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Abstract. Some block disjoint difference families are constructed in rings with the

property that there are k distinct units uit 0 < i < k — 1, such that differences ut — Uj

(0 < i < j < k — 1) are all units. These constructions are utilized to produce a large

number of classes of resolvable block designs.

1. Introduction

A balanced incomplete block design (or, design) B(k, λ\ ι;) is a pair (i^9 3$)
where 1^ is a set of v points (called treatments), and ̂  is a collection of subsets
(called blocks) of i^9 each of size fe, such that every pair of distinct points from

1^ is contained in exactly λ blocks. Note that λ is called the index.
One way of investigating the structure of a design is to look at its

"symmetry", which can be formalized as the automorphism group of the

design. Let (f, $) be a design and let φii^^i^ be a bijection. The
mapping Φ induced by φ has domain $ and is defined by Φ(B) = {φ(x): xeB}.
An automorphism of the design (V, $) is a pair of bijections φ'.i^^i^ and

ψ:@^>@ which preserves incidence, that is, ψ(B) = Φ(B) for all Be Λ. The
set of all automorphisms of (y, 3&) forms a group under composition called the
automorphism group of the design.

Let G be an additive abelian group and B = {bl9...9bk} be a subset of
G. Define the development of B as

where B + g = {b1 + g9...,bk + g] for geG.
Let & = {Bl9...9Bt} be a family of subsets of G and define the development

of & as

ί
dev J27 = U dev Bt.

i=l

If devJ^ is a £(/c, λ; u), it is said that ίF is a ( k 9 λ ' 9 v ) difference family,
denoted by ZλF(fc, λ\ v)9 and the sets Bί9...9Bt are called iαse blocks (or
blocks). The group G is contained in the automorphism group of dev



476 Sanpei KAGEYAMA and Ying MIAO

A type of internal structure stems from the notion of parallel lines in the
Euclidean plane. A design B(k9 λ; v) is said to be resolvable if the collection
of blocks can be partitioned into parallel classes which in turn partition the
point set. The design is denoted by RB(k, λ; v). An RB(k, λ\ v'} (iΓ', &) is
called a subdesign of an RB(k, λ\ v) (T, @) if ΊT9 c V and each of the parallel
classes of the former one is a subset of one parallel class of the latter one.

A connection between difference families and resolvable designs is stated
in the following theorem. By a ring R we mean a commutative ring with
an identity in which the identity does not equal zero. Recall that U(R), the
units of R, forms a group under ring multiplication.

THEOREM 1.1 (Miao and Zhu [4]). Let λ < k - 1. Suppose there is a
DF(k, λ v) over a ring R such that the base blocks are mutually disjoint. If
there are k distinct units uh 0 < i < k — 1, such that differences u{ — uj

(0 < i <j < k — 1) are all units of R, then there exists an RB(k, λ; kv) containing
a subdesign RB(k, λ; k).

The block disjoint difference families over the ring with the property
required as in Theorem 1.1 will be denoted by DF*(k, λ\ v). The present paper
will focus on the construction problem of DF*(k, λ; v), and then provide some
infinite classes of resolvable designs.

2. Some known DF*(k, λ; v)'s

A difference set D(k, λ; v) is a difference family DF(k, λ\ ι;) consisting of
a single base block. All difference sets can be regarded as block disjoint
difference families. It is obvious that a block disjoint DF(k, λ; q) over a field
GF(q) is a DF*(fc, λ; q). Hence a D(fe, λ; q) over a field GF(q) is a
DF*(fc, λ q). We here mainly concern the construction of the difference
families with more than one base blocks.

Ray-Chaudhuri and Wilson [5] constructed a DF*(/c, l q) in GF(q) to
prove the asymptotical sufficiency for the existence of resolvable designs with
index unity. The following generalized form was given by Schellenberg [6]

(see also [4]).

THEOREM 2.1. Let q = k(k — 1) f + 1 be a prime power and w be a primitive
element of GF(q). Let H be the multiplicative subgroup of order m = k(k — I)/
2 of the group GF(q) — {0}. If a^...,ak lie in distinct cosets of H and the
k(k — l)/2 differences a{ — aj9 1 < i < j < k, are further in distinct cosets of ff,
then the t blocks {wmra l5...,wmrak}, 0 < r < ί, constitute a DF*(k, 1; q).

