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Abstract. A real valued C® function P(z) on the punctured disk 0<|z| <1 is
constructed in such a way that there exists only one Martin minimal boundary point
for the time independent Schrodinger equation (— 4 + P(z))u(z) =0 over z =0 and,
neverthless, there exist more than one Martin minimal boundary points for
(— 4 + P(2)/4)u(z) =0 over z=0.

We denote by Q the punctured disc 0 <|z| <1 and consider a time
independent Schrodinger equation

o

1) (—4+ P(2)u(z)=0 <A =02 + a—yz,

z=Xx+ yi>

on Q. The potential P is assumed to be a locally Holder continuous function
on 0<|z| <1 and referred to as a density on Q. Then a density P may
take both positive and negative values. With a density P we associate the
class PP(Q; I') of nonnegative C? functions u on QU I satisfying the equation
(1) in  and vanishing on the unit circle I":|z| =1. We also denote by
PP,(Q2; I') the subclass of PP(Q2; ") consisting of functions u with the

normalization
1 (*[ o "
- — — u(te'®) do = 1.
2n )y L Ot =1

The Choquet theorem (cf. e.g. [12]) yields that there exists a bijective
correspondence u <> pu between the convex cone PP(Q; I') and the set of Borel
measures pu on the set ex.PP(2; I') of extremal points of the convex set

PP,(2; I') such that
= J vdu(v).
ex.PPy(2;I)
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Thus the set ex. PP,(Q; I') is essential for the class PP(2; I'), and the cardinal
number #(ex.PP,(Q; I')) of ex.PP,(Q; I') is referred to as the Picard dimension
of a density P at z =0, dim P in notation, i.e.

dim P = #(ex.PP,(Q; I')).

We say that a density P is hyperbolic on Q if dim P > 1 and there exists
the Green’s function on Q with respect to the equation (1). Then nonnegative
densities are hyperbolic on Q ([6]).

A density P is said to be rotation free if P satisfies P(z) = P(|z])(z€ ).
Let P be a nonnegative rotation free density. Then dim P is equal to 1 or
the cardinal number ¢ of the continuum ([7]) and satisfies

dim P =dim(cP) (c>0)

([3]). We call this property the homogeneity of Picard dimensions of
nonnegative rotation free densities.

Let P be a signed rotation free density. Then dim P is also 1 or ¢ if P
is hyperbolic on Q ([7], [11], [4]). Moreqver if P is hyperbolic on Q, the
density cP (0 < ¢ < 1) is hyperbolic on € and satisfies

dim P < dim (cP) O<c<]
([11]). The purpose of this paper is to prove the following theorem which
shows the nonhomogeneity of Picard dimensions of rotation free hyperbolic
densities:

THEOREM. There exists a rotation free hyperbolic density P on Q such that
. . 1
dimP =1 and dim 1 Pl)=c

It was shown in [11] that the above inequality dim P < dim (cP)
(0 < ¢ < 1)is also valid for every rotation free density P which is not hyperbolic
on . At the same time it was shown that the inequality sign in dim P <
dim (cP) can not be replaced by the equality sign ([2], [11]): There exists
a rotation free density P on Q such that dimP =0 and dim(cP)=1
(0 <c<1). Precisely speaking, the Picard dimension of P (cP, rsep.)
considered on 0 < |z| < a is 0 (1, resp.) for every ae(0, 1] and ce(0, 1). Then
it was asked a question in [11] whether there exists a rotation free density
P such that 1 <dim P <dim(cP) (0 <c<1). The above theorem gives an
answer to this question. We remark that the Picard dimension of a rotation
free density P considered on £ coincides with the one considered on 0 < |z| < a
(0 <a<1)if P is hyperbolic on 2 ([8], [5], [11]).

The author is very grateful to Professor M. Nakai for his valuable advice.
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1. Subunit criterions

Hearafter every density P on £ in consideration is assumed to be rotation
free and is mainly viewed as a function P(r) of r in the interval (0, 1]. For
a density P we consider the differential equation

2

- ) - 1 £ut) + POYul) =

Lpu(r) =

for C? functions u(r) in (0, 1). The unique solution fp of this equation with
initial conditions

fe(1)=0 and fp(l)= —1

is referred to as the P-subunit. Then we have the following characterization
of hyperbolicity for P in terms of fp:

THEOREM A ([11], [4]). A density P is hyperbolic on Q if and only if

1/2

dr
fp)>00<r<1) and f —— < ®
’ o p(r)?
Moreover we have the following test of dim P = 1 for hyperbolic densities

P:

THEOREM B ([11], [4]). A hyperbolic density P on Q satisfies dim P = 1
if and only if

fp(r)2 f ds
o Sfp(s)?

for some a, and hence for any a, in (0, 1].

