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Introduction

Thermal convection in an infinite fluid layer heated from below is
extensively studied; it represents the simplest example of hydrodynamic
instability and transition to turbulence ([3, 4, 13, 16]). Suppose that an
infinite layer is occupied by a viscous incompressible fluid and that the lower
boundary of the layer is warmer than the upper one. Then the conductive
static state is a unique solution when the temperature difference, say 4 > 0,
is sufficinetly small. Beyond a certain value of A, the conductive state loses
its stability and the convection rolls appear. When A is increased, the
boundaries of rolls oscillate periodically in time. When 1 is increased further,
the boundaries of rolls oscillate in a less regular manner. Finally, for
sufficiently large A, the flow seems totally unstructured. This sequence of
transitions leads to the concept of the strange attractor [25]. The complexity
of the motion is due to the complicated structure of the attractor. Thus, an
analysis of attractors is important for understanding the observed motions. In
recent years, many authors have obtained the bounds for the dimension of
the attractor for the Navier-Stokes equations in terms of the physical numbers
([1, 5,6,7,10, 17, 18, 23, 24]). These works indicate that the dimension of
the attractor for the Navier-Stokes equations may be identified with the number
of degrees of freedom. For the study of attractors, the reader is referred to
[2, 12, 17, 28] and references therein.

In this paper we consider the attractor for the two-dimensional Bénard
convection problem in which the dissipative heating is taken into account,
and give a bound for its Hausdorff dimension. The non-dimensional form of
the governing equations for the velocity u, the pressure p and the fluctuation
0 of the temperature from the static state is written as

0
—u—vAu+u'Vu+VP=ezf(9)’
©.1) ot
V-u=0,

0.2) g—f—KA6+u-V¢9—e2-u=gD(u):D(u).
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Here, e, = (0, 1) is the unit vector opposite to the direction of gravity; v,
and # are non-dimensional physical parameters to be defined in section 1;
D(u): D(u) is the dissipation function:

D(w): D(w) = | ZZ: (aui . 6u">z;

i,k=1 axk axi

and f is a smooth function on R satisfying

0.3) f) =6,
or
(0.4) 1flo = sup IfO) < o0, |f]e <o and [f"], < oo

Here f’ and f” denote the first and the second derivatives of f, respectively.
Equations (0.1) and (0.2) are supplemented by the boundary condition:

u=0;6=0at x,=0, 1,
and the periodicity condition:
ulx1=0 = u|x1=a’ 0|x1=0 = 0|x1=a;

o 0| 08

ou
=0 0% 0%y |x,=0 0%4

0x,

X1 =a X1 =a

In case 7 =0 and f(d) =6, one obtains the usual Boussinesq equations in
which the dissipation effect is ignored. For the Boussinesq equations, Foias,
Manley and Temam [8] proved the existence of the associated global attractor
to which all solutions converge as t — oo, and derived a bound for its Hausdorff
dimension in terms of the significant physical parameters: the Rayleigh number
Ra, the Prandtl number Pr and the Grashof number Gr. Their bound is

¢|Q|(1 + PA)(1 + Gr + Ra),

where || is Lebesgue measure of Q =(0,«) x (0, 1) and ¢ is a constant
depending only on the flow geometry. Their bound is very similar to the
bound for the number of degrees of freedom obtained by purely physical
argument [20]. In this paper we prove the existence of the global attractor
o for the convection problem in which the dissipative heating is not ignored
and show that the Hausdorff dimension of ./ is bounded by

c|Q|(1 + Pr)(1 + Gr + Gr'/?Ra + O(n)),

with a constant ¢ depending only on the flow geometry.
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The paper is organized as follows. In section 1 we deduce the
non-dimensional form of the governing equations and set up the corresponding
nonlinear evolutionary problem in a Hilbert space. The existence and
uniqueness of the solutions and their continuous dependence on initial values,
which are necessary for studying attractors, are discussed in section 2. We
prove the existence of weak solutions for initial values in {u,, 6,}€L? x L?.
When f satisfies (0.4), the solutions are unique if the initial values belong to
H} x L?. 1In this case we can consider the corresponding dynamical system
in HY x L? and, consequently, discuss the associated attractor. Unfortunately,
the uniqueness problem is unsettled when f(6) = 8. However, we shall show
in both cases that the weak solution converges, as # — 0, to a (unique) weak
solution of the Boussinesq equations. This shows the validity of the
Boussinesq approximation for a viscous incompressible fluid with small . We
prove this convergence in section 3. From section 4 on we consider only the
case where f satisfies (0.4) and discuss the global attractor associated with the
dynamical system under consideration. To prove the existence of the global
attractor in section 4, we first establish the existence of an absorbing set and
then prove the uniform compactness for large ¢ of the nonlinear semigroup
defining the dynamical system. For the Boussinesq equations, i.e., when # = 0,
Foias, Manley and Temam [8] proved the existence of the global attractor,
applying the maximum principle to the governing equation of 6. In case
n >0, however, the maximum principle is not applicable because of the
presence of the dissipation function. Besides, since the dissipation function
contains the quadratic nonlinearity of Fu, we need to estimate the higher
order derivatives of the velocity in order to get the desired result. These
estimates are obtained in sections 2 and 3 by applying the energy integral
method for higher order derivatives of velocity and temperature, which are
more complicated than those given in [8]. Section 5 is devoted to estimating
the Hausdorff dimension of the global attractor. Foias, Manley and Temam
derived their sharp estimate in [8], applying the Lieb-Thirring inequality
[19]. We proceed basically in the same way as in [8] to obtain our bound
for the Hausdorff dimension. However, since the maximum principle applied
to the temperature does not provide useful estimates for solutions, our bound
for the dimension of the attractor does not reduce to the bound of [8] as n — 0.

In this paper we discuss only the two-dimensional problem, mainly
applying the energy integral method. Even in this two-dimensional case, the
presence of the dissipation function forces us to estimate higher order
derivatives of unknown functions in order to get various results by passing
to the limit in the equations. In the three-dimensional problem, the situation
becomes much more complicated. In this case, the elementary energy estimate
is obviously insufficient for ensuring the possibility of passage to the limit in
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the equations; and so we know nothing about the existence of a global weak
solution as introduced in [14] for the case # =0. As for the existence of
strong solutions, we have been able to control the higher order norms of
(approximate) solutions only locally in time for general initial data, and globally
in time for small initial data. So we know only that the strong solutions
exist loally in time for general initial data, and globally in time for small
initial data, as proved in [15]. This situation does not seem to be improved
even if we employ different approximation schemes. In fact, the problem is
closely related to the problem of regularity of weak solutions of the
three-dimensional Navier-Stokes equations.

The author wishes to express his hearty thanks to Professor Shinnosuke
Oharu for his interest in this work and for valuable comments. Thanks are
also due to Professor Tetsuro Miyakawa for his constant encouragement.

1. Preliminaries

We consider a two-dimensional infinite layer R x (0, d) and assume that
the layer is occupied by a viscous incompressible fluid. Suppose further that
the temperature at the lower boundary x, = 0 equals 6,, and the temperature
at the upper boundary x, = d equals 6,. Here 6, and 6, are constants such
that 6, > 6,. Then the governing equations for the velocity u = (u!, u?), the
pressure p and the temperature 6 are written as follows (see [3, 4]):

ou

Pog Povodu + pou-Vu +Vp=pog(l — 70 f(0 — 6o))e,,

V-u=0,

20
poCy = — poCoriodl + poCyu 78 = %OD(u): D().

Here, e, = (0, 1) is the unit vector opposite to the direction of gravity; — ge,
is the acceleration due to the gravity; p, is the constant mean density; y, is
the volume expansion coefficient; C, is the specific heat at constant volume:
Vo is the kinematic viscosity coefficient; k, is the thermometric conductivity
coefficient; and D(u): D(u) is the dissipation function

2 i k\ 2
Dw):D(u)= Y, <€u—+al> .
k=1 axk axi
At the boundaries x, = 0, d, the velocity u is prescribed by
u= 0 at Xy = 0, d,

and the temperature 6 is prescribed by
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0=90
0=01

255

at x, =0,

at x, =d.

We further require u, p and 6 to be periodic in the x,-direction with period

ao.
following non-dimensional variables:

To obtain the non-dimensional form of equations, we introduce the

g=%  §-9=0
d 0y, — 0,
~ u z_ 7090 — 6,) \'/?
u= 72> t=| —— t,
(09(6o — 6,)d) d
. —p 2= f(0—0)—fO—06
p — __PW’— , f(a) — f( 0 f( 0) ,
PoYog (6o — 6,)d o — 6,
and non-dimensional parameters:
_ 3
Ra= 109G —0)d" v o Ra
VoKo Ko Pr
where
6= 9, —9ox2 + 0,;

P =pog(x; —70F(x3)), F(x;)= f 2f<
0

(0, — 6o)

2d

r) dr.

The non-dimensional numbers Ra, Pr and Gr are called the Rayleigh, the
Prandtl and the Grashof numbers, respectively. Using these new variables,

we obtain, after omitting tildes,

%—vAu+u-l7u+Vp=f(0)e2,
(1.1) ot
V-u=0,
00
(1.2) O kA0 +u-VO—e, u="TD(w): D(w),
ot 2
where
1/2 1/2
v=<ﬁ> , =< ! ) and 11=M_
Ra PrRa C,

The boundary conditions at x, =0, 1 are
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u=0,60=0 at x,=0,1,

and u, p and 0 are required to be periodic in x, with period a = a,/d. We
consider equations (1.1) and (1.2) in the domain @ = (0, «) x (0, 1), together
with the above boundary conditions and initial conditions:

Ul=o = Uo, Oli=0 = Oo-

We denote this initial boundary value problem by (BE),. In case f(6) =0,
we formally obtain the Boussinesq equations from (1.1) and (1.2) by passing
to the limit # — 0.

We now introduce some notation. LP(Q) (resp. H™(£2)) denotes the usual
LP-space (resp. the L?-Sobolev space of order m) and its norm is denoted by
I 1l, (resp. || lm2). We define the function spaces C3,..(Q), L2, H} ,., and
V by

C3per(@) = {Ylo; Y ECPR?), Ylaymo,1 =0, Ylxy + o X2) = Ylxy, X2)},
L= {uel?(Q*V u=0 u?l,_0, =0 t'ly=0=t'ls,=o}>
H{ por = {eH"2(Q); 0l,,20,1 = 0, Ol5,=0 = Oly,=o}>
V={ueH} o)*; V -u=0}.
Then, the following Helmholtz decomposition holds [27, 28]:

L2 Q)P =L2@(LY)" = L2 @ G,,,,
where
Gper = {Vq; e H*(Q), qly,=0 = qls,=a}-

In terms of the associated orthogonal projector P onto L2, we define the
Stokes operator 4 by

It is well known that A is positive definite and self-adjoint in the Hilbert
space L2 satisfying || A'/?u|, = |Vul,, and there exists a constant C > 0 such
that

Au = — PAu, ueD(A)= {ue VnH?(Q)?; ;—u
X1

_614

x1=0 a‘xl

(1.3) lullz,, < CllAull,  for ueD(A).
We also define the operator B by

Bl = — 46, 0eD(B) = {OeHé,pe,nHz(Q); ;—0
Xy

o

n=0 0%

x1=a}
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“ The operator B is positive definite and self-adjoint in L?(Q) satisfying
| BY20|, = |V8],, and there exists a constant C > 0 such that

1.4) 1615, < ClBEI|, for 6eD(B).

We sometimes use the following Gagliardo-Nirenberg inequalities [9]:

(L.5) lul, < Cluliz??lul3”, (2<p< o),
and
(1.6) lull, < Cllulld3llullz?,

where C is a constant depending only on p and a. In particular, for ue Hj .,
we have

1.7 lul, < CIPullz~>"ul3?,  (2<p<oo)

Throughout this paper, the letter C denotes constants which may vary
from line to line.

2. Existence of solutions of (BE),

We discuss in this section the existence and uniqueness of solutions and
their continuous dependence on the initial data. We begin with

DErFINITION.  Given {uy, 0y} € L2 x L*(22), a pair of functions {u(t), 0(¢)}
defined for t >0 is called a weak solution of problem (BE), if

ueL>(0, T; L2)nL*O, T; V), 0eL*3(0, T; L*(Q))nL*(0, T; L*3(R))

for all T> 0, and the identities

- jT(u, v)dt + JT [v(Fu, Vv) + (u- Vu, v)]dt

2.1) 0 0 ]
= (uo, v(0)) + fo (f(O)ey, v)dt
and
T T
- f ®, W)dt—j [k(6, 4Y) + (u- Py, 6)]dt
2.2) ° 0

T

= (00, ¥(0)) + J

0

[(ez “u ) + gw(u): D(w), w)Jdt

hold for all ve W'2(0, T; L) nL*(0, T; V) with v(T) = 0 and all y e C*([0, T];
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(or3 per(é)) with y(T) =0. Here and in what follows (-, -) denotes the scalar
product of L2.

