Behavior of bounded positive solutions of higher order differential equations

Witold A. J. Kosmala* (Received July 15, 1993)

1. Introduction

There is little known about the behavior of solutions of the differential equation of the form

(*)
$$x^{(n)} + p(t)x^{(n-1)} + q(t)x^{(n-2)} + H(t, x) = 0$$

where $n \ge 3$ is an integer and $H: \Re^+ \times \Re \to \Re$ is continuous, decreasing in its second variable and is such that uH(t, u) < 0 for all $u \ne 0$. Some properties of solutions of (*) are given by the author in [5] and [6]. In [7] the author gave two oscillation results for odd order equations with certain conditions on the functions p and q. This paper is a continuation of the study of differential equation (*). Several results concerning bounded eventually positive solutions of (*) will be proven. The nonlinear functionals which appear in the first two theorems can become very useful when studying the oscillatory behavior of solutions of (*). This technique in fact was used in [7] as well as by Erbe [1], Heidel [2], Kartsatos [3], and Kartsatos & Kosmala [4].

2. Preliminaries

In what follows \Re is used to denote the real line and \Re^+ the interval $(0, \infty)$. Also, x(t), $t \in [t_x, \infty) \subset \Re^+$, is a solution of (*) if it is n times continuously differentiable and satisfies (*) on $[t_x, \infty)$. The number $t_x > 0$ depends on a particular solution x(t) under consideration. We say that a function is "oscillatory" if it has an unbounded set of zeros. Moreover, a property P holds "eventually" or "for all large t" if there exists T > 0 such that P holds for all $t \ge T$. $C^n(I)$ denotes the space of all n times continuously differentiable functions $f: I \to \Re$. And we write C(I) instead of $C^0(I)$. Throughout this paper we will assume that $p \in C^2[t_0, \infty)$, $q \in C^1[t_0, \infty)$ with

^{*} Paper written during author's sabbatical at the University of Saskatchewan, Saskatoon, Canada, S7N 0W0.

$$(1) 2q(t) \le p'(t)$$

for $t \ge t_0 > 0$. From [7] we quote the following lemma.

LEMMA 2.1. If x is an eventually positive solution of (*), then either $x^{(n-2)}(t) \le 0$ or $x^{(n-2)}(t) > 0$ for all large t.

3. Main results

THEOREM 3.1. Suppose that n is odd, $p(t) \le 0$, $p'(t) \le 0$, and $p''(t) \ge 0$ eventually, and let

$$F_1(x(t)) = 2x^{(n-3)}(t)x^{(n-1)}(t) + 2p(t)x^{(n-3)}(t)x^{(n-2)}(t) - p'(t)[x^{(n-3)}(t)]^2 - [x^{(n-2)}(t)]^2.$$

If x(t) is a bounded and eventually positive solution of (*), then either

- (a) $x^{(n-2)}(t) \leq 0$, or
- (b) $x^{(n-1)}(t) < 0$ and $F_1(x(t)) > 0$ eventually.

PROOF. Suppose that all the assumptions on functions p and q are satisfied for all $t \ge t_0 \ge 0$, and that x(t) > 0 is a bounded solution of (*) for $t \ge t_0$. By Lemma 2.1, there exists $t_1 \ge t_0$ such that $x^{(n-2)}(t) \le 0$ or $x^{(n-2)}(t) > 0$ for all $t \ge t_1$. If $x^{(n-2)}(t) \le 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t) > 0$ and consider three cases.

Case 1. Suppose that $x^{(n-1)}(t) > 0$. This gives a contradiction due to the boundedness of x.

Case 2. Suppose that $x^{(n-1)}(t_2) = 0$ for some $t_2 \ge t_1$. Then, from (*) we have

$$x^{(n)}(t_2) = -q(t_2)x^{(n-2)}(t_2) - H(t_2, x(t_2)) > 0.$$

Thus, $x^{(n-1)}(t)$ is increasing at any t_2 , $t_2 \ge t_1$, for which it is zero. Therefore, $x^{(n-1)}(t)$ cannot have any zeros larger than t_2 . This takes us to the final case.

Case 3. Suppose that $x^{(n-1)}(t) < 0$ for $t \ge t_3 \ge t_1$. Since x(t) is bounded and positive and n is odd, there exist $t_4 \ge t_3$ such that $x^{(n-3)}(t) < 0$ and x'(t) > 0 for all $t \ge t_4$. Now we consider the nonlinear functional $F_1(x(t))$ as defined in the statement of this theorem. We will prove that $F_1(x(t)) > 0$ eventually by assuming to the contrary. So, let $t_5 \ge t_4$ be such that $F_1(x(t_5)) \le 0$. Note that if t_5 like this does not exist, there is nothing to prove. So now, we drop the last two terms in the equation (*) to obtain

$$x^{(n)}(t) > -p(t)x^{(n-1)}(t)$$
.

