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Introduction

Thermal convection in an infinite fluid layer heated from below is
extensively studied; it represents the simplest example of hydrodynamic
instability and transition to turbulence ([3,4, 13, 16]). Suppose that an

infinite layer is occupied by a viscous incompressible fluid and that the lower
boundary of the layer is warmer than the upper one. Then the conductive
static state is a unique solution when the temperature difference, say λ > 0,
is sufficinetly small. Beyond a certain value of λ, the conductive state loses
its stability and the convection rolls appear. When λ is increased, the
boundaries of rolls oscillate periodically in time. When λ is increased further,
the boundaries of rolls oscillate in a less regular manner. Finally, for
sufficiently large λ, the flow seems totally unstructured. This sequence of
transitions leads to the concept of the strange attractor [25]. The complexity
of the motion is due to the complicated structure of the attractor. Thus, an
analysis of attractors is important for understanding the observed motions. In

recent years, many authors have obtained the bounds for the dimension of
the attractor for the Navier-Stokes equations in terms of the physical numbers
([1, 5, 6, 7, 10, 17, 18, 23, 24]). These works indicate that the dimension of
the attractor for the Navier-Stokes equations may be identified with the number
of degrees of freedom. For the study of attractors, the reader is referred to
[2, 12, 17, 28] and references therein.

In this paper we consider the attractor for the two-dimensional Benard
convection problem in which the dissipative heating is taken into account,
and give a bound for its Hausdorff dimension. The non-dimensional form of
the governing equations for the velocity u, the pressure p and the fluctuation
θ of the temperature from the static state is written as

— - vAu + u - Vu + Vp = έ?2/(0),
(0.1) dt

V - u = 0,

(0.2) KΔΘ + u - Vθ - e2 - u = — D(u): D(u).
dt 2
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Here, e2 = (0, 1) is the unit vector opposite to the direction of gravity; v, K
and η are non-dimensional physical parameters to be defined in section 1
D(u): D(u) is the dissipation function:

^ / ι/t* duk

= Zj

and / is a smooth function on R satisfying

(0.3) f(θ) = 0,

or

(0.4) I/I, = sup |/(0)| < oo, I/'U < ro and |/"|» < «.
0eK

Here /' and /" denote the first and the second derivatives of /, respectively.
Equations (0.1) and (0.2) are supplemented by the boundary condition:

tι = 0; 0 = 0 at x2 = 0, 1,

and the periodicity condition:

x ι = 0 =

Sxi Xί = o

dθ dθ

dxί

In case η = 0 and f(θ) = 0, one obtains the usual Boussinesq equations in
which the dissipation effect is ignored. For the Boussinesq equations, Foias,
Manley and Temam [8] proved the existence of the associated global attractor
to which all solutions converge as ί -̂  oo, and derived a bound for its Hausdorίϊ
dimension in terms of the significant physical parameters : the Rayleigh number
Ra, the Prandtl number Pr and the Grashof number Gr. Their bound is

where \Ω\ is Lebesgue measure of Ω = (0, α) x (0, 1) and c is a constant
depending only on the flow geometry. Their bound is very similar to the
bound for the number of degrees of freedom obtained by purely physical
argument [20]. In this paper we prove the existence of the global attractor
si for the convection problem in which the dissipative heating is not ignored
and show that the Hausdorff dimension of $ί is bounded by

Pr)(l + Gr + Gr1/2Ra + O(η))9

with a constant c depending only on the flow geometry.
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The paper is organized as follows. In section 1 we deduce the
non-dimensional form of the governing equations and set up the corresponding
nonlinear evolutionary problem in a Hubert space. The existence and
uniqueness of the solutions and their continuous dependence on initial values,
which are necessary for studying attractors, are discussed in section 2. We
prove the existence of weak solutions for initial values in {w0, 00}eL2 x L2.
When / satisfies (0.4), the solutions are unique if the initial values belong to
HQ x L2. In this case we can consider the corresponding dynamical system
in HQ x L2 and, consequently, discuss the associated attractor. Unfortunately,
the uniqueness problem is unsettled when f(θ) = θ. However, we shall show
in both cases that the weak solution converges, as η -> 0, to a (unique) weak

solution of the Boussinesq equations. This shows the validity of the
Boussinesq approximation for a viscous incompressible fluid with small η. We
prove this convergence in section 3. From section 4 on we consider only the
case where / satisfies (0.4) and discuss the global attractor associated with the

dynamical system under consideration. To prove the existence of the global
attractor in section 4, we first establish the existence of an absorbing set and
then prove the uniform compactness for large t of the nonlinear semigroup
defining the dynamical system. For the Boussinesq equations, i.e., when η = 0,
Foias, Manley and Temam [8] proved the existence of the global attractor,
applying the maximum principle to the governing equation of θ. In case
η > 0, however, the maximum principle is not applicable because of the
presence of the dissipation function. Besides, since the dissipation function
contains the quadratic nonlinearity of Vu, we need to estimate the higher
order derivatives of the velocity in order to get the desired result. These
estimates are obtained in sections 2 and 3 by applying the energy integral

method for higher order derivatives of velocity and temperature, which are
more complicated than those given in [8]. Section 5 is devoted to estimating
the Hausdorίf dimension of the global attractor. Foias, Manley and Temam

derived their sharp estimate in [8], applying the Lieb-Thirring inequality
[19]. We proceed basically in the same way as in [8] to obtain our bound
for the Hausdorff dimension. However, since the maximum principle applied

to the temperature does not provide useful estimates for solutions, our bound
for the dimension of the attractor does not reduce to the bound of [8] as η -> 0.

In this paper we discuss only the two-dimensional problem, mainly

applying the energy integral method. Even in this two-dimensional case, the
presence of the dissipation function forces us to estimate higher order
derivatives of unknown functions in order to get various results by passing
to the limit in the equations. In the three-dimensional problem, the situation
becomes much more complicated. In this case, the elementary energy estimate
is obviously insufficient for ensuring the possibility of passage to the limit in
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the equations and so we know nothing about the existence of a global weak

solution as introduced in [14] for the case η = 0. As for the existence of
strong solutions, we have been able to control the higher order norms of

(approximate) solutions only locally in time for general initial data, and globally

in time for small initial data. So we know only that the strong solutions

exist loally in time for general initial data, and globally in time for small

initial data, as proved in [15]. This situation does not seem to be improved

even if we employ different approximation schemes. In fact, the problem is

closely related to the problem of regularity of weak solutions of the

three-dimensional Navier-Stokes equations.
The author wishes to express his hearty thanks to Professor Shinnosuke

Oharu for his interest in this work and for valuable comments. Thanks are

also due to Professor Tetsuro Miyakawa for his constant encouragement.

1. Preliminaries

We consider a two-dimensional infinite layer R x (0, d) and assume that
the layer is occupied by a viscous incompressible fluid. Suppose further that

the temperature at the lower boundary x2 = 0 equals 00, and the temperature

at the upper boundary x2 — d equals θ^ . Here Θ0 and θ± are constants such

that Θ0 > Θ1. Then the governing equations for the velocity u = (w1, w2), the

pressure p and the temperature θ are written as follows (see [3, 4]):

du
Po — ~ PoVoΛu + p0u .γu + Vp = p0g(l - γ0f(θ - Θ0))e2,ot

V - u = 0,

vQAΘ + p0Cvu - Vθ = -^D(u): D(u).
ot 2

Here, e2 = (0, 1) is the unit vector opposite to the direction of gravity; - ge2

is the acceleration due to the gravity; p0 is the constant mean density; y0 is

the volume expansion coefficient; Cv is the specific heat at constant volume;

v0 is the kinematic viscosity coefficient; KO is the thermometric conductivity
coefficient; and D(u): D(ύ) is the dissipation function

π, , n, , ^ f d u 1 duk\2

D(u):D(u)= £ — + — .
i , f c = ι \oxk dxj

At the boundaries x2 = 0, d, the velocity u is prescribed by

u = 0 at x2 = 0, d,

and the temperature θ is prescribed by
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θ = 00 at X2 = 0,

0 = 0! at x2 = A

We further require u, p and 0 to be periodic in the xί -direction with period
α0. To obtain the non-dimensional form of equations, we introduce the
following non-dimensional variables:

* = * , θ=l^L^
d θn — 0!

u
u= , t =

(yo0(#o - #ι)d)1/2

and non-dimensional parameters:

where

V KO O

P = Pog(*2 - 7oF(x2)), F(x2) = /( * ° τ ) dτ.
Jo \ 2d /

The non-dimensional numbers Ra, Pr and Gr are called the Rayleigh, the
Prandtl and the Grashof numbers, respectively. Using these new variables,
we obtain, after omitting tildes,

— - vΔu + u - Vu + Vp = f(θ)e29

(1.1) 3t
V u = 0,

(1.2) κAΘ + u-VΘ-e2 u = —D(u):D(u),
dt 2

where

r γ / 2 / i y/2
v = — , K = - and w =

\PrRα Cv

The boundary conditions at x2 = 0, 1 are
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u = 0, θ = 0 at x2 = 0, 1,

and w, p and 0 are required to be periodic in x1 with period α = α0/d. We

consider equations (1.1) and (1.2) in the domain Ω = (0, α) x (0, 1), together

with the above boundary conditions and initial conditions:

We denote this initial boundary value problem by (BE)r In case f(θ) = θ,

we formally obtain the Boussinesq equations from (1.1) and (1.2) by passing

to the limit η -> 0.
We now introduce some notation. LP(Ω) (resp. Hm(Ω)) denotes the usual

ZΛspace (resp. the L2-Sobolev space of order m) and its norm is denoted by

|| \\p (resp. || ||m>2). We define the function spaces C%tper(Ω)9 L2, H^per and

Vby

C (C~)} — < I// I " I// Γ~ C~* I ϊ? I )// — 0 I//1 V -4- ιΎ Y I — I// I V V 1 >
0 DβΓ \ / \ T \Ω 5 T V"^ / 5 r l χ - 5 = = 0 1 ""~ ' T \ 1 *^ ' 2/ T V 1 5 2/ J '

L2

σ = {ueL2(Ω)2; P u = 0, u 2U= 0 > 1 = 0, u'l^o = "M,,-.},

Then, the following Helmholtz decomposition holds [27, 28]:

where

Gper = {Vq\ qeH1'2^), q\Xl = 0 = q\Xl=Λ}.

In terms of the associated orthogonal projector P onto L2, we define the

Stokes operator A by

Au= -PAu,
du du

x ι = 0

It is well known that A is positive definite and self-adjoint in the Hubert

space L2 satisfying | |A 1 / 2 w| | 2 = | |Pw| | 2 , and there exists a constant C > 0 such
that

(1.3) l l " H 2 , 2 < C M u i | 2 for ueD(A).

We also define the operator B by

dθ _ dt

' fai. Jd = o 5λ

Bθ = -
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The operator B is positive definite and self-adjoint in L2(Ω) satisfying
\\BII2Θ\\2 = \\FΘ\\29 and there exists a constant C > 0 such that

(1.4) I |0 | |2 ,2£C| |B0 | | 2 for θeD(B).

We sometimes use the following Gagliardo-Nirenberg inequalities [9]:

and

(1.6) I I K I I c o ^C || i i | | i f f || ii | |i/2,

where C is a constant depending only on p and α. In particular, for ueH^per

we have

(1.7) || ii ||p < C \\Vu\\\-21* | |w| | 2/*, (2<p< oo).

Throughout this paper, the letter C denotes constants which may vary

from line to line.