2. P-subunits for discontinuous densities P

2.1. We take a positive numbers 6 with § < z/2 and sequences {a,}¥,
{B,}¥ of positive number a,, f,. With 6 and {B,} we associate sequences
{a,}¥, {b,}¥ of positive numbers a, = a,(0, {,}), b, = b,(6, {B,}) defined by

(2) p= 100’ a, = 1’ bn = p_lam any1 = e_O/ﬂ"bn (n = 19 2"")*
The sequences {a,} and {b,} satisfy

1>a,>b,>a,,, (n=1,2,---), lim q,=0.
n—ow

Now we consider a discontinuous function P = P(-; 6, {«,}, {B,}) given by
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N’:QN

b,<r<a,;n=12-)
3 P(r) =
Y (an+l<r<bn;n=1a2,"')

and a C! function Fp on (0, 1] satisfying

@  Fp)=0, Fi()= —1, LyFp =0 on U {(@ys1, b)U(bws ;).

n=1

The definition of a density on 2 can be generalized ([1], [4], [9], [10]).
In this sense, the above function P is a discontinuous density on 2. Moreover
Fp is equal to the P-subunit f, and both Theorems A and B are valid for
P and fp, = F,. However we do not use these facts in this paper.

2.2. By the condition (4), the function F, has the following form on

each interval:
(Tl -]
X r a, In b, r

b,<r<a,)

— z, 8in (,B,, logbi> + w, sin (ﬁ,, log p r )
n n+1

(an+1 <r< bn)

4 Fp(r) =

n=12-).

The coefficients x, = x,(P), ¥, = yn(P), z, = z,(P), w, = w,(P) depend on P and
hence 0, {a,}, {B,}. In particular

(6) xp=7—, 1 =0
by (4). Since Fp is of class C!, these coefficients satisfy conditions

Wn sin § = (pan - p—a")xna
— Buzy + Bywac0s 0 = — o, (0™ + p~ )X, + 204, Y5
(0™t = p ™" )Yy = 2, 810 0,

- 2an+1xn+1 + an+1(pm"+l + p_a"+l)yn+1 = - )ann cos 0 + ann

for every n =1, 2,--- which are equivalent to
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0 sin 6 z, prn— pon 0 X,
( ~ By Bucos 0><wn> - < — (o™ + p~*) 2an><yn>’
< 0 prntt — pTontt ><x,,+1>_ sin 0 0\/ z,
= 2041 01 (P PN ) \ Yasn - < — Bacos 6 ﬂn)<wn)‘
These conditions are also equivalent to

1 _
<z,,> cotd —B— < prm— pon 0 )(x,,)
Wn ! - an(pa" + p—an) 2(1,. Vn ,

cosecd O
pan+1 +p—an+1 B 1
<x,,+1> 2(p%n+t — pT ot 20,41 < sin 6 0)(2,,)
Yn+1 B 1 0 ——ﬁnCOSQ ﬁn Wy
pan+1 — p—dn+1
so that we have
. (1= p~2)cotf+ 22 (1 + p=20) —2%npma |
(7 ( "):p“"( Ba Bn )<'"),
Wn -2 .VPI
(1 —p~**)cosec 0
®) <xn+1>= P <A11 A12><xn>
Yn+1 2(1 —p 2\ A4y, A5,/ \y,
(n = 1: 2,"')’
where
Ay = {(1 — T (L 4 p7) (1 pTR(1 — p-“"“)} cos 0
<xn+1
o, — 24 —2an+1 ﬁn —2an —2an+1 1
+4-A+p )1 +p )—— A =p ™)1 —p )¢ sin 6,
ﬂn CX"+1

Ay, = — 2p—an}l-aL(1 — p 2+t cos 0 + %(1 + p~ 2+ 1) sin 0},
o

n+1 n

A, =2p 1 {(1 — p~2*)cos O + %ﬁ(l + p~2%)sin 0},

n

o .
Ay =—4-Tp *p~+tsinf.

B.

2.3. Assume that x, > y, > 0 for some n. Then from (7) and (8) it follows

that
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o
LN p*n {(1 —p ) cotf+ (1 — p_“")z} >0,
Xy i
Wn — %n _ A~ 2an
—= = p*(1 — p~**)cosec § > 0,
xll
z,sin 0
y"+1 = Hn+1n —On+1 > 0
prt—p

Therefore we obtain the following lemma:

Lemma 1. If x, >y, >0 for some n, then z,>0, w,>0, y,., >0.