Therefore, using this inequality when differentiating $F_1(x(t))$ we obtain

$$\begin{split} \frac{d}{dt} F_1(x(t)) &= 2x^{(n-3)}(t) \big[x^{(n)}(t) \big] + 2x^{(n-2)}(t) x^{(n-1)}(t) + 2p(t) x^{(n-3)}(t) x^{(n-1)}(t) \\ &+ 2p(t) \big[x^{(n-2)}(t) \big]^2 + 2p'(t) x^{(n-3)}(t) x^{(n-2)}(t) - 2p'(t) x^{(n-3)}(t) x^{(n-2)}(t) \\ &- p''(t) \big[x^{(n-3)}(t) \big]^2 - 2x^{(n-2)}(t) x^{(n-1)}(t) \\ &< 2p(t) \big[x^{(n-2)}(t) \big]^2 - p''(t) \big[x^{(n-3)}(t) \big]^2 \\ &\leq \text{for all } t \geq t_5 \,. \end{split}$$

Thus, $F_1(x(t)) < 0$ for all $t > t_5$. But now, since $p(t) \le 0$, $p'(t) \le 0$ and F_1 is decreasing we have that

$$-\lceil x^{(n-2)}(t)\rceil^2 < F_1(x(t)) \le F_1(x(t_6)) < 0$$

for $t \ge t_6 \ge t_5$. So, in view of this and the fact that $x^{(n-2)}(t)$ is decreasing and positive, there exists m > 0 such that $\lim_{t \to \infty} x^{(n-2)}(t) = m > 0$. This implies that $x^{(n-3)}(t)$ tends to $+\infty$ as t goes to $+\infty$, which is a contradiction. Hence, $F_1(x(t)) > 0$ for all $t \ge t_7 \ge t_4$.

THEOREM 3.2. Suppose that n is odd, $p(t) \ge 0$, $q(t) \le 0$, and $p(t)q(t) + q'(t) \ge 0$, eventually, and let

$$F_2(x(t)) = \left[\exp \int_{t_0}^t p(s)ds \right] \left[2x^{(n-3)}(t)x^{(n-1)}(t) - \left[x^{(n-2)}(t) \right]^2 - q(t) \left[x^{(n-3)}(t) \right]^2 \right].$$

for some $t_0 > 0$. If x(t) is a bounded and eventually positive solution of (*), then either

- (a) $x^{(n-2)}(t) \leq 0$, or
- (b) $x^{(n-1)}(t) < 0$ and $F_2(x(t)) > 0$ eventually.

PROOF. Suppose that all the assumptions on functions p and q are satisfied and that x(t) > 0 is a bounded solution of (*) for $t \ge t_1 \ge t_0$. Also, there exists $t_2 \ge t_1$ such that $x^{(n-2)}(t) \le 0$ or $x^{(n-2)}(t) > 0$ for all $t \ge t_2$. If $x^{(n-2)}(t) \le 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t) > 0$ and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that $x^{(n-1)}(t) < 0$ for $t \ge t_3 \ge t_2$. Since x(t) is bounded and positive and n is odd, by Lemma 2.1 there exists $t_4 \ge t_3$ such that $x^{(n-3)}(t) < 0$ and x'(t) > 0 for all $t \ge t_4$. Now we consider the nonlinear functional $F_2(x(t))$ as defined in the statement of this theorem. We will prove that $F_2(x(t)) > 0$ eventually by assuming to the contrary. So, let $t_5 \ge t_4$ be such that $F_2(x(t_5)) \le 0$. Again, we drop the last two terms in the equation (*) to obtain $x^{(n)}(t) > -p(t)x^{(n-1)}(t)$. Therefore, using this inequality when differentiating $F_2(x(t))$ on $[t_5, \infty)$ we obtain