2. Existence of solutions of (BE),,

We discuss in this section the existence and uniqueness of solutions and
their continuous dependence on the initial data. We begin with

DEFINITION. Given (w0, 00}eL2 x L2(Ω), a pair of functions (w(ί), θ(t)}
defined for ί > 0 is called a weak solution of problem (BE),, if

weL°°(0, Γ; L2)nL2(0, T; V), 0EL4/3(0, T; L2(ί2))nL2(0, T; L4/3(ί2))

for all T > 0, and the identities

pr ΓT
(u, v')dt + [v(Fu, Vυ) + (u Γn, t;)]Λ

Jo Jo
(2.1)

= («0, »(0)) + (f(β)e2, υ)dt
Jo

and

ΓT ΓT

(θ, ψ')dt - [κ(θ, Δψ) + (u rψ, θ)]dt

\ ) ΓT Γ ~\
I ^/v

= (00, ψ(ϋ)) + (β2 w, ιA) H (D(u)\ D(u), ψ) \dt
Jo L 2 J

hold for all ι?e W1*2^, T; L2)nL2(0, T; K) with ι>(T) = 0 and all ^eC^CO, T];



258 Yoshiyuki KAGEI

co,Per(Ω)) with ψ(T) = 0. Here and in what follows ( , - ) denotes the scalar
product of L2.

REMARKS, (i) It follows that if {u, θ} is a weak solution, then u is
continuous from [0, Γ] to L2

σ and θ is continuous from [0, T] to the dual
space D(β)* of D(B). Since L2(Ω) a D(B)*, we find that the initial conditions

make sense. The continuity of u can be proved by using the standard theory
of the two-dimensional Navier-Stokes equations as given in [27]. The
continuity of θ is proved as folows. Let ψeD(B). By (1.4), (1.5) and (1.7)
with p = 4, we see that

\\θ\\2<c\\u\\^
<C \\u\\\'2 \\Vu\\\'2 W||2 | |0| |2.

Furthermore, inequalities (1.4) and (1.6) imply that

|(D(W):D(ι4ιA)l<ll«

We also have

and

\(e2 u,n<\\θ\\2 \\φ\\2 < C | | 0 | | 2 | W l l 2

It thus follows from (2.2) that

^e^(0, T',D(B)*)9

which implies the desired continuity of θ.
(ii) We can also prove that {M, θ} satisfies

(2.3)

(M, υ)(t) - (u, v)(s) = \ [(ιι ® u, Vv) - (Fu, Vv)\dτ
J s

+ \ I(e2f(θ), v) + (u, v'Kdτ,
J S

(θ, φ)(t) - (θ, ψ)(s) = \ l(u- Vύi, θ) + (θ, M) + (e2 - u, ψfldτ
L

(2.4)

+

for all 0 < s < t < Γ, t;eL2(0, T; 7)n W^2(09 T; L2) and all ^6L4(0, T;
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Π W l l4(0, Γ; L2(Ω)). Indeed, define the function ζεeC[0, T] by

0 for 0 < τ < s, t < s < Γ,

1 for s + ε < τ < ί — ε,

ε~1(τ — s) for 5 < τ < s + ε,

- ε-1(τ - t + ε) for t - ε < τ < ί,

and substitute ι?Cε into (2.1) as a testing function, to obtain

i f' w i p-
-I (u,υ)dτ--\
b Jt-ε b Js

-I
(w, v)dτ

ii,

Since (w, f) (τ) is continuous on [0, Γ] , letting ε -» 0 yields the desired identity

(2.3). The identity (2.4) is proved similarly, so the details are omitted.
Before stating our existence result, we recall the assumptions on /: / is

a smooth function on R satisfying

(0.3) f(θ) = θ

or

(0.4) I/U EE sup \f(θ)\ < oo, l / ' l o o < oo and \f'\n < oo.
θeR

Our existence result is the following

THEOREM 2.1. (i) Let f satisfy (0.3) or (0.4). Assume that η < 1 i/ /

satisfies (0.3). TTzeπ, /or eαc/z /m//0/. t ^/we {w0, 00}eL^ x L2(Ω), there exists a
weak solution {M, 0} o/ problem (BE)η defined for all t > 0.

(ii) Let f satisfy (0.4) and let {w0, 00} e V x L2(ί2). ΓAβ/i

«6C([0, T]; K)ΠL2(0, T; D(X)), fleC([0, T]; L2(£>))nL2(0, T; //^pe

all T > 0, tffld ίAe w^β^ solution {M, 0} w unique in the class

(C([0, Γ]; F)ΠL2(0, T; D(X))) x (C([0, T]; L2(ί2))nL2(0, T; H^per)).

(iii) L^ί / jfl/w/> (0.4) and let (w0ίί, 00tί} e F x L2(ί2), i = 1, 2. For

Γ> 0 ί/zer^ exists a constant C = C(T) such that if {u^t), θ^t)}, i = 1, 2, denote,

respectively, the weak solutions corresponding to initial values {w0,ί» #0,i}> i = 1> 2,

||Fιι2(ί) - Γii^OIII + \\θ2(t) - fliWIli < C(||Γιι0§2 - Fιι0il Hi + 11^0,2 - 0o,ι 111)-

(iv) Under the assumption of (ii) any weak solution {M, 0} satisfies
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— eL2(0, T; L2)nL°°((5, T; L2)nL2((5, T; F), ^^L2((5, Γ; F*),

α«ί/

0eL°°(<5, T; H$ per)nL2(δ, Γ; D(B)), ^eL2(<5, T; L2(β)),
αί

for all δ > 0 am/ Γ> 0 swc/z //zα/ 0 <δ < T< oo, w/zere F* ft f/ze rfwα/ space

of F

We first prove (i) in the case where f ( θ ) = θ. The proof is divided into

two parts. In the first part we construct approximate solutions by the

semigroup method. In the second one we discuss the convergence of the

approxomate solutions to a weak solution with the aid of some a priroi

estimates. We next prove (i), (ii) and (iii) under assumption (0.4), modifying

the arguments given in the case of assumption (0.3). Finally, we prove

assertion (iv). For simplicity in notation we assume in this section that

v = K = 1.

CONSTRUCTION OF APPROXIMATE SOLUTIONS. We construct approximate

solutions, solving the integral equation:

(15, •'"'"'

where

Γ
Sι[wfc> #fc] = e~(t~s)AP(- uk - Vuk + e2θk)(s)ds,

Jo

_ p -(t-s)B( n - -\
2 u k , k - j ^ e \^-uk. k + e2 uk + - uk . uk J s

The integer m > 0 is taken sufficiently large so that ΰ~k is bounded in Ω.

We will solve (2.5) by applying the Banach fixed point theorem. To do

so, we need

LEMMA 2.2. Let 1 < q < 2 < p < oo. If veL2

σϊ\Lq and ψeLq(Ω), then

\\Aj/2e-tAv\\p<Ct-j/2-(1/q-1/p)\\v\\q,



Attractors for equations of thermal convection 261

for 7 = 0, 1, with C independent of v, ψ and t.

PROOF OF LEMMA 2.2. We prove only the assertions for the Stokes
operator A the case of the operator B is treated similarly. Suppose first q = 2
< p < oo. By (1.7) and the well-known estimate

(2.6) \\Am'2e~tAv\\2 < CΓm/2 \\v\\29 (m > 0),

we have

\\A3l2e'tAv\\p<C\\Asl2e-tAυ\\llp\\^Asl2e-tAυ\\2'
2lp

<CΓj/2-(ί/2-lfp)\\v\\2.

Suppose next that p = oo, q = 2. In this case, using (1.3) and (1.6), we obtain

<C\\Ajl2e-tAv\\2lp\\Al+j/2e-tAv\\l

2-
2lp

<Ct-j/2-ί/2\\v\\2.

In case 1 < q < 2 = p, we set r = q/(q — 1). Since r > 2, the foregoing results

yield

\(e-«v9 w)| = \(υ, e-tAw)\ < \\v\\q \\e~tAw\\r < Cr(1/^1/2) ||ι;||,|| w| | 2

for weL 2 . Thus, by duality, we have

\\e~tAv\\2 <Ct~(llq~1/2)\\v\\q.

This, together with (2.6), implies that

\\All2e~tAO\\2 < cr1/2 \\e'tAI2Ό\\2 < cr1/2-(1/^-1/2) H U H , .

Suppose finally that l < g < 2 < p < o o . The foregoing results then yield

This completes the proof of Lemma 2.2.

We now turn to the proof of Theorem 2.1 (i), assuming (0.3). For given
M > 0 and T> 0, we define the closed set X(M, T) of C([0, Γ]; D ( A 1 / 2 ) ) x
C([0, T]; D(B"2)) by

X(M, T) = {U = {u, }̂

xC([0,

where
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\ \ \ U \ \ ι x = s u p ( \ \ A V 2 u ( t ) \ \ 2 + \\Bll2θ(t)\\2).
[0,Γ]

and consider on X(M, T) the mapping

~tAu -i- S" \u ff\

Due to Lemma 2.2, we have

\\Ajl2e-(t~s)AP(u Vu)\\2 < C(t - sΓJI2~116 I I « Fu||3 / 2

<C(f-sΠ / 2- 1 / 6 | |U | | 6 | |Fu| | 2

2

< c(ί - s)-;/2-1/6 I )

<C(t-sΓil2^l6\\u\\6WΘ\\2

<C(t-sΓil2-l/6\\Vu\\2\\VΘ\\

for j = 0, 1. Here we have used the Poincare-Sobolev inequality:

l |u | | p <C| |Fu | | 2 , ( l < p < α > ) .

Since ΰ = (I + k~ίA)~mu, it follows that

| |FM| | 2 <CJ|M| | 2 ) Mΰ| | 2<CJ|u| | 2 .

Therefore, applying (1.3), and (1.5) with p = 4, we have

(u): D(u)\\2 < C(t - sΓil2 \\Vu\\\

<Ck(t-sΓil2 I I M| | | .

We thus obtain

|||n([/t)|||x<|||{Mo,,,^0,J|||x

+ Ci(Γ1 / 3 + T112 + Γ5/6 + Γ)M2 + C2(T1 / 2 + Γ)M

with Cj and C2 depending on /c. Similarly, we can prove

(2.8) HI Ψk(Ulιk) - Ψk(U2,k) \\\x < C3(M, T) HI l/1>t - U2Λ \\\x,

with

C3(M, T) = C4[(Γ1/3 + T1'2 + T5'6 + T)M + T1 / 2 + T],

where C4 depends on k. Now, choose M > 0 with ||| {u0tk, Θ0ίk} \\\x < M/2
and then fix T > 0 such that
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Γ l/2 + T5/6 + T)M2 + C 2 ( T l/2 + Γ)M < M^;

C3(M, T) < 1/2.

Then, it follows from (2.7) and (2.8) that Ψk is a contraction from X(M, T)
into itself; so there exists a unique Uk = {uk9 θk} in X(M, T) which solves (2.5)
on [0, T].

We next show the global existence of Uk. For this purpose, it suffices
to derive an a priori bound for | | |t/ f c | | |χ. By a standard result in the theory
of parabolic evolution equations, the function Uk satisfies

dui
(2.9) _* + Auk = P(- uk Vuk + e2θk), «k(0) = uϋtk,

at

(2.10) d^ + Bθk=-uk rθk + e2 uk + ?-D(ΰk) .D(ΪΓk), θk(0) = Θ0,k.
at 2

Multiplying (2.9) by uk, we obtain

(2.H) ^ - \ \ u k \ \ 2

2 + \ \ r u k \ \ 2

2 = (e2θk9uj.
at

Let φk be a function satisfying

Bφk=-uk Vφk + e2 uk9 φk(Q) = 00.*at

Then the function ψk — φk satisfies

(2.12) ^ + Bψk + uk.rψk = lD(ΰk):D(ΰk)>0, ψk(Ό) = 0.
at 2

The maximum principle gives

ψk > 0 in Ω, and — < 0 at x2 = 0, 1.
(7X2

Multiplying (2.12) by 1 - x2 and then integrating in ί2, we have

-OK, 1 - x2) + (Bψk9 1 - x2) = - (β2ιAk, wfe) + ̂ φ(tΓk): D(iΓk), 1 - x2).
dί ^

This, together with (2.11), then yields

at [_2
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Since

, 1 - x2) = - — dS > 0
Jx 2 = 0 3X2

and

f D(ΰk): D(ΰk)dx = 2 \\Vΰk \\2

2 = 2 \\A^ΰk \\ < 2 \\A"2uk\\2

2 = 2 \\7uk\\l
JΩ

we see that

y \~ \\uk\\l + (ψk, 1 - x2)l + (!-»/) W*Λl < (e2Φk, uk).
dt\_2 J

But, as shown in [8, Lemma 2.2], we have

\\φk(t)\\2

2<\Ω\ + 2\\θ0,k\\2

2e-2t.