3. Calculations of integrals

3.1. In this section we assume that x,>0, z,>0, w,>0, y,,;,>0
(n=1,2,---). This assumption is equivalent to Fp(r) >0 (0 <r < 1). In this
no. we calculate integrals below.

LEMMA 2. If n=2,3,---,then

. andr 1
(1) 2 = an —an)’
bn rFP(r) Zanxnyn(p —p )

w Fp()? (7 d 1
(i) j P“)f " dr=
b, T bn SFp(s) 4az(p*™ —p~*)

X {&(pZan _ p—Za,. -2 IOg pZan)

n

+p”Mﬁ“+Dbgﬁ“—ﬂf“—D%-

Proor. Consider the function

ds
sFp(s)?

Em=nmf

of r in [b,, a,] which is a solution of Lpu = 0 on (b,, a,) along with Fp. Since
E(b,) =0, E(r) has the form

{0 -}

with a positive constant ¢. By setting r = b, in an equality
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, r ds 1 _ % L an l_)-'—l an
F”(')Lnst(s)z RO T {<b> +<r> }

and (5) we have

1
B 2anxn(pa" - p—a,.) ‘
The equality (ii) follows from

Hence the equality (9) for r=a, is (i).
calculations

o e o Fp(r)? ds
2m%,(p" = )J L Foor

. %{x((?)“"-(-Z:)“")”n((é)“"-(%)“)}

(e
PHAE) ()l -2

1

= X,p ") (0% — 1) + (v — x,p™) (1 — p~2*)}

+ {x,(p™ + p~*) — 2y,} log p.
Lemma 3. If n=2,3,---, then
an 2

r

a ) (p** — p~ 2% — 2log p**)

bn
+ 2%,Y,p " ((p*™ + 1) log p?* — 2(p** — 1))}.

ProOOF. Lemma follows from calculations

o= [5G -G
o) -Gy

X

J

OEORCE
)

Hlb—i
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u tZa,. pat,.
+ 2x,,y,,<p°‘" +p = pes - E)}dt

2an

—2an

—2log p)

=x3+3<p —p
( Vn) 3

o 4 PP
+2xny,.<(p"+p ")logp——a—>,
where we use
P an an) 2 p 2
[ (I O N s P -
Lt t p Lt

Lemma 4. If n=1,2,---, then

g -
1 — ’
an+1 rFp(r)*  Bnz,w,sin b
bn 2 (r
(ii) f Fp(r) j ds . _ 2 L {K 0 sin 95050
an+1 r an+ 1 SFP(S)2 2ﬁn sin @ z,

+sin 0 — Bcos()}.

Proor. Consider the function

r ds

E(AV)ZFP(")J‘ W

an+1

of r in (a,,,,b,) which is a solution of L,u=0 on (a,,,, b, along with
Fp. Since E(a,,,) =0, E(r) has the form

(10) E(r)=csin<ﬁ,,log ! )

p+1
with a positive constant ¢. By making r|a,,, in the equality

F,i(r)f ds +;= C—ﬁ"cos<ﬂ,,log r )

sFp(s)>  rFp(r) r n+1

and (5) we have
1
Cc = -
Bz, sin'@

Hence the equality (10) for r=b, is (i). The equality (i) follows from
calculations
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przasind | FP‘”ZJ' s

5 dr
aner T sFp(s)

bn 1
=f —{—z,, sin <B,, logi>+ w, sin <B,, log r )}
an+1 r bn an+l

xsin<ﬁ,,log ! )dr
Qp 41

0
1
=f —{—z,sin (¢t — 6) + w, sin t} sin tdt
Oﬂn
0

28,
LEMMA 5. If n=1,2,---, then

{z,(cos (2t — 6) — cos 6) + w,(1 — cos 2t)} dt. 0

b Fp(r)? 1 .
——dr= 2 {(z2 + w?)(0 — sin 0 cos 6) + 2z,w,(sin @ — O cos 6)}.

an+1 n

ProOOF. Lemma follows from calculations

bn  F(r)2 bn ] 2
ji _pﬂd’,: J _{—Zn SiIl <ﬁn logi>+ w, Sin <ﬁn log r )} dr
. " s r bn an+1

