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ABSTRACT. We treat here measures which are invariant with respect to the renorma-
lization map on a self-similar set. A criterion for their absolute continuity with respect
to their associated Hausdorff measures is given in terms of symbolic dynamics. Using
this criterion, we give a striking characterization of the equilibrium state for a certain
potential function.

1. Introduction

In this paper we shall study the properties of ergodic invariant measures
on self-similar sets. Especially we shall investigate the relations between
invariant measures and the Hausdorff measures associated to them from the
point of the absolute continuity. In the sense of [8], a self-similar set K is
constructed from a system & = {@;|ieS}, S = {1,---,N} of contractions and
a bounded open set ¥ < R* by K = 221 Ug,.....imes @i, ©-+-© @, (V). Here we
assume that @ and V satisfy UL, (V)< V and ¢;(V)ne;(V)=0 if i #j,
which is often referred to as the open set condition. See [8] for the details. It
is easy to see that there exists a continuous surjection ¥ : SN — K and this
fact enables us to work on the symbolic dynamics (SN, 6), 6((X,)pen) = (X5 + 1)nen-
In order to guarantee the existence of the renormalization transformation f
on K corresponding to ¢ with a measure theoretically negligible exceptional
set, we have to make a further assumption (A7) below. By virtue of this
assumption we can immediately have a one to one correspondence between
f-invariant measures and o-invariant measures through the map . In this
paper we shall make a little extension of the above notion of self-similar sets.
That is, as in [1], for each N x N aperiodic matrix 4 we construct a compact
set K, by Ky =21 Ugs,...imezan @i o0 9, (V) where X, , is the set of all
A-admissible words of length n, that is, those (i,---,i,) € S" such that 4;; ., = 1,

j=1,---,n— 1. Deterministic Markov self-similar sets which are considered
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in [20] are contained in our cases so that the theory developed in this paper
is applicable. Corresponding to the restriction of the renormalization map f
on K,, we consider the subshift of finite type (X, 0), ie. 2, = {(X)nen€
{1,--,N}N|A4,,,,., =1 for all neN} and its left shift is denoted by o as in
the previous case. As an application of Ruelle-Perron-Frobenius theory, it is
known that the Hausdorff dimension 6, of K, is equal to the unique zero
point of the pressure, that is, the unique positive solution & of the equation
P4(—6L)=0 for some function L:X,—R. Furthermore if pu_;,, is the
equilibrium state for the function — 4L, its image measure u_;,; ¥ ' and
#°4 are equivalent as Borel measures on K, and the Radon-Nikodym

d#—aAL ° ¢—1
A4

The notion of the (Hausdorff) dimension of measures was introduced in
[21] for invariant measures of certain diffeomorphisms and investigated
elaborately in case of self-similar sets in [7]. Roughly speaking, for an ergodic
o-invariant measure y, its dimension J, can be characterized as the number
o for which u([x,,---,x,]) decays with the same speed as |@,, o-:o (px"(l7)|"
as n— oo. Since {|@,, o---o @, (V)|*} generates the Borel measure #2* which
differs from s+ only by a constant factor, it will be not meaningless to
compare p oy~ and #?+ as Borel measures on K,. Actually in [15], though
there is some difference in the contexts, some equilibrium states are compared
with the (generalized) Hausdorff measures associated to them.

The contents of this paper are as follows. After reviewing some basic
facts in §2, we examine in §3 the absolute continuity and singularity of the
Y-images of o-invariant measures on X, with respect to the Hausdorff
measures. That is, for an ergodic os-invariant probability measure p, po  ~*
is absolutely continuous with respect to #° on K* if < §, while these two
measures turn out to be mutually singular if 6 > J,. On the other hand when
0 =40, we see by virtue of the ergodicity that ergodic invariant probability
measures are divided into two extreme classes; absolute continuous ones and
singular ones. In other words, a striking feature of an ergodic measure is
that it never has the absolute continuous part and the singular part
simultaneously. These considerations lead to the Lebesgue decomposition of
non-ergodic o-invariant measures with respect to the Hausdorff measures. In
§4 we deduce a cohomologous relation between the two functions — §,L and
— I, below under the assumption that the measures considered are equivalent
to their dimensional Hausdorff measures. In §5 we shall show that within a
certain class 2,(2,) there exists no equivalent invariant ergodic measure
supported by X, except u_;,;,. See §5 for the definition of 2,(2,). In §6,
restricting the class of measures to smaller one than §5, we shall show that

derivative is bounded away both from 0 and + co. See [1].
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there exists no absolutely continuous measures supported by X, except for
KH-s,L-

Though there are slight differences, our strategies are almost common in
both §5 and §6. That is, we shall design to deduce some kind of
cohomologous relations under the given assumptions and to apply these
relations to Ruelle-Perron-Frobenius theory to determine the measures. We
should be careful in these procedures because our cohomologous relations are
only given in the measure theoretic sense. This is a main difference between
our arguments and those in [15]. That is, we do not assume the Holder
continuity of I,. Under our assumptions the law of iterated logarithm dose
not necessarily holds so that it may be difficult compare invariant measures
with the Hausdorff measures in more precise form as in [15].