REMARKS. (i) It follows that if {u, 6} is a weak solution, then u is
continuous from [0, T] to L? and @ is continuous from [0, T] to the dual
space D(B)* of D(B). Since L?(Q2) = D(B)*, we find that the initial conditions
make sense. The continuity of u can be proved by using the standard theory
of the two-dimensional Navier-Stokes equations as given in [27]. The
continuity of 6 is proved as folows. Let yeD(B). By (1.4),(1.5) and (1.7)
with p = 4, we see that

-V, O < Nulla IVY 14 101l < Clulz 2 1Pl 1V 1132 191231011
< Clully? 17ulz 1By ll, 101,

Furthermore, inequalities (1.4) and (1.6) imply that
|(D@): D), Y)| < IPul3 1Vl < [Vl I By,

We also have

10, 4)| < 11015 | By |l

and

llex-u, Y < 10111, < ClOI1BY -
It thus follows from (2.2) that

do
m e L'(0, T; D(B)*),

which implies the desired continuity of 6.
(i) We can also prove that {u, 0} satisfies

(u, v)(t) — (u, v)(s) = f [(u®u, Vv)— Vu, Vv)ldt
(2.3) * ,
+ f [(e2f(6), v) + (u, v')]dx,

6, ¥)() = (6, ¥)(s) = f Ll 79, 6) + (6, 49) + (es -, ¥)]ds
(2.4) * '
+ f ['1 g(D(ur D), ) + (6, w/)]dr

N

foral 0 <s<t<T, vel?0, T; V)nW"2(0, T; L?) and all yeL*(0, T; D(B))
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NWL40, T; L2(R2)). Indeed, define the function {,e C[0, T] by

0 for 0<71<s, t<s<T,
1 for s+e<t<t—g
L) = -
e 1t —5s) for s<t<s+e,

—e Yt—t+e for t—e<t<HL,

and substitute v{, into (2.1) as a testing function, to obtain

1 t 1 s+e
— f (u, v)dr — — J (u, v)dt
€ t—e & N

t
= J [ @u, Fv)— (Vu, V'v) + (e, (0), v) + (u, v') 1, dr.
Since (u, v)(z) is continuous on [0, T], letting ¢ — 0 yields the desired identity
(2.3). The identity (2.4) is proved similarly, so the details are omitted.

Before stating our existence result, we recall the assumptions on f: f is
a smooth function on R satisfying

0.3) fO =20
or
04) |fle = sup [ fO)] < oo, |f'lo <00 and [, < c0.

Our existence result is the following

THEOREM 2.1. (i) Let f satisfy (0.3) or (0.4). Assume that n <1 if f
satisfies (0.3). Then, for each initial value {uy, 0o} € L2 x L*(Q), there exists a
weak solution {u, 6} of problem (BE), defined for all t > 0.

(i) Let f satisfy (0.4) and let {uy, 6} €V x L*(Q). Then

ueC([0, T1; V)nL*(0, T; D(4)), 0eC([0, T1; L*(2)nL*(0, T; H} ,.,)
for all T> 0, and the weak solution {u, 0} is unique in the class

(C([0, TT; V)NL?(0, T; D(A))) x (C([0, T1; LX) L*(0, T; Hy per)-

(i) Let f satisfy (0.4) and let {u,;, 0, eV x L*(Q), i=1,2. For each
T > O there exists a constant C = C(T) such that if {u;(t), 6,(t)}, i = 1, 2, denote,
respectively, the weak solutions corresponding to initial values {uq ;, 0, ;}, i =1, 2,
then

[V uy(t) — Vuy(0)13 + 10,() — 0,(0)113 < C(llVug,, —Vug I3+ 1 bo,2 — 00,1 13).

(iv) Under the assumption of (ii) any weak solution {u, 6} satisfies
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du_, 2 2y T2 d’u__,
ZEL (O, T; La)nLoo(59 Ta La-)nL (5’ T; V), d?EL (6’ Ta V*),

and

0€L*(6, T; Hg pe) N L?(, T; D(B)), Z—‘tgGLZ(& T; L*(Q)),

for all 6 >0 and T >0 such that 0 <6 < T < oo, where V* is the dual space
of V.

We first prove (i) in the case where f(f) = 6. The proof is divided into
two parts. In the first part we construct approximate solutions by the
semigroup method. In the second one we discuss the convergence of the
approxomate solutions to a weak solution with the aid of some a priroi
estimates. We next prove (i), (i) and (iii) under assumption (0.4), modifying
the arguments given in the case of assumption (0.3). Finally, we prove
assertion (iv). For simplicity in notation we assume in this section that

v=1rK=1.

CONSTRUCTION OF APPROXIMATE SOLUTIONS. We construct approximate
solutions, solving the integral equation:

(2.5) (u"(t)> _ <e:tA“o,k + 81 [, 91‘]),
Hk(t) e 2800,,‘ + S2 [uk, Hk]

where

t
Sy [ug, 6] = j e" " TIP(— - Vuy + €,0,)(s)ds,
0

t

Sy [, 6,1 = J e““””(- u - VO + ey u + gD(ITk)i D(@))(S)ds,

0

uop =T+ k™ A) "uy, W= +k A ", Oop=I+k"1B)"0,.

The integer m > 0 is taken sufficiently large so that i, is bounded in Q.

We will solve (2.5) by applying the Banach fixed point theorem. To do
so, we need

LEMMA 2.2. Let 1 <qg<2<p<oo. If vel2nL? and Y€ L% (Q), then
“ Aj/Ze""‘va < Ct —jl2=(1/q—1/p) ||U||q,

|B2e 2y, < Cr2mCam |,
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for j =0, 1, with C independent of v,y and t.

ProorF OoF LEMMA 2.2. We prove only the assertions for the Stokes
operator A4 ; the case of the operator B is treated similarly. Suppose first g = 2
<p<o. By (1.7) and the well-known estimate
(2.6) | A™2e o), < Cem o]l (m > 0),
we have

| 4726 0], < Cl| AV 2e 0|3 |7 47 2e v |}=2/
= C || A/2eT Ao |7 AU e Ay 47208
< Ct~i2-ai2=1/p lvll,.
Suppose next that p = 00, ¢ = 2. In this case, using (1.3) and (1.6), we obtain
|47 e~ v, < CllA"2e™ 0|3/ | A12e™ 0|33
< C | Alf2e |37 | A1 *il2e w4y |4 =21
< Ct7 272 o],

Incase 1 <g<2=p, wesetr=gq/(q—1). Since r > 2, the foregoing results
yield

™" v, w)| = (v, ™ w)| < o]l le”wll, < Ce= =12 | flwll,
for weL2. Thus, by duality, we have
le”" v, < Ct~ Va1 |y .
This, together with (2.6), implies that
| AY2e ], < Com 2 e 4120, < o™ AT |y
Suppose finally that 1 < g <2 <p < oo. The foregoing results then yield
|AM2e~ Ay |, < Cr=V2=(2=1P) | g=tdi2y | < Cp= 2= WaLin) ||y |

This completes the proof of Lemma 2.2.

We now turn to the proof of Theorem 2.1 (i), assuming (0.3). For given
M >0 and T> 0, we define the closed set X(M, T) of C([0, T]; D(4'/?)) x
C([0, T1; D(B''?)) by

X(M, T) = {U = {u, 0} C([0, T]; D(4'?))
x C([0, T1; D(B'/2); | U Iy < M},

where
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NUllx = [SOU%(HA”Zu(t)IIz + 1 B20()12).

and consider on X(M, T) the mapping

e ug, + S, [u 9])
e B0y, + S,[u, 01)

Y (u, 6) = <
Due to Lemma 2.2, we have
| 41126494 P(u - Pu)]l, < C(t — )72V lu- Pully,
SCle—9)7 270 ulg IVull,
< Ct—9)727Yeruls,
| B2~ )|, < C(t — )27 u- PO,
SCt -2 0 ulg 7O,
SCt—s)727HePul IV o,
for j=0,1. Here we have used the Poincaré-Sobolev inequality:
lull,<ClVul,, (I <p<o).
Since # = (I + k=1 A)"™u, it follows that
IVal, < Cellully, [Aull, < Cillull,.
Therefore, applying (1.3), and (1.5) with p =4, we have
IB/2e=“=9ED(): D(@)]l, < C(t — )™ ||Vu2
< Ct— )72 |7l || Aull,
S Gt =)™ lull3.
We thus obtain

@) Il P (U llx < Il {tto,k> Oo.ic} lllx
+ C(TP + TY2 + T + T)M? + C(TV? + T)M
with C; and C, depending on k. Similarly, we can prove
2.8) I#e(Us) — PrU2 ) llx < C3(M, T) Uy — Uy illlxs
with
C;M, T)=C,[(T'*+ T+ T + T)M + T'? + T],

where C, depends on k. Now, choose M >0 with |[|{ug, 0o} llx < M/2
and then fix T> 0 such that
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C,(TY3 + T2 4 T5/5 4 T)M? + C,(T? + T)M < M/2;
Cs(M, T) < 1/2.

Then, it follows from (2.7) and (2.8) that ¥, is a contraction from X (M, T)
into itself; so there exists a unique U, = {y, 6,} in X (M, T) which solves (2.5)
on [0, T].

We next show the global existence of U,. For this purpose, it suffices
to derive an a priori bound for ||U,|lx. By a standard result in the theory
of parabolic evolution equations, the function U, satisfies

du,
29) n + Aue = P(—w.-Vu + e,0),  w(0) =ug,,

do
(2.10) d—tk 4+ BO = —u, VO, + eyt + %D(m): D(@),  6,(0) = Oox.
Multiplying (2.9) by u,, we obtain

d
211 I luell3 + 17 well3 = (e204, ).

Let ¢, be a function satisfying

dd,

it +Boy= —u Vo + ey uy, 6(0) = b5 .

Then the function ¥, — ¢, satisfies

(2.12) dd—wtk + B+ u Vi = %D(u_k): D(#w) =0, Y0 =0.

The maximum principle gives

F
Jo>0 in @ and PX<0 at x,=0,1
0x,

Multiplying (2.12) by 1 — x, and then integrating in Q, we have

d _ _
E(‘pka 1= %) + (BYy, 1 = x3) = — (e2¥1, ) + %(D(“k)3 D(i), 1 — x;).
This, together with (2.11), then yields

da|l
E[E lwell3 + (W, 1 — xz)] + V)3 + (B, 1 — x5)

= (e2her ) + %(D(u—k): D(&), 1 — x,).
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Since

(Bwk,l—x2)=—J Wi gs >0

x2=0 0X3

and
j D(it): D(im)dx =2 |V |13 =211 A5 |5 < 2| A Pw |5 = 2 ([P |3,
(o]
we see that

d[1
;l?[f leell3 + (e, 1 = xz):l + (=) Vw3 < (e2x, .

But, as shown in [8, Lemma 2.2], we have
()13 <191+ 260,132
This gives
(€20, w) < 1 dillz Nl < Nlwelld + 11 dicll3 < w3 + 1921 + 21160415~
We thus obtain

d| 1 -
E[E Nl + (e, 1 = xz)] +(L=m Vw3 <121+ 21100kl e + lull3.

Integrating this on [0, t] and using the fact that ¥, >0 in 2, we get
)13 + (1 — n)f; Vw3 ds < llugcll3 + 121t + 1160, 113 + L: I |3 ds.
This implies that, for any T > 0,
(2.13) | ue ()13 + fl [Vuids<C, (0<t<T),
0

with C = C(|lugll2, 10oll2, T, #) independent of k.
We next estimate [|6,(t)||,. Multiplying (2.5) by 6,, we have

1 d _ _
5 103+ 17013 = (ez e, 6 + g(muk): D(i%,), 6,).

By (1.3), (1.5) with p =4 and the Poincaré inequality, the right-hand side is
estimated as

1 1
[(ez - e, O < N2 162 < e ll3 + 4 116113 < llull3 + " (CAEE
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|(D(#): D(@), O)| < CIV#ANZ 0]z < CIV 5 | Aoy 12 1765 ]2
< CH) w3 17O, < C) N1l + % 176,13
It thus follows that
% 16113 + 176,13 < Ck) (el + Nlwell3).
This, together with (2.13), implies that, for any T > 0,
16115 + ﬂ I76.l13ds < Cllluo 2, 1661l25 T, K).