The following difference families can be found in [4].
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THEOREM 2.2 ([4, Lemma 3.3]). Let q = ke + 1 be a prime power.
Further let w be a primitive element and H the multiplicative subgroup of order

k of GF(q). Then {A0,...,^β-ι} βives a OF*(k, k - 1; q) with Aj = wjH for
j = Q9 !,...,*?-1.

THEOREM 2.3 ([4, Lemma 3.4]). Let k be odd and q = Iks + 1 a prime
power. Further let w be a primitive element and H the multiplicative subgroup
of order k of GF(q). Then {Al9...,As} gives a DF*(k, (k - l)/2; q) with
Aj = wjH for j = 1, 2,...,s.

In the next section, we shall construct more DF*(k, λ; ι?)'s which will be
used to produce new resolvable designs.

3. More DF*(k, A; v)'s

Recursive methods of construction will be presented at first.
By a list we mean a collection of elements in which each element occurs

non-negative times. We use the notation (xl9...9xs). The order is not taken
into account in our lists. If Xh i = l , 2,...,f, are lists, then the notation
X)= 1 Xt is used to denote the concatenation of the lists. In some case it can
be determined whether or not an arbitrary collection of blocks & will be a
difference family, by the following procedure: Let B be a subset of G. Then
define the list of differences from B to be the list ΔB = (a — b: α, be5, a Φ b).
When & = {Bi'. iel} is a family of subsets of G, we define Δ& = Σίe/Λβ;. If
Λ^ contains every non-zero element of G exactly λ times, then dev & is a
B(k, λ\ υ), and thus & is a DF(k, λ; v) if |dev5 f | = |G| for each iel. Note
that we here consider difference families without short orbits.

First, we consider the construction of difference families in G(q), the
additive group of GF(q). For convenience, we select and fix, for each prime
power q, a primitive element w of the GF(q). When e\(q — 1), we define the
cosets modulo the eth power, HQ = He, He

ί9...9H^l9 by

He

m = {w': t = m mode}

(cf. Wilson [7]). We read the subscripts modulo e, so that if aeH^ and
beHe

n, then a beHe

m+n. Denote by tfe the class of cosets {He

Q,...,He

e_^}.
Note that if q is even, then — 1 = 1 is always an eth power in GF(q). If

q is odd, then - leHe if and only if 2e\(q- 1). In fact, - 1 = w(<?~1)/2 is
an eth power if and only if (q — l)/2 = 0 mode.

It will be convenient to introduce a multiplication of lists as follows:
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THEOREM 3.1. The existence of a DF*(k, λ; q) in G(q) implies the existence
of a DF*(k, λ; qn) in G(qn) for n>\.

PROOF. Let J^ = { JB I : ϊe/} be a DF*(fe, λ; q) in G(q), so that

£te/ ΔBi = λ(GF(q) - {0}). Since GF(q) is considered as a subfield of GF(qn),
GF(q) - {0} is the group He oϊeth powers in GF(qn) where e = (qn - l)/(q - 1).
Now let S be any system of representatives for the cosets 2tf e modulo He in
GF(qn). Then S is a set of e field elements and S - He = G(q) - {0}. Consider

the family J* = {sBt: ie/, seS}. All of the elements of Bi9 iel, are in He,
thus the blocks of <%* are mutually disjoint since distinct elements of S belong

to different cosets of tf e. Noting that the list of differences from the set sBt

is (s) - ABi9 we have Δ@* = ΣseS Σ;e/ (5) ' ΔBi = s ' Δ@ = s ' λ(H^ = λ(G(<fϊ ~
{0}). Hence, @* is the required DF*(fc, λ\ qn). Q

PROPOSITION 3.1. There exists a ZλF*(6, 1; 121") for n>l.

PROOF. The four base blocks, {(0, 0), (0, 4), (0, 3), (1, 1), (1, 7), (4, 6)},

{(0, 5), (0, 7), (2, 10), (4, 1), (8, 5), (6, 9)}, {(0, 8), (1, 2), (2, 8), (4, 9), (7, 10), (6, 8)},
{(0, 6), (1, 6), (4, 3), (9, 0), (3, 4), (6, 7)}, form a DF*(6,1;121) in G(121) =
Zn 0Zn. By Theorem 3.1, there exists a ZλF*(6, 1; 12Γ) for n > 1. Π

THEOREM 3.2. There exists a DF*((q - l)/2, (q - 3)/2; (f) for an odd
prime power q and a positive integer n.