This gives

(e2Φk, uk) < \\φk\\2 \\uk\\2 < \\uk\\l + \\φk\\\ < \\uk\\\ + \Ω\ + 2 | |^o, f cll2^2 ί.

We thus obtain

Integrating this on [0, ί] and using the fact that ψk > 0 in ί2, we get

This implies that, for any T > 0,

(2.13) \\uk(t)\\l + Γ \\ruk\\2

2ds < C, (0 < ί < T),
Jo

with C = C( || MO I I 2 , I I 0 0 I I 2 , T9 η) independent of k.
We next estimate ||0fc(ί)||2. Multiplying (2.5) by 0fc, we have

1 ~ \\θk\\l + \\Vθk\\\ = (e2 - uk, θk) + l(D(ΰk): D(ΰk), θk).
2 at 2

By (1.3), (1.5) with p = 4 and the Poincare inequality, the right-hand side is
estimated as

l(*2 UK 0*)l < I l " k l l 2 1 1 0 * 1 1 2 < IN*IIi + \ 11^111 < IN.Hi +1 ll^k | |i;4 4
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ί): D(ΰk), θk)\ < C \\FiΓk ||2 \\θk\\2 < C \\Vΰk \\2 \\Aΰk \\2 \\?θk\\2

< C(k) I I uk | | I I I Vθk I I 2 < C(k) II uk 111 + I I P0t II1.
4

It thus follows that

y \\θk\\l + WΘΛl ^ C(/c)(||uJ|l + HuJli).
αί

This, together with (2.13), implies that, for any T>0,

\\θk\\2+ Γl l^l l i^<c( | |M 0 | | 2 , ||β0||2, τ,fe).
Jo

We can now deduce an a priori bound for H F M j t l ^ We take the scalar

product of (2.9) with Auk, to get

τ T
2 at

<C\\uk\\\l*\\Vuk\\2\\Auk\\li^

<l-\\Auk\\l + C\\uk\\l\\Vuk\\l

whence,

I \\Vuk\\l +\\Auk Hi <C(\\uk\\lWuk\\lWuk\\\ + II0JI).

Applying the classical Gronwall lemma and (2.13), we have, for any Γ>0,

||F« t(t)|| |ds^C(T,A;).

Similarly, we have, for any T > 0,

[
Jo

\\Bθk\\\ds<>c(τ,k).

We thus obtain the desired a priori bound for |||l/k|||x, which ensures the

global existence of Uk = {uk, θk}.

CONVERGENCE OF APPROXIMATE SOLUTIONS. To show the convergence of

{wk, θk} to a weak solution, we first derive a priori bounds for {uk9 θk}, which

are uniformly valid in k. By (2.13), uk is bounded in L°°(0, T; L^)nL2(0, T; V)
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for all T> 0. To deduce a priori bounds for Θk9 we introduce, as in [11, 14],
the Green function Pk(x, t\ y, s) of the problem:

—
ct

dθ dθ

As is well known, Pk(x, t ; y , s ) satisfies

(2.14) Pk(x, t y, s)dx < 1, Ph(x, t y, s)dy < 1.
JΩ JΩ

Moreover, the estimate

(2.15) 0<Pk(x9f,y9s)£C(t-sΓl

of Nash holds with C independent of k (see [21, 22]). In terms of the function
Pk(x, t y, s), θk is represented as

Θk(x9t) = Pk(x,t;y90)θ0tk(y)dy
Ω

Pk(x, t y, s) \e2 uk + | D(ΰk) : D ( ΰ k ) \ (y, s)dyds.

Therefore, we see from (2.14) and (2.15) that

\\θk(t)\\P ̂ W i l l + Γ II«*MS + f Γ(' -s)-(1-1/p) Wΰ>IIids)
Jo Jo /

1/2 Γt

-\- Y\ I (ί — s) || K W f c II 2'

Jo

which shows that θk is bounded in L«(0, Γ; Z/(ί2)) for all Γ> 0, with p and
q satisfying l/p + 1/g > 1, 1 < <? < oo. In particular, 0k is bounded in
L4/3(0, T; L2(ί2))nL2(0, T; L4/3(ί2)) for all T> 0.

We next estimate the time-derivative duk/dt. Applying (1.7), we have

\(P(uk. Vuk), υ)\ = \(uk.7v, uk)\ < C \\uk\\l \\Vv\\2 <C\\uk\\2 \\7uk\\2 \\Γυ\\2

for all i eK This implies that P(uk Fuk) is bounded in L2(0, Γ; V*) for all
T> 0. (V* denotes the dual space of K) We also get the estimate

\(P(e2ΘJ9 v)\ = \(e2θk, v)\ < \\θk\\4/3 \\v\U < C \\θk\\4/3 \\?O\\2

for all veV9 which implies that P(gθk) is bounded in L2(0, T; V*) for all
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T > 0. So, we easily see that duk/dt is bounded in L2(0, T; V*) for all T > 0.

We can now discuss the convergence of {uk, θk}. By the above argument,
there exists a subsequence, denoted also by {uk9 θk}, which converges to a
{w, θ} in the sense that:

(2.16)

Uk >u *-weakly in L°°(0, Γ; L2

σ) and weakly in L2(0, Γ; F),

uk > u strongly in L2(0, T; L2),

^ > ̂  weakly in L2(0, T; 7*),
dί dt

θk > θ weakly in L4/3(0, T; L2(ί2))nL2(0, Γ; L4/3(ί2))

for all T>0.
We next show that {u, θ} is a weak solution of problem (BE),,. Since

(2.16) implies

weL°°(0, T; L2)nL2(0, Γ; F), 0eL4/3(0, T; L2(ί2))nL2(0, Γ; L4/3(ί2))

for all T>0, we have only to show that {u, θ} satisfies identities (2.1) and

(2.2). Observe that {uk9 θk}, k> 1, satisfy

ΛΓ ΓT

(uk, v')dt + I
Jo Jo

- I (u,, ι/)Λ + I [(Fuk, Vv) + (uk Vuk, v)-\ dt

(2.17)

and

(2.18)

- Γ(^,Ά':
Jo Jo

•(uk-rψ, θk}~]dt

ΓΓ n Ί
f \(e2 - uk9 ψ) + -L (D(ΰk): D(iΓk), ψ) dt

Jo L ^ J

for all_t;6Py1'2(0, T;L2)nL2(0, T; F) with ϋ(Γ) = 0 and all tfreC^IΌ, Γ];

Co,per(^)) with ^(Γ) = 0. Due to (2.16), passing to the limit k-+ oo in (2.17)
yields

f Γ Λ Γ

- (M, t;')Λ + [(Fw, Ft;) + (u - FM, ϋ)]Λ
Jo Jo

= ("o,
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We next show, by letting k -» oo in (2.18), that {u, θ] satisfies

(2.19)

- I T (θ, ψ')dt - Γ i(θ, Λψ) + (u rψ, θ)-]dt
Jo Jo

= (00, <A(0)) + Γ \(e2 u,ψ) + l(D(u): D(u), ψ)\dt

for all ^eC^O, T]; C£pβr(β)) with ψ(T) = 0. To do so, we need only show
that :

(2.20) uk - >u strongly in L2(0, T; V) for all T> 0,

which enables us to pass to the limit fc->oo in (2.18) in the term involving
the dissipation function. Let veWlt2(Q9 T; L^)nL2(0, T; V). Multiplying
(2.9) by v — uk and then integrating over Ω, we have

II Vuk\\\ = <uk, vy - - - I I uk\\\ + (Fuk9 Vv] + (uk - Vuk, v) - (e2θk, v - ttjk),
2 at

where < , > denotes the duality pairing between 7* and V. We integrate
this on (0, ί) to get

Γ Wuk\\\ds = Γ <ιιί, ι;>
Jo Jo

+ (Vuk, Vυ)ds + (MΛ PMk, y)d5 - (e2θk, v -
Jo Jo Jo

.
2 2

uk)ds.
IQ JO

Taking the upper limit then yields

(2.21)

lim f' 2 _ Γ 1 2 1 2

T-ΛUPJ0

 M* 2 5 ~ J o

 5 2 M ί 2 + 2 W° 2

Γf Γ Γ+ (Pw, Ft;)ds + (w Fw, f)ds — (e2θ9 v — u)ds
Jo Jo Jo

for a.e. ί. Since we can take v = u in (2.21), we obtain

(2.22) lim su = Γ
Jo

for a.e. ί. On the other hand, by the lower semicontinuity of ||P ||2 with
respect to the weak convergence, we have

lip inf f | | Vuk\\ Ids > |Vtt||i<fc.
*"co Jo Jo
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This, together with (2.22), implies that

lim Γ \\ruk\\2

2ds = [ \\Vu\\lds

for a.e. t. Since uk converges to u weakly in L2(0, T; V) for all Γ>0, we

obtain (2.20). This completes the proof of Theorem 2.1 (i) in case f(θ) = θ.

UNIQUENESS AND CONTINUOUS DEPENDENCE ON INITAL DATA. We prove

Theorem 2.1 (ii) and (iii), assuming that / satisfies (0.4). Let {MO, 90}eVx

L2(Ω). We construct approximate solutions by solving the integral equations

(2.5) with Θke2 replaced by f(θk)e2. As in the proof of (i) for the case f = θ,

one can construct local solutions Uk = {uk, θk}. We will derive an a priori

bound for | |PM f c ( f ) | | 2 + II Vθk(i)\\ 2 which ensures the global existence of each
approximate solution. In this case, we shall also obtain stronger bounds

which imply the convergence of approximate solutions to a weak solution in

the uniqueness class

, Γ]; K)ΠL2(0, T; D(A))) x (C([0, T]; L2(Ώ))nL2(0, T;

The function Uk satisfies

(2.23) + Auk = P(- uk - Vuk + e2f(ΘJ), uk(0) =

(2.24) + Bθk = - uk Vθk + e2 uk + D(ΰk) : D(ΰk), θt(Q) = 00.*
at 2

Taking the scalar product of (2.23) with uk, we obtain

Since / is bounded, the right-hand side is estimated as

1*2/0*), **)! ^ |β | 1 / 2 I/ loo KII 2 < \ IIP"* 111 + I f l l l / l i -

We thus obtain

d ,, , , o
\< \Q\\f\l,,

at
which yields

I I M O I I i + ll^lli* < I | u 0 f k l l 2 + I f l l l / l i ί < Ml + |ίϊ| |/£t < c,
o
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with C = C(T) independent of k. Thus, uk is bounded in L°°(0, T; L2

σ)
ΠL2(0, T; V). We next deduce an a priori bound for | |Fw k (f) | | 2 . Taking the
scalar product of (2.23) with Auk, we have, as in the case /= 0,

I d
- — I I Fuji5 + MuJli < |(uk Puk, Auk)| + |(e2/(0k), Aκk)|
2 dί

< C ||iiJU HFiiJU MιιJ|2 4- Il/(0fe)ll2 M"JI2

< C || uJ| \>2 || Pwfc || 2 MuJ| 1/2 + II f(θk) || 2 1 | Auk || 2

^|MuJli + C| |uJ | i | |FuJ|i | |FuJ|i +

Since / is bounded, we obtain

2 + MuJli < C(||ιιJ|i HFiiJU ||FιιJ|i + |Ω| |/|2J.
at

Applying the classical Gronwall lemma, we have, for any T > 0,

(2.25) I I F M O I I 2 + ^ \\Auk\\\ds^C
Jo

with C = C(| |FM 0 | | 2, |ί2|, l/ l^, Γ) independent of k. Thus, uk is bounded in
L°°(0, Γ;K)nL2(0, T;D(A)).