0
1
=J ﬁ—{—znsin(t—0)+w,,sint}2dt

0 Fn

1 0 2 2
= _J {Z” + W (1 — cos 2¢) + z,w,(cos (2t — 6) — cos 0)}(1!.
.Bn 0 2 D

3.2. In the final section, a discontinuous function P will be aproximated
by a density Q on £ such that behaviour of the Q-subunit f, is similar to
that of Fp. An estimation of f, will be given by using the following integral
form of f,/Fp:

LEMMA 6. If a density Q on Q satisfy Q(r) = P(r) (b, <r < 1), then the
Q-subunit fy satisfy

Jfo® J b
=14 Q(s) — P(8)} fo(S)Fp(s) | ——=ds (O<r<]).
Fp(r) o e F,,( tFp(t)

Proor. Since f, and Fp are solutions of Lou=0 and Lpu=0
respectively, we have

d{ Fa(rp L 1o

y p F,,(r)} r(@(r) — P(r) fo(r)Fp(r)
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vegﬁwﬁpmwwm%m.

Let b be a number in (b,, 1). The fact that Fp is right and left differentiable
yields :

by
= f s{Q(s) — P(s)} fo(s)Fp(s)ds (0 <r<1).
If b11, then the first term of the above equality goes to 0. This implies

for) _ folb) _
Fp(r)  Fp(b)

by 1 by
f tF (t)ZJ s{Q(s) — P(s)} fo(s) F p(s)dsdt.
r P ¢

By b11 again, we obtain the lemma. O

4. Fg for a special R
4.1. We fix values of 6, «,, and B,:

T
0=—, a,=n?,
2

1) R 4n? -

(11)

Hereafter R denotes a special discontinuous function P = P(-; 6, {a,}, {B,})
given by (3) with these 6, a,, and B,, where a, and b, are special numbers
defined by (2) with these # and B,. Then Fy means a special C' function
satisfying (4) with these a,, b,, and P = R so that the coefficients x,, y,, 2,
and w, in (5) are also special numbers. They are fixed by the initial values

(12 Xy =

and the recursion formulas (7), (8) with (11):

o 20

z, Pl +p2) —pTem X,
(13) (w>=w" 5, 5, ( )
n ’ 1 _ p_za" 0 y’l
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(14) <xn+1)= Paiza <A11 A12><xn)
Yn+1 20— p ")\ Ay A/ \ s
(n = 1, 2,...),
where
o, —2a —2an+1 ﬂn —2an —2an+1
Ap=—A+p "™ +p ") = —0—-p ™A —-p )
ﬂn n+1
20, _ 24
Ay =——2p~*(L+p72),
Bn
20, _, 24 4o, _, _, "
A“:EP m(l 4 pT2), Ay = — Bn A
In the proof of the lemma below we use properties of S,
o B ) 1 a,
(15) I Pn o _pmtn M) (n=1,2,-)
Bn an+1 2 ﬁn

which are derived from

<2ﬁﬂ +p—n2+n>2 =p—2n2+2n+ 4(1,, ,

A+ 1 %+ 1

Bn _ 2

% ST IEI by fa +p T

The following lemma shows that Fy is positive on (0, 1):

LeMMA 7. The numbers x,, y,, z,, and w, satisfy
y1=0a Xn > Vns zn>0a Wn>0’ yn+1>0 (n=1’2a“')-

Proor. In view of Lemma 1 and (12) we only need to prove that
X, >y, = 0 implies x,,; > y,+1- Suppose x, >y, = 0. Then by (14) we have

_ 1 — p~2an+1
Xn+1 = Yn+1 2( Pa ) — ﬁ(l + p 2 (1 — pane1)?
X, pr Bn
20, y

e (L T I R PR R
Xt 1 ﬂn Xn

%y —a —A&n+1 n -2a —2an+1
> (1 = preE (1 — pronei2 — Pr( _ pmzeny (g p2eney)

n Ap+1

Hence by (15) we have
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n+1 .Vn+1 2(1 + p_anﬂ) >< Bn (1 + p—an—an+1)
i

Xn p*(l—p=*) Xyt 1
o
( g L )(p T
Bn Opt1
> p—n2+n _ 8p—n2
This implies x,,; — y,+1 > 0 since p = 100. d

4.2. Behaviour of the function Fy is determined by the coefficients
Xp» Yns Zg» and w,. We estimate growth of these numbers as n — oo.