PROOF. Let A = {x2 : xeGF(q) - {0}} and B = GF(q) - {0} - A. Then

S = {A, B} is a DF*((q - l)/2, (q - 3)/2; q), which, by Theorem 3.1, implies
the existence of a DF*((q - l)/2, (q - 3)/2; qn) for n > 1. Π

Given a list T of elements of GF(q) and a divisor e of q — 1, Γ is said
to be evenly distributed over the eth power cosets 3tfe if and only if Γ has
the same number of entries, counting multiplicities, in each of the cosets
HQ, HI ,...,//!_!.

THEOREM 3.3. Leί e be a divisor of q — 1, tk < e < ίfe(fc — 1), am/ Bί9...9Bt

be t k-subsets of GF(q) such that the elements of Bh 1 < i < ί, are in different

cosets of HQ,...,H*-I, and £j=1^#i w evenly distributed over Hl9...9H*-_i9

that is, X|=1 ^5f has r entries in each coset He

x. Then re = tk(k — 1) and there
exists a ZλF*(fc, r; g") in GF(qn) for n>l. Furthermore, if 2e\(q— 1), then

there exists a DF*(k, r/2; ςfn) for n > 1.

PROOF. With S' = {Btx: iε{l, 2,...,ί}, xeHe}, we can get a DF*(fc, r; ^f).

If 2e\(q- 1), then - 1 ef/e, i.e. - 1 = wew with m = (q- l)/(2e). Then
S = {Bίw

β / : ie{ l , 2,...,ί},;e{0, l,...,m- 1}} is the required DF*(fc, r/2; 4).
To check this, take Δ@ = \x{: fe{0, l,...,e - 1}, je{l, 2,..., r/2}} with x/eHf.
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Then AS= ± (1, we,...,w(m~") (x/: ie{0, 1,...,* - 1}, je{l, 2,...,r/2}) = Hβ-
(x/: ie{0, !,...,*-!}, je{l, 2,...,r/2}) = (r/2) (GFfo) - {0}). This together
with Theorem 3.1 completes the proof. Π

COROLLARY 3.1. If q = 1 mod k(k — 1) and there exists a set B = {bl9...,bk}
c= GF(#) with b^s in different cosets modulo ff f c ( k~1 ) / 2 such that {ftj — ft,:
l < ϊ < 7 < f e } is a system of representatives for the cosets tffW-^l2^ then
there exists a DF*(fc, 1; <f) in G(qn) for n>\.

Now we consider a more general problem of finding blocks B c GF(q)
whose list of differences is distributed in some given manner. Let PΓ be a
set of ordered pairs { ( i 9 j ) : 1 <ι '<7<r}. Then define a choice to be any
map C: Pr^>J^e

9 assigning to each pair (i,j)ePr a coset C(i, 7) modulo the
eth powers in GF(q). An r-tuple (al9...,ar) of elements of GF(q) is said to
be consistent with the choice C if and only if α,- — ate C(i, j) for all 1 < i <j < r.

In this case, Wilson [7] proved the following.

LEMMA 3.1. If q = 1 mode is a prime power and q > er(r~l\ then for
any choice C: Pr-* Jtfe, there exists an r-tuple (0ι,...,αr) of elements of GF(q)
consistent with C.

Using this lemma, the following can be given.

THEOREM 3.4. Let λ be a factor of k(k — 1), and q a prime power.
(1) If k(k - l)/λ is even, q = 1 mod k(k - l)/(2λ) and q > (k(k - I)/

(2λ))k(k+ί\ then there exists a DF*(k,2λ;qn) whenever λ < (fc - l)/2 and
n> 1. Furthermore, if q = 1 mod k(k — I)/ A, then there exists a DF*(k, λ\ qn)
whenever λ < k — 1 and n > 1.

(2) If k(k - \)/λ is odd, q = 1 mod k(k - l)/λ and q > (k(k - l)/λ)k(k + l\
then there exists a DF*(k, λ; qn) whenever λ < k — 1 and n> I.

PROOF. It is sufficient to consider only the case n = 1.
Case (1): k(k - l)/λ is even. Let e = k(k - 1)/(2A) and let C: Pk+1 ->

J^e be any choice that maps precisely λ of the k(k — l)/2 ordered pairs (/, 7),
1 < i <j < fe, onto each coset He

m modulo the eth powers in GF(q) and the
fe cosets C(ι, k + 1), 1 < i < k, are mutually different. Since q > ek(k+ΐ\ we
can find by Lemma 3.1 a (k + l)-tuple (aί9...9ak+1) consistent with the choice
C. Let bt — ak+l — ah 1 < i < fe, then bί9...,bk are in different cosets of 34fe,
and bj — bt = (ak+1 — α; ) - (ak+ ^ — αf) = — (α,- — at). Hence the block B =
{bι9...,bk} ci GF(q) is such that precisely 2λ of the differences of ΔB are in
each coset He

Q,...,He

e.l. Then there exists a ZλF*(fc, 2λ; q). Furthermore, if
2e\(q- 1), then there exists a DF*(k, λ; q) in G(g) by Theorem 3.3.