We next derive a priori bounds for θk. Taking the scalar product of
(2.24) with θk gives

As in the case / = θ, the right-hand side is estimated as:

(uk): D(ΰ,), θk)\ < C \\rύk\\l \\θk\\2 < C \\7ΰk ||2 \\Aΰt \\2 \\θk\\2

< C( || Vuk\\\\\Auk Hi + ||^||i).

Hence we obtain

(2.26) ^\\θk\\l+Wθk\\l<C(\\uk\\l+\\Ψuk\\l\\Auk\\l+\\θk\\^,
at

and so, for all T > 0,

* 2

2ds<c, ( O < ί < τ ) ,(*
Jo
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with C = C(T) independent of k. Thus, θk is bounded in L°°(0, T; L2(Ω))

Γ)L2(0, T; //o,ι»er) In the same way, we can deduce, for any T> 0,

(2.27) \\rβk(t)\\2

2 + \\Bθk\\2

2ds < C, (0 < ί < T).
Jo

However, C = C(T) here depends on /c, because we assume only that

θ0eL2(Ω). It follows from (2.25) and (2.27) that Uk exists globally in

time. On the other hand, we have already seen that uk is bounded in

L°°(0, T; F)nL2(0, T; D(A)) and θk is bounded in L°°(0, T; L2(ί2))nL2(0, Γ;

#o,per). Thus, we find that

— is bounded in L2(0, Γ; L2),

— is bounded in L2(0, T; (Hjiper)*).
dί

By a classical compactness theorem [27, Th. III. 3.1], we see that

uk > M *-weakly in L°°(0, T; V) and weakly in L2(0, T; D(A)),

uk > u strongly in L2(0, T; F),

^ —>— weakly in L2(0, T; L2),

^ —^ θ *-weakly in L°°(0, T; L2(Ω)} and weakly in L2(0, T; H£f|M!Γ),

^k ^ θ strongly in L2(0, T; L2(ί2)),

^—^^ weakly in L2(0, Γ; «per)*).
αί αί

It is easy to see that {u, 9} is a weak solution of problem (BE)r The fact

that {tι, fl}eC([0, Γ]; V) x C([0, T]; L2(ί2)) follows from

weL2(0, Γ; DM)), — eL2(0, T; L2)
dί

and

dt

We next show the uniqueness in the class as mentioned in Theorem 2.1

(ii), i.e., in the class

i, T]; K)nL2(0, Γ; D(A))) x (C([0, T]; L2(ί2))nL2(0, T; H^per)).
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Note that if a weak solution {M, θ} belongs to the above class, then

^eL2(0,Γ;L2), f eL2(0, Γ; (tf',per)*).
flί flί

To show the uniqueness, it suffices to prove Theorem 2.1 (iii). Let

ίwon» #o,Je ^x ^2(Ώ), i = 1, 2. We wish to show that for any T> 0 there
exists a C = C(T) such that

||Fκ2(ί) - FMOIIi + ||02(ί) - θ,(t)\\l < C(| |Fn0.2 - Fκ0 i l 111 + II #0,2 - #0,1 111),

where {ui9 ^}, i = 1, 2, are weak solutions with initial values {u0ti9 Θ0ti}9

ί = 1, 2, respectively. Set u = u2 — ul9 Θ = Θ2 — Θ V . Then

du
(2.28) — + Au + P(ιι - Fw2 + MI - FII) =

αί

\—,y/+ (F0, FiA) + (u - VΘ2 + M! - F0, ιA)

(2.29)

2 2 x

for all \l/εH^per, and

Here < , •> denotes the duality pairing between /ίo,per and (Ho,per)*- We

take the scalar product of (2.28) with Au, to get

+ MM Hi = - (u Vu2 + u, Vu, Au) + ((f(θ2) -/(^))e2, Au).
at

Using (1.5) and (1.7) with p = 4, we have

|(u Fu2, Au)\< || M|U || Fu 2 |UM

Here we have used the Poincare inequality: | |w | | 2 < l | F w | | 2 . Similarly,

Writing
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Jo

we obtain

l((/(02) -/(0ι))β2, Au)\ < l/ ' lcc \\9\\2 \\Au\\2 < j MM 111 + C|/'|* ||0||i.
O

Taking ι/> = θ in (2.29), we obtain

^ y I I (9 ||i + ||P0||i = - (u VΘ2, θ) + (e2 u, θ) + ^(D(u): D(u, + u2), θ).
2 at 2

In the same way as above, using (1.3), (1.5) and (1.7) with p = 4, we can

estimate the right-hand side by

+ C ί \ \ θ 2 \ \ 2

2 + \\V(u, + ιι2)||i \\A(u, + ιι2)||i + 1] ||Fιι||i + C\\θ\\\.

We thus obtain

at

C||F(ιι 1 +ιι 2 ) | | i | |>l(ιι 1 H-ιι 2 ) | | i | |Fιι | | i

Since

"«eC([0, Γ]; 7)nL2(0, T; D(Λ)) and ^eC([0, T]; L2(ί2))nL2(0, Γ; H^per)

for i = 1, 2, we see that

Tdl^lli + ll^llD^fcWdl^lli +11^111)
at

for some fcίίJeL^O, T). It thus follows that

||Fιι2(ί) - Ftt l(ί)||l + ||fl2(ί) - flxWIli < C(||Fιι0 f 2 - Pw0,ι H i + l l f l o . 2 - 0o,ι 111).

which proves Theorem 2.1 (iii).

We next prove the assertion (i) for the case / satisfies (0.4). Let

{w0, θ0}eL2

σ x L2(Ω). In view of the proof of the assertion (i) for the case

f(θ) = θ, we can see that there exists a subsequence, denoted also by {wfc, θk},
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which convergesto a {u, θ} in the sense that:

uk >u *-weakly in L°°(0, T; L2) and weakly in L2(0, Γ; 7),

Mk —> M strongly in L2(0, Γ; L2),

^ —> ̂  Weakly in L2(0, Γ; V*),
at at

θk —>θ weakly in L4/3(0, Γ; L2(ί2))nL2(0, Γ; L4/3(ί2)).

In this case, however, the convergence of θk is too weak to pass to the limit
in f(θk), since / is not linear. To overcome this obstacle, we will show that

(2.30) θh(x, t) —> Θ(x9 t) a.e. (x, f )e f l x (0, Γ).

If this is proved, then we can see, by the dominated convergence theorem, that

Γ(/(0*)*2,t>)Λ—> Γ
Jo Jo

for all ι;eL2(0, T; V) as k -> oo, and so we can conclude that {u9 θ} is a weak
solution of (BE)r (2.30) is proved as follows. Taking the scalar product of
(2.23) with tAuk, we have

(* l | F w * l l l ) + f MM* || I = - | |Pw*ll l ~ t(uk-Vuk, Auk) + t(f(θk), Auk).
2 at 2

We majorize the right-hand side as before to obtain

jt(t\\ruk\\l) + t\\Auk\\*£C(t\\^

By the classical Gronwall lemma, we have, for 0 < t < T,

t\Wuk(t)\\l+ Γ τ \ \ A u k ( τ ) \ \ 2

2 d τ < C ( T ) ,

which implies that

uk is bounded in L°°(δ, Γ; K)nL2(δ, Γ; D(A))

for all 0 < δ < T< oo. This, together with (2.26), yields that

θk is bounded in L°°((5, T; L2(ί2))nL2((5, Γ; #< êr).

It is easy to see from (2.24) that

—- is bounded in L2(δ, Γ; (Hi Dβr)*).
dί
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Thus, by a classical compactness theorem [27, Th. III. 3.1], we see that

θk - >θ strongly in L2(δ, T;

from which we can immediately obtain (2.30). This completes the proof of
the assertion (i) for the case / satisfies (0.4).

REFULARITY IN TIME. In this paragraph we prove Theorem 2.1 (iv). The
fact that du/dteL2(Q, T; L2) is already shown in the proof of convergence of

{uk9 θk} (see the discussion after (2.27)). Here we first show that

(2.31) 6>eL°°(<5, T; //<^er)nL2(<5, T; D(B)) and ^eL2(<5, T; L2(Ω)).
at

We multiply (2.24) by tBθk and integrate over Ω to obtain

τ T (ί \\rok\\D + t\\Bθk\\2 = ^- \\rβk\\2 - t(uk rθk,Bθj
2 at 2

+ 1 1 (D(tΓt): D(ΰk), Bθk) + t(e2 uk, Bθk).

Estimating the right-hand side as in the proof of (i), we have

y (t l |F0 t | l l) + ί HB^III < C d l F ^ H i + MuJlf + \\uk\\\),
at

with C = C(T) independent of k. Upon integration, this gives

\vek\\ι+
o o

where C = C(T) is independent of k. Hence,

(2.32) θk is bounded in L°°(<5, T; H^per)nL2(^, T; D(β)),

and so the first assertion of (2.31) is obtained by letting fc-> oo. Using (2.32)
and the relation

^=-Bθk-Uk.rβk + e2 uk + l D(uk): D(uk)at 2

as well as the estimates

\\uk'^θk\\2^\\uk\\4\\7θk\\4^C\\u^^

\\D(ΪΓk): D(ΰk}\\2

2 < C \\Vΰk \\l < C \\Vuk\\2 \\Auk\\29

we see that
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—- is bounded in L2(δ, Γ; L2(ί2)),
at

and so the second assertion of (2.31) is obtained by passing to the limit.
We next show that

(2.33) — eL°°(<5, T; L2

σ)nL2(δ, T; V) and —eL2(<5, Γ; V*
dt dt2

Consider the difference quotients

faλ(0 = τ~l(uk(t + τ) - uk(t)), (θk)τ(t) = τ~l(θk(t + τ) - θk(t]

From (2.23) we have

^ + A(uk\ = - P((uk)τ 7uk + uk V(uk\ - e2(θk)τH(θk)),
Λ

where

The standard method gives

^ y I I K X I l i
2 αί

= /WO + C(βt(t + τ) -

I/'!

By (1.3), (1.5) and (1.7) with p = 4, the first term on the right-hand side is

estimated as

\((uk\ V(uk)τ, uk)\

since uk is bounded in C([0, Γ]; F). Hence we get

^ IIKXIli + II i7 («*), 111 < cdlKXIli + II (̂ 11 1),
αί

and so, denoting w^ = duk/dt and ^ = dθk/dt,

(uk\(t)\\2

2 Γ IIFί i iώl l idσ < IKu^WIII + C Γ
Js Js
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(Ml+\\θί\\l)dσ

where C = C(T) is independent of k and τ. Here we have used the
boundedness of u'k and θ'k in L2(0, T; L2) and L2(0, Γ; L2(ί2)), respectively.
Integrating this with respect to s gives

2 P 2 Γ(uk)τ(t)\\2 + I 5 I I F ( u k ) τ \ \ 2 d s < C
Jo Jo

•Γl l« ί l
Jo

<C\ \\ui\\lds+ C£C
Jo

with C = C(T) independent of k and τ. Hence,

(uk\ is bounded in L°°(δ, T; L2)nL2(<5, T; K)

uniformly for k and τ; and the first assertion of (2.33) follows by passing to
the limit. To show the second assertion, observe first that (uk\ satisfies

T ΓT

((uk)τ, v)h'dt + [(F(ttk)τ9 Fϋ) - ((Mk)t Ft;,
o Jo

- ί (uk Vv, (uk\)hdt = ί (e2(θk\H(θk], v)hdt
Jo Jo

for any fixed veV and /ιeCo(0, Γ) provided that |τ| is sufficiently
small. Letting τ -> 0 and then k -> oo yields

pr rr
- (ιι', v)h'dt + [(Ffi', Ft?) - (υ! - Fι?, u)]fcdt

Jo Jo

ΛΓ ί Γ

- (u - Vv, u')hdt = (e2f(θ)&, v)hdt.
Jo Jo

Since |(M' Ft;, M)| and |(M Ft;, M')| are both majorized by

C | | f i ' | | i /

we see by duality that

This completes the proof of Theorem 2.1.
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3. Passage to the limit η -> 0

This section establishes the following

THEOREM 3.1. (i) Let f satisfy (0.3) and let {uη, θη} be the family of

weak solutions of (BE)η given in Theorem 2.1 corresponding to any fixed initial

value {MO, θ0}εL2

σ x L2(Ω). Let [u, θ} be a (unique) weak solution of the

Boussinesq equations with the same initial value. Then, for all T > 0,

u, - > u strongly in C([0, T] L2) fl L2(0, T; V),

θη - >θ strongly in L4/3(0, T; L2(ί2)).