The author would like to express his deep gratitude to Professor I. Kubo
for valuable comments and suggestions. He would also like to offer his thanks
to Dr. S. Ikeda for helpful discussions.

2. Notations and preliminaries

For later use we shall begin this section with some definitions of the
symbolic dynamics called subshifts of finite type. Suppose that S is a finite
set with #S = N.

Let #y be the set of all N x N type 0-1 aperiodic matrices, that is,

My = {A =(A;)); jes» A4ij€{0, 1}, A*> 0 for some keN}.
Let us fix Ae.#y and set
Zan=1{01, X3 x) €S Ay =1, i=1,2,,n— 1},
Z,={x=(x),eneSN| 4 =1 for all neN}.

XnXn+1
Let us also define
Liks i1l = {x = (X neNEZ 4l X5 =i, j =k, k + 1,---,1},
€ = {[ixs it 1505 ik (s Bes 1o 1) €Z k1) Bk = Ui Gax keN.

We shall simply write [i,-,i,] for [iy,--,i,]]-

We introduce the topology into the space X', with €, = €, as its open
basis. It is easy to see that this topology is nothing but the product topology
induced by the discrete topology on S, which is also equal to the topology

00

generated by the metric d(x, )= ), fs"z—y for x = (Xnens ¥ = Vndnen€ Z4s

n=1

where §; ;=1 if i=j and 6, ; = 0 otherwise.
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The topological Borel g-algebra on X, is denoted by #,. In other words,
By=0[%,], ie. B, is the o-algebra generated by ¥,. Let Iy be the N x N
matrix whose entries are all equal to 1. 2., %> , and %% ; are denoted by
simply X, €, and ¥ respectively. The left shift on X is denoted by o, i.e.
0((X)nen) = (Xu+ 1)nen- The restriction of o to X, is denoted by the same
symbol ¢. But later we need to treat the inverse images of ¢ on 2,. In
these cases in order to avoid the confusion we write in such a way as
0;'x. More concretely o3 x = {jx|A;,, =1, X = (X,)pen}-

For a differentiable map ¢ on a certain domain in R? let us denote by
J(p, x) the Jacobian matrix of ¢ at x and by j(p, x) the operator norm of
the linear map induced by J(¢, x).

Suppose that a system @ = {¢;},.s of maps on R? and a bounded open
subset V of R? satisfy the following conditions.

(A1) ¢;, ieS are all C! in an open set which contains V.

(A2) There exists 0 < c; <c, <1 such that ¢, < |j(p;, x)| <c, for all xe¥V,
ieSs.

(A3) j(p;, x) is a-Holder continuous on ¥ where 0 <« <1, that is, there
exists C > 0 such that |j(e;, x) — j(;, )| < C|x — y|* for all x, yeV, ieS.
(A4) j(p, x)"1J(p, x)e 0(d) where O(d) stands for the d-dimensional orthogo-
nal group.

(A5) V and ¢, o ¢, (V), (iy,"-,i,)eS", neN are all convex.

(A6) Uisoi(V) =V, ‘Pi(V)n‘Pj(_V) = @_(i #J)-

(A7) Theset Zg=; jes,ix; :i(V)N@;(V) is at most countable and A,(x)N A4,,(x)
=0 if n#m for every xeZ,, where Ay(x) = {x}, A,(x)={@; o0 (x)]
(iy,+,i,)€S™}, neN.

REMARK 2.1. From conditions (A2) and the inverse function theorem it
is easy to see that ¢,(ieS) are all injections in ¥. The condition (A2) and
(AS) also say that ¢,(ieS) are all contractions in V. Indeed | ¢;(x) — @;(y)|| <
¢y |x —y]| for all x, yeV.

REMARK 2.2. When d=1 some of the above conditions can be

relaxed. Firstly (A4) clearly turns out to be a meaningless condition. So we
can omit it. Next we may replace (AS) by
(AS5y Vis an interval.
This is equal to that V is convex. The continuity of ¢;, i€ S automatically
indicates that go,-‘o---<p,~n(l7), (iy,---,i,)eS", neN are all convex (intervals).
Moreover it can be easily checked that (A7) is automatically satisfied under
the other conditions, so that we do not need it.

Fix @ = {¢,};cs and V which satisfy the conditions (A1)—(A7). Let us set
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K, =zt U(h ,,,,, ineZan Piy © Piy° o <Pi,.(1—/)

for each Ae#y. K, is simply denoted by K if there is no danger of
confusion. If is easy to see that K , is a compact subset of ¥V for all 4e.#y.
A typical example of @ and V satisfying the above conditions is d = 2,

¢ = {(pl’ ?25 (p3}9 V= {(X, Y)ERd|y>0, y <\/§x’)’< _\/gx + \/5}’

1 3
?10%, y)=<f+ %+—*£) (Dz(x’}’):(i X>, @3(x, y)=<f+l X).

24 4 272 2 272
In this case K is the Sierpinski gasket.
Let : 2 — K be the map defined by

{w((xn)neN)} = n:o=1 Py, 00000 (px,.(l—/)

Note that the right hand side of the above definition is indeed a singleton
because ¢;, i€ S are all contractions as pointed out. Clearly ¥ is a continuous
surjection to K. For Ae #y the restriction of y to X',, which is also denoted
by the same symbol ¥, gives the map to K.