We can now deduce an a priori bound for |[Fu,||,. We take the scalar
product of (2.9) with Au,, to get

S P + 1 A3 < [ P, Awl -+ (6304, Au)
< C e 17 | At + 16,11 | Al
< Clugl2 17 1 Au 137 + 10,15 | Auy
< 1A + C 1Pl 173 +2 16,3,
whence,

d
Z! Puelz + | Aucll3 < CUlu 3 17w lZ 17 w3 + 1613).

Applying the classical Gronwall lemma and (2.13), we have, for any T > 0,
IV ()13 ds < C(T, k).
Similarly, we have, for any T > 0,
t
[CAGIERS f IBO,I17ds < C(T; k).
0

We thus obtain the desired a priori bound for || U,||y, which ensures the
global existence of U, = {u, 6,}.

CONVERGENCE OF APPROXIMATE SOLUTIONS. To show the convergence of
{u, 6,} to a weak solution, we first derive a priori bounds for {u,, 6,}, which
are uniformly valid in k. By (2.13), u, is bounded in L (0, T; L2)n L*(0, T; V)
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for all T> 0. To deduce a priori bounds for 8,, we introduce, as in [11, 14],
the Green function P,(x, ¢; y, s) of the problem:

00
E —KA0+uk'V0=O, 0|t=0=00,k’
00 00
0|x2=0,1 = 0’ 0|x1=0 = 0|x1=aa — = _—
axl x1=0 axl x1=a
As is well known, P(x, t; y, s) satisfies
(2.14) j Pu(x, t; y, s)dx < 1, J P.(x,t;y, s)dy < 1.
7] 7]
Moreover, the estimate
(2.15) 0<Px,t;y,s)<C(t—s)?

of Nash holds with C independent of k (see [21, 22]). In terms of the function
P(x, t; y,s), 6 is represented as

Oi(x, t) = j Py(x, t;y, 0)0, (y)dy
Q

t
+ J J‘ Pk(x’ t; Vs S)[eZ Uy + 'Z_D(u_k) D(u_k)](ya s)dyds
0V
Therefore, we see from (2.14) and (2.15) that

t t
Ilﬁk(t)llpsC<t"“"”"’ll90,klll+j Ilukllpd5+nf (I—S)_“_”"’IIlelﬁdS>
0 0

t 1/2 t
< C(““”’” 160,k 4 +t”2<f ||Vuk||§ds> + ﬂf (t—g 7P IIVukllﬁdS>,
0

0

which shows that 6, is bounded in L4(0, T; L*(2)) for all T> 0, with p and
q satisfying 1/p+1/g>1, 1<q< . In particular, 6, is bounded in
L43(0, T; L2(2))nL2(0, T; L*3(2)) for all T > 0.

We next estimate the time-derivative du,/dt. Applying (1.7), we have

(P Pud, 0 = 1 Vo, )| < Clu 2170l < Cllugllz IVuell2 Vo]l

for all veV. This implies that P(u,-Vu,) is bounded in L?(0, T; V*) for all
T> 0. (V* denotes the dual space of V.) We also get the estimate

|(P(e264), v)| = l(e20, v)| < 1Ok llaj3 0]l < CllOillasz V012
for all veV, which implies that P(g6,) is bounded in L2(0, T; V*) for all
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T> 0. So, we easily see that du,/dt is bounded in L*(0, T; V*) for all T > 0.

We can now discuss the convergence of {u, 6,}. By the above argument,
there exists a subsequence, denoted also by {u, 6,}, which converges to a
{u, 6} in the sense that:

u, —u *.weakly in L*(0, T; L2) and weakly in L*(0, T; V),
U —u strongly in L2(0, T; L2),

(2.16) p

M M weakly in L2(0, T; V¥),

dt dt

0 — 0  weakly in L*3(0, T; LX(@Q))nL*(0, T; L**(%2))
for all T> 0.

We next show that {u, 6} is a weak solution of problem (BE),. Since
(2.16) implies

ueL™(0, T; L)nL*(O, T; V), 0eL*3(0, T; LA(R))nL*(0, T; L*3(R2))
for all T> 0, we have only to show that {u, 6} satisfies identities (2.1) and
(2.2). Observe that {u,, 6,}, k > 1, satisfy

— JT (uy, V')dt + JT [Vu, Vo) + (u - Vu, v)]dt

0 0

(2.17) r
= (uo x> v(0)) + J (26, v)dt,
0
and
(2.18)
T T
—f 6y, Y dt —f L6, 4Y) + (w - VY, G,)]dt
0 0

T

= (Oo,ka l/’(o)) + f

0

|:(e2 U, Y) + %(D(u-k)i D(i), '//)]dt
for all ve W2(0, T; L2)nL*©0, T; V) with v(T)=0 and all yeC([0, T];

cg,pe,(é)) with Y(T) =0. Due to (2.16), passing to the limit k — oo in (2.17)
yields

- jT(u, v)dt + JT [(Vu, Vv) + (u-Vu, v)]dt
0 0

T
= (ug, v(0)) + J (e, 0, v)dt.
0
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We next show, by letting k — oo in (2.18), that {u, 6} satisfies

—JT(H, l//’)dt—r L, 4Y) + -V, O)]dt
0 0

(2.19)

T

= (0o, ¥(0)) + f

0

[(ez u, )+ 2 (DW): D) w)]dr
for all y e C*([0, T]; C¢, pe,(ﬁ)) with Y(T) =0. To do so, we need only show
that:

(2.20) u, — u strongly in L2(0, T; V)  for all T>0,

which enables us to pass to the limit kK — oo in (2.18) in the term involving
the dissipation function. Let ve W'2(0, T; L2)nL*(0, T; V). Multiplying
(2.9) by v — u, and then integrating over 2, we have

1 d
17w l3 = <u, v> — 5 g e 12 + (P, Vo) + (- Vg, 0) — (€206, v — 1),

where (-, - > denotes the duality pairing between V* and V. We integrate
this on (0, t) to get

t t 1 1
J 1Vull3ds = J Cug, 03 ds — — w113 + — luo i 13
0 0 2 2

t t t
+ J Vu, Vv)ds + J (w, - Vuy, v)ds — J (ey0,, v — u)ds.
0

0 0

Taking the upper limit then yields
(2.21)

t
lir{lﬂsupj‘ |Vu|2ds = '[
® Jo

0

! 1 1
', v)ds — 5 llu(®) 17 + 5|

|uo ”%

t t t
+ J Vu, Vv)ds + J‘ (u-Vu, v)ds — J (ex0, v — u)ds
0 0 0

for a.e. t. Since we can take v = u in (2.21), we obtain

t t
(2.22) lilp_’sup f |Pu,|2ds = J |Pull2ds
® Jo 0

for a.e. t. On the other hand, by the lower semicontinuity of ||V - ||, with
respect to the weak convergence, we have

t t
liggonff 17w l3ds > J IVull3ds.
0 0
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This, together with (2.22), implies that

t t
,}Lrgf IIVukllﬁdS=J 17ul3ds
0 0

for a.e. t. Since u, converges to u weakly in L?(0, T; V) for all T> 0, we
obtain (2.20). This completes the proof of Theorem 2.1 (i) in case f(f) = 6.

UNIQUENESS AND CONTINUOUS DEPENDENCE ON INITAL DATA. We prove
Theorem 2.1 (ii) and (iii), assuming that f satisfies (0.4). Let {uy, 0o}V x
L*(2). We construct approximate solutions by solving the integral equations
(2.5) with 6,e, replaced by f(6,)e,. As in the proof of (i) for the case f = 0,
one can construct local solutions U, = {u,, 6,}. We will derive an a priori
bound for [[Fu,(t)], + ||V8,(t)|, which ensures the global existence of each
approximate solution. In this case, we shall also obtain stronger bounds
which imply the convergence of approximate solutions to a weak solution in
the uniqueness class

(C([0, T1; V)NL?(0, T; D(A))) x (C([0, T1; L*(2))n L*(0, T; Hg per))-

The function U, satisfies
du,
(2.23) I + Aue = P(— -V, + e, 1(6)), w(0) = uo s

do,

@24

+ Bl = —u VO, + ey + 2 D(@): D), 6(0) = o
Taking the scalar product of (2.23) with u,, we obtain

d 2 2

It el + 1Vullz = (e2f(0r), wy).
Since f is bounded, the right-hand side is estimated as

1
le2f (6, w)l < 121" flo el < 0 IVuell3 + 1211115

We thus obtain

d
% el + Vw3 < (211512,

which yields

t

e (0)113 +j IVulizds < luoils +1RUS15t < lluol3 + 1211 /15t < C,
0
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with C = C(T) independent of k. Thus, u, is bounded in L*(0, T; L2)
NnL2(0, T; V). We next deduce an a priori bound for |[Fu,(t)|l,. Taking the
scalar product of (2.23) with Au,, we have, as in the case f =0,

1

d
5 t—i; |V uy ”% + || Auy “% < (g - Vg, Awp)| + |(e2 1 (0y), Awy)|

< Cllugla IVully | Al + £ @2 1| Aug |l
< Cllu 3 17wl 2 | Aw 1372 + 11 £ 0D 12 | Awel,

1
=3 I Aull3 + Cluel3 17w 3 17w l3 + 21 £ 013

Since f is bounded, we obtain
d
o 17wl + 1| Au |13 < CUlweli3 17w 3 17w |13 + 19211 £ 1)

Applying the classical Gronwall lemma, we have, for any T > 0,

t

(2.25) 17w ()13 + f I Aul3ds < C

0

with C = C(|Fuql,, |2l | fls, T) independent of k. Thus, u, is bounded in
L*(0, T; V)nL*(0, T; D(4)).

We next derive a priori bounds for 6,. Taking the scalar product of
(2.24) with 6, gives

1d

> % 16113 + 11 B 20,113 = (e2 - w, ) + %(D(u_k)I D(i), 6,)-

As in the case f = 0, the right-hand side is estimated as:
I(e2 * ths O < a2 165l 2 < Nell3 + 1161135

|G : D), 01 < C Vi |Z116:llz < CUV B llo | Aty [12 1102
S CUVu 3 | Awell + 16,113).

Hence we obtain

d
(2.26) 7 1615 + 17613 < CUlw |13 + 17w 3 1| Au 13 + 116:113),
and so, for all T> 0,

t
|I9k(t)||§+f IPOli3ds<C, (0<t<T),
0
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with C = C(T) independent of k. Thus, 6, is bounded in L*(0, T; L*(Q))
nL*0, T; H; ,.). In the same way, we can deduce, for any T > 0,

t
(2.27) 17 6,(e) 113 + J IBO3ds<C, (0<t<T).
0

However, C = C(T) here depends on k, because we assume only that
0,eL*(Q). Tt follows from (2.25) and (2.27) that U, exists globally in
time. On the other hand, we have already seen that u, is bounded in
L®(, T; V)nL*(0, T; D(A)) and 6, is bounded in L*(0, T; L*(2))nL*(, T;
H; ,.). Thus, we find that
du,
dr
de,
dr

is bounded in L%(0, T; L2),

is bounded in L?(0, T; (Hg, per)*)-

By a classical compactness theorem [27, Th. III. 3.1], we see that

U —u *.weakly in L®(0, T; V) and weakly in L?*(0, T; D(A)),
W —u strongly in L2(0, T; V),

du, du
—_——
dt dt
6, — 0 *.weakly in L*(0, T; L*(22)) and weakly in L*(0, T; H} ,.,),
6, — 0 strongly in L2(0, T; L*(Q)),

40,  do
——_—
dt dt

weakly in L2(0, T; L2),

weakly in L*(0, T; (H{§ e)*).