(ii) Let f satisfy (0.4) and let {w0, 00}eVx L2(Ω). Then, in the situation

stated in (i), we have

uη - > u strongly in C([0, T] K)nL2(0, T; D(Λ)),

^ - > 0 j/ro/ifffy ί>ι C([0, Γ] L2(β)) n L2(0, T; //^pβr).

/or Λ// Γ>0.

REMARK. By the same argument as in [14], we can show that the
Boussinesq equations possess a unique weak solution in

(L°°(0, Γ; L2)ΠL2(0, Γ; 7)) x L4/3(0, Γ; L2(β))

in case / satisfies (0.3). Furthermore, our proof of Theorem 2.1 (ii) and (iii)
automatically implies that if / satisfies (0.4), then the Boussinesq equations
possess a unique solution in

(L"(0, T; K)ΠL2(0, T; D(A))) x (L°°(0, Γ; L2(£>))f)L2(0, Γ; H

provided {w0, ΘQ} e V x L2(ί2).

PROOF. Also in this section, we assume that

v == K = 1

for simplicity in notation.
(i) We prove that

(3.1) u, - >u strongly in C([0, T] L2) n L2(0, Γ; F),

and

(3.2) θη - >θ strongly in L4/3(0, Γ; L2(ί2)).

In the same way as in section 2 we can show that
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(3.1)' uη - > u strongly in L2(0, T; V).

But, since u'η = duη/dt is bounded in L2(0, Γ; F*), the relation

K(f) ~ " W i l l = 2 <«; - w'> «, - "><fc,
Jo

together with (3.1)', implies that

^ 2 Γ || Fin, - u) || 2 K - u'\\v*
JoJo

l / 2

as f/ ->0. This completes the proof of (3.1). To show (3.2), we introduce the
notation :

\ l / J >

where J is a measurable set in (0, T). Let φeClper(Ω}. Taking ψ(τ} =

e-
(t~τ}Bφ in (2.4), we have

(0,(t), Φ) ~ (θη(s), e-«-»Bφ} = Γ (u Ve-«-**φ, θη)dτ + Γ (e2 u,, e^'^B

Js J s

Let ηm be any sequence such that ηm -> 0 as m -» oo. For simplicity, we write
w™ = u^ and #„, = #„_„. Then we have

i - θn(t), φ) = (θm(s) - θn(s), e-«-*Bφ) + Γ /^ί, τ)dτ + Γ /2(ί,
Js Js

I3(t, τ)dτ + I4(t, τ)dτ,
Js Js

where

I2(t, τ) = - (un Ve-«-«Bφ, θm - θn)

I4(t, τ) =
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Using (1.7) we have

< I I «m - uji'" \\r(um - un)\\\-2lp \\em\\2
where 1/p + 1/r = 1/2, p, r > 2. Since

\\re-tBφl<C\\Fe-<Bφ\\2

2l'\\Be-<Bφ\\2-
2'' = C\\B1>2e-'

<ct-1+1"\\φ\\2,
it follows that

IΛ(ί, τ)| < C(t - τΓ1 + 1" \\um - un\\llpW(um - «n)ll

Since {um} is bounded in Lx(0, T; L2

σ), this gives

l/ι(ί,t) |^C(ί-τ)- 1 + 1"|IΠ««-«JllΓ 2 / IΊl
Similarly, we obtain

/3 is estimated as

l/3(t, τ)l <C\\um- un\\2 \\e-«-*Bφ\\2 < C \\um - un\\2 \\φ\\2.

Applying Lemma 2.2, we have

: D(nJllι + »

Thus, by duality, we obtain

II θm(t) - θn(t) ||2 < II θm(s) - θn(s) \\2 + S^t, s) + S2(t, s) + S3(t, s) + S4(t, s),

where

S^t, s) = C Γ(t - τΓί + llr W(um - un)\\\'2lp \\θm\\2dτ,
J S

S2(t, s) = C Γ(t - τ)-1 + 1" || Fuji I-2/' \\θm - ΘJ2dτ,
J S

S3(t,s) = C \\um-un\\2dτ,
J S

S4(t, s) = C Γ(ί - τΓll2(ηm \\rum\\l + Vn W
J s
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Choose p, r > 2 so that l/p + 1/r = 1/2, p < 4. Then, since (p - 2)12 + 3/4 <
1 and 1 - 1/r + (p - 2)/2 + 3 / 4 = 1 + 3/4, we apply the Hardy-Littlewood-
Sobolev inequality [26] to obtain

(Γ )3/4

for J = (s, ί). Similarly,

3/4

|S2(σ, s)|4/3dσ < ||FuJ™ \\θm - 0J4/3i2iJ

for J = (s, ί) Since {um} is bounded in L°°(0, T; L2), we have

3/4

+ ηn)<C(T)(ηm + ηn).

Since {θm} is bounded in L4/3(0, T; L2(ί2)), we now deduce

\\0m-θn\\4l3.2.j:

(3.4)

where J = (s, ί). Since Vum -> Fw in L2(0, T; L2) by (3.1)r, there exists a (5 > 0
such that if 0 < ί — s < δ then

|| Vum || 2 2 r < ( 1 for all mmll2,2,J {2C(T)J

with J = (s, ί). We take s = 0 and ί = δ in (3.4). Since 0m(0) - θn(0) = 0 by
assumption, we have

II0« - 0.IU/3.2,Jo ̂  2C(T)(||F(ttm - uJIIΪΪ,2^ + IK - uj|2i2fjo + ι/m + ijj

where J0 = (0, ̂ ). This implies that {0m} is a Cauchy sequence in L4/3(0, <5;
L2(ί2)). Since (9m converges to θ weakly in L4/3(0, T; L2(ί2)), we see that θm

converges to θ strongly in L4/3(0, δ; L2(Ω)) and, in particular, that there exist
a subsequence, also denoted {0m}, and tle(δ/29 δ) such that θm(tv) converges
to θ(t^} strongly in L2(Ω). Now take s = ίx and t = 3δ/2 in (3.4). Then we
have, for J1 =(tl9 3<5/2),

l l^m - β.lU/3.2./. ^ 2C(T)(||flm(t1) - θn(t,)\\2 + ||F(um - un

+ 2C(T)(\\um-un\\2t2tJί + ηm + ηJ.

In the same way as above, we see that θm converges to θ strongly in
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L4/3(ί l5 3(5/2; L2(Ω)) and, in particular, that there exist a subsequence, also
denoted by {ϋm}, and t2ε(δ, 3(5/2) such that Θm(t2] converges to Θ(t2) strongly
in L2(Ω). Taking s = t2 and t = 2δ in (3.4), we have, for J2 = (£2, 2(5),

\\θm ~ 0.ll4/3,2,/ a £ 2C(T)(||0m(ί2) - 0π(ί2)||2 + \\V(um - un)\\(2p,2%P)

Thus, #m converges to # strongly in L4/3(ί2, 2(5; L2(ί2)) and, in particular, there
exist a subsequence, denoted again by {0m}, and f 3e(3<5/2, 2(5) such that 0m(ί3)
converges to 0(ί3) strongly in L2(Ω).

Repeating these processes finitely many times, we conclude that there
exists a subsequence of {θm} which converges to θ strongly in L4/3(0, Γ; L2(Ω)).
Since {ηm} is arbitrary, {θη} converges to θ strongly in L4/3(0, T; L2(ί2)). This
completes the proof of (i).

(ii) We may assume η < 1. First we show that

(3.5) uη — >u strongly in L2(0, Γ; V).

Observe that letting k -> oo in (2.25) implies that

uη is bounded in L°°(0, Γ; F)f]L2(0, Γ; D(A)).

Also, as in section 2, we can show that

^ is bounded in L2(0, T; L2).
dί

Applying [27, Th. III. 3.1], we can take a subsequence um = w^ of t^ which
converges to u in L2(0, T; F). Since u is unique, we have proved (3.5).

We next prove

(3.6) θη—+θ strongly in L2(0, T; L2(Ω)).

As in section 2, we estimate approximate solutions {uk, θk} = {WM, θktη} and
then pass to the limit k -> oo to obtain

Ilfl,(ί) ll2 + Γ H^JIi* ̂  ll^oJIi + c( Γ iiβjiiώ + i),
Jo \ J o /

for a.e. ίe(0, T), with C = C(T) independent of η < 1. Applying the classical
Gronwall lemma yields

Γ
Jo

Wθη\\2ds <C

for a.e. ίe(0, T), with C = C(T) independent of η < 1. This shows that



Attractors for equations of thermal convection 283

0, is bounded in L°°(0, T; L2(Ω))nL2(0, T; H^per).

One can also deduce that

^ is bounded in L2(0, T; (/f^J*).

Thus, we can apply [27, Th. III. 3.1] to extract a subsequence θm such that

0ra — v 0 strongly in L2(0, T; L2(Ω)),

which shows (3.6) because the limit function θ is unique.

Using (3.5) and (3.6), we now show that

(3.7) «, — t u strongly in C([0, T]; F)nL2(0, T;

as in the proof of Theorem 2.1 (ii). The functions v = uη — uη> and ψ — θη — θη,
satisfy

dυ
(3.8) h Aυ + P(v - Vu + u - Vv) = P[(f(θη) — f(θn))e2~\,

at

and

(3.9)

'dψ \
— 9 Φ ) + (Fψ, V φ) + (v - Vθn + un' - V\iι, ώ)
at I

= (e2 - v, φ) H— (D(uη): D(uη), φ) — — (D(uη>): D(uη>), φ)

for φeH^per. From (3.8) we have

I d 2 2 _

2 at 2 2 η η

+ (f(θη)-f(θη ) , A v )

and, as in the proof of Theorem 2.1 (ii), the right-hand side is majorized by

1 2

2 2

We thus obtain

d
(3.10) j \\Vv\\\ + \\Av\\l < C(l

so that, by the classical Gronwall lemma,
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(3.11) Wv(t)\\l<c \W\\\ds
Jo

with C = C(T) independent of η and η'. This shows the convergence of uη

in C([0, T]; V). From (3.10) and (3.11), we also get

Γ \\Av\\2

2ds<C Γ(l + \\Auη\\2+ \\Auη. \\2)\\Fv \\2

2ds + C \ \\ψ\\2

2ds
Jo Jo Jo

\\rv\\l + cτ\\ψ\\2

2ds
[0,Γ]

which shows the convergence of uη in L2(0, T; D(A)). The proof of (3.7) is
complete.

We finally prove

(3.12) θη - > θ strongly in C([0, T] L2(β)) n L2(0, T; tf 2,per).

We insert φ = \l/(i) into (3.9) to obtain

i = - (t> - F0,, ^) + (e2 - 1;, ^)

The right-hand side is estimated as in the proof of Theorem 2.1 (ii), and we

are led to

Il /Ίli + wnl ^ c | |F»ιi i( i + \\vβη\\l)

Upon integration and application of the foregoing bounds, this gives

ίs<C(sup \\rυ\\l + η + η')ίJo

with C = C(Γ) independent of ^/ and η(9 and this shows the desired convergence

(3.12). This completes the proof of Theorem 3.1.