Though the set K, and the map y depends on the choice of the system
& as well, we simply write in the above way.

For each Ae #y, K, has the following self-similar structure:

K, =UisK;, K;= Uj:(i.j)eEA,z 0i(K)),
where K; =%, U(i,iz,...,i,.)ezA,.. @i Py, oo (Di,.(l_/)-

REMARK 2.3. In [20] the notion of Markov-self-similar set was introduced
and investigted elaborately. Markov-self-similar sets in deterministic cases can
be regarded as self-similar sets in the above sense if we choose defining matrices
appropriately. That is, a deterministic Markov self-similar set K is constructed
from NZ2-tuple of contractions & = {¢,;|i, je{1,---,N}?} and a bounded open
set ¥, which satisfy the open set condition, by K = (\;2; Uq,,....inect,... 0 Piri ©
Qigiy 0 0 <0i..-1i..(7)- This set can be viewed as the self-similar set constructed
from the following situation in our case: S ={1,---,N}?>, & and V are the
same and the matrix A = (43;) is given by

A‘TT={1 lf lT:iliz’JT:jljZ’ i2=j1a
Y10  otherwise.

It is easy to see that Ae.#y.. Indeed A% > 0.

Set Z = U(i,,...,i,.)esn,neN @i 000 ¢i,.(Zo)» W= 'p_l(z), K*=K\Z and
Zt=Z\W(=y¢ " (KH).
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LEMMA 24. y: 2*— K* is a bijection and o~ 1(2*) = Z*.

Proor. Since the original map y: X — K is surjective, it is clear from
the definition 2* = ~!(K*) that y: X* — K* is surjective.

Assume that ¥ (x?) = xe K* for x@ = (x), (i = 1, 2), xV # x®. Setting
m = min {neN|x{¥ # x?} and recalling that ¢,: V— ¥, i€ S are injections, we
have

XEP oo (V)@ o0 (V)
=@ oo (9(V)Nea)) c Z,

which is impossible. Thus the injectivity of : Z* - K* was shown as well.

Next suppose that x = (x,),.~n€2* and ox¢2*. By the definition of 2*,
we have y=y(ox)¢K*, that is, yeZ. By the way xeZ* implies ¥ (x)
= ¢, (¥)¢Z. This is clearly impossible. Therefore the relation 2* = ¢~ (2%
holds.

On the other hand assume that x = (x,),..n€0 (2% and x¢ZX*. Set
y =¥(ox) as before. Then y¢Z and y(x)= ¢, ,(y)eZ. The latter relation
implies that there exists (iy,---,i,)€S"(neN) such that ¢, (y)e@;, o0 ¢; (Zy)
by the definition of Z. If i; = x,, the injectivity of ¢, means yeg; oo
¢; (Zy) = Z, which is contrary to the condition y¢Z. If i; # x,, we have
ye @, (V)N @y, (V) = Z, = Z, which is impossible as well. Thus we have shown
that ¢~ 12*c 2*. N

REMARK 2.5. Let X% =23*nX, and K% = K*nK, for Ae#y. Then
clearly o 1(Z%) = 2% and y: X% - K* is bijective.

In view of Lemma 2.4 the map f: K* - K*, f(x) = ¢; }(x) if xe@;(K) is
well defined. This transformation is called the renormalization transformation
on K* and the following diagram is clearly commutative.

SH_O, 5#

v

Kkt L, Kt

From now on we shall fix Ae.#y. Let &,(2,) be the set of all g-invariant
ergodic probability measures on 2, and set &,(K,) = {ve P(K,)|v(ZnK,) =0,
veof ' =v,}, where #(K,) denotes the set of all the probability measures
on K, v, the restriction of v to K*%. The following lemma shows that the
correspondence between &,(2,) and &,(K,) is easily given.

LEMMA 2.6. u(Z, nNW)=0 for every peé, (Z,).
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PrROOF. Let xeZ, and set I',(x) = 2,nyY " '(4,(x)). Then from (A7) we
have I,(x)N,(x) = 2Ny 1 (A4,(x)nA4,,(x)) =D if n # m. Moreover it is easy
to see that I',(x) = 0,"Io(x). Therefore we have pu(J;L o In(x) = ) o o k(T (%))
and (I, (x)) = p(o,"I'y(x))) = u(lH(x)) for all neN. This means that u(7,(x))
= u(Iy(x)) = 0 for all neN. Since Z, is countable, we have u(Z Ny ~1(Z)) =

ﬂ(Uero U:o=0 Fn(x)) =0. W

REMARK 2.7 From Lemma 2.6 it is clear that the map y*: &,(2,) —
E,(K,), ¥*(u) = poy ! is a bijection. It is also easy to see that if pe&,(Z,),
then Ho l/,_1((px1 Orer0 (px,.(V)nKA) = ”’([xl,"'yxn]) for all (xls""xn)ez,(,n-

For peé&,(2,) let us set y, =), 1uu([illo;'(#,) and I, = —logy,,
where 1 is the indicator function of the set B and u([i]|o;'(#,)) is the
conditional probability measure. Note that y, >0 p-a.e. so that I, is
well-defined p-a.e. It is not difficult to check from the definition of yx, that