Case (2): k(k — l)/λ is odd. Necessarily, λ is even. Now take e =
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k(k — \)/λ and let C: Pk+1 -> J^e be any choice of mapping λ/2 elements of
Pk onto each coset of Jjfe and the k cosets C(ί, k + 1), 1 < i < fc, are mutually
different. Since q>ek(k+ί\ we can also find a (k + l)-tuple (aί,...9ak+1)
consistent with C. Let again bi = ak+ί — ah 1 < i < fc, we have a block
5 = {&!,..., fek} such that the elements of B are in different cosets of Jjfe and
AB is evenly distributed over άfβ, since fey — bi=— (at — a^. Hence the same
way as (1) completes the proof. Π

Let k be odd, say k = 2m + 1. A prime power q is said (cf. [7]) to
satisfy the condition Rk if and only if q = 1 mod k(k — 1) and for a primitive
fcth root ξ of unity in GF(q), {ξ — l,...,ξm — 1} is a system of representatives
for the m cosets modulo Hm.

THEOREM 3.5. If a prime power q satisfies the condition Rk9 then there
exists a DF*(fc, 1 qn) for n > 1.

PROOF. Assume q-l = tk(k-l) = 2tm(2m+ 1). Let A = {1, ξ,...,ξk~1}.
Then ξ = w2ίm. Hence

AA=±A (ξ- l,...,r - 1) = Htm - (ξ - !,...,{"• - 1).

Put S = {Λw ίw: i = l,...,ί}. Then the blocks in S are mutually disjoint and
AS = Hm (ξ — l,...,£m — 1), and by the assumption AS is the union of all
cosets of Hm. By Theorem 3.1, this completes the proof. Q

EXAMPLE 3.1. Wilson [7] made a computer search for primes p = 1
mod k(k — 1) and showed that

RΊ => {337, 421, 463, 883, 1723, 3067, 3319},
R9 ID {73, 1153, 1873,2017},
R15=> {76231}.

There is more possibility of using the multiplicative structure of finite
fields to ease the task of construction of Z)F*(fc, λ\ q)'s. For example, we
have the following.

THEOREM 3.6. Let q = 30ί -I- 1 be a prime power and ξ be a primitive
cube root of unity in GF (q). If there exists an element ceGF(q) such that
{ξ — 1, c(ξ — 1), c — 1, c — ξ, c — ξ2} is a system of representatives for the
cosets modulo H5, then there exists a DF*(6, 1; qn) in G(qn) for n > 1.

PROOF. Suppose that there is such an element c and B = {1, ξ, ί2, c,
cξ, cξ2}. We have ceH^ for some m = 0 mod 5 since ξ - 1 and c(ξ — 1)
are in different cosets of H5, and AB = ± (1, ξ, ξ 2 ) - (ξ - 1, c(ξ - 1), c - 1,
c-ξ, c- ξ2). Now ± (1, ξ, ξ 2 ) = H5t. Put S = {Bw5i: i = 0, l,...,ί - 1}.
Then S has ί mutually disjoint blocks, and AS = H5 (ξ - 1, c(ξ - 1), c - 1,
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c — ξ, c — ξ2). Now the assumption shows that S is a DF*(6, 1; q) which,
by Theorem 3.1, completes the proof. Π

REMARK. The condition in Theorem 3.6 does not depend on the choice
of a primitive cube root. The other primitive cube root of unity is ξ2. But
ξ — 1 and ξ2 — 1 are in the same coset modulo H5 since ξ2 — 1 = - ξ2(ξ — 1)
and ξ2eH5.

EXAMPLE 3.2. Wilson [7] gave the following values of c as in Theorem
3.6:

q

c

q

c

181

4

1021

29

211

9

1051

11

241

80

1171

112

271

9

1201

19

421

74

1231

53

541

100

1321

11

571

20

1471

12

601

46

1531

79

661

6

1621

8

751

56

1831

63

811 991

6 2

1861

22

We can also construct ZλF*(/c, λ\ v) from rings. The following is basic in
this manner.