LEMMA 8. There exists a positive constant C,; with C, > 1 such that

(i) X, 2 C{"p"% (n=1,2,-),

(ii) s Citp™  (n=2,3,-),
xn

(iii) et s et m=1,2,00).
x" x'l

Proor. The proof is based upon Lemma 7 and formulas (12)—(15). The
letters m; (i=1,---,7) used below denote positive constans satisfying
m; > 1. Since

Xp+1 P p ) ~2a
2 _n 1 n 1+ n+ 1
X, 20— _2“"*‘){ﬂn( Fltee :
Bn - 24 - 24
— (1= p ) (1 = p~ 2%y
%+ 1

= M{(ﬂ _ b )(1 — pTanT2ae)

2(1 _p—21n+x) ﬁ" O+ 1
Ay ﬁ ) - -2
+ (p a,,_ an+1)}
(ﬂn ®n+1
P"z(l _p_l) -n2+n - —n?
2__5__{,) 1= p70) —dp™"}
> %(1 —1007")(1 — 1007 — 4-1007") > m; *p",

the inequality (i) holds:
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- 2_ - 2
X, > m1n+1p(n n)/2x1 > m; npn /2.

For the proof of (i) we need an upper estimate of x,,,/x,:

Xn+1 pe %y -2a ~2a
< — (1 +p7 %) (1 + p~ =)
X,  2(1—p~3n+) {ﬂn
B

_(1 _ p—z"")(l _ p"Z“"”)}

Ap+1

= iza {(9‘— - >(1 + pT i)
2(1 —pP n“) ﬁn %n+1

an n —2a - +1
+<—+—ﬁ—>(p 2 g pT e )}
Bn Op+1

n2

P —n2+ -10 —n24n(, -2 -8 n
< T4+ pT )+ 4p T (pT2 4 pT 8} < myp".
2(1_p_3){p ( p 3

Now we have

In"Un+1(] — —an)2 1
Xn+1 Z“np (—zafil ) Z_p—Zn—l(l_p—l)ZZmzlp—Zn
Xy Bu(l — p~2%+1) 2

and hence

y X -1 - -1 - - -
yn+l= n+1 n 2m41p 2nm31p n2m51p 3m+1)

Xn+1 Xn  Xp+1

The estimate (iii) follows from

z o 1 —p1)?

Iy I gt — e > TP s g

% B, 2

== (1= ) 2 mi O

X

4.3. We are ready to show that the function Fy succeeds in the integral
test in Theorems A and B.

LEMMA 9. The function Fy satisfies

‘[b‘ dr
— <o
o MFr(r)?

Proor. In view of Lemmas 2 and 8 we have

J‘a,. dr - C1p3n - C12n+1p3n
b TFR(? T 20,X2 (0™ — p™*) ~ 2n2p*™(1 — p~?)

(n=12-")
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We also have

bn 2 2n+2
dr < 2C12_2C1 2 (n=1,2-)
e RO ayx2p™ = n?p”
by Lemma 4, 8 and (15). These inequalities prove the lemma. O

LemMA 10. The function Fy satisfies

by 2 r
j Fr(r) j ds ir = oo,
0 r 0 sFr(s)?

ProOF. Apply inequalities

pren— pT2n —2log p* 2 p*(1 —p~* —2plogp?) >0 (n=1,2),
(b2 + Dlog p — (P>~ 1)>0  (1=1,2,-)

and Lemma 8 to (ii) in Lemma 2. Then

an 2 [r 1 B
LU LT a1 — gt~ 2p 2 log p?)
b T b SFR(5)? 4oz (p™ — p™*) X,
L—p=*—dp *logp p" ™ (n=23,).
4C,(1-p7% n’ o
This proves the lemma. O

5. Fgfor S=R[4

5.1. We consider a discontinuous function S = P(-; 0/2, {,/2}, {B./2})
on (0, 1], where 6, a,, and f, are the numbers given by (11). Recall the
definition of symbol P = P(-;,,) in No.2.1. Then S has an expression
S = R/4 with the discontinuous function R considered in No. 4.1 since the
sequences {a,(0/2, {B,/2})} and {b,(6/2, {B,/2})} are equal to the sequences
{a,} and {b,} defined in No. 4.1, respectively. We also associate Fg with S
that is the C' function on (0, 1] satisfying

Fs(1)=0, Fg= —1, LgFs=0 on {J {(a,+, b))U(b,, a,)}.
1

n=

Then by (5) Fg has the following form:
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A -G G -G

Fs(r) =
- Z sin(gflogi> + Wsin(
n 2 b n

n

(=12

2

241

(b,<r<a,

r >
An+1

(@,+1 <r<b,)

log

In view of (6)—(8) the coefficients X,, Y,, Z,, and W, are given by initial values