Y 0WfO) =E(flo; (B))(x) pae.

yeolox
for every p-integrable function f, where E,(f|o;'(%,)) stands for the condi-

tional expectation. In other words, {[ ) LD fP)]dux) = j f(x)du(x) for

yeo 4 lox

every p-integrable function f. Since u is o-invariant we also have

_[[ ) xu(X)f(X)]d#()_C)=jf(x)dﬂ(x)- (2.1)
yeos'x

Next we shall quote from [3] the thermodynamic formalism on (2, 0)
in general. See also [17]. Let us denote the set of all the (real-valued)
continuous functions on the space 2, by C(2,). For 3eC(2,) we define an
operator £: C(X,) - C(Z,) by

ZLifx)= ) exp[SMIfY.
yeoy'lx
Its dual operator (3;")* can be defined on the set of signed measures (2 ,),
that is,

(L MZ )~ M(Z Y, ffd(i’;‘)*# = f-?;‘fdu, feC(Zy) for pe#(Z ).

Here the usual topologies are given on C(X,) and #(X,). That is, we give
C(2,) the topology induced by the norm | f|,, = sup,s,|f(x)|, fe C(Z,) and
M (2 ,) the vague topology (weak-* topology).

For feC(X,), set
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varﬁ"’ (f)= sup {lf(-)_c) —f(l’)| |3.C =(xn)neN, X:'(yn)neNE):A’ xn= yn! n= 15 2"”’m}
Then for 0 < f < 1 the space
Hy = {feC(Z,)|there exists C >0 such that var'p (f) < Cp" for all neN}

(n)
var
"n(f). Let us set

is a Banach space with the norm | fl;=|fl, +s p

‘g;A = Uﬂe(O I)H I'N "e
Then the Ruelle-Perron-Frobenius operator theorem says that for every
9e #, there exist unique 4,>0, 0 < h,e C(Z,) and v,e Z(X,) such that

%Ahs = Ashs, (%A)*Vs = lsvs, fhsdvs =1
and
lim |4, ~ f fdvgh,ll =0

for all feC(Z2)).
On the other hand there exist unique p,e&,(2,)(in fact weak Bernoulli;
see [3]) and P4(9eR such that for some y,, y, >0

#s([xlaxz’ . n])
exp [— PA(S)n+2" T 96 x)]

for all neN and for all x = (x,),.nEZ 4.

"< <7

p, and PA(9) are called the equilibrium state and the pressure respectively for
(e £,).
Another characterization of P4(9) is given by P4(9) = sup {hu(a) +

jl‘}dy}, where #,(2,) is the set of all the s-invariant probabi‘iei:;(i:l)easure on
2, and h,(o) is the entropy of o with respect to u. Furthermore py, is
characterized as the unique maximizer so that P4(9) = h,(o) + JBduS.
The relation between A, v, h, and P49, u, above are given by
PA(9) = log A, and p, = h,v, which means u,(B) =J h,dv, for all Be4,.
B

A simple observation of the proof of Ruelle-Perron-Frobenius theorem
tells the following fact: If 9e %, and there exist pue #(2,) and A >0 such
that (£/)*pu= Ay, then A=A, and p=v, Furthermore if the above u
belongs to &,(X,) we can conclude that u = pu, and h, = 1, for y, is absolutely
continuous with respect to v,= p and the ergdicity of u, means pu,=pu=v,
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so that h,= 1.

In what follows some definitions and notations on Hausdorff measures
and dimensions are given. See [5],[6] or [16] for the details. For a
bounded B = R? and J > 0, a finite or countable family # = {U;| U; = R?, ieN}
(% is called finite if U; =@ with finite exceptional ieN) is called é-cover of
B if Bc J2,U; and |U;| <6 (ieN), where |U| = sup, ,y|x —y| for Uc
R(|0| =0). For p>0 we define 4°@%) =) 7" |Ulf if % ={U,;|ieN}.

For a family @ of subsets of R? we define

HE 5(B) = inf {MP(U)| D > U is a finite or countable 5-cover of B},
H5(4) = lim #5, 5(B).

Here we conventionally put s#%(A) = + co if there is no finite or countable
d-cover of B which is contained in 2.

When 2 = 2%, we simply write #f and #* respectively. Furthermore
we define dimy (B) = sup {B: #?(B) = + c0}. It is well known that dimy (B)
is also given by inf {8: #*(B) = 0}, and it is easy to see from the definition
that #%5 < #* for all 2 and B>0. #P(B) and dimy(B) are called the
B-dimensional Hasudorff measure of B and the Hausdoff dimension of B
respectively.

Define the function L: X, - R by L(x) = —log|j(¢,,, ¥(dx))|. Then it
is standard to show the following facts. We mention here that the convexity
condition (AS) is used in obtaining (B2) and (B3).

(B1) Le #,.
(B2) There exist 0 < C; < C, such that

n—1
Cilpa oo pu (V) <exp[ ), Lla'X)] < Cyl@x o0 ¢y (V)]

i=0

for all neN and all xeZ2',.