It is easy to see that {u, 6} is a weak solution of problem (BE),. The fact
that {u, 8}eC([0, T]; V) x C([0, T]; L*(Q)) follows from

d
ueL*(0, T; D(A)), d—‘: eL2(0, T; L2)
and
2 1 dg 2 1
06[‘ (Oa Ta HO,per)a EEL (0’ T; (HO,per)*)'

We next show the uniqueness in the class as mentioned in Theorem 2.1
(ii), i.e., in the class

(C([0, T1; V)NL?(0, T; D(A)) x (C([0, TT; LA)NL*(O0, T; Hy per)-
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Note that if a weak solution {u, 8} belongs to the above class, then
d de
Ler20, s 12), ZTel?0, T (H} ).
dt dt '
To show the uniqueness, it suffices to prove Theorem 2.1 (iii). Let

{ugsi, 0p.}€V x L*(Q), i=1,2. We wish to show that for any T> 0 there
exists a C = C(T) such that

Puy(t) — Puy(0) 13 + 1102() — 0,(0) 113 < C(|| Vug,, —Vug,y I3+ 0,2 — 00,1 13),

where {u;, 0;}, i=1,2, are weak solutions with initial values {uq, 6},
i=1,2, respectively. Set u=u, —u,, 6 =6, —0,. Then

(2.28) Z—': +Au+ Pu-Vu, +uy - Vu) = P[(f(6,) — f(6,))e,],
do
<E,l//>+(l76, V) +w-VO, +u, V0, ¥)

(2.29)
=(es-u ) + gw(u): D(uy + up), )

for all y eHj ., and
u0) =ug, —ug,1;600)=0,,— 0.

Here (-, -> denotes the duality pairing between H} ,., and (H; ,.)*. We
take the scalar product of (2.28) with Au, to get

% IVulls + 1 Aul3 = — - Vuy + uy - Vu, Au) + ((f(6) — 1 (01))e2, Au).

Using (1.5) and (1.7) with p =4, we have

[ Vuy, Au)| < llully IVuzllall Aull,
< Clull3? 17ully? 1Vuy 32 | Auy 1372 | Aull,

1
=3 I Aull3 + 1V uglly | Auylly [ 7ull3.
Here we have used the Poincaré inequality: |ull, < ||Vul,. Similarly,
1
[(uy - Vu, Au)| < 3 lAu3 + lug I3 1P ug 13 17 ul3.

Writing
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1

f6,) - f(6,) = 0_[ J'0; +1(60; — 6))dr,

0

we obtain
1
[((f(02) — f01))ey, AW < |f']x 10112 | Aull, < 3 lAull3 + CIf1% 1613

Taking Y = 6 in (2.29), we obtain

1d
5% 1013 + 17013 = —(u-V6,, 0) + (e, u, 0) +%(D(u)i D(uy + uy), 6).

In the same way as above, using (1.3), (1.5) and (1.7) with p =4, we can
estimate the right-hand side by

1 1
— | Aull3 + = 1613
8I| ull2 2|| 12

+ CLIO N3 + IV (uy + un) 1511 A(uy + ux) (15 + 1] [7ul3 + C6]3.
We thus obtain

d
E(Iqulli + 16013 + [ Aulz + 17013

S CLIVuz o Il Auylly + lug I3 17ug 131 17 ul3
+ CIIP (uy + u) 13 1Ay + ur) |3 1Vull3
+ C(10215 + DIIFul3 + ClO13.
Since
u;e C([0, T]; V)nL*(0, T; D(4)) and 6,eC([0, T]; L*(R))nL*(0, T; H} ,er)

for i =1, 2, we see that
d
a—t(lquH%Jr 16113) < k@) (I7ull3 + 11013

for some k(t)e L'(0, T). It thus follows that

IVuy(t) — Vuy (0) 13 + 110,() — 0,(0) 113 < C(IVug,» —Vug,y 13 + 1602 — 00,1 13),

which proves Theorem 2.1 (iii).

We next prove the assertion (i) for the case f satisfies (0.4). Let
{ug, 0o} €L2 x L2(Q2). In view of the proof of the assertion (i) for the case
f(6) = 6, we can see that there exists a subsequence, denoted also by {u, 6,},
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which convergesto a {u, 6} in the sense that:
U —u *_.weakly in L*(0, T; L?) and weakly in L*(0, T; V),
U, —u strongly in L2(0, T; L2),

duy — du weakly in L*(0, T; V*),
dt dt

0, — 6  weakly in L*3(0, T; L*(Q))nL*(0, T; L*3(2)).

In this case, however, the convergence of 6, is too weak to pass to the limit
in f(6,), since f is not linear. To overcome this obstacle, we will show that

(2.30) 0.(x,t) — 0(x, t) ae. (x,1)eR x (0, T).

If this is proved, then we can see, by the dominated convergence theorem, that
T T
J (f(Be,, v)dt —*f (f(O)e,, v)dr
0 0

for all veL?(0, T; V) as k — o0, and so we can conclude that {u, 6} is a weak
solution of (BE),. (2.30) is proved as follows. Taking the scalar product of
(2.23) with tAu,, we have

1 d

1
5 a(t [V l13) + ¢l A |13 = 5 1P 13 — t(uy - Vi, Aw) + t(f(0y), Awy).

We majorize the right-hand side as before to obtain

d
;i;(t I7ull3) + t | Awll3 < CENVu 3 w3 1V w3 + 17wz + 1 £0I113).

By the classical Gronwall lemma, we have, for 0 <t < T,

e V)3 + j t || Au(1)|13dr < C(T),

0

which implies that
u, is bounded in L*®(5, T; V)nL*(5, T; D(A))
for all 0 <6 < T< oo. This, together with (2.26), yields that
6, is bounded in L*(8, T; L*(2))nL*(8, T; H3, pey)-

It is easy to see from (2.24) that

do
d—tk is bounded in L*(5, T; (Hj ,e)®).
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Thus, by a classical compactness theorem [27, Th. III. 3.1], we see that
6, — 6 strongly in L2(5, T; L*(Q)),

from which we can immediately obtain (2.30). This completes the proof of
the assertion (i) for the case f satisfies (0.4).

REFULARITY IN TIME. In this paragraph we prove Theorem 2.1 (iv). The
fact that du/dte L?(0, T; L?) is already shown in the proof of convergence of
{u,, 0} (see the discussion after (2.27)). Here we first show that

(2.31) 6eL*(d, T; H} )N L*(6, T; D(B)) and Z—feLz(é, T; L*(Q)).

We multiply (2.24) by tB6, and integrate over 2 to obtain

1 d 1
5 = (CI76,13) + (1 BOI3 = 2 176l — tuy -7 6y, B
+ rg(D(u—k): D(i%;), B,) + t(e, - uy, BO,).

Estimating the right-hand side as in the proof of (i), we have

d
E(t 176, 13) + t | BONZ < CUV O + | Aug 13 + llwell?),

with C = C(T) independent of k. Upon integration, this gives

t||V9k||§+J

0

t t

s || BO,[3ds < CJ (170,13 + 1| Aue 13 + llue|13)ds < C,
0

where C = C(T) is independent of k. Hence,
(2.32) 6, is bounded in L*(d, T; H{ ,.,)NL*(8, T; D(B)),

and so the first assertion of (2.31) is obtained by letting k - co. Using (2.32)
and the relation

de
T;lt_k= _Bek—uk-V9k+e2-uk+%D(17,()1D(17k)

as well as the estimates
e - VO lls < Nl 1V 0Ny < Clulz? IV 1372 1V 6,157 | BON 3?5
ID(i5): D(w) 13 < C IV i < CIVull, | Augll 5,

we see that
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dé
d—t" is bounded in L?(5, T; L*(R)),
and so the second assertion of (2.31) is obtained by passing to the limit.
We next show that

du o ra d*u
(2.33) EGL“’((S, T; L)nL*(6, T; V) and FEL 6, T; V*.

Consider the difference quotients
() = 77 et + 7) — (1), (B:(6) = T (Bu(t + 1) — 6,(0)).
From (2.23) we have

% + A(w), = — P((w), - Vuy + u - V(). — e5(6,).H(B))),

where
H(6,)(t) = f JO0(t) + L(Ok(t + 1) — G, (2)))dL.
0

The standard method gives

1 d
5% @3 + 17 (e 13 < 1(()e - Pt (i) + 1(e2(0):H (B, (o)

< (e -V (wides wd + 11 [160): 12 11 () N 2-

By (1.3), (1.5) and (1.7) with p =4, the first term on the right-hand side is
estimated as

(), - ¥ (e, wdl < [l (e lla 1V (e 2 1l 1l

< C Il 132 17 w1372 e 1372 17 w1137
< 2173 + C I3,
since u, is bounded in C([0, T]; V). Hence we get
% 1@ I3 + 17 @13 < C UGS + 16 13),
and so, denoting u; = du,/dt and 6, = d6,/dt,

e (0)113 + f IV (). 13do < [l (s) 113 + Cf (1@ N13 + 16, 13)da
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T
< [ (uee(s) 113 + CJ (luell3 + 116¢113)da
0

< @) 13 + C,

where C = C(T) is independent of k and 7. Here we have used the
boundedness of u, and 6, in L*(0, T; L?) and L*(0, T; L*(2)), respectively.
Integrating this with respect to s gives

t

1l wde(8) 13 + J

t
s IV ()1 3ds < CJ (W 13ds + C
0 0

T
gcfuwﬁa+03c
0

with C = C(T) independent of k and 7. Hence,
(w), is bounded in L*(5, T; LAnL2(5, T; V)

uniformly for k and 7; and the first assertion of (2.33) follows by passing to
the limit. To show the second assertion, observe first that (u,), satisfies

T T
- J ((uk)v v)hldt + J‘ [(V(uk)u Vl)) - ((uk)t : VU9 uk)]hdt
0

0

- Jl (- Vv, () hdt = fT (e2(64).H(0y), v)hdt

0 0

for any fixed veV and heC§(0, T) provided that |t| is sufficiently
small. Letting 1 - 0 and then k — oo yields

0

T T
- J W, v)h'dt + J [Vu, Vv)— Vv, u)]hdt
0

T T
— f -V, v')hdt = J (e, f'(6)8', v)hdt.
0 0

Since |(u' - Vv, u)| and |(u- Vv, u')| are both majorized by
Cllw 13217 1372 a3 Vullz (7ol
we see by duality that
d’u

e eL*5, T; V*).

This completes the proof of Theorem 2.1.
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3. Passage to the limit y — 0
This section establishes the following

THEOREM 3.1. (i) Let f satisfy (0.3) and let {u,, 6,} be the family of
weak solutions of (BE), given in Theorem 2.1 corresponding to any fixed initial
value {uy, 0o} €L: x L*(Q). Let {u, 0} be a (unique) weak solution of the
Boussinesq equations with the same initial value. Then, for all T > 0,

u, — u strongly in C([0, T1; LYnL*(0, T; V),
6,— 0 strongly in L*3(0, T; L*(Q)).

(i) Let f satisfy (0.4) and let {uy, 0,} €V x L*(Q2). Then, in the situation
stated in (i), we have

u, — u strongly in C([0, T1; V)nL?*(0, T; D(A)),
6,— 0 strongly in C([0, T]; L*(2))nL*(0, T; H; ,e)-
for all T> 0.

REMARK. By the same argument as in [14], we can show that the
Boussinesq equations possess a unique weak solution in

(L*(0, T; L2)nL*(0, T; V)) x L*3(0, T; L*(Q2))

in case f satisfies (0.3). Furthermore, our proof of Theorem 2.1 (ii) and (iii)
automatically implies that if f satisfies (0.4), then the Boussinesq equations
possess a unique solution in

(L*(0, T; V)N L*(0, T; D(A))) x (L*(0, T; LA(Q)NL* (O, T; Hj per)
provided {uy, 6y} eV x L*(Q).
PrOOF. Also in this section, we assume that
v=k=1

for simplicity in notation.
(i) We prove that

(3.1) u, — u strongly in C([0, T]; LnL*(0, T; V),
and
(3.2) 6, — 60 strongly in L*?(0, T; L*(2)).

In the same way as in section 2 we can show that
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3.1y u, — u strongly in L*(0, T; V).