THEOREM 3.7. Let R be a ring and B = {bi9...9bk} be a subgroup of U(R)
with AB a subset of U(R). Then there exists a DF*(fe, k- 1; \R\) over the
ring R.

PROOF. The relation defined by the following "x is related to y if and
only if there exists a btGB such that x bt = y" is an equivalence relation
(see, for example, [1, Lemma 3.1]). Consider 3F = {sB: seS}, where S is a
system of distinct representatives for the equivalence classes modulo B of
.R — {0}. It is easy to see that the blocks in & are mutually disjoint and
that \sB\ = \B\ = k for each seS. Since AB = Σ b e B _ 1 ( f r - 1)#, we have A& =~

= (k - 1) (R — {0}). Hence every non-zero element of R ocurs exactly k — 1
times in A^. Π

We have other constructions.

THEOREM 3.8. Let & = {sB: seS} be a ZλF*(fc, k - 1; t;) constructed by
Theorem 3.7. If there is no s e S such that sB = — sB, then 3F can be partitioned
into two DF*(/c, (k - l)/2; t;)'s.

PROOF. The base blocks sB and — sB possess the same set of
differences. Note that — sB = — s'B where s' is a representative of the
equivalence class containing — s. In fact, — sB is a base block. Separate
the blocks of & into two sets, 3F± and «^, such that sBe«^i if and only if
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-sBE^2. Π

The condition that sB + — sB is always satisfied when k is odd and the

additive group of the ring contains no non-zero elements which are their own

inverse. This can be given in the following form.

COROLLARY 3.2. Let & = {sB: seS} be a DF*(k, k- l v) constructed

by Theorem 3.7. If k is odd and the additive group of the ring contains no

non-zero elements which are their own inverse, then 3F can be partitioned into two

DF*(k,(k-l)/2;vys.

COROLLARY 3.3. Let v = ΠΓ=ι P?'» Pί a Prime> ^ a positive integer, 1 < i
<m. If k is odd and k \ (p** — 1) for all i, 1 < i < m, and at least one of p?

is odd, then there exists a DF*(k, (k - l)/2; v).

PROOF. Consider the Galois ring GR(v) = ®?=1 GF(pf). Let Bt =

(βn> βi2" >βik) be the subgroup of order k in GF(p^) - {0}. Apply Corollary
3.2 with B = {(βlpβ2j,...9βmj): ; = 1,2,...,*}. Q

4. Resolvable designs

For convenience, let RBw(k, λ; v) denote an RB(k, λ; v) containing a

subdesign RB(k, λ; w).

As mentioned in Section 2, a D(k, λ; q) over a finite field is always a

DF*(k, λ; q). By Theorem 1.1, when λ < k - 1, there exists an RBk(k, λ; kq).

This observation is here essential to construct resolvable designs. For example,

we have the following.

PROPOSITION 4.1. There exists an RB9(9, 1 9 73") for n > 1.

PROOF. The set {1,2,4,8,16,32,37,55,64} is a DF*(9, 1;73) in

G(73). By Theorem 3.1, there exists a DF*(9, 1; 73") for n > 1. Then apply

Theorem 1.1. Π

THEOREM 4.1. Let q be a prime power. Then

(1) there exists an RB(q.1)/2((q - l)/2, (q - 3)/4; qn(q - l)/2) for n > 1,

whenever q = 3 mod 4

(2) there exists an RB(q.ί)l4((q - l)/4, (q - 5)/16; qn(q - l)/4) for n>l,

whenever q = 4ί2 + 1 with t odd;

(3) there exists an RB(q + 3)/4((q + 3)/4, (q + 3)/16; qn(q + 3)/4) for n > 1,

whenever q = 4t2 + 9 with t odd;

(4) there exists an RB(q.,)/s((q - l)/8, (q - 9)/64; qn(q - l)/8) for n > 1,

whenever q = Sa2 + 1 = 64fc2 + 9 with a, b odd;

(5) there exists an RB(q.1)/s((q - l)/8, (q + 7)/64; qn(q - l)/8) for n > 1,
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whenever q = 8α2 + 49 = 64 b2 + 441 with a odd and b even.

PROOF. The corresponding DF*(fc, λ; <f)'s exist from [3, Section 11.6]
and then apply Theorem 3.1. Π

The following results are immediate consequences of the results described
in Section 3 and Theorem 1.1.