(B3) For all B> 0 there exists a constant 0 < C; <1 such that
Cyt? < HE < H*

where € = {g,, o0 ¢, (V)| x€Z, neN}.

It immediately follows from these results that, if we put é, = dimy (K ),
0, is equal to the unique positive solution § of the equation P4(— SL)= 0.
Indeed by virtue of (B2) the equilibrium state u_;,; satisfies

:u‘JAL([il)'”’in])
|(pxl Orre0 (px,.(V)laA

71 < < Y2, fOI' all [ib"',in]e(g,{,m nEN
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for some 0 <y, <7,. Therefore we can easily obtain 0 < Jf%‘(K 1) < + o,
or equivalently 0 < #%4(K,) < + oo in view of (B3). Furthermore it can be
also seen that #°4 is equivalent to u_;,; as Borel measures on K, and the

du_ . .
Radon-Nikodym derivative % has a version uniformly bounded away

both from 0 and + o0 on K,. See [4], [7] and [18].
On the other hand the variational characterization of the pressure gives
h,(o)

the equality 6, = sup,es (r, 0, Where 6, = Moreover p_;,; is the

Ldu

hu—JAL

JLdﬂ —6aL

unique maximizer, that is, dimy (K ,) =

3. Comparison with g and s#°%

In what follows the Hausdorff measures are always restricted to the Borel
field on R? unless otherwise stated. Let u and v be (not necessarily o-finite)
Borel measures on a Borel measurable set C = R?. u is said to be absolutely
continuous with respect to v if v(B) = 0, Be 4(C) (the Borel field on C) implies
u(B) =0. Note that the absolute continuity does not necessarily mean the

. ... dp, .
existence of the derivative d—# in Radon-Nikodym sense because the measures
v

considered here are not necessarily o-finite. u and v are said to be equivalent
if each of them is absolutely continuous with respect to the other. u and v
are said to be singular if there exists Be #(C) such that u(B) = 0 and v(B) = 0.

Results similar to the following Lemma 3.1, Lemma 3.2, Theorem 3.6 and
Lemma 4.1 in the next section can be found in [18] (Theorem 67) and [23]
in general contexts. Specifying the situation, we can obtain the absolutely
continuous or equivalent conditions in terms of the information function I,
in a sharper and more useful form for the research below.

LEMMA 3.1. Let v be a Borel probability measure on K, such that
v(K,nZ)=0. For 6>0 and 0 <a< + oo, set

B, = {xeK’i | sup s, o 95, (V))

neN I(p 00 @ (V)ld <a, (xn)neN= ‘p—l(X)},

Then the restriction of v to B, which is denoted by vy, is absolutely continuous
with respect to #° on B,.
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Proor. From (B3) it is sufficient to show that vp_ is absolutely continuous
with respect to #7%. Note that

v((pxl Orero (px,.(l—/)) < al(pxl Orer0 (pxn(I—/)Ps xEBa' (31)

Suppose that C e #(B,) satisfies #7;(C) = 0. Then by the definition of 5 for
any given ¢ >0 and ¢ > 0 there exists # = {U,} which is an ¢-cover of C
such that % = € and M°(¥) < H2 #(C)+e< HYC)+e=¢ Since we may
assume that every Ue% contains at least one xe B, (if otherwise we can
exclude such U), (3.1) implies that v(U) < a|U|° for all Ue%. Therefore

MU = i |U,|° > a—‘i v(U) > a v(UR,U) > a v(C).

Therefore v(C) < ae. Since ¢ > 0 is arbitrary we have v(C)=0. R
LEMMA 3.2. Let 6 >0 and v be a Borel probability measure on K, such
that v(K,nZ)=0. If v satisfies

oo o (7
lim sup 21221277 P ),,) = + oo for v-a.e. X, ¥ 71 (x) = (Xphen,
nvo @y 00 @ (V)] (3.2)

then #° and v are mutually singular on K ,.

Proor. If we set

B= {xeK’f4 | lim sup Y@y 0o (p""(_V))
mw Qg 000 0y (V)
we have v(K¥\B)=v(K,\B)=0 by the assumption v(K,nZ)=0 and
(3.2). If we show s#°(A) = 0, these equalities mean the singularities of v and
H#°. As in Lemma 3.1 we treat ¢ instead of #°.
For a given keN, ¢ >0 and xeB, there exists n =n, ,,€N such that

= + o0, l//_l(x) = (xn)neN}’

[@s, 00 @ (V)] < & W@y, 00 @y (V) 2 kg, 00 0, (V). (33)

Therefore setting C(x) = ¢,, o---0 ¢, (V)(n = n, ), we obtain €, , = {C(x)|xe
B} which is an ¢-cover of B by (3.3). Recalling that €, , is at most countable,
we may choose a sequence {x?},y = B such that &, ,= {C(x?)|ieN}. We
may assume that v(C(x®)n C(x¥)) = 0 if i # j, for v(C(xP)nC(xY)) = 0 if i # j,
for v(C(x?)nC(x) <v(Z) =0. Therefore

WU C®) = 3 v(Cx®). (3.4)

i=1

Using (3.3) and (3.4), we have
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x| -

o . 1 2 . .
M6, = 310 < 3 T wCHD) = 1 ¥(UR 1 ) =

Letting k — co and ¢ — 0, we have éfg(B) = 0. Thus the lemma is proved. H

The following Lemma 3.3 is easy to be assured. So we omit the proof.