But, since u, = du,/dt is bounded in L?(0, T; V*), the relation
t
[, () — u(t)l|3 = 2 f up — 'y uy, — upds,
0

together with (3.1), implies that

t

lluy(2) — u(®)3 < ZJ IV (y — w2 luy — ' [[yeds

0
T 1/2
< C<J ||V(u,,—u)||§ds> —s0
0

as 1 = 0. This completes the proof of (3.1). To show (3.2), we introduce the

notation:
1/p
IIHIIp,,,J=<f Ilﬁ(r)llfdf> ,
J

where J is a measurable set in (0, T). Let ¢eC§,pe,(§). Taking Y(t) =
e " 9Bg in (2.4), we have

t

(6,4(1), @) — (6,(5), e 7P ¢) = f

s

t
u-Ve 798¢, 6)dt + J (es-u,, e” " ?B¢)dr

+ J'%(D(u,,): D(w,), e~ ¢)dx.

s

Let 7, be any sequence such that #,,— 0 as m — co. For simplicity, we write
U, =u, and 6, =0, . Then we have

(On(t) = 6,(0); @) = (On(s) — 6,(5), €™ “77%¢) + Jr I (t, ©)de + Jt L (¢, 7)dt

N N

+J I,4(¢, r)dr-{—[ 1,(¢, t)dr,

s s

where
11(t$ T) = - ((um - un) ’ Ve_(t_t)B(pa Hm)
IZ(t’ T) = - (un : Ve_(t—t)8¢a em - Hn)

13(ts T) = (62 ' (um - un)a e—(t—t)8¢)

Talt, D = "2 (Dun): Dl €™ ~76) + 2 (Dlw): D), e™~77).
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Using (1.7) we have
1(t, O < Nty — sy, 10l |V~ 708,
< Nty — U 1377 IV (= ) 13722 O 2 V™72,

where 1/p+ 1/r=1/2,p,r > 2. Since
IVe=pll, < ClIVe ¢l3" | Be~Bpll} 2" = C || B2 p||3" | Be~ Bl

S Ct7 B,
it follows that

i, Dl < Ct =17 gy — w1371V (= un) 1272710 ll2 [ -

Since {u,} is bounded in L*(0, T; L?), this gives

(Dl < Ct =)™ P Uy — u) 12722 10,12 11112
Similarly, we obtain

L, Dl < Ct — ) VU, 3722116, — Oull2 1411
I is estimated as

3, O < Clluy — tyll2 e 2P, < Cllthy — ty 2 [ D2

Applying Lemma 2.2, we have

L4t )| < [ [ D) Dty |1y + 11 | D(t): D) [T e 722,
SCt =) 20 | VumlZ + na IV u, 12 61

Thus, by duality, we obtain
[0m(t) = 0u(0) 12 < [16(5) — 0,() I + S1(t, 5) + Sy(t, ) + S3(t, 5) + Salt; 9),

where

('t

S,(6,)=C| (=1 |V (tyy — ) 1377 | Ol 7,
('t

S:t, ) =C| (t—0) P u, 37270, — O, ll2d7,
('t

S3(t’ S)= C ”um—unHZdT’

't

S4t, ) =C | (t =0 2N IVt |3 + 1 |V 1, |3)d.

vs
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Choose p,r>2sothat 1/p+ 1/r=1/2, p<4. Then,since (p — 2)/2 + 3/4 <
land 1 —-1/r+(p—2)/2+3/4=1+ 3/4, we apply the Hardy-Littlewood-
Sobolev inequality [26] to obtain

t 3/4
<f 1 (o, S)l4’3d0) S CIV (n — ) 192777 16l a3,2,5

s

for J = (s, t). Similarly,

t 3/4
<J 1S, (o, S)|4/3d0'> <|Vu, ||(2",§,2J)/p 10m = Oullass,2,0

s

for J = (s, t). Since {u,} is bounded in L*(0, T; L2), we have

t 3/4
<J |S4(O', S)|4/3d6> < CT1/4(nm + 7’]") < C(T)(rlm + nn)

s

Since {6,,} is bounded in L*3(0, T; L*(€2)), we now deduce
16m — Oullasz,2.0 < CT)(110m(s) = 0u(S) 12 + IV (U — u,) [92377)
(34 + C(T) (1P un 18237 100 — Onllass,2.s + llthe — thall2,2,9)
+ C(T) (1w + 1)

where J = (s, t). Since Vu,, — Vu in L*(0, T; L?) by (3.1), there exists a 6 > 0
such that if 0 <t — s < é then

7 1 pl(p—2) g "
<
1Vl 2,2, <2C(T)> or all m

with J = (s, t). We take s=0 and t =6 in (3.4). Since 6,,(0) — 6,(0) =0 by
assumption, we have

10m = Onllars,z,00 < 2C(T) IV (= u) L2307 + 1ty — thnll2,2,56 + Tl + 112)

where J, = (0, ). This implies that {6,} is a Cauchy sequence in L*'3(0, §;
L*(Q)). Since 6, converges to § weakly in L*/3(0, T; L?(2)), we see that 6,
converges to 6 strongly in L*3(0, §; L*(R2)) and, in particular, that there exist
a subsequence, also denoted {6,}, and ¢; €(6/2, ) such that 6,(t,) converges
to 0(t,) strongly in L?(©2). Now take s=t, and t = 35/2 in (3.4). Then we
have, for J, = (t;, 36/2),

10m = Oullasa,z,0, < 2C(T) (1 6(ty) — Out) 2 + 1V (i — ) [1923/7)
+ 2C(T) (It = tnll2,2,5, + M + 75)-

In the same way as above, we see that 6, converges to 6 strongly in
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L*3(t,, 36/2; L*(Q)) and, in particular, that there exist a subsequence, also
denoted by {6,}, and t,€(d, 36/2) such that 6,(t,) converges to 6(t,) strongly
in L?(2). Taking s =t, and t = 26 in (3.4), we have, for J, = (t,, 20),

16m = 6nllass,2,0, < 2C(T)(10(t2) — Out) N2 + IV ( — u) 19257)

+ 2C(T)(” Uy, — U, ”2,2,.]2 + Hm + nn)

Thus, 6,, converges to 0 strongly in L*/3(t,, 26; L?(2)) and, in particular, there
exist a subsequence, denoted again by {6,,}, and t3€(39/2, 29) such that 6,,(t3)
converges to 6(t;) strongly in L?(Q).

Repeating these processes finitely many times, we conclude that there
exists a subsequence of {6,} which converges to 6 strongly in L*/3(0, T; L*()).
Since {,,} is arbitrary, {6,} converges to 6 strongly in L*/3(0, T; L?*(€2)). This
completes the proof of (i).

(i) We may assume n < 1. First we show that

(3.5) u, — u strongly in L*(0, T; V).
Observe that letting k — oo in (2.25) implies that
u, is bounded in L*(0, T; V)nL*(0, T; D(A)).

Also, as in section 2, we can show that
du, . : 2 2
= is bounded in L*(0, T; L2).

Applying [27, Th. IIL. 3.1], we can take a subsequence u,, = u, of u, which
converges to u in L*(0, T; V). Since u is unique, we have proved (3.5).
We next prove

(3.6) 6, — 0 strongly in L2(0, T; L*(2)).

As in section 2, we estimate approximate solutions {u, 6,} = {u,, 6, ,} and
then pass to the limit k — oo to obtain

t t
16,(t)113 +j 176,l3ds < 1613 + C(f 16,113ds + 1>,
0 0

for a.e. te(0, T), with C = C(T) independent of n < 1. Applying the classical
Gronwall lemma yields

16,0113 + J 176,13ds < C

0o

for a.e. te(0, T), with C = C(T) independent of # < 1. This shows that
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6, is bounded in L®(0, T; L*(R))nL*(0, T; H} ,.)-

n

One can also deduce that
da : : 2 1 *
d—" is bounded in L*(0, T; (Hg, ,er)*)-
t

Thus, we can apply [27, Th. IIL. 3.1] to extract a subsequence 6, such that
6, — 0 strongly in L*(0, T; L*(2)),
which shows (3.6) because the limit function € is unique.
Using (3.5) and (3.6), we now show that
3.7 u, — u strongly in C([0, T]; V)nL2(0, T; D(A)),

as in the proof of Theorem 2.1 (ii). The functions v = u, — u, and Y = 6, — 0,
satisfy

(3.8) j—j + Av+ P(v-Vu, + u, -Vv)= PL(f(0,) — f(0,))e,],
and
(3.9)
dy
<7t’ ¢> +VY, Vo) +@-VO,+u, -V, d)
=(e2-0, @)+ %(D(u.,)i D(u,), ¢) — %,(D(u,,,): D(uy), ¢)

for peH} ,,,. From (3.8) we have

1d
7@ 7ol + 1 4v)3 = — (v- Vu, + u, - Vv, Av)
+(f(6,) — 1 (6,), Av)

and, as in the proof of Theorem 2.1 (ii), the right-hand side is majorized by
1
> [Av3 + CIVolZ LIV u, |l | Auyllz + [Py |12 1| Auy 11,1 + CLF 12 1113
We thus obtain

d
(3.10) X Vol + 1 Av] < C(1+ || Auyll, + | Auy ) 17015 + Clly 113,

so that, by the classical Gronwall lemma,
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(3.11) I7o)l3 < CJ 1y 117ds
0

with C = C(T) independent of # and #'. This shows the convergence of u,
in C([0, T]; V). From (3.10) and (3.11), we also get

J Il 4v]3ds < CJ (1 + 1 Auyll; + 1| Auy 1) [P0 l13ds + CJ 1y 113ds
0 0

0
T

< Csup |Pv|3 + cf Il l13ds
[0,T]

0

which shows the convergence of u, in L*(0, T; D(A)). The proof of (3.7) is
complete.
We finally prove

(3.12) 6,— 6 strongly in C([0, T]; L*(2))nL*(0, T; H3 ,.,)-
We insert ¢ = y/(t) into (3.9) to obtain

1d
0 ;l—tlli//||§+ 1Pyl =~@ VO, ¥) +(ez-v, )

+ g(mu,,): D(u,), ¥) — %(D(un'): D(u,), ¥).

The right-hand side is estimated as in the proof of Theorem 2.1 (ii), and we
are led to

d
% 113+ 17yI3 < ClPol3( + 176,13)
+ Cln IV uy 3 | Auy 3 + ' 7y 113 1| Auy 1131
Upon integration and application of the foregoing bounds, this gives

Iy @13 + f 1Py 13ds < C(sup |Poll3 +n +n)
0 [0,T]

with C = C(T) independent of n and #’, and this shows the desired convergence
(3.12). This completes the proof of Theorem 3.1.

4. The global attractor for problem (BE),

From this section on we assume that f satisfies (0.4). Our convection
problem is reformulated as
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du
4.1) n + vAu + P(u-Vu) = Pf(O)e,,
t

4.2) %+xBu+u-Ve=’-’;D(u):p(u)-ez-u,

u0) =uy, 6(0)=46,.
Let
H =V x L*(Q).
Then, by Theorem 2.1 (ii) and (iii), we can define the semigroup:
S(t): H>{u(0), 6(0)} — {u(t), (t)} e H.

We will prove in this section the existence of the global attractor for {S(t)},s o,
to which all solutions converge as t — 0.

Following [28], we introrduce a notion of attractor.

DErFINITION. A set o/ of a metric space H is called an attractor associated
with {S(t)},50 if

(i) &/ is invariant, i.e., S(t)o/ = &/ for all t > 0.

(i) There exists an open neighborhood # of «/ such that for every
uy €U, S(t)u, converges to o/ as t —» oo in the sense that

tlim d(S(t)ug, &) =0,

where d(-, -) is the distance function of H.
We say that &/ attracts a set # < % if

tllrg dSt)%, o) =0,
where

d(B,, $,) = sup inf d(x, y).
B, YEB1

xeBo

An attractor & < H is called a global attractor if it is compact and
attracts bounded sets of H.

We can now state our main result in this section.

THEOREM 4.1.  Suppose that f satisfies (0.4). Then, the semigroup {S(t)}, 0
associated with problem (4.1)—(4.2) has a unique global attractor </ which is
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bounded in D(A) x H{ ,e,(Q2), compact and connected in H. Furthermore, </
attracts bounded sets of H.

To prove Theorem 4.1, we need two notions: the first is the notion of
absorbing set, and the second is the uniform compactness of the semigroup
{S(t)}:»0 for ¢ large.

DEFINITION. A subset # of H is called absorbing in H if for each bounded
set %, of H there exists t, = t,(%,) such that S(t)%, < # for all t > t,.

DErFINITION.  Let {S(t)},,, be a family of operators on H. Then {S(t)},50
is said to be uniformly compact for t large if for each bounded set %, there
exists to = tq(4#) such that

UtZto S(t)'@
is relatively compact in H.

To verify the existence of a global attractor, we appeal to the following abstract
result:

THEOREM 4.2 ([28, Th. I. 1.1]). Let H be a metric space and let {S(t)},5
be a nonlinear semigroup of continuous transformations on H. If {S(t)},»o are
uniformly compact for t large and if there exists an open set U and a bounded
subset B of U such that % is absorbing in U, then the w-limit set of of A
is a compact attractor which attracts the bounded sets of %U. Furthermore, o
is the maximal bounded attractor in %. If H is a Banach space and U is
convex and connected, then o/ is connected.

We prove Theorem 4.1, applying Theorem 4.2 to our semigroup. In the
subsequent argument the following result will be frequently applied.