4. The global attractor for problem (BE),,

From this section on we assume that / satisfies (0.4). Our convection

problem is reformulated as
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du
(4.1) — + vAu + P(u Pw) = P/(0)έ?2,

dt

dθ ηv
(4.2) — + Kflw + u - Vθ = — D(u): D(u) -e2 u,

dt 2

u(0) = u0, 0(0) = 00

Let

H = V x L2(Ω).

Then, by Theorem 2.1 (ii) and (iii), we can define the semigroup:

S(t): H9{ιι(0), 0(0)}^->{ιι(ί), 0(ί)}eH.

We will prove in this section the existence of the global attractor for {S(f)}ί;>0,
to which all solutions converge as ί->oo.

Following [28], we introrduce a notion of attractor.

DEFINITION. A set jtf of a metric space H is called an attractor associated

with {S(ί)}^0 if
(i) j/ is invariant, i.e., S(t)s/ = j f for all t > 0.
(ii) There exists an open neighborhood ^ of si such that for every

w0e^, S(ί)w0 converges to stf as ί -> oo in the sense that

lim d(S(t)u0, s/) = 0,
r-»oo

where d( > , ) is the distance function of H.
We say that s4 attracts a set J* c r̂ if

lim d(S(ί) J1, ja/) = 0,
ί-*oo

where

d(Λ0, ΛJ = sup inf d(x, y).
xeMo ye^1

An attractor s4 e /ί is called a global attractor if it is compact and
attracts bounded sets of if.

We can now state our main result in this section.

THEOREM 4.1. Suppose that / satisfies (0.4). Then, the semigroup {S(f)}ί>0

associated with problem (4.1)-(4.2) has a unique global attractor s4 which is
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bounded in D(A) x //Q per(ί2), compact and connected in H. Furthermore, stf

attracts bounded sets of H.

To prove Theorem 4.1, we need two notions: the first is the notion of

absorbing set, and the second is the uniform compactness of the semigroup

{S(ί)}f*o for t large.

DEFINITION. A subset $ of H is called absorbing in H if for each bounded

set JO of H there exists ί0 = f0(#o) such that S(t)Λ0 c # for all ί > ί0.

DEFINITION. Let {S(t)}t>0 be a family of operators on H. Then {5(ί)}t>0

is said to be uniformly compact for t large if for each bounded set ,̂ there
exists ί0 = t0(&) such that

is relatively compact in H.

To verify the existence of a global attractor, we appeal to the following abstract
result:

THEOREM 4.2 ([28, Th. I. 1.1]). Let H be a metric space and let {S(t)}t>0

be a nonlinear semigroup of continuous transformations on H. If (5(ί)}r>0 are

uniformly compact for t large and if there exists an open set ^U and a bounded

subset $ of m such that $ is absorbing in °U, then the ω-lίmit set ^ of ̂
is a compact attractor which attracts the bounded sets of tfl. Furthermore, <$#

is the maximal bounded attractor in <%. If H is a Banach space and ^U is
convex and connected, then stf is connected.

We prove Theorem 4.1, applying Theorem 4.2 to our semigroup. In the

subsequent argument the following result will be frequently applied.

LEMMA 4.3. Let g, h and y be three positive locally integrable functions

on (ί0, oo). Assume that y' is locally integrable on (ί0, oo) and

(4.3) -̂  < gy + h
at

holds for t > ί0. If there exist positive functions a^i), i = 1, 2, 3, such that

Γt + r Λί + r Λί + r

g(s)ds < αx(ί), h(s)ds < a2(t), y(s)ds < a3(t) for t > ί0,

where r is a positive constant, then

(
/ \ \

-̂ — + β2(ί)J exp βl(ί) for t > ί0.
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REMARK. When a{ are constant functions, Lemma 4.3 is called the uniform
Gronwall Lemma [28, Lemma III. 1.1].

PROOF. Let ί0 < t < s < t + r. Multiplying (4.3) by

( Γs \exp I - g(τ)dτ \
\ Jt /

we have

d ί ί Γs \\ / Γs \
— y(s) exp - g(τ)dτ < h(s) exp - g(τ)dτ .
ds\ \ J r // V Jt )

Integrating this on [s, ί + r] gives

a t + r \ p + r / / V H r \

gf(τ)dτ 1 + fc(τ) exp ( gf(σ)dσ 1 dτ
/ Js \Jτ /

Integrating this in s on [ί, t + r] yields the desired result. This proves Lemma
4.3.

We begin by establishing the existence of an absorbing set.

PROPOSITION 4.4. There exisits an absorbing set for {S(ί)}t>o in H

PROOF. We first show the uniform boundedness of u in V for large
ί. From (4.1) we have

1 y \\u\\2

2 + v || F u l l ! = (/(?), u) < |£>|1/2 I/L | |u | | 22 αί

and so

(4.4) ^Nili + v||Fu||z_.
at v

We also obtain, by the Poincare inequality,

at v

Integrating (4.5) gives

ION /Ί^
(4.6)
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Let ^ be an arbitrary bounded set of H. From now on we assume that
{uθ9θ0}e&. There exists K > 0 such that £H(0, R) ID J>, where £H(0, R)
denotes the ball of H with center 0 and radius R, and, in particular,

\\ru0\\2+\\ΘJ2<R2. Set

Po =

and define

R2

— -
Po - Po

for PO > Po It follows from (4.6) that

l l " W l l i < P 0 2

for ί > ί0> since {w0, #0}e Si. Note that p0 and p0 depend only on physical
data and are independent of initial data. Here and in what follows we use
letters p7 , pj and a$ to denote constants which depend only on physical data
and are independent of initial data and time ί, while the letters Kj denote
constants which may depend on initial data or time ί, etc. Now (4.4) gives

IMJAίiMϋ

which implies that

V V

for t > ί0, since {w0, #0}e J*. Multiplying (4.1) by Au, we have

I I P " H i + v l l ^ l l 2 , = -(M FM, y4w) + (/(0), Aw).
2 rfί

We estimate each term on the right-hand side. The second term is estimated
as

|(/(0), An)I < I^Γ / 2 I / l o o M«II2 < τ M « l l 2 --
4 v

By (1.3), (1.5) and (1.7) with p = 4, the first term is estimated as

\ \ Λ A u \ \ 2 < C \ \ u \ \ \ ' 2 \ \ V u \ \ 2 \ \ A u \ \ l 1 2

4
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It thus follows that

(4.7) ^ \\Vu\\2 + v\\Au\\2 < -•-"•"*> + - | |W | |2 | |Fi i l l t
αί v v3

Since

l | F u | | 2 £ λ Γ 1 / 2 M M | | 2

for ueD(A), where ^ is the principal eigenvalue of the Stokes operator, we

also have

V W , II " H i i £ - - -i i i - -- i i .ώ —

αί

Applying Lemma 4.3 to (4.7), we obtain

for t > t0 + 1, where

«1 = ^ >
 fl2 =

v v v A! v

This shows that {w(ί)}ί>ίo+ι is bounded in V uniformly for {w0,00}
Integrating (4.7) on [ί, t + 1], we also obtain

\\Au\\\ds < —- H- -T l l w l l i l l ^ w l l ί ^
Jr V2 V 4 J,

z—— 4- + — = α4
V V/i V

for ί > ί0 + 1. We next deduce the uniform estimate of | |0( t) l l2 for large

ί. For this purpose, we first estimate || Fw(ί)||2 for 0 < t < t0 + 1. From (4.4),
we see that

I I " ( O i l 2 + v Γ | |Fu||2dS < ||u0 | |
2 + !̂ U !̂» t.

Jo v

This, together with (4.6), implies that

^Γι.ιnF.
v 3 J 0

(4.9)
v4 V v2
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for 0 < t < t0 + 1. Applying the classical Gronwall lemma to (4.7), we obtain

Γt 9 \Q\ I f I 2

l|Fu(ί)||i<||FM0||i+ ' "-""

(4.10) J° V

ϊV+mvM +v κ κ
V

for 0 < ί < ί0 + 1. Integrating (4.7) on [0, ί], we also obtain

/ Γs Γ \
exp - ||u||i | |Ptt | | fdτ )ds

V J ° V ^

(4.11)

< R2 -KίK2 =
V

for 0 < ί < ί0 + 1. Taking the scalar product of (4.2) with #, we have

+ K || Vθ\\\ = η-(D(ύ) . D(u), θ) - (e2 - u, fl).

We majorize the right-hand side as follows: By (1.5) with p = 4,

II Full ill /In Hi.

nv
L(D(u):D(u),θ) <ηv

K

~ 4

II F« 111 II θ II 2 <

2 2C v 2

K

A simple estimate gives

We thus obtain

(4.12)
at

-
K

which implies

It then follows from (4.10) and (4.11) that

--K3 = K4.
κλl
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Using the Poincare inequality, we also obtain, from (4.12),

T \\θ\\l + K \\θ\\2

2 < — \\ru\\2

2 \\AU\\I + - ι |Fκ.| | i,
at K K

and therefore,

\\θ(t)\\2<e-κ(t-to-1}\\θ(t0+l)\\2

(4.13) + Γ *-*<'-•>( — || F u l l 1 + -̂ -
3 + ι V K Kλ,

Γ
Jto

κ ( ί _ t o _ 1 ) +

Jί

for ί > ί0 + 1. To estimate the last term, we multiply (4.7) by e κ(t s) to get

d , _.
«-'> \\ru\ft) + ve-κ(t-* \\Au\\

ds

V V 33

Integrating this with respect to se[ί0 H- 1, ί] then yields

v e-κ(t-s)\\Au\\2ds<e-κ(t-tQ-l)\\Vu(tQ + \)\\2

2

ίo+ 1

.o+1

- \\u\\l\\Vu\\*
3V

to+1

/C \ V

We thus deduce from (4.13) that

(4.14)

for f > f 0 + 1. Now set ̂ 2 = ( ~^— + - ) «s, and define
V jc K A i V /

4-log-^ - - for p'2> p2.K p2

2 - pi
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Then, ||0(t)||2 < p'2< P2 f°r t>tl9 which implies that {θ(t)}t^,tί is bounded in

L2(Ω) uniformly in (uθ9 Θ0)e&. Since we have already seen that ||Fw(ί)||2 ^ Pi

for t > ί0 + 1, it follows that (u(t), 0(ί))e#(0, p3) for ί > ί l 9 where pf = pi +

p2

2. This shows that J^(0, p3) is an absorbing set in H and the proof is

complete.

We next prove the uniform compactness of {S(ί)}f>o f°Γ ί large.

PROPOSITION 4.5. {S(ί)},>o is uniformly compact for t large.

PROOF. Let J1 be a bounded set of H. It suffices to show that there

exists a ί2 = t2(Λ) such that (Jt>t2S(t)@ is bounded in D(A) x H^per, since

the embedding D(A) x Ho,per c jF/ is compact. Let (MO, 50)eΛ. Recall that

II ^"o I I 2 + l l^o I I 2 ^ ̂ 2 for some ^ > 0, since J* is bounded in H. Integrating
(4.12) on [ί, ί + 1] gives

ff+l 1 /- 2 fί+1 £ fί

l|F0||iώ -̂||β(ί)||| + - ||Γιι||i||̂||iώ + ~
Jt K K Jt K Jt

'2

K:

Multiplying (4.2) by Bθ, we have

\ y l |F0| | i + K \\BΘ\\\ =-(u VΘ9 Bθ) + η^-(D(u): D(u), Bθ) - (e2 - ιι,
2 dί 2

By (1.3), (1.4) and (1.5) with p = 4, the right-hand sides are estimated as follows:

Φ \\ru\\l \\BΘ\\2 < Cηv | |Fu||2 | |X«||2 \\BΘ\\2

\\BΘ\\\ +<^ \\Vu\\\\\Au H i ,

We thus obtain
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C o „ <, 3

at K K K

On the other hand, if ί > tl9 then

Γ f ί + 1 Γ
II I I 2 I I P \\2ds < — o'2o2 = a *

κ3

Cv2 „„ 3Γv2 Γί + 1 3 Γ ί + 1

— \\Vu\\\\\ Au\\ids + -\
K J, κ j t

ί
K K

'ί+1

||Γ0||l<fa<;fl6.