LemMa 3.3  Suppose that c,, d, > 0 and lim d, = 0 and lim :og :" =¢ If
n—* oo n—'oo Og n

. cC . c
—w<e<l, then lim > =+ and if 1 <e < + o0, then lim = =0.
n—w J n=ow d

PROPOSITION 3.4. Suppose that peé,(X,). If 0<d<96,, then poyy !
is absolutely continuous with respect to #° on K, and if 6, <9, then poy~?
and #° are mutually singular on K ,.

Proor. The Shannon-McMillan-Breiman theorem and the Birkhoff
ergodic theorem say that

1 n—1
lim —log u([xy,",x,]) = — h,(0), lim l Y Lox) = — de,u u-a.e.
n— oo n n—* o n i=0
It follows from (B2) and Remark 2.7 that

.1 _ -
,}Ln‘}) _r; lOg He dl 1(‘Px1 Qreeo (px,.(V)nKA) = - hu(0)9
.1 = s
lim —log|@,, oo, (V)I°=—6 | Ldu p-ae.
n— o n
It is easy to see that for 6 > 0, }Lrg) | @y, o0 0, (V)I° =0 p-a.e. Moreover

1 _

_ —log oy "1y, o0 @ (VINK )

oyt 0ees0 *1 xn

lim log po ™ (g, Px(V)NK,) _ im "

n= e logl(pxlo---o(pxn(l—/)l" oo

1 _
; log |(px; o= 0 (px,.(V)lo

h h o

[ — [ = _#
6JLd# 0 J Ldu o
Therefore if 0 <6 < J,, then we have from Lemma 3.3 that

o -1 Oese0 V K
lim X A (0 %,,_(Vd)n 4
n= e '(Dx‘O"'O(Dx"(V)l

u-a.e.

=0 u-a.c. x = (xn)nEN‘
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In view of Lemma 3.1 we see that uoy ™! is absolutely continuous with
respect to #° on K.
Next suppose that §, <. Then we have again from Lemma 3.3 that

oyt 0eee0 I—/ K
11m H 'P (¢x1 (px,._( J)n A)
n=o [(pxlo"'o(px,.(V)l

Therefore from Lemma 3.2 we see that uoy ~! and #° are mutually singular
on K, H

= +4+00 p-a.e. x= (xn)nsN .

ReEMARK 3.5. For peé,(2,), 6, has another characterization. That is,
0, = dimy () = inf {dimy (E)| E€ #(K ), u(E) = 1}.

The above equality can be shown as in Billingsley’s book (see Section 14 in
[2]) by using the set -

M, = {<xn)me24| fim (OB A(Lx ) au}.
n og @y, o 0 @y, (V)

Indeed the set M, has the Hausdorfl dimension equal to §, and
u(M,) = 1. See also [21] and [7]. For general treatments of the computation
of Hausdorff dimension in Billingsley’s method, see [10].

THEOREM 3.6. For ueé,(2,) the only one of the following (1) or (2) holds.
(1) wo Yy~ is absolutely continuous with respect to #°+.
(2) poy ™t and H° are mutually singular.

Furthermore (1) occurs if and only if

. ﬂ([xla”'sxn])
lim sup =— < + 00 p-a.e X = (Xp)e
o |y, 000 0 (V)P )

and (2) occurs if and only if
fimsup AR 3])
nro s @y 0o @ (V)™

PRrROOF. Suppose that ueé&,(£,). Then poy "'(ZnK,)=0 by Lemma 2.4
Set

=400 p-a.e X=X)pen-

o -1 Qeee0 V

poy (o ipx;(V)) <4 Oo}_
|¢x; Orer0 (px,.(V)l v

Then from (B2) and Remark 2.5 we have

B= {)_c = (Xu)aen € 2% | lim sup

”([xl,""xn]) < +w}‘

B = = Xnne e2*|lim sup lo - i
{)—C (cahrer € 4] 1n—'aop gexp[_5u2?=(} L(e'x)]
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Let us set for x = (x,),.n€2% and neN

_ w(x,x]) S
gn(x) = log o= 8,5 Low] log p([xy,+,Xa]) + 6, .-;o L(c'x).

Then the following equality is easy to be checked:

Au([x29"'9xn+1]) _5 L(X)
B(Dx1s X255 Xp41]) *

gn(0%) = g,41(x) + log

.u[x29"'sxn])
ﬂ([xla x29"'9xn])

By Doob’s theorem ,,ILIE) log =1,(x) p-a.e. so that

lim sup g,(ox) = lim sup g,(x) + I,(x) — 6,L(x) p-a.e. x. (3.5)

If we set g =1limsupg,, then B = {xeZ%|g(x) < oo} and (3.5) means that

0,'B =B mod (y) since I, is p-a.e. finite. Therefore by the ergodicity of u
we have u(B)=0 or 1.
Firt assume that u(B) =0. Then