LEMMA 4.3. Let g, h and y be three positive locally integrable functions
on (ty, o). Assume that y' is locally integrable on (t,, ) and
dy

4.3) — <gy+h
dt

holds for t > t,. If there exist positive functions a;(t), i =1, 2, 3, such that

t+r

J‘t rg(s)ds <a, (), jﬁr h(s)ds < a,(t), f y(8)ds < as(t) for t>t,,

t

where r is a positive constant, then

yE+r) < <a37(t) + az(t)> exp a, (t) for t>t,.
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REMARK. When q; are constant functions, Lemma 4.3 is called the uniform
Gronwall Lemma [28, Lemma III. 1.1].

Proor. Let t, <t <s<t+r. Multiplying (4.3) by

exp <— r g(r)dr)
% <y(s) exp <— Js g(‘c)d‘c)) < h(s) exp <— fs g(t)dr).

Integrating this on [s, ¢t + r] gives

y(t + 1) < y(s) exp <f+r g(‘c)dr) + jtﬂ h(z) exp <f+r g(a)da) dt

< (¥() + ay(1) exp a4 (t).

Integrating this in s on [¢, t + r] yields the desired result. This proves Lemma
4.3.

we have

We begin by establishing the existence of an absorbing set.
PROPOSITION 4.4. There exisits an absorbing set for {S(t)},o in H.
Proor. We first show the uniform boundedness of u in V for large

t. From (4.1) we have

1d

> Z lull +vIVuls=(f6), w) <[21'2|fl, llull,

1Q[1113%
2v

v
<|QI"2|flo IPull, < > I7ulz +

and so

2
(4.4) Lz +vypupz < 2L
dt v

We also obtain, by the Poincaré inequality,

d Q 2
45) A yanz 4 vpupz < 2
dt v
Integrating (4.5) gives
QIfIZ
4.6) 1) 12 < lugl2e™ + 2 1o (g _ g

V2
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Let # be an arbitrary bounded set of H. From now on we assume that
{uqy, 6o} €B. There exists R>0 such that By(0, R) > %, where By(0, R)
denotes the ball of H with center 0 and radius R, and, in particular,
[Puoll3 + 116613 < R*.  Set

Q1M fl,
0=
v
and define
to = ! Io R’
R g
for py > po. It follows from (4.6) that
lu(@)ll3 < po’

for t > t,, since {ugy, 6,} €. Note that p, and p, depend only on physical
data and are independent of initial data. Here and in what follows we use
letters p;, p; and a; to denote constants which depend only on physical data
and are independent of initial data and time ¢, while the letters K; denote
constants which may depend on initial data or time ¢, etc. Now (4.4) gives

Pr+1 2
vj ||Vu||§dsslg||f|°°

¢ v

+ llu@)ll3,

which implies that

t+1 Q 2 12
J 17ulzds < 2 1o, 26
. v v

for t > t,, since {ugy, 6} €4. Multiplying (4.1) by Au, we have

% % IPull + v Aul3 = — (u-Vu, Au) + (f(6), Aw).

We estimate each term on the right-hand side. The second term is estimated
as

Q112

v

I(f(6), Auw)l <121"2|f], | Aull, < %lIAuII% +

By (1.3), (1.5) and (1.7) with p = 4, the first term is estimated as
- Vu, Au)| < llulls |VullyllAull, < Cllullz? 1Vull, || Aul3?

y C
< —[lAul3 + < lullz I7ulls.
4 v
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It thus follows that

d 21211112
4.7) —Vull3 + vl A4u|3 < ——I /] H I3 117 ull5.
dt v v3

Since
IVull, < A7Y2 || Aull,

for ue D(4), where 1, is the principal eigenvalue of the Stokes operator, we
also have

2IQI Ifle

d
(4.8) EIIVuH% + vy [Pull < || 12 117ull3.

Applying Lemma 4.3 to (4.7), we obtain

[V u(t) ”% <(a, +aj)expa, = pf

for t > t, + 1, where

Cpila 212|1f1% Q|If1% 02
a, = 003 3 g, = 121111 , a3=| |2|f| +£’_o_'
v v vi A, v

This shows that {u(t)},»,+; is bounded in V uniformly for {u,, 6,}€%.
Integrating (4.7) on [t, t + 1], we also obtain

1+1 210 2 C (1+1 12
||Au|[§dsS]—Lf|°°+_. IlullﬁlquII‘éds+ [V u(t)l3
t v2 v4 )

2|~Q||f|2 + Opl &

= v? vy v

=d,

for t >ty + 1. We next deduce the uniform estimate of ||6(t)||, for large
t. For this purpose, we first estimate ||Fu(t)|, for 0 <t <t,+ 1. From (4.4),
we see that

t Q i
|lu(t)l|§+vj I7ul2ds < Jugl2 + |Lf| .

0

This, together with (4.6), implies that

c[ c IAYE
—af ||u||§nVu||§dss—3<uuon%+' /] )J 17l 2ds
v o v v 0

g(Rz .\ lQllszi><R2 L 12U+ 1)>
v v

4

4.9)

IA

<

I
e
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for0 <t <ty,+ 1. Applying the classical Gronwall lemma to (4.7), we obtain

21011112 s C
IVu@)|3 < ||V”o||2+f —'l‘}iexp<j v—gllullilqullﬁdT)dS
(4]

4.10) °

< R?+

K —Kz

21Q11f 12t + D o
v

for 0 <t <ty,+ 1. Integrating (4.7) on [0, t], we also obtain

Q 2 tC
J | Aul3ds < [7u(t)|2 —ngfl— J i3 17ulds
0

4.11)

<R*+

2|92 2 1
| ‘Ilfl (to + )+;K1KZEK3

for 0<t<ty+ 1. Taking the scalar product of (4.2) with 6, we have
1
> d— 1615 +x|7ol3 = "y *(Dw): D(w), 6) — (e, - u, 6).

We majorize the right-hand side as follows: By (1.5) with p =4,

<y [Pullz 0, < CrviPull, | Aull, |71,

%wmeﬂ)

K Cv?
< — 1013 +n* — IPul3 [ Aull3.
4 K
A simple estimate gives
K 1
ez~ u, O < lull 101 < [Vul, VO, < 1 I7e13 + - I7ull3.
We thus obtain

2,2

d Cn®v 2
4.12) 3;||9||§+K||70||§S WK ||Vu||§||Au||§+;IIVuII§,

which implies

2,2

Cn?v? (! 2 (!
i J lquH%IlAuH%dS+—j IV ul|3ds.
0 KJo

1013 < 1166113 +
It then follows from (4.10) and (4.11) that

Cv? C
16(to + )||2<R2+—K K3+;7K3—K4
1
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Using the Poincaré inequality, we also obtain, from (4.12),

2

d Cv 2
— 16113 + k1013 < — IPull} | Aull3 + = IV ull3,
dt K K

and therefore,

1613 < e™7 "V 6(t + D2

t Cv? C
(4.13) +J e"‘“‘”( I7ul? + 4>||Au||%ds
to+1 KAy
t Cp? C
I P (A TYWEA
to+1 K KAy

for t >ty + 1. To estimate the last term, we multiply (4.7) by e ¢~ to get
d —xk(t—s) 2 —Kk(t—s) 2
2;(6’ TV Pull3) + ve 7 Aulz

21QI1f1%
v

< e—x(t—s)(,c 17ul2 + +3 Hu“z Vu “2>'

Integrating this with respect to se[ty, + 1, t] then yields

t
vf e T Qu?ds < e T D | Pu(ty + 1)]|3
1

o+ 1

L e 2|Q ||f|2
+f e ¢ s’(’CHVuH% || ull3 1Vul3
to+1 V

212|112
sp%+<xp‘f | lvlfl 03;5)[ e xt=9 g
o+1

v

1 2 Q 2 C 12 4
Spf+<l€pf+ I Hf'co + p03p1>5£15.
K

v v

We thus deduce from (4.13) that

2
(4.14) 10() )2 < Kye =t~ 4 <C”‘V & >a5
K KAV
Cp? C
for t >ty + 1. Now set p3 =< prv >a5, and define
K KAV

1
ty =ty +1+ —log 5
K p—p3

for p; > p,.
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Then, |6(t)]|, < p; < p; for t > t;, which implies that {6(t)},,, is bounded in
L?*(8) uniformly in (uy, 6,)€ B. Since we have already seen that |[Fu(t)|, < p,
for t >ty + 1, it follows that (u(t), 6(t))e B(0, p;) for t > t,, where p3 = p? +
ps*. This shows that %(0, p;) is an absorbing set in H and the proof is
complete.

We next prove the uniform compactness of {S(t)},,, for ¢ large.
PROPOSITION 4.5. {S(t)},5¢ is uniformly compact for t large.

ProoF. Let # be a bounded set of H. It suffices to show that there
exists a t, = t,(%) such that {J,,,, S(t)# is bounded in D(A4) x H} ,.,, since
the embedding D(A) x Hg ., = H is compact. Let (uy, )€ . Recall that
Pugll2 + 118,112 < R? for some R > 0, since # is bounded in H. Integrating
(4.12) on [t, t + 1] gives

t+1 1 Cvz t+1 C t+1
J IV613ds < —0@)lI} + — Vull3 | Aull3ds + —J IV ull3ds
t K K J: K J;
2 oy2 Cp?
< P2 v p1ds | CPy =q,
K K2 K2

Multiplying (4.2) by Bf, we have

1d
3T 17613 + x| BOI3 = — (u- V6, BY) + 'I%(D(u)i D(u), BO) — (e, - u, BO).

By (1.3), (1.4) and (1.5) with p = 4, the right-hand sides are estimated as follows:
v
%I(D(u)i D(u), BO)| < nv[Vul3|BOl, < Cnv[[Vull, || Aull, | BE,

Cn?v?
T\ u)2 ) du)2,

K
< —|BO|3 +
6|| 2
|(u-¥6, BO) < lully V04 1IBOI, < Cllullz? 1Vull3? |V 65/* I BEII3?
K C
<— B0+ llulZIVul3Vol3,
6 - K
[(ez-u, BO)| < ull, | BO|, < |Vul, | BOI,
K 3
<—|BO|%+ = |Vul3.
6” 2 ZKII ullz

We thus obtain
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C172 v2

d C 3
T I7o13+x|BOIZ < lquH%llAuII§+F llullﬁlqulIillVﬁll§+; 17ul3.

On the other hand, if ¢t > ¢, then

C t+1 C
EJ ”u“%”Vu”%dSS;gP(?P%Ea7;

t

CVZ t+1 3 t+1 Cvl 3
—J IqullillAullidS+—j IVul3ds < — piK, + = pi = ag;
K t K J: K K

t+1
J |1V6|%ds < ag.

t
Applying Lemma 4.3, we have
(4.15) I70@)1I3 < (a + as) exp (a;) = p3

for t>t,. This shows that {6(t)},5, is bounded in Hj ,, uniformly in
{uq, 6o} € B.
We next estimate ||Au(t)|, for large t. To do so, we first estimate

t+1
J [6,|3ds, where 6, is the time-derivative of 6. Note that this integral
t

exists by Theorem 2.1 (iv). We multiply (4.2) by 6, to get

K d v
16,113 + 37 IVO15=—(u-V6,6,)+ nE(D(u)i D(u), 6,) — (e; - u, 6,).

The right-hand side is estimated as follows: First, by (1.3) and (1.6),
(70, 0)] < llulle VO 1161, < Cl| Aul V01,161,

1
< 3 16,13 + Cll Aul3 7613
Secondly, by (1.5) with p =4,

v
%I(D(u)i D(u), 6)] < v [Vulz 16,1, < CvIIVull, || Aul, 16,1,

1
<5 16,15 + Cv? [Vull3 || Aul3.
Third, by an elementary calculation,

1
ez - u, ) < [[ull 16,12 < [Vul2 16,1, < 3 16,113 + 3 17ull3.
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We thus have

16,13 + K% Ie13 <2CUIVOIZ + v IVull3) | Aul3 + 6 1Pul3.
Integrating this on [t, ¢t + 1], for ¢t > ¢; + 1, then yields

t+1
f 16,13ds < x |7 0()1I3
t

t+1
(4.16) + 2J [CUIP OIS + v IIVull3) | Aull3 + 3 [[Pul3]ds
t
< kp2 +2C(p2 + v*p¥a, + 6p? = a,.
t+1

We next estimate f |u,||3ds. Multiplying (4.1) by u,, we have

t

v d
llu I3 + > @ Vuli = — - Vu, u) + (f(0), u).
In the same way as above, we obtain

- Vu, u)l < Jullg IVullallully < Clully 1Vull, | Aully 1,1,

1
<7 lu 3 + Clul IVull3 || Aull,,

1
IO, u)l < I FO 2 llully < 12121 flo Nl < " 13 + 121112

It thus follows that

t+1
j llu,lI3ds
t
t+1

<v|Vu@)l3 +21QIfI% + CJ el | 7ull3 (| Aull,ds

t
t+1 1/2 t+1 1/2
<vIIPu@)l3 +21211f1% + C(J lul3 | Vu||3d5> (J IIAuH%dS> ,
t t
so that
t+1
J lu 13ds < vo} + 21211112 + Cpypiall? = ay
t

for t >ty + 1, since {uy, 6y} €A.