$$\frac{d}{dt}F_{2}(x(t)) = \left[\exp \int_{t_{5}}^{t} p(s)ds\right] \left[2x^{(n-3)}(t)x^{(n)}(t) + 2x^{(n-2)}(t)x^{(n-1)}(t) - 2x^{(n-2)}(t)x^{(n-1)}(t) - 2q(t)x^{(n-3)}(t)x^{(n-2)}(t) - q'(t)\left[x^{(n-3)}(t)\right]^{2}\right] + p(t) \left[\exp \int_{t_{5}}^{t} p(s)ds\right] \left[2x^{(n-3)}(t)x^{(n-1)}(t) - \left[x^{(n-2)}(t)\right]^{2} - q(t)\left[x^{(n-3)}(t)\right]^{2}\right] < \left[\exp \int_{t_{5}}^{t} p(s)ds\right] \left[-q(t)x^{(n-3)}(t)x^{(n-2)}(t) - p(t)\left[x^{(n-2)}(t)\right]^{2} - (p(t)q(t) + q'(t))\left[x^{(n-3)}(t)\right]^{2}\right] < 0 \text{ for all } t \ge t_{5},$$

where $K = \exp \int_{t_0}^{t_5} p(s) ds$. Thus, $F_2(x(t)) < 0$ for all $t > t_5$. Also,

$$-[x^{(n-2)}(t)]^{2} \left[\exp \int_{t_{0}}^{t} p(s)ds \right] < F_{2}(x(t)) \le F_{2}(x(t_{6})) < 0$$

for $t \ge t_6 \ge t_5$. So, in view of this and the fact that $x^{(n-2)}(t)$ is decreasing and positive, there exists m > 0 such that $\lim_{t \to \infty} x^{(n-2)}(t) = m > 0$. This implies that $\lim_{t \to \infty} x^{(n-3)}(t) = +\infty$, which is a contradiction. Hence, $F_2(x(t)) > 0$ for all $t \ge t_7 \ge t_4$.

REMARK 3.3. Functions $p(t) = \frac{1}{t^2}$ and $q(t) = \frac{-1}{t^3}$ satisfy all the conditions in Theorem 3.2.

REMARK 3.4. Suppose that in Theorem 3.2 we further assume that $\int_{-\infty}^{\infty} H(t, k) dt = -\infty$ for any positive constant k. Then, if x(t) is a bounded and eventually positive solution of (*), then $x^{(n-2)}(t) \le 0$.

PROOF. Suppose that all the assumptions on functions p and q are satisfied and that x(t) > 0 is a bounded solution of (*) for $t \ge t_0 \ge 0$. By Lemma 2.1, there exists $t_1 \ge t_0$ such that $x^{(n-2)}(t) \le 0$ or $x^{(n-2)}(t) > 0$ for all $t \ge t_1$. If $x^{(n-2)}(t) \le 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t) > 0$ and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that $x^{(n-1)}(t) < 0$ for $t \ge t_3 \ge t_1$. Observe that the differential equation (*) can be written as

$$\left\{x^{(n-1)}(t)\exp\left[\int_{t_3}^t p(s)ds\right]\right\}' + q(t)x^{(n-2)}(t)\exp\left[\int_{t_3}^t p(s)ds\right] + H(t, x(t))\exp\left[\int_{t_3}^t p(s)ds\right] = 0.$$

Dropping the second term we get

$$\left\{x^{(n-1)}(t)\exp\left[\int_{t_3}^t p(s)ds\right]\right\}' + H(t,x(t))\exp\left[\int_{t_3}^t p(s)ds\right] \ge 0.$$

Since x'(t) > 0 we have $0 < k \equiv x(t_3) \le x(t)$ for all $t \ge t_3$, and the above line can be rewritten as

$$\left\{x^{(n-1)}(t)\exp\left[\int_{t_3}^t p(s)ds\right]\right\}' + H(t,k)\exp\left[\int_{t_3}^t p(s)ds\right] \ge 0.$$

Integrating this inequality from t_3 to t, $t \ge t_3$, we get

$$-x^{(n-1)}(t) \exp \left[\int_{t_3}^t p(s)ds \right] \le -x^{(n-1)}(t_3) + \int_{t_3}^t \left[H(s,k) \exp \left(\int_{t_3}^s p(u)du \right) \right] ds.$$

Due to the integral condition on H, the right hand side tends to $-\infty$, and thus, so does the left-hand side. Therefore, $\lim_{t\to\infty} x^{(n-1)}(t) = +\infty$, which contradicts the fact that $x^{(n-1)}(t) < 0$. Hence, $x^{(n-2)}(t) > 0$ eventually prevents $x^{(n-1)}(t)$ from existing. This proves Remark 3.4.

THEOREM 3.5. Suppose that n is odd, $p(t) \le 0$, $q(t) \le 0$, and

$$(3) q(t) \le p'(t)$$

eventually, and suppose that

$$\int_{-\infty}^{\infty} H(t, k)dt = -\infty$$

for any positive constant k. If x(t) is a bounded and eventually positive solution of (*), then $x^{(n-2)}(t) \le 0$ eventually.