- ! =1,
2(21/2)

(16) X,
and recursion formulas

e O Y
()= AR A
w) =" "

V2= p7)

n

(18) <Xn+1) _ \/Epan/l <B11
) S 4(1 — p7*+1)\ By,
(n=1,2,-),
where
—a —On+ a"
B y=(1—-p ™™ +p ")+
<xn+1

a, e —anery _ _Pn
+ -0 +p™)(1 +p7 ) —
ﬂ" %n+1

20
__”p_a"/z X
Y,

0

BIZ><Xn)
B,/ \ Y,

(I +p™™)( = p7Y)

(I=p™)(1 = p~+1),

—a a'l —dn+1 a" —dn+1
Bi,=-12p "/Z{E(1+P ")+ —(1=p )},

n Opt1

Xy

B21 — 2p—<1n+1/2 {1 _ p—an + ﬁ_(l + p—an)},

n

By, = _4&

n

p—an/ZP—anH/Z‘

The following lemma shows that Fg is positive on (0, 1):

Lemma 11.

The numbers X,, Y,, Z,, and W, satisfy
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Y, =0, X,>Y, Z,>0, W,>0, ¥,,, >0 (n=1,2,--).

ProoF. In view of Lemma 1 and (16) we only need to prove that

X,>Y, >0 implies X,,, > Y,,,. Suppose X,>Y,>0. Then by (18) we
have

Xps1— Yy 41— p™™*Y)

Xn \/Epa,./Z

- - an —-a —0n+1
= (L= p™™)(1 = pon 2 4+ 2 (14 p™™)(1 = p7o")

Oyt

+ L (L= g Pyt ey

n Op+1

Y, s o
— 2__ﬁp‘an/2{_"(1 — p‘an+1/2)2 + » (1 _ p"ﬂn+1)}
Xn Bn Oy +1

- - an - “0n+1
> (L= p ™)(L = p™ R+ (1= p IR (1 — pon)

Op+1

%n —a —On+1 n —an —On+1
(1= g1 = prene g = o ey o),
ﬂn On+1

Hence by (15) we have
Xn+l - Yn+1 4(1 + p_a"+l/2)
Xoo 201 =p70)

>1— p—an+1/2 + L(] — p—an/Z) + 9‘_"(1 _ p—a,./2 _ p—an+1/2)

A+ 1 n

_ ﬂn (1 +p—a"/2+p—an+1/2 +p—(¢n+an+l)/2)

Oy +1

=<1+ %n +%__ﬁ"_)_<ﬁt"_+ﬁ+ Bn >p"’"‘/2
Oy +1 Bn Op+1 oy 1 Bn

Xp+1

— <1 + ﬂ + ~ﬁ.)p_"‘”*’llz _ aﬁn p—(an+‘1n+l)/2

n Oyt 1

n+1

22 _ 5p—1/2 _ sp—z _ 2'0—5/2.

This implies X,,; — Y,.; > 0 since p = 100. O

5.2. Behaviour of the function Fg is determined by the coefficients
X,, Y, Z,, and W,. We estimate growth of these numbers as n— oo.



2 Xn 2

(i) Cylpmr < 22l < C,p™)2 n=1,2-),

1 -1 _,-n2/2 Y'n -n2/2

(ii) C;'p s;sczp (n=273:"),

1 w22 _ Zn w2

(i) C; p"* < X < C,p m=1,2,),

1 -1 .n2/2 VV;‘ 2/2

(iv) C;lp"2 < 2 < Cyp™! (n=1,2-").

Proor. The proof is based upon Lemma 11 and formulas (15)—(18).
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LEMMA 12. There exists a positive constant C, with C, > 1 such that

243

The

letters m;(i = 1,---,8) used below denote positive constants satisfying m; > 1.