-1 17
. ° x1 ©°° Py vV
lim sup a l// ((p * L2 "( )) =+ 00 p-a.e. xX= (xn)neN'

nmw Qg 0o @y (V)1

Therefore putting v=poy ™! and 6 =, in Lemma 3.2 we see that poy !
and %+ are mutually singular on K.
Next suppose that u(B) = 1. Since

B={J_c=(x..),,eN621Isup”(¢"‘°"'°¢‘"-(VZ)< +Oo},
neN | @y, 0w @ (V)|

if we set for keN

oo (V
B, = {J_c = (Xen € 2% | SUP #ox, Ol Z) < }
neN [ @y, om0 @ (V)|

we have B = (J;>; B,. Then we see that for each ke N the restriction oy !
to Y(B,) is absolutely continuous with respect to #° by Lemma 3.1. Therefore
uoy ™! is absolutely continuous with respect to #% on Y(B). Since
oy " (Y(B)) = u(B) =1, we can conclude that u oy ~! is absolutely continuous
with respect to %+ on K, itself.

The statement in the later part of the theorem is clear from the proof
above. W

Let #,(2, be the set of all the o-invariant probability measures on
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(24 %, and ue s, (2,). Let us denote by { the ergodic decomposition of
(4, B4, 1, 0) and by 7 the projection from X, to {. Let {uc|Ce(} be the
regular conditional probability measure with respect to {. Here we regard uc
as a probability measure on X,. Therefore puceé,(2,).

For 6 > 0 we put

3y ={Cel|d,. =0, ucoy " is absolutely continuous with respect to 5#° on
KA}a
&5y = {Cel|ds. =6, pcoy ! and #*° are mutually singular on K ,},
§ ={Cel|d,.>d}u(]) and (= {Cel|d,. <d}u(l)).

Under these notations we construct u$ and ui by
u‘i=J pcdpon=(C), and u‘l=f pedp o= (C).
54 154

The following Lebesgue decomposition of g-invariant probability measures with
respect to the Hausdorff measures is an easy consequence of Propositio 3.4 and
Theorem 3.6.

COROLLARY 3.7. Let pe S, (X,) and 6 >0. Then p= us + us and p, is
absolutely continuous with respect to #° on K, and p, and #° are mutually
singular on K ,. Especially if 0 < < essinf(d,.) for pon~'-a.e. C, then p is
absolutely continuous with respect to #° on K, and if &> essinf (0,c) for
uon t-ae. C, then u and #° are mutually singular on K ,.

4. Equivalence of u and %

We consider the conditions for invariant measures under which they are
equivalent to their dimensional Hausdorff measures. In view of (3.5) a
cohomologous relation can be easily obtained.

LEMMA 4.1. Suppose that 6 >0 and v is a finite measure on K, such that
v(K,nZ)=0 and

. x1 °°"° Px, 14 -
(ostza o0 om0

Then v and #° are not equivalent on K 4.

PROOF. As in §3, we show that v is not equivalent to J#2. Set

) 0000 x,.V _
Ko = {xektfim 10000 yoe) (o)
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and

oo (7
Ko = {xeKolsup e e <6 ¥ = (i

for meN and ¢ > 0. Then there exists m = m,eN such that

v(Ko)

(Km) > —

(> 0). 4.2)

m

Suppose that 0 <y <2—1, where ¢; and C, are the constants which
2
appeared in (A2) and (B2). Then there exists an #-cover # = {U;} of K,,,

such that
MU < Jf,f,@(Km,s) + 1. 4.3)

We may asume that for each ieN, U; contains at least one point x?eK,,,
since if otherwise we can exclude such U; from %. Therefore U, is written
in the form U;=g@po--0,m(V) for some xPeK,, and k(=k)eN.
W1 (x9) = xO = (xP),en)  Since

s s 7

— >0 2 |Ul° 2 @y o-0 @ (V)]

C
S &P [- 52:;3 L(e’x")] o &P [6klogec,] 3
= c, = C, C,

9

we must have k>m. Then it follows from the definition of K, , that
v(U) < ¢|U;|° for all ieN. Therefore

e o] 1 o]
KK + 1> MU =Y U > - Y w(U)
i=1

i=1

1 1
= — V(U?;l U;) 2 — V(Km,c)a
€ €

which yields
V(K,) < e(E,(Ky,) + 1) < e(HLK,,) + 1)
< e(AHL(Ko) + 1).
Therefore together with (4.2) and (4.3) we have
v(Ko) < 2e(#4(K,o) + 1). 4.4)

If Jf,g(KO) < + oo, then we have v(K,) = 0 since ¢ > 0 in (4.4) is arbitrary. But
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this is contrary to the assumption so that #2(Ko) = + 0. Then we see that
there exists a compact C = K, such that %g(C) =1. (See [5].) Suppose
that v(C) > 0. Then repeating the same argument as above for the set C
instead of K, we have v(C) < 28(9?5(C)+ 1) =4¢ It follows that v(C)=0
since ¢ >0 is arbitrary. Thus Jfg and v are not equivalent. (Jfg is not
absolutely continuous with respect to v on K#%.) H

PROPOSITON 4.2. Suppose that peé&,(X,) and that p is equivalent to
#°%. Then there exists a u-a.e. finite measurable function g such that