Attractors for equations of thermal convection 295
We now deduce a differential inequality for | u,|3, applying the foregoing
estimates. Differentiating (4.1) with respect to t, we have
Uy + Au, + P(u-Vu, + u, - Vu) = Pf'(6)6,e,.
Multiplying this by u, then yields
1 d 2 2 ’
5 I lullz +vIVu s = — (u - Vu, u) + (f'©0)0,, e, - u).
We apply (1.5) and (1.7) with p =4 to obtain
[ Vuy )| < Nuglla Vullg ludll, < Clu 32 17032 17wl 1 Aul3/?

C

v
2
SzHVuz“z"‘ SVE]

lu 13 I7ull3 | Aul3”,

I(f'©)8:, ez u)l < 1SN 16cll2 N1t ll2 < 1S oo 1612 Vel

v Lf'1Z
<— | Vul3+ f 16,113,
4 v
so that
d 21113 C
(4.17) Ellu,||§+VIIVu,II§.<. j: ||¢9,I|§+v—mllurII§IIVull§’3 | Au |33,

Since, by (4.11),

C t+1 C t+1 2/3 t+1 1/3
WJ IVul3 ) Aul33ds < W(J I Vu”zds) (f llAuH%ds>
t t t

2/3 11/3
<CP1/ a;/ —

= %11
v1/3

for t >t, + 1, applying Lemma 4.3 then yields
lu()ll3 < (ag + ay0) exp (a;;) = p3
for t>1t, +2.
We can now deduce a uniform estimate of || Au(t)||, for large t. From
(4.1) we see that
1
Au(t) = " (— u(t) — P(u-Vu)(t) + Pf(6(1))e),

which implies

1
I Au(@)ll, < ;(II w (@)l + llu-Vu@ 2 + 1£E@)I)



296 Yoshiyuki KAGEI

Since
lu-Vully < lulle 1Vully < Cluly | Vul, | Au|i?
C
sgnAuuz + = ull, (7ul2,
Vv
1O, < 12172 f].,.
we have

2 2 1/2
I Au(®), < 2ps + 203/02on 4+ 211" fls
v Vv v

for ¢t > t; + 2, which implies that {u(t)},5,,+, is bounded in D(4) uniformly
for {uo, 0o} €. This, together with (4.15), implies that (J,5,, +,S(t)# is
contained in some bounded set of D(4) x H{ ,.(2). Thus, {S(t)},»0 is
uniformly compact for ¢ large. This completes the proof of Proposition 4.5,
and so Theorem 4.1 is proved.

5. Estimate of the Hausdorff dimension of the attractor .o/

In this section we give an upper bound for the Hausdorff dimension of
the global attractor ./ obtained in the previous section. The method is
basically the same as that given in [8]. We begin with

PROPOSITION 5.1. The mapping S(t) is “uniformly differentiable on «/”
with respect to the L*-norm, i.e., for any @o = {uy, 6,}, there exists a continuous
linear operator L(t; @,) on L% x L*(Q) such that

IS, — SEt)@o — L(t; @0)(@1 — @o) 12 -0
@1 — @ollL2 ’

lim sup
e=0 @0, ¢ 164
0<|le1—@ollL2<e
where | - ||z is the norm of L% x L*(9):
loll=(lul3+ 101", ¢ ={u, 0}eLl x L*(€Q).

The proof of Proposition 5.1 is long and technical; and so will be given
at the end of this section. One will see in the proof of Proposition 5.1 below
that L(t, ¢,) is the linear mapping

L2 x LAQ)3¢ = (U, 65} — @(t) = {U(1), (1)} L% x LX),

where &(t) = {U(¢), O(t)} is the solution of the linear problem

au
I +vAU + Pu-VU + U -Vu) = f'(0)Oe,
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(LP) ‘Z—?+KB@+(u-V@+U-V€)=e2-U+11vD(u):D(U),

U©)=U,, 0(0)=0,.

We write this linear problem as

2 _sipe, 00)=¢
dt
where
~vAU — P(u-VU + U -Vu) + f'(0)Oe,
F(o)® = ( | )
—xBO —(u-VO+U-V6) +e, U+ nvDu): D(U)

REMARK. Since & is bounded in D(4) x Hj ,.,(2), one can easily show
that for each & = {U,, ©,} e L2 x L*(f2), there exists a unique solution {U, @}
of (LP) such that

UeC([0, T1; L2)nL*(0, T; V), ©€C([0, T1; L*(R2))nL*(0, T; H} ,.,(2))

for all T> 0.

Our goal in this section is to show the following

THEOREM 5.2. The Hausdorff dimension of < is bounded above by

c|Q|(1 + Pr)(1 + Gr + Gr'2Ra + 0(n)),

with a constant ¢ depending only on a.

REMARK. Foias, Manley and Temam [8] obtained a bound of the form

c|2|(1 + Pr)(1 + Gr + Ra)

for the attractor of the Boussinesq equations, i.e., for the case f(f) = 6 and
n =0. The same result can be derived also in the case that f satisfies (0.4)
and n =0.

Proor. We will prove Theorem 5.2, following the procedure in [28, Chap.
V]. Let &,,---,®, be the solutions of (LP) with initial values ¢&,,---,&,
respectively. In the same way as in [8], we can show

t

@y A ADf 2= [y A A *fz"ALzeXP(j

0

tr #(¢(s)) Qz(S)dS>,

where AL? denotes l-exterior product of L2 x L*(Q), with norm | - || , .25 Q,(5)
= Qi(s, o; &1, &) is the orthogonal projector in L2 x L?(2) onto the space
spanned by &,,---,®,. Using these notations, we define
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1 t
q, = lim sup sup sup <— f tr Z (o(s)) o Q,(s)ds).
170 peo gl x L2(2) t Jo
I1gillL2<1,j=1,...,1
According to [8, 28], the Hausdorff dimension of .o/ is less than or equal to
the integer | for which ¢, < 0. Thus, we need to estimate ¢g; and find an /

such that g, < 0.

At a given time s, let {¢;(s)};>; = {v;(s), ¥;(s)};>,; be an orthonormal
basis of L2 x L*(Q) such that {¢;(s)}}; spans Q,(s)(L2 x L*(2)). Then we
have

tr Z(¢(s)) e Quls) = il (F(@(5) > i(5)0,(5), 9;(5))

i

N

(F (@) 9;(s), @,(5))-

j=1

Since

(F(@6NQS)@i(s), @5(8) = = VIIFi(s) 13 — (v;- Puls), v(s) + (f'(6(s), ez - vy(s))
=Kk IVY()13 = ;- VOs), Y;(5)) + (e2 - v;(5), ¥(5))
+ nv(D): D(v))(s), ¥,(5)),

we have
tr Z(¢(s)) ° Qi(s)

1 1 ]
=-v Z I7v;()13 — Z (v; - Vuls), vy(s)) + 2‘1 ('(6(5)), ez - v;(s))
1 l
—K .Zl 1713 - .Zl (v;-VO(s), Y(s))

! !
+ -; (e2 - vj(s), Y;(s)) + nv ; (D(): D(v))(s), ¥(5))

Ell+12+13+14+15+16+17'

In the same way as in [8], we can majorize I, as follows. By the Schwarz
inequality, we have

|(w; - Pu)o;())] < [Pu(x)]v;(x)I?,

hence

15| < f IVu(x, )l v;(x, s)Idx < [Pu(s)ll2 [l p($) 2,
Q
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1
where p(x, s) = Y (Jvj(x, s)I* + [y;(x, 5)|*). Here we apply the Lieb-Thirring
ji=1
inequality [19, 28]:
1
(5.1) lo@)I3 <ci Y. (IPo(9) I3 + I7y(s)13),
j=1

with ¢; depending only on «, to get

1
o] < 1Pu(s)ll2 {c} Z (7o) 17 + 1713}
<2 7us)l, {( Z IV (S)llz)”2+(Z 1745132}

]
; V7o) 13 + k7Y, (S)l|2)+cz<i %)IIVu(S)H%,

0\ |

where ¢; = 2¢;. Similarly, we have
1
sl < Y, | IVO(x s)llo; (x, )l 1Y(x, s)|dx
i=1Jo
< IIVH(S) 2 1)1l

1
T O1PBOIE 17y + o1+ L) 1wooIs

O\ |

Since {¢;(s)} is orthonormal in L2 x L*(Q), we have [v;(s)[3 + [ly;(s)]3 = L.
Therefore, I3 + I is estimated as

1
3+ I6l < 3 (1 +1f1) 106 12 1) < (1 + | f' )

i=1

We next estimate I,:

]
[17] = nv Z (D(): D(v))(s), ¥;())l

6u" av 51)?
Z Z < 6xi>( %s )< 5_,->(x’ S)Y(x, s)dx|.

Qj=1ik=1 axk 0x,

By the Schwarz inequality, we have

1 2 a ak
b (3 (2

0y
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2 ot ou* avl avk 2 12 1 -
= i,k2=1 <axk * 5};>(x’ ) {J.;l (0 X, + 5;) (x, 3)} {j; W’j(x, s)| }

1 1
<A4Pu(x, 9| { Y IPv;(x, 9)1*}'/*{ Zl W(x, s)I*}/2,
j=1 i=
whence,

]
lnv 3. (D@): D(v)(s), ¥;(9))

i=1
< 411vf [Pu(x, s)| { fl_: [Pv(x, s)I2}/2 { ‘Z [Y;(x, 5)|*} /2 dx
Q =1 i=1

< (by the Holder inequality)
1

<4nv| Vu(S)II4{ > J [Vvj(x, S)IZdX}”2 lps)113"
i=1Ja
< (by (5.1))
1/2
< Crv [IPu(s)]|3'* | Au(s) II”Z{ IVv,(x, S)Izdx} los)113"2
< (by Cauchy’s inequality)
]
Sl Z 7o) 15 + Cr*v I u(s) |2 | Aus)llz | p(s)2

( (5.1) and the Schwarz inequality)

I/\

]
Z VI3 + k17§ (5)113) + Cn4V<1 + ;:—) 17u(s) 13 | Au(s) 13-

0‘\ f

Collecting these inequalites, we obtain
tr F(¢(s)) o Qi(s)

! 1 1
Y 0 IPos)l3 + xIPy;)113) + 205(; + ;)(IIVM(S)H% + 17012

j=1

NI»—

+ @+ 1)+ Cn“V<1v + ~E> I7u(s) 113 1| Aus) 113

On the other hand, as shown in [8], there exists a positive constant cj

depending only on a such that
2

! l
Z (7o) 13 + 17y ) 113) > 2¢5 — 2|
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for a.e. s> 0. It follows that

Z V7o) 12 + x 17 (s)112)

) 2 2 ’ i
) (IPo;() 12 + 1V Y(s)113) = 2c3 Y+ x|

for a.e. s> 0. We thus obtain
12

1 1
F(()) o Ou(s) < — ¢ v:—"x ot 2c;<; + ;)(n Pus)|2 + 176()12)

+ () + C114V<1 + %) I7u(s) 13 1| Au(s) 3.

We now estimate

ped L2 x L2(R2)
le ez 52t

q = hm 1 sup sup sup <% Jt tr Z((s)) o Q,(s)ds)
0

by applying
LEMMA 5.3. There hold

t 2
@) hmsup sup — fl]Vul]%dsSlQH;'w_;
T poest T Jo v
t
(i) lim sup sup — JHVuH%HAuH%dSSLl;
goed L 0
and
t
(iii) lim sup sup — j||V6||§dssL3,
(poed 0
where
QlIf12 ClePIf14
L, = l f1% <2+ ) p< | |7|f| >;
v v
cleP|fI 1 CIQPIfIE\  21Q11f13
Ll |9|f|®<2+_)exp< 2P 11 )+ 217,
v v v v
and

CvL |Q||f|2
L3 = 2 ! ”2 .