The inequality (i) follows from

Xper /20770 = p~7%)

X

n

and

=

>ﬁ(1—p-”2)<g

{(1 +p—an/2)(1 +p—a..+1)

41 —p)
Gn —an/2 —dn+1 Oy —an/2 ~dn+1
+ (I=p ™A —p ™)+ Z(1—p ™) (1 + p~**)
Opty ﬂn

Bn —a —a
- (1+p "/2)(1—;) n+1)
Oyt
2(1 — -1/2
f( 14 )pa"/z{l + o, (1 _p—an/z_p—a"“)
4 Ap+1
$ oy = Py p‘“"”)}
Bn Ap+1
21— p12
_J20-p )p¢"/2{1+ % % B
4 Oyt ﬁn <xn+1

_< %n +ﬂ+ B" >p‘anl2_ On p—ann}
an+1 ﬂn “n+1 an+1

_ 5p—1/2 _ p—4>pan/2

4 4

4(1 _ 10—1)(% _ _;_ _ 100—4>pn2/2 > ml—lpnzlz
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) < \/Z'Pa"/z

X, T 4—pT

on

Op+1

a
_n 1 —an) (] —dn+1
+ﬂ( +p ™)L +p )}

n

2 2
= Z(T\_/:—:‘_) {T+p74+1+p7 1 +2(L+p~ (A +p7 ™2 <myp™ /2.
—p

Since we have inequalities

ey o
Xn ﬁ(l_p‘dn+x)

—an/2

o
1— p-an + _"(1 _ p—an/z)z}
B

S1-»

21—

! 1
>4 ﬁ(l - p_1/2){1 + 5(1 '—p_”z)}p-"—l/2 > ms—lp—n

oy _
p(un"anﬂ)/Z {1 + p—an/2 + ﬁ_(l —p anIZ)}

n

and
Y (@n—an+1)/2
n+1 < p {1 __p—an + Eﬂ(l +p—a,.)}
Xn \/5(1 _p—a,.+1) Bn
p—n—1/2
<P 214 < mep,
J2(=p7Y

we obtain (ii):

Y, Y, X
nt+1 = n+1 n > ma—lp—nmglp—nz/z > mS_
Xn+1 Xn Xn+1

1, —(n+1)2/2
b

p

Yn+1 -n2/2 —(n+1)2/2

<myp~"myp < mgp

n+1

The estimates (iii) and (iv) follow from

N

" pel2 {1 — g %n(l . p—an/z)z} > p™/2(1 = p=Y) > m3 1 p™I2,

<o {1 A p‘“")} <P {1421+ p7Y)) < mgp™2

n

ol

n

N

b

and
w, a2 W 2
;2\/5(1—17 Hp /z,ysﬁp 2,
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respectively. O

5.3. We are ready to show that the function Fy fails in the integral test
in Theorem B although it succeeds in the integral test in Theorem A. For
the purpose we consider integrals

o dr bn gy
m [ e[
b TFs(r) ans TFs(1)

an 2 bn 2
Jl’"=J mdr, Jz,,,=J f—sﬂ.z—dr,

bn r an+1 r

an | 2 (r d bn F 2 fr
K,,= J s0) J _dr, Ky, = J ) I S
' b T bn SFS(S)2 aner T an+1 Fs(S)Z

These integrals satisfy the following inequalities:

LEMMA 13. There exists a positive constant Cy such that

G,

(i) Y Il,ksnTP n=2,3,),
k=n n
.. i Cs
it L £ ——— n=1,2--),
(i) kgn 2k anr%P" ( :
CiX2p™
("l) Jl,nS 2 ;p > I<1,nS 23 (n=2’ 35"')’
n
, CyX2p" C
(IV) J2,n S 3 n2 3 K2.n S : (n = la 2: )

PrOOF. The proof is based upon Lemmas 2-5, 11-12, and the formula
(15). The letters m; (i = 1,---,7) used below denote positive constants. Since
for every n=2,3,--- and k=1, 2,--- we have

Iy psk _ n?X,Y,(p"* — p-"Z/Z)
I, (4 k)2 X, 1 Yy (p" 12 — p=(n¥0212)
C%X,% 1-— p_"z

- 2 —(n+k)2

Xn+k l_p

< C%k+2p—-(n2+m+(n+k—1)2)

< C2k+2 pmi22 4 (et 1))

and I, ,<m;n"2X,?, we obtain (i):

n
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We have also for evry n=1,2,--- and k=1, 2,---
12,n+k _ BHZHWI < 4C X2 " < 4C2X3
I, BuswZn sk Wik n+an+ P("+k)2 B Xn+k '

Therefore I, , < myn~2X, > p~" yields (ii). The inequalities (iii) and (iv) hold
since

1 X2pm
Jin < = {X2(1+ C2p )" +2C,X2p " (o™ + 1) log p*} < 14220
n n

= {Cap™% + p™"2(p™ + 1) log p" }<—§,

2 s 1 (1 X2pm
Jz,,s—{zch,fpn (ﬁ__>+2c§X3p" (—— ” )}sms L
’ n? 4 2 \/E 4\/5 n?

cosfife(i-3)e ik .