PROPOSITION 4.2. There exists an RB6(6, 1 6 12Γ) for n > 1.

THEOREM 4.2. There exists an RB(q_i}/2((q - l)/2, (q - 3)/2; qn(q - l)/2)
for n > 1.

THEOREM 4.3. Let e be a divisor of q — 1, tk < e < tk(k — 1), and Bi9...9Bt

be t k-subsets of GF(q) such that the elements of Bh 1 < i < ί, are in different

cosets of #o> »#f-ι> that is, Σi = ι^» nas r enίr^es in eacrl coset He

x. Then
re = tk(k — 1) and there exists an RBk(k9 r; kqn) for n>\. Furthermore, if
2e\(q- 1), then there exists an RBk(k, r/2; kqn) for n>l.

COROLLARY 4.1. If q = 1 mod k(k — 1) and there exists a set B = {bί,..., bk}
c GF(q) with bt's in distinct cosets modulo Hk(k~i)l2 such that {bj — bt:
1 < i <j < k} is a system of representatives for the cosets jf f c( f c~1)/2

) then there
exists an RBk(k, 1 kqn) for n > 1.

THEOREM 4.4. Let λ be a factor of k(k — 1), and q a prime power.
(1) I f k ( k - l ) / λ is even, q=l mod k(k-l)/(2λ) and q>(k(k-l)/(2λ))k(k+1\

then there exists an RBk(k, 2/1; kqn) whenever λ<(k—l)/2 and n>\.
Furthermore, if q = 1 mod k(k — l)/λ, then there exists an RBk(k, λ kqn)
whenever λ < k — 1 and n > 1.

(2) // k(k - l)/λ is odd, q = 1 mod k(k - l)/λ and q > (k(k - l)/λ)k(k+l),
then there exists an RBk(k, λ; kqn) whenever λ < k — 1 and n> 1.

THEOREM 4.5. If a prime power q satisfies the condition Rk, then there
exists an RBk(k, 1; kqn) for n>\.

PROPOSITION 4.3. Let RB^(k, λ) = {v: an RBw(k, λ; v) exists}. Then
RBΊ(1, \)^{l-qn:n>l,q = 337, 421, 463, 883, 1723, 3067, 3319}
RB9(9, l)^{9'qn:n>lq = 13, 1153, 1873, 2017};
RB15(15, 1) => {15- 76231": n> 1}.

THEOREM 4.6. Let q = 30 ί + 1 be a prime power and ξ be a primitive
cube root of unity in GF(q). If there exists an element cεGF(q) such that
[ξ — 1, c(ξ — 1), c — 1, c — ξ, c — ξ2} is a system of representatives for the
cosets modulo H5, then there exists an RB6(69 1 6 qn) for n > 1.

THEOREM 4.7. If 4 < ί < 832, and 6t + 1 is a prime power for even ί, or
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5ί + 1 = qn where n > 1 and ge{121, 181, 211, 241, 271, 421, 541, 571, 601, 661,
751, 811, 991, 1021, 1051, 1171, 1201, 1231, 1321, 1471, 1531, 1621, 1831, 1861}.
Then there exists an RB6(6, 1; 30 ί + 6).

PROOF. This follows from [2] and Example 3.2 and Proposition 4.2. Π

THEOREM 4.8. Let R be a ring and B = {bl9...9bk} be a subgroup of U(R)
with AB a subset of U(R). Then there exists an RBk(k, k - 1; \R\).

THEOREM 4.9. Let & = {sB: seS} be a DF*(/c, k - 1 v) constructed using
Theorem 3.8. If there is no seS such that sB = — sB, then there exists two
RBk(k,(k-l)/2;kvYs.

COROLLARY 4.1. Let 3F = {sB: sεS} be a DF*(k, k — 1 v) constructed by
Theorem 3.8. If k is odd and the additive group of the ring contains no non-zero
elements which are their own inverse, then there exists two RBk(k, (k — l)/2; kvYs.

COROLLARY 4.2. Let v = ΠΓ=ι P?'» Pi a Prime> nί a positive integer,
1 < i < m. If k is odd and k \ (p"1 — 1) for all i, 1 < i < m, and at least one
of p? is odd, then there exists an RBk(k, (k - l)/2; Jto).

REMARK. A method using difference families is utilized to provide
individual examples or infinite classes of resolvable designs, but their index λ
and/or number of points v are restricted by k. It is meaningful to find more
DF*(k9 λ', v) in which v is not large and λ is without such restriction.
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