K VK
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The proof will be given later. Lemma 5.3 now implies

w12 1 1\/I1QlIf12 >
< —¢; — +2¢5| — + — 2+ L
@ v+ Q| cZ(v K>< v? :

+ 1+ 1)+ n“v(l +1>11L1.
K

Therefore, by the Schwarz inequality, we obtain

<—c e + L
q = 4v+K|.Q[ 4>
where
! 1 !
042503
and
v+x|9|[ <|f|2 If12 | 2L, )]
L, = 1+ /m2+crc1 oo+ oo+ 2
e @ T+ 1f") 2\ 7 et g

+ Cv<1 + X)n“Ll.
K
We now easily obtain the desired result of Theorem 5.2 from the inequality

vk 12
L,—c, —_—
v+ kK |Q|

It remains to prove Lemma 5.3. Integrating (4.4) on [0, t], we obtain

t 2
121115
VJ IPull3ds < lluoll3 + ;

0 v

which yields (i) since &/ is bounded in H. We next prove part (ii). From
(4.4) and (4.6), we see that

t+1 1 Q 5
J 7utdds <2 Juc g + 20
t \Y v
- Q|| f QI fI?
sev ||u0|]§+| |v‘3f|ooe—w+| Ivlzflw.

This, together with (4.5), implies that
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t+1
J lul3 1Vul3ds
t

t+1 _ Q 2
sf ( 3 + ”f' >||Vu||§ds

0 2 —vt 2
s<e-"uuon§+' 'v'zf'w><ev luo 3 + 'Q'v'f"” -4 12T )

2

v
= h (t)h,(¢).
Taking (4.7) into account we have by Lemma 4.3,
2192|1113 C
(5.2) Put+ 1|3 < (hz(t) + I+Ifl°°> exp (v_3 hl(t)hz(t)>.
We also get from (4.7)
1 (" 1 Cc1 |f12
(53) —f lAul3ds < = 17uglz + < —f a3 17upgas + 220
tJo vt vt

We need to estimate the second term on the right-hand side. By (4.9) and(4.10)
we see that, for all T > 0,

(54) [ Pu() |3 < C(T), 0<t<T,

with C(T) independent of ¢, = {ugy, 6,}. Let ¢>0; by (4.5) there exists
T, = T, (s, &) such that

Q 2
+l 1%

v2

lu@lI3 < =4.(e)

for all ¢t > T, and all ¢, = {u,, 0} € /. We can also deduce from (5.2) that
there exists T, = T,(¢, /) such that

2 2 2 2
1Pu): < (‘Q'v'zf'w L2210 8) exp%(IQHflw . 8>

v v2

(5.5)
=g,(¢)

for all t > T, + 1 and all ¢, = {u,, 6p}e/. So, if we set T, =max (T, T, + 1),
then

lu@lIZ 17uE)ll3 < g,(e)g2(e)
for all ¢t > T, and all ¢, = {ug, 0y} €. We thus obtain

1 t
fllull I7ul3ds < — f IIullilqu|l§dS+?f lulZ [ Pull3ds

To
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1 1 (!
< ?C(To) + 91(8)92(3)?f IV ul|3ds,
0
with C(T,) independent of ¢q = {ugy, 6} €. This, together with (i), implies
that

4 |2 ||f|2
lim sup SUP H ull3IVulzds < g,(e)g2(e) —5—

Since ¢ > 0 is arbitrary, letting ¢ —» 0 yields

1 t 6 2 4
lim sup suptf lul [7uldds < "f' <2+ > p<CIQI7|f|w>'

poed v

Combining this with (5.3), we have

t
lim sup sup — J | Au| %ds
0

T poed
C|QP|f8 1 ClIQI12|fI¢ 210 2
(5.6) lea(“_)exp( | ||f|m>Jr 1211f12,
vd Y v7 V2
=L2.

We now estimate —J‘ |Pull2 || Au|3ds. We see from (4.6), (4.7) and (5.4) that
for all T > 0,

' 2 2 4 2|1Q IIfI2
v lAulzds < [[Vuol; + HquHV lzds + ————
0

< C(T), 0<t<T),

with C(T) independent of ¢, = {ug, 6}, since & is bounded in H. It then
follows from (5.4) and (5.5) that

t

1[* 1 (T 1
?f IVul3 Il Aul3ds < TJ IVul3 |l Aull2ds + 7J I7ull3 1| Aul3ds
0

0 To

1 t
1C(To)+gz(e); f | Aulj2ds
0

for t > T,, with C(T,) independent of ¢, = {uy, 0o}. This, together with (5.6),
implies that

oe.ﬂl

lim sup sup — f |7ull3 | Aul3ds < g,(e)L,.
0
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Since ¢ > 0 is arbitrary, letting ¢ — 0 yields

2 2| 14
lim sup sup — f ||l7u||2|Au||§ds<L2|Q”f| <2+ ) p<ClQI |f|oo>
v

¢oed 7

v
=L,,

and (ii) is proved. Part (iii) now immediately follows: From (4.12), we see
that

Cv?

1 [ 1
?J IIV0II§dSS—K—tII90|1§+ ~[IIVquIIAulliciS+ JIIVullﬁdS
0

Combining this with (i) and (ii) gives

L, +
1 V2 K2

2,2
Q
Cvy II=L3_
K

t

hm 1SUp Sup j (Ve|ids <
poed

This completes the proof.

PrOOF OF ProposiTION 5.1. Throughout the proof we fix an arbitrary
T>0. Let {u, 6}, i=1,2, be the solutions of (4.1) and (4.2) with initial
values {ug;, 0.} €, i =1, 2, respectively, and set u=u, —u,, 0 =6, —6,.
Let {U,, ©,} be the solution of (LP) with initial value {ug , — uo, 1, 6,2 — 6o.1}
and set v=u, —u, —U,, y =6,—0, —O,. Then

(5.7 Z—Z + vAu + P(u-Vu, +uy -Vu)=P[(f(0,) — f(6,))e,],

40
(58) S KButu VO, +uy V= gp(u1 +uy): D() — e, - u,

u0) = ug , — g1, 0(0) = 0o,2 — 00,1-
and

(5.9)

% +vAv+ P(uy-Vo+v-Vuy +u-Vu)=P[(fO,) — f0,) — f'(0,)0,)e,],

%+KB¢+u1-Vt//+v«701+u~VH
(5.10) = 2nvD(u,): D(u) + nvD(u): D(u) — e, - v,
v0)=0, YO =

We shall show that there exists a C, possibly depending on T, such that
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(5.11) lo@ 13 + 1¥ @13 < Cllug,2 — o, 1113 + 100, — 0,1 113

for some f > 1. The desired result then follows immediately. To deduce
(5.11), we first show the Lipschitz-continuity of the operator S(¢). Note that
there exists a C > 0 such that

(5.12) | Au ), + 1V E:@)|l, < C for all ¢t,i=1,2,
with C is independent of u;, 6;, and i = 1, 2, since & is invariant and bounded

in D(4) x H}(2). Multiplying (5.7) by u, we have

1d

) alluII§+VIIVullisl(u-Vuz,u)HI(f(ﬁz)—f(é’l), ey u)l.

With the aid of (1.7) with p =4, the first term on the right-hand side is
estimated as

(- Vuz, )| < NulldIVuzll, < Clull 1Vully [V,

v
<3 I7ullz + Clvul3llull3.

As for the second term, writing

1

f6;) - f(6,) = 0J f'O; + (6, — 0,)dl

0
= h(b,, 0,),
we have
[(f(02) —f (1), e2- W < |f'| 1612l < %—l(lluH% +11613).

We next multiply (5.8) by 0 to get
1 d v
1% 1013 + klVOI3 <|(u-V0,, O)] + nEI(D(uI + uy): D(u), 0)| + |(e; - u, 6)].

Using (1.7) with p = 4, we estimate the first term on the right-hand side as

[(-V0,, 0)] < ulls 61 IV0, ],
< Cllull? 17ully2 160132 170132 176,11,

v K
<3 I7ull3 + ZHWH% + CIPO 13 (Null3 + 110113

We also have, by (1.3), (1.5) and (1.7) with p = 4,
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%I(D(“l + u3): D(u), 0)|

S CIV(uy 4+ u) 4 1V (uy +ux)llaVull, 11014
< CIV (uy + up) 132 1Ay + u) |32 1Vl 10152 170132

We thus deduce from (5.12) that

K
n—zvl(D(ul +uy): D), O) < % I7ulz + 1 17e13 + Clo13.

Since
ez 6)1 < 3 (1l + 1013
we conclude that if {u,;, 6, ;} €<, then
& (ui3 + 1013 + vf 1Pulzds + xf 170)2ds < k) (ul3 + 1013)

for some k(t)e L'(0, T). This implies that

(5.13) lu(@) 13 + 16113 < Cllug,, — o1 13 + 1166,2 — 06,1 113)
and
t t
(5.14) J IVull3ds + J I7013ds < C(llug,2 — to,1 13 + 1160,2 — 65,1 113)
0 0

for 0<t<Tif {ug;, o€, i=1,2. We have thus proved the Lipschitz-
continuity.

We can now prove the uniform differentiability of S(t) with respect to
the L?-norm. Multiplying (5.9) by v, we have

1 d
> & loll3 +vIPoll < 1@ Vug, o)l + |(u-Vu, v)|
(5.15)
+1(f(02) — f(8,) — [(6,)04, v)l.
Using (1.7) with p =4, we see from (5.12) that

(@ Pug, o)l < [l 1Vugll, < Clloll 170, [Puy

< 7ol + Clvli3,

0| <

(- Vu, v)| =|

—_

w-Vo, )| < [ullz1Volly < Cllull [Pull2 (7ol

)
SgIIVvH% + Clulvul3.
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To estimate the last term on the right-hand side of (5.15), we write
f£(6,) —f(el) —f'(6,)0, = h(b,, 8,60 — 1'(6,)0,
= (h(6;, 05) — f'(61)6 + f'(6,)y
=9g(0,, 0,)0° + f'(6,)¥,

with
1 1
g0, 6,) = j j tf"(0, + t{(0, — 6,))drd{,
0 0

to get
I(f(82) — £(6;) — £'(6,)01, )| <1(g(0y, 62)6* + f'(6,)Y, V)]
S CUSf s [f" 1) NO1Z + 1112 1012

< C>I012 17012 + 1l vl
<C(lol3 + W13 + 181217 8113).

To estimate y, we multiply (5.10) by 8 to get

% % 113+ xlVOl3 <76y, Y)| + |- VO, )| + 2nv|(D(,): D(w), )|

+ nv|(D(u): D(w), Y)| + I(ez - v, O)|.
The first and second terms on the right-hand side are estimated as

@-VO, YI<lvlla 1Yl 1701, < Clloll2 7ol I 122 17132 176,11
v K
SgnVU“% + §IIV¢H§ + CIPO 3 AIvI3 + 1Y 13)

v K
SgIIVvH% +§IIV¢H§ +CUlvl3 + 11y 13),

w-VO, ) =1V, O)I < lulla IV, 11014
< Clully 2 1Pulz 17yl 101372 1701137

K
=3 Y12+ CUulvuls + 101317613

By (5.12), we have

2nv|(D(uy): D), Y)I < ClIVuglla 170l 1Y 114
S ClPuy 1272 | Aug 132 170l W 132 17y 1152
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v K
g”VUHz gIIVt//H%+C||Vu1||§||Au1|I§II¢II§
v K

_—IIVvIIz —IIV¢II§+CII¢II§-

To estimate nv|D(u): D(u), ¥)|, we use the inequalities
IPull, < Cllullz? | Aul3’?,  ueD(A)
and
IPulls < ClIVull3® | Aulz®,  ueD(A).

The first is obtained by integrating by parts, while the second follows from
(1.3) and (1.5) with p =3. We then obtain

nv|(Dw): D), Y)I < CIVulsVull; 1¥]e
< ClPully | Aully ullz 1| Aullz 1 s
—IIVWIlz + ClIPul3 Il Aull3” ul3?

K
g“VWHZ + CIPull llul3’?.

Here we have used the Poincaré-Sobolev inequality |y |l¢ < C||[Fy|,. Also,
we have

ez~ v, W) < ol 1Yl < ol + Y13

In conclusion, we obtain

d
E(IIUII% + Y1) < CLIvIE + 113 + (Hul3? + [ul) 17ul3 + 161317601131,

Combining this with (5.13) and (5.14), we find
lo@)I3 + ¥ @113

j CClul3 + Nuld) 17ull + 1012 17613]ds

C(lluo,> — tto,1 13 + 1160,2 — 6o, H%)”“’j (I7ull3 + 1613)ds

0
< C(llugz —uo 1 I3+ 1160,2 — ho 1 13)*3.

This shows (5.11) with f=4/3. The proof is complete.
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