From this lemma it follows that

o)

YKot o Y e+ 10}
n=1

k=n+1

{Kl.n + Jl,n Z (IZ,k + Il,k+1)}

>

+
i {Cs C3X3P"2< Cs
n=1 (

IA

n2

S

Cs
— 4+ +
n+ 1)2an+1 (n+ 1)2X3+1P("+1)2>}
+

Cs C3X3P"2 Cs Cs
2 2 iyz T 2 v2
n=2 n n n an (n + 1) Xn+1

C3 C%C% - 2 }
=3 l + (n+1)
" { n*  n*n+ 1)2( p )

= (C, C2 C2n? >
+ 2+ 214+ .
n;Z { nZ n4 < (n + 1)2

+

M8
+

1

w
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Thus we proved the following lemma:

LEMMA 14. The function Fg satisfies

. b dr
v J, o<
(i) rlFS(r)ZJr b <o
0 r oSFs(S)2

6. Proof of Theorem

Recall the discontinuous function R (S = R/4, resp.) and the C! function
Fgr (Fg, resp.) considered in Section 4 (5, resp.). In the definition of these
functions, we used the sequences {o,}, {$,} and {a,}, {b,} given by (11) and
(2), respectively. In the proof of Theorem, these letters denote the same.
Let 6 = {5,}T be a sequence of numbers J, satisfying

b, — A+ 1

(19) 0<d, <= (n=1,2-).

With 6 and R we associate a density R; on Q defined by

(12
0 b, <r<a)
1 (a? B2 } o2
{2y " Ar—b)+ = b,—9d,<r<b,
5»:{1’3 Br—ot g ( r<b,
R; = .
R =" @ys, +6,<r<b,—35,)
r
: b %t Oy
_5_,,{(0"+1+6n)2+03+1 (r_a"+1)+a (a"+1<r<an+1+5n)

(n=1,2,-).

Apply Lemma 6 to P = R and Q = R;. Then R; > R implies fg, > Fg, where
fr, is the Rs-subunit. In particular we denote by R, the density R, with
0,=(b,—a,+1)/2(n=1,2,---) and fg, the Ry-subunit. For a general ¢
satisfying (19), R; < R, implies fz, < fg, ([8]). Moreover in view of this and
Lemma 6 and 9, following inequalities hold for positive constant C,:

200 1< %“T("; <1+C, rl s{Rs(s) — R(3)} fr,(s)Fr(s)ds (0 <r<1).

R\ 0
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We also consider densities R;/4 and R,/4. Then the R;/4-subunit fg , is
dominated by the R,/4-subunit fr , so that following inequalities hold for
positive constant Cs:

Q1) 1< fR&"(*()) <1+ Cs f’ s{Rz( 9 _ @}fRD,4(s)FS(s)ds O<r<1)
0

by Lemmas 6 and 14.

Now we set
ba(oz+1 + B2
"=L(;zl_ﬁ__) =(an+1’an+1+5n)u(bn_6m bn) (n=1a 2))
n+1

We can choose and fix 6 = {,} satisfying (19) and the following condition:
22 Z J {/ro(8)FR(S) + fRo/a(5)Fs(s)} ds < 0.

Let P be the density R; with this 6. By (20)—(22) the P-subunit f, and the
function Fy (the P/4-subunit fp, and the function Fg, resp.) are comparable
since s{Rs(s) — R(s)} is dominated by y, on U, (n=1,2,---) and vanishies
otherwise: there exists a positive constant Cq such that

< ii((rr)) < C6<1 sf;’s‘((r;) < Cs, resp-) 0 <r<i.

Hence Lemma 9 and (i) of Lemma 14 yield

bi o dr br dr
—— < 00, ———— < ©
o 1fp(r) 0 rfp/4(")

so that P and P/4 are both hyperbolic by Theorem A. Moreover Lemma 10
and (ii) of Lemma 14 yield

ble ds r = oo, fpr(r j ds dr < o
o T 0 Sfp(s) Sfp/4(s) -

Thus we conclude dim P =1 and dim (P/4) = ¢ by Theorem B. Od

In the above proof, the density P can be replaced by a C* density. In
fact we can construct a C® density Q on £ such that 0 < Q(s) — R(s) < 7,/b,
(seU,;n=1,2,--) and Q(s) — R(s) vanishes otherwise. By the same reason
as that of P, the functions Q and R (Q/4 and S, resp) are also
comparable. Hence Q is hyperbolic and satisfy dim Q = 1, dim (Q/4) = .
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