Applying Lemma 4.3, we have

for t>t1. This shows that {θ(t)}t>tί is bounded in H^per uniformly in

We next estimate ||^M(ί)l|2 f°Γ lar§e ί To do so, we first estimate
r+l

\\θt\\lds, where 0r is the time-derivative of θ. Note that this integral

exists by Theorem 2.1 (iv). We multiply (4.2) by θt to get
ί

II0JI + T II^HI = - (fi - Vθ, θt) + η-(D(uY D(u), θt) - (e2 u, ^).
2 at 2

The right-hand side is estimated as follows: First, by (1.3) and (1.6),

\(u VΘ,θϊ\< \\u\\ x \ \ V Θ \ \ 2 \ \ θ t \ \ 2 < C \ \ A u \ \ 2 \ \ V Θ \ \ 2 \ \ θ , \ \ 2

Secondly, by (1.5) with p = 4,

<\\θt\\l + Cv2 \\Vu\\l\\Au\\\.
6

Third, by an elementary calculation,

l(*2 ", »f)| < | |u| | 2 ||0, || 2 < \\Vu\\2 \\θt\\2 < ~ \\θt\\2

2 + 3 |
6
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We thus have

II0,111 + *y ||P0||i < 1C(\\VΘ\\1 + v2 \\ru\\2

2)\\Au\\2

2 + 6 \\Vu\\\.
at

Integrating this on [ί, t 4- 1], for t > t± 4- 1, then yields

i
l i q u i d s <κ||F0(ί)||2

f*t+ 1

(4.16) +2 [C(||F6»||| +v 2 | |Fu| |i)Mu||i + 3| |Fu
Jr

< fcp| 4- 2C(p| 4- v p2)fl4 + 6p2 = Λ9.

Λί+l

We next estimate l lwJI^ds . Multiplying (4.1) by ut, we have
Jί

II«,111 + ̂  y II F« H I = - (« Fu, M() + (f(θ), ut).
2 at

In the same way as above, we obtain

KM FU, M ( ) |< | | M | | 4 l l F u | | 4 | | u t | | 2 < C | | u | | l / 2 | | F u | | 2 | M u | | ^ 2 | | u ( | | 2

<|||M(||
2 + C| |u | | 2 | |Fu| | 2 Mu|| 2 ,

\(f(β), ut)\ < \\f(θ)\\2 \\ut\\2 < |ί2|1/2 |/L ||ttf ||2 < \\ut\\2

2 + |fl | I/I2,

It thus follows that

Γ+1 | |u||

Ur + l \ 1/2 / r t+ΐ \ 1/2

I I " III l i q u i d s ) Mul l ids) ,
ί / \J ί /

so that

p t + l

HwJids < vp2 H-2|β| |/|^ 4- Cpόp2fl}/2 Ξ α10

Jί

for t > t0 + 1, since {w0, 0(
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We now deduce a differential inequality for \\ut\\29 applying the foregoing

estimates. Differentiating (4.1) with respect to f, we have

un + Aut + P(u - Vut + ut FM) = Pf'(θ)θte2.

Multiplying this by ut then yields

J y I I U t \ \ 2

2 + V IIFllJi = - ("r ί7"* "r) + (/Wr, *2 ' Ό
2 αί

We apply (1.5) and (1.7) with p = 4 to obtain

lίv^iOI^IIMJr^^

^ 7 II Fuji+ —||0,111,
4 v

so that

if O I /*' |2

(4.17) - Kill + v IIFu.Hl < -- llβ, 111 + - ||uji llf«lli/3 M « / 3

Since, by (4.11),

C Γ ί + 1

 2 3 2 3 C / Γ + 1 γ / 3 / p + l ^ γ/3

Λ , l / 3 | Λ , l / 3 \ | / \ | ^ /
V Jί V \Jί / \Jί /

for t > t1 + 1, applying Lemma 4.3 then yields

|| n,(ί) ||| < (α9 + α10) exp (αn) = p§

for ί > ίj + 2.

We can now deduce a uniform estimate of | |Aw(ί)| | 2 for large ί. From
(4.1) we see that

Au(t) = -(- ut(t) - P(u Vu)(t) + Pf(θ(t))e2),
v

which implies

1
< — (11^(0112 + II 1 1

V
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Since

\\u Vu\\2< \\u\\t\\Vu\\t <C\\u\\\l2\\VU\\2\\Au\\\12

+ -\\u\\2\\Vu\\l,
v

|β|1/2 1/L,
we have

V

for t>tt +2, which implies that {u(t)}t^tl + 2

 is bounded in D(A] uniformly
for {w0, 00}e#. This, together with (4.15), implies that (Jt>tί + 2S(t)& is
contained in some bounded set of D(A) x H^per(Ω). Thus, {S(ί)}f>0 is
uniformly compact for t large. This completes the proof of Proposition 4.5,
and so Theorem 4.1 is proved.

5. Estimate of the Hausdorff dimension of the attractor ,o/

In this section we give an upper bound for the Hausdorff dimension of
the global attractor jtf obtained in the previous section. The method is
basically the same as that given in [8]. We begin with

PROPOSITION 5.1. The mapping S(t) is "uniformly differentiable on j/"
with respect to the L2-norm, i.e., for any φ0 = {w0, #0}, there exists a continuous
linear operator L(ί; φ0) on L2

σ x L2(Ω) such that

ι .0 ι ~ <Po)\\L*lim sup -

where \\ - \\L2 is the norm of L2

σ x L2(Ω):

\\<P\\L* = (\M\22 + \\Θ\\IΫ12, φ = {H, θ}eL2

σ x L2(Ω).

The proof of Proposition 5.1 is long and technical; and so will be given
at the end of this section. One will see in the proof of Proposition 5.1 below
that L(ί, φ0) is the linear mapping

L2

σ x L2(Ω)3ξ = {l/o, <90}^-+Φ(t) = (l/(ί), Θ(t)}εL2

σ x L2(ί2),

where Φ(i) = {(7(ί), Θ(i)} is the solution of the linear problem

dU
— + vAU + P(u VU + U FK) = f'(θ)θe2at
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dΘ
(LP) — + KBΘ + (u - VΘ + U - Vβ) = e2 - U + ηvD(u) : D(U),

dt

t/(0)=l70,

We write this linear problem as

d-^
at

where
- vΛU - P(u 7U + U FH) + f'(θ)Θe2

-(u VΘ + U Pθ) + e2 U + ηvD(u):D(U)

REMARK. Since si is bounded in D(A) x H^per(Ω), one can easily show
that for each ξ = {170, 6>0}eL2 x L2(ί2), there exists a unique solution {(7, <9}
of (LP) such that

C7eC([0, Γ]; L2)ΠL2(0, T; 7), 0eC([0, T]; L2(ί2))nL2(0, Γ; H5t

for all T>0.

Our goal in this section is to show the following

THEOREM 5.2. The Hausdorff dimension of stf is bounded above by

c\Ω\(\ + Pr)(l + Gr + Grlί2Ra + 0(η))9

with a constant c depending only on α.

REMARK. Foias, Manley and Temam [8] obtained a bound of the form

Gr + Ra)

for the attractor of the Boussinesq equations, i.e., for the case f(θ) = θ and
η = 0. The same result can be derived also in the case that / satisfies (0.4)
and η = 0.

PROOF. We will prove Theorem 5.2, following the procedure in [28, Chap.
V]. Let Φί9 9Φl be the solutions of (LP) with initial values ξί9~ 9 ξ l 9

respectively. In the same way as in [8], we can show

l l * ι A - Λ Φ l | | A L 2 = | | { 1 Λ - Λ ί l | | A L 2 e x p [ tr
\Jo

where AL2 denotes /-exterior product of L2 x L2(ί2), with norm || | | Λ L 2; Qι(s)

= Qι(s> Φoi £i> ζι) is the orthogonal projector in L2 x L2(Ω) onto the space
spanned by Φί9 9Φl. Using these notations, we define
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</j = lim sup sup sup ( — I tr^(φ(s))<
/ 1 f'

sup I —
eL* xL2(β) \ ί Jo

According to [8, 28], the Hausdorff dimension of jtf is less than or equal to

the integer / for which ql < 0. Thus, we need to estimate ql and find an /

such that ql < 0.

At a given time s, let {φj(s)}f)

=1 = {v'j(s), ι/^ (s)}j°=1 be an orthonormal
basis of L2

σ x L2(Ω) such that {<p/s)}J=1 spans βι(s)(Lj x L2(ί2)). Then we
have

tr P(φ(s]) o a(s) = £ (P(φ(*}) Qι(s)<Pj(s), <Pj(s))
j=l

= Σ (P(<P(S))<PJ(S)9 φ j ( s ) ) .
7=1

Since

= - v \\ ̂ Vj(s)\\2

2 - (υj - Vu(s), Vj(s)) + (f'(θ(s))9 e2 - Vj(s))

) \\2

2 - (vj2 - - )9 φj(s)) + (e2 - t;,(s),

we have

J = l J = l 7 = 1

*Σ \\rψj(s)\\22- Σ (^-^^)^7(s))
7=1 7=1

' Σ (^2 vj(s)9 φj(s)) + ηvΣ (D(u) : D(vj) (s), φj(
7=1 7=1

In the same way as in [8], we can majorize I2 as follows. By the Schwarz

inequality, we have

hence

\7u(x9 s)\\υ3(x9 s)\2dx < ||Fιι(5)||2f \
JΩ
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where p(x, s) = Σ (\vj(χ> s)l2 + \Ψj(χ> S)I2) Here we apply the Lieb-Thirring

inequality [19,28]:

(5.1) \\p(s)\\2^c'ι ί

with c{ depending only on α, to get

i
l / 2

.7=1

. 7 = 1

< .Σ (v ll^(s)||i +

where c'2 = 2c(. Similarly, we have

Σ ί
.7=1 JΩ

9 s)\dx

+ ci + - \\rβ(s)\\i

<\\rθ(s)\\2\\P(s)\\2

^ 1 Σ (v \\rvj(s)\\2

2 + K

Since {φ/(s)} is orthonormal in L2 x L2(ί2), we have H u / s J U l + l|ι/θ(s)||2

Therefore, 73 + /6 is estimated as

i

Σ

We next estimate / 7 :

(D(u):D(υj)(s)9φj(s))\

dxk dx

By the Schwarz inequality, we have

' 2 fdu1 5ιι*\
Σ Σ — + — (χ>s) —- + —

j = i i , f c = ι \3xk 5xi/
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2

* Σ
2

f \"^ i / / \ 12 Ί 1 / 2

J = l

whence,

f |
Jβ

< (by the Holder inequality)

f \ r v j ( x 9 s ) \ 2 d x } l i 2 \ \ p ( s ) \ \ ¥ 2

jβ J

< (by (5.1))

c i r Ί i / 2

<Cηv\\Vu(s)\\\l2\\Au(s)\\\i2\ Σ |Ft;χx, S)|2dx \ \\p(s)\\\12

U'=ιJβ J

< (by Cauchy's inequality)

^^ Σ ll^ωill + C ^ v l l F i i ί s ί l U l l y l i i ί s ί l U l l p ω i U
12;=ι

< (by (5.1) and the Schwarz inequality)

^ 7 Σ (v II ̂ W II I + ̂  II FWUi) + Cf/4vf 1 + -) ||Γιι(5)||i Mιι(s)||i.
/

Collecting these inequalites, we obtain

2 j=ί

κ\\rψj(s)\\2)
\ v K ]

lv + -
/c

On the other hand, as shown in [8], there exists a positive constant c'3
depending only on α such that

Σ (ll^(s)||2
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for a.e. s > 0. It follows that

