t > tg >ts. So, in view of this and the fact that x® 2(t) is decreasing
and positive, there exists m > 0 such that lim x"~2(t) = m > 0. This implies

t—oo
that x~3)(t) tends to + oo as t goes to + co, which is a contradiction. Hence,
Fi(x(t)) >0 for all t >t; >t,.

THEOREM 3.2. Suppose that n is odd, p(t) >0, q(t) <0, and p(t)q(t) +
q'(t) = 0, eventually, and let

t

Fy(x(t) = [exp f P(S)dSJ [2x" () x" () — [x" ()] — q() [x">(®)]*] .
to

for some to>0. If x(t) is a bounded and eventually positive solution of (%),

then either

(@ x" 1) <0, or

(b) x"V(t) <0 and F,(x(t)) > 0 eventually.

ProOOF. Suppose that all the assumptions on functions p and g are
satisfied and that x(f) > 0 is a bounded solution of (*) for t > ¢, >t,. Also,
there exists t, >t, such that x" 2() <0 or x®* 2(t)>0 for all t>1¢,. If
x""2(t) <0, then there is nothing to prove. Therefore, we assume that
x"~2(t) > 0 and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that x" () <0 for t > t; > t,. Since x(t) is bounded
and positive and n is odd, by Lemma 2.1 there exists t, > t; such that
x"3(t) <0 and x'(t) >0 for all t >t,. Now we consider the nonlinear func-
tional F,(x(t)) as defined in the statement of this theorem. We will prove
that F,(x(t)) > 0 eventually by assuming to the contrary. So, let t5 >t, be
such that F,(x(ts)) <0. Again, we drop the last two terms in the equation
(*) to obtain x™(t) > —p(t)x" 1 (t). Therefore, using this inequality when
differentiating F,(x(t)) on [ts, c0) we obtain
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d

EEFZ(x(t)) ‘
—x = I:exp J p(s)ds] [2x™=3(6)x™(2) + 2x"~2(t)x"~1)(¢)

5

= 2xO72()x"0 () = 29()x "V (O)x"2 () — ' () [x" 2 (0)]17]

+p() [exp jt P(S)dS] [2x03)()x" 1 (z)

5

= [x"2017 — 9 [x"V(©1*]

< [eXp f t p(S)dS] [—a@®)x"" D (Ox""2() — p(t) [x""2(1)]?

5

— (p(t)q(t) + ¢'(®) [x">(9)]*]
<0 for all t >1t,,

where K = exp [isp(s)ds. Thus, F,(x(t)) <0 for all t >t5. Also,

— [x®=2(5)]? [exp J' p(s)ds:| < F(x(1)) < Fy(x(t6)) <0

0

for t >tg > ts. So, in view of this and the fact that x"?)(t) is decreasing
and positive, there exists m > 0 such that lim x®""?(tf) = m > 0. This implies
t—o0
that lim x"~3(f) = + oo, which is a contradiction. Hence, F,(x(t)) > 0 for all
t— o0

t>t;>t,.

| =

REMARK 3.3. Functions p(t) = — and q(t) = e satisfy all the conditions

N

t
in Theorem 3.2.

REMARK 3.4. Suppose that in Theorem 3.2 we further assume that
[*H(t, k)dt = —oo for any positive constant k. Then, if x(f) is a bounded
and eventually positive solution of (), then x" 2)(t) < 0.

ProofF. Suppose that all the assumptions on functions p and g are
satisfied and that x(tf) > 0 is a bounded solution of (x) for t >t,>0. By
Lemma 2.1, there exists t; > t, such that x"?(t) <0 or x" 2(t) > 0 for all
t>t,. If X" 2(t) <0, then there is nothing to prove. Therefore, we assume
that x"~2(t) > 0 and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that x" V() <0 for t>ty>t;. Observe that the
differential equation () can be written as
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{x‘”'“(t) exp [ft P(S)ds]}, + q(t)x"~ (1) exp [Jt P(S)ds]

t

+ H{(t, x(t)) exp I:J p(s)ds:| =0.

t3

Dropping the second term we get

{x‘"'“(t) exp [jt p(s)ds]}, + H(t, x(1)) exp [Jt P(s)ds:l >0.

Since x'(t) > 0 we have 0 < k = x(t3) < x(t) for all t > t;, and the above line
can be rewritten as

{x"“”(t) exp U‘t p(s)ds]}, + H(t, k) exp [Jt p(s)ds:| >0.

Integrating this inequality from ¢ to t, t > t;, we get

—x""(¢) exp [J‘t p(s)dsjl < —x"U(t5) + ft |:H(s, k) exp <r p(u)du)] ds.

Due to the integral condition on H, the right hand side tends to — oo, and
thus, so does the left-hand side. Therefore, lim x® (t) = + oo, which con-

t—o0
tradicts the fact that x® 1(t) <0. Hence, x" 2 (t) > 0 eventually prevents
x"“(¢) from existing. This proves Remark 3.4.

THEOREM 3.5. Suppose that n is odd, p(t) <0, q(t) <0, and
3) q(t) < p'(t)

eventually, and suppose that
J H(t, k)dt = —
for any positive constant k. If x(t) is a bounded and eventually positive solution

of (x), then x"~2(t) <0 eventually.

Note that condition (3) implies condition (1) but condition (3) is not
implied by condition (1). For example, two eventually nonpositive functions

-2 -3 .
p and q with p'(t) = e and q(t) = B satisfy condition (1) but not condition

A).

ProoF. Suppose that all the assumptions on functions p and g are
satisfied and that x(f) > 0 is a bounded solution of (x) for t > t,. By Lemma
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2.1, there exists t; >t, such that x" 2(t) <0 or x® 2(t) >0 for all t>t,.
If x""2)(t) <0, then there is nothing to prove. Therefore, we assume that
x"~2(t) > 0 and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that x" 1) <0 for t>ty;>t,. Since n is odd,
x'(t)>0 for all t>1t,>1t; and so k= x(t,) < x(t) for all t >t,. Now we
integrate () from ¢, to t, t > t,, to get

XO70() + p(Ox2(e) = x"TV(ty) + pla)x" T2ty

n j [p/(5) — q(9)1x"(s)ds — f " His, x(s))ds

4 4

t

=M + f(t) —J H(s, x(s))ds ,

ty

where M is a constant and f(t) is the first integral in the above expression. If
z(t) = x"~2(t), then z satisfies a first-order linear differential equation and
thus can be written as

z(t) = exp [—Jt p(s)ds:l {z(t4) + J’ [exp r p(r)ds:l

'l:M + f(s) — r H(r, x(r))dr:| ds} .

4

Since f(t) > 0 and x(t) > k > 0, the above equality can be written as

z(t) = Jr [exp (—ft p(r)dr)] [M — js H(r, k)dr] ds .

Due to the integral assumption on H, there exists s, € R* such that
J H(t, kdt<M—1.
ta

Therefore,

z(t) > A [exp <—ftp(r)dr>] [M— (M —1)]ds

Jig

ft t
= | exp ( - J p(r)dr) ds
Jig s

ft
>| lds=t—t,—> 4+ as t—> +0.

Jig
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Thus, lim x®"~2(t) = + o0 which contradicts the fact that x(f) is bounded.

t— o

Hence, x"~?(t) < 0 eventually.
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