Note that condition (3) implies condition (1) but condition (3) is not implied by condition (1). For example, two eventually nonpositive functions p and q with $p'(t) = \frac{-2}{t}$ and $q(t) = \frac{-3}{2t}$ satisfy condition (1) but not condition (3).

PROOF. Suppose that all the assumptions on functions p and q are satisfied and that x(t) > 0 is a bounded solution of (*) for $t \ge t_0$. By Lemma

2.1, there exists $t_1 \ge t_0$ such that $x^{(n-2)}(t) \le 0$ or $x^{(n-2)}(t) > 0$ for all $t \ge t_1$. If $x^{(n-2)}(t) \le 0$, then there is nothing to prove. Therefore, we assume that $x^{(n-2)}(t) > 0$ and consider three cases.

Cases 1 and 2 are the same as in the proof of Theorem 3.1.

Case 3. Suppose that $x^{(n-1)}(t) < 0$ for $t \ge t_3 \ge t_1$. Since n is odd, x'(t) > 0 for all $t \ge t_4 \ge t_3$ and so $k \equiv x(t_4) \le x(t)$ for all $t \ge t_4$. Now we integrate (*) from t_4 to t_4 , t_4 to get

$$\begin{split} x^{(n-1)}(t) + p(t)x^{(n-2)}(t) &= x^{(n-1)}(t_4) + p(t_4)x^{(n-2)}(t_4) \\ &+ \int_{t_4}^t \left[p'(s) - q(s) \right] x^{(n-2)}(s) ds - \int_{t_4}^t H(s, x(s)) ds \\ &= M + f(t) - \int_{t_4}^t H(s, x(s)) ds \;, \end{split}$$

where M is a constant and f(t) is the first integral in the above expression. If $z(t) = x^{(n-2)}(t)$, then z satisfies a first-order linear differential equation and thus can be written as

$$z(t) = \exp\left[-\int_{t_4}^t p(s)ds\right] \left\{ z(t_4) + \int_{t_4}^t \left[\exp\int_{t_4}^s p(r)ds\right] \cdot \left[M + f(s) - \int_{t_4}^s H(r, x(r))dr\right] ds \right\}.$$

Since $f(t) \ge 0$ and $x(t) \ge k > 0$, the above equality can be written as

$$z(t) \ge \int_{t_0}^t \left[\exp\left(-\int_s^t p(r)dr\right) \right] \left[M - \int_{t_0}^s H(r,k)dr \right] ds.$$

Due to the integral assumption on H, there exists $s_0 \in \Re^+$ such that

$$\int_{t_A}^{s_0} H(t,k)dt \le M-1.$$

Therefore,

$$z(t) \ge \int_{t_4}^t \left[\exp\left(-\int_s^t p(r)dr\right) \right] [M - (M - 1)] ds$$

$$= \int_{t_4}^t \exp\left(-\int_s^t p(r)dr\right) ds$$

$$\ge \int_{t_4}^t 1 ds = t - t_4 \to +\infty \text{ as } t \to +\infty.$$

Thus, $\lim_{t\to\infty} x^{(n-2)}(t) = +\infty$ which contradicts the fact that x(t) is bounded. Hence, $x^{(n-2)}(t) \le 0$ eventually.

References

- L. Erbe, Oscillation, nonoscillation and asymptotic behaviour for third order nonlinear differential equations, Ann. Mat. Pura Appl., 110 (1976), 373-391.
- [2] J. W. Heidel, Qualitative behaviour of solutions of a third order nonlinear differential equations, Pacific J. Math., 27 (1968), 507-526.
- [3] A. G. Kartsatos, The oscillation of a forced equation implies the oscillation of the unforced equation—small forcings, J. Math. Anal. Appl., 76 (1980), 98-106.
- [4] A. G. Kartsatos and W. A. Kosmala, The behaviour of an nth-order equation with two middle terms, J. Math. Anal. Appl., 88 (1982), 642-664.
- [5] W. A. Kosmala, Properties of solutions of the higher order differential equations, Diff. Eq. Appl., 2 (1989), 29-34.
- [6] W. A. Kosmala, Properties of solutions of nth order equations, Ordinary and Delay Differential Equations, Pitman, 1992, 101–105.
- [7] W. A. Kosmala, Oscillation of a forced higher order equation, Ann. Polonici Math, to appear.

Department of Mathematical Sciences Appalachian State University Boone, North Carolina 28608, USA