Σ (v\\rvj(

Σ (\\rvj~ v + KJΪi J ^ —- - v + κ |fl|

for a.e. s > 0. We thus obtain

- 41 + 2^1 + 1
-'- V + K |ί2| ^ V v K ,

We now estimate

/ I Γ
ql = lim sup sup sup I — tr

ί-*00 φej/ ξ,εL2χL 2(β) \ ί Jo

by applying

LEMMA 5.3. There hold

(i) lim sup sup - || Vu \\2

2ds <- Γ |
ί Jo V

1 Γ' 2(ii) l i m s u p s u p - \\Vu\\\ \\Au\\2

2ds < L,
-> ί

1 f
(iii) lim sup sup - || Vθ\\2

2ds < L3,
- ί Jo

where

L -LL^L,

and

L3 = ̂ ^η2 ' ' 2 2 'v k"
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The proof will be given later. Lemma 5.3 now implies

VK I2

' V + TC |β| \ v K

Therefore, by the Schwarz inequality, we obtain

, vie _/^_
qι~ C47+^^ί +

where

and

vie c _ \ v2 v2κ:2

V
Cv

We now easily obtain the desired result of Theorem 5.2 from the inequality

VK I2

L4 - CΛ -- < 0.
4v + κ \Ω\

It remains to prove Lemma 5.3. Integrating (4.4) on [0, ί], we obtain

which yields (i) since si is bounded in H. We next prove part (ii). From
(4.4) and (4.6), we see that

ί
1

I I "V/ 112 ' o
V V

II (J 1 1 2 ' a ' 9
V V V

This, together with (4.5), implies that
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\\u\\l\\Fu\\lds

Γ
< j

t + 1

Taking (4.7) into account we have by Lemma 4.3,

(5.2) \\Vu(t + \}\\l < (h2(t) +
\

We also get from (4.7)

ι fί 1 r ι fί 2IΩII/Ί 2

(5.3) - M M | |2d s<_||Γ M o | |2+ || u H i || Fu ||^5+ ' , '°°
ί Jo vί v4 ί Jo v2

We need to estimate the second term on the right-hand side. By (4.9) and(4.10)
we see that, for all T > 0,

(5.4) \\Vu(t)\\\<C(T), 0 < ί < Γ ,

with C(T) independent of φ0 = {u0,00}. Let ε > 0 ; by (4.5) there exists
T! = Ti(ε, j/) such that

V

for all t > ̂  and all φ0 = {u0, β0}ej/. We can also deduce from (5.2) that
there exists T2 = T2(ε, $#} such that

(5.5)

for all ί > T2 4- 1 and all φ0 = {w0, 00}ej3/. So, if we set T0 = max (T1? T2 -f 1),
then

\\u(t)\\2

2\\ru(t)\\2

2<9l(ε)g2(s)

for all t > T0 and all φ0 = {w0, Θ0}e<$/. We thus obtain

i f | |tt| | | | |Fκ||ίds^- Γ 0 | | « l l i l |Fι ι | | lds + i f \\u\\l\\Vu\\* ds
^ Jo ί Jo t JT0
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1 1 f f

<-C(T0) + 01(ε)#2(
ε)- || ΓM || |ds,

ί t Jo

with C(T0) independent of φ0 = {MO, #0}
e^ This, together with (i), implies

that

1 Γ' „ I l 2 l l r 7 114J / x / J0||/|i
l i m s u p s u p — || M || I HFi/H^ds < #ι(£)#2(

ε) τ—
t Jo "2V

Since ε > 0 is arbitrary, letting ε -> 0 yields

Γ IW|i , Ws £ !̂  (2 + i
ί Jo V5 V V

ϋπ, sup sup
'-*00 φoe^ ί o

Combining this with (5.3), we have

1 f
limsup sup -

'-*00 φoerf t Jo

(5.6,

i rr

We now estimate - | |Γtt| |i MM||ids. We see from (4.6), (4.7) and (5.4) that

for all Γ>0,

v ||ΛM||!ds < ||Γu0||| + — ||fi||i \\^u\\^ds + ——UZÎ f
Jo v 3 J 0 v

< C(T), (0 < t < T),

with C(T) independent of φ0 = {u0, Θ0}9 since jtf is bounded in /f. It then

follows from (5.4) and (5.5) that

- [ \\Vu\\\\\Au\\2

2ds<- Γ° | |PW | | 2MW | | id 5 + i Γ \\Vu\\\\\Au\\\ds
ί J θ ' J θ ' J r o

1 Γ'
+ g2(e)- \\Au\\\c

t Jo

2

2ds
t ί Jo

for t > Γ0, with C(T0) independent of φ0 = {w0, ^0}
 This» together with (5.6),

implies that

1 Γ'
l imsupsup- \\Vu\\2

2\\ Au\\2

2ds < g2(ε)L2.
- o
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Since ε > 0 is arbitrary, letting ε -> 0 yields

and (ii) is proved. Part (iii) now immediately follows: From (4.12), we see
that

- [
t Jo

\\\ds + - \\Vu\\\ds.
κ t o κ2 t Jo

- \\Vu\\\\

Combining this with (i) and (ii) gives

l imsupsup Γ \\VΘ\\\ds < (^-Ll + ̂ - = L3.
~ J0 /C V 2 KJ 2

This completes the proof.

PROOF OF PROPOSITION 5.1. Throughout the proof we fix an arbitrary
T>0. Let {tij, 0J, ί= 1,2, be the solutions of (4.1) and (4.2) with initial
values {w0>1 , #o,;}e^> * = 1» 2, respectively, and set u = u2- ul9 θ = Θ2- θ±.
Let {I/!, <9J be the solution of (LP) with initial value {κ0>2 - w 0 ,ι» ^0,2 — ̂ 0,1}
and set υ = w2 — w x — [/!, φ = Θ2 — θ^ — θ^. Then

dw
(5.7) + vχtt + P(ll . pM2 + Ml . pw) = P[(/(02) -/(^))^2],

at

dθ ηv
(5.8) — + /cBw + w - VΘ2 + M! - Γ0 = — D^ + M2): D(w) -e2 u,

at 2

u(0) = u0,2-u0,l9 Θ(Q) = 00> 2-βo.ι -

and

(5.9)

dv
- + vAυ + P(u, - Ft; + i; - ΓMl + ii - Γn)
αί

l lat

(5.10) = 2ηvD(u1): D(u) + ^vD(w): D(ιι) - β2 i?,

t (O) = 0, ιA(0) = 0.

We shall show that there exists a C, possibly depending on Γ, such that



306 Yoshiyuki KAGEI

(5.11) Hi) ||i + \\ψ(t)\\2

2 < C(K,2 - "0,1 - I I 1 + 1100.2 - #0,1 \\W

for some β > 1. The desired result then follows immediately. To deduce
(5.11), we first show the Lipschitz-continuity of the operator S(t). Note that
there exists a C > 0 such that

(5.12) \\Aut(t)\\2 + \\rθt(t)\\2 < C for all ί, ί = 1, 2,

with C is independent of ui9 Θi9 and i = 1, 2, since <£/ is invariant and bounded

in D(A) x #o(&) Multiplying (5.7) by u9 we have

1 .̂ l l i i H i + v \\Vu\\\ < \(u - Pw2, ιι)| + |(/(02) -/(0ι), ^2 ")l
2 αί

With the aid of (1.7) with p = 4, the first term on the right-hand side is
estimated as

+ c\\vu\\l\\u\\l
o

As for the second term, writing

f(θ2)-f(θl) = θ P/'(0ι + ζ(θ2 -
Jo

= h(θltθ2),

we have

\(f(θ2) -WJ, *2 «)l < l/Ίoc \\9\\2 | |u| | 2 < !

We next multiply (5.8) by θ to get

- —\\θ\\l + κ| |F0| | i < \ ( u - V Θ 2 , θ } \ + η-\(D(uί +u2):D(u),θ)\ + \(e2 u,θ)\.

Using (1.7) with p = 4, we estimate the first term on the right-hand side as

<C \\u\\\'2 \

<v- \\vu\\\ + ̂ \\ve\\l + c\\vθ2\\l(\\u\\2 + \\θ\\2

2).

We also have, by (1.3), (1.5) and (1.7) with p = 4,
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W V
±\(D(Ul+u2):D(u),θ)\

< C ||F(Ml + u2}\\\12 \\A(Ul + u2)\\\'2 ||F«||

We thus deduce from (5.12) that

^ |(D(u, + u2): D(«), 0)1 < ̂  ||F«||1 + ̂  ||F0||1 + C \\θ\\2

2.

Since

I \ ~ Z •"' ~ / l — Λ

we conclude that if {w 0 ί, 00f Je.fi/, then

τ(Hwlli + II0IID + V I l|Fιι|||ds + ιcΓ||F0||ids^fe(ί)(||fi
dί Jo Jo

for some fc(f)e!/((), Γ). This implies that

(5.13) ||u(ί)||i + | |0(ί)lli < C(||ιι0p2 - M 0 i l Hi + ||00>2 - 00>1 Hi)

and

(5.14) f ||Fιι||ids +
Jo

for 0 < t < T if {tt0iί, θoj}es/, i = 1, 2. We have thus proved the Lipschitz-

continuity.

We can now prove the uniform differentiability of S (t) with respect to

the L2-norm. Multiplying (5.9) by v, we have

^~ \\v\\2

2 + v || Vυ\\\ < \(υ - Vu^ υ)\ + \(u FII, t;)|
2 αί

(5.15)

Using (1.7) with p = 4, we see from (5.12) that

<~ \\Vv\\i + C \\v\\l
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To estimate the last term on the right-hand side of (5.15), we write

-f(θι) -f'(θ1)&1 = Λ(0ι, θ2)θ-f'(θl)Θl

= g(θ1,θ2)θ2+f(θ1)φ,

with

0(0ι, Θ2) = Γ Γ τf"(θ, + τζ(θ2 - θ^dτdί
Jo Jo

to get

1 -/(0ι) ~f'(θι)θι, v)\ ^ l(0(0ι, Θ2)θ2

To estimate ψ, we multiply (5.10) by θ to get

- T 11^111 + f l l^l l i ^ l(» f7^' Ά)l + K" f7^ Ά)l + 2ηv\(D(Uί): D(U),
2 αί

+ ηv\(D(u):D(u),ψ)\ + \(e2 v,θ)\.

The first and second terms on the right-hand side are estimated as

By (5.12), we have

2ηv\(D(uί): D(u), φ)\ < C||FM l ||

< C || Fui HI/ 2 || AM l |||
/2 || Fι>||
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To estimate ηv\D(u): D(u), ψ)\, we use the inequalities

\\ru\\2<C \\u\\\'2 \\Au\\V2, ueD(A)

and

| |Fu| | 3<C||FM | | i ' 3Mu|| j/ 3, ueD(A).

The first is obtained by integrating by parts, while the second follows from
(1.3) and (1.5) with p = 3. We then obtain

ηV\(D(u} .D(u},n<C\\Vu\\,\\Vu\\2

Here we have used the Poincare-Sobolev inequality ||^||6 < C ||P^||2. Also,
we have

\ ( e 2 < v , ψ ) \ < \ \ v \ \ 2 \ \ ψ \ \ 2 < \\v\\2

2

In conclusion, we obtain

^-(Nll + 11^ 111) ^ C[||r||| + l l ^ l l i + ( | | «Hl / 3 + II
at

Combining this with (5.13) and (5.14), we find

< c Γ [(||«||i/3 + || ii Hi) \\vu\\l + i i θ u i \\ve\\\-\ds
Jo

< C(||u0 i 2 - ιι0il||| + ||0o,2 - ^o,ι l l2) 1 / 3 Γd l F u l l ! + \\θ\\l)ds
Jo

< C(| |u 0 i 2-ιio,ι 111 + llβo.2 -Vi l l i ) 4 7 3 -
This shows (5.11) with β = 4/3. The proof is complete.
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