I,=6,L+goc—g u-a.e. 4.5)

be the function which

ProOF. Let g((x,)n) = lim sup — F(E¥r> %))
oo @y om0 @y (V)1
appeared in the proof of Theorem 3.6. Then the absolute continuity of p
means that g(x) < + oo u-a.e. as was seen in the proof of Theorem 3.4. Next
g(x) > — o0 p-a.e. can be assured by putting v=y and 6 =9, in Lemma
4.1. Therefore the relation (4.5) can be deduced from the equality (3.5). W

5. Equivalent invariant measures

Let us write 2,(2,) for the set of all the measure peé,(Z,) such that

n—1

the set { ). {I,(c'x) + log u([x;,***,%,])} }nen is bounded p-a.e. In this section
i=0

we shall show with the help of Ruelle-Perron-Frobenius operator theorem that
there is no measure in 2,(2,) which is equivalent to its dimensional Hausdorff
measure except for p_;,;.

LemMmA 5.1. Suppose that peé&,(Z2,), supp (u) = {xeZ | there exists an
open set U(x)3x such that p(U(x)) = 0} = X', and that there exists u-a.e. finite
Sunction g such that — 1,4+ 0,L=g —goo p-a.e. Then
-1

limsup Y {—1,(6'x) + 6,L(0'x)} = g(x) — p-essinf(g)  p-a.e.
0

n=o =

ProoF. Since supp (u) =24, x, >0 p-a.e. or equivalently I, is finite

p-a.e. Therefore we may assume that I, is everywhere defined and

finite. Taking an everywhere finitely defined version g, of g and putting

g, =0,L— 1, + g, o0, we have g, = g, = g p-a.e. By the way, it follows from
n—1

n—1
the definition of g, and g, that S,(x)= Y, {—I,(6'x) +6,L(c'x)} = Y. {g.(c'%)
i=0

i=0
—g:1(6""'x)}. Let us set G={xeX,|g,(x) =9,(x)} and G, =N2o0,"G.
Then u(G,) =1 and for all xe G, we have S,(x) = g,(x) — g;(6"x). Therefore
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Poincaré’s recurrence theorem says that
lim sup S,(x) = lim sup {g,(x) — 9,(6"x)} = g,(x) — lim inf g, (¢"x)
n— o0 n— Lind

= g,(x) — p-essinf(g)  p-ae. W

LeEMMA 5.2  Suppose that pe2,(2,) is absolutely continuous with respect
to #°% with supp (u) = X, and that there exists a p-a.e. finite function such
that —1,+ 6,L=g—goo p-a.e. Then — oo < p-essinf(g) < + oo.

ProOF. We may assume that I, is everywhere finitely defined. Let us

n—1

setd,(x)= > I ,‘(0'3_6) + log u([x,,-*,x,]). Then by the definition of 2,(Z,)

i=0

—00 < in,£ {d,(x)} <sup{d,(x)} < + © u-a.e.
ne neN

First clearly p-essinf(g) < + oo since g is p-a.e. finite.
On the other hand the equality pu([x;, -, x,])=exp [d,(x)] x

n—1

exp[— Y I,(o0x)] for x =(x,),.nEZ, means that the absolute continuous
i=0

condition in Theorem 3.6 is equivalent to

) {—1,(0x) + 8,L(c'x)}.

n—1
i=0

lim sup S,(x) < + oo u-a.e., where S,(x) =
Therefore by Lemma 5.1 we have lim sup S,(x) = g(x) — p-essinf(g) < + o©

u-a.e. Thus we obtain — oo < u-essinf(g). W

LEMMA 5.3. Suppose that peé, (2 ,), supp (n) = 2, and that everywhere
defined (on X,) and finite function 9§ and p-a.e. finite function g with
— o0 < p-essinf(g) satisfy the relation

Ix) = — I,(x) +g(ox) — g(x) p-a.e. (5.1
Then for every fe C(X))

[ X exp[9D)ISD)]duy(x) = Jf (x)du,(x), (5.2)

yeoy'x

where p, denotes the probability measure on X, such that
1
Hy(B) = Bf exp [— g(x)]du(x), Be B4, D = Jexp [—9(X)]dux)
B

REMARK 5.4. By the assumption of the lemma 0 < D < exp [ — u-essinf (g)]
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< + o0.

PrROOF. We may assume that I, is everywhere defined and finite as in
previous lemmas. Let us take an everywhere finitely defined version g, of g
and put g,(x) = — 9(x) — I,(x) + g,(6x). Then (5.1) implies that g =g, =g,
u-a.e. Therefore we have

Dx |[ X exp[9W]1f(M]du,x)

yeoglx

n

=|[ Y exp[—I,Q) +gi(0))—9:9) — 9:(x)1f W Idp(x)

J yeozlx

=|[ Y exp[—I1,0)—g.M1fQ)]dux)

J yeazlx

.
=|[ Y x®exp[—9.N1fW]dux)

J yeozlx
r

= | exp [— g, (x)]1f(x)du(x) = D x If (X) dp,y(x),

LY

where we used the fact that for Yeo '(x), g,(6)) = g(x) and the equality (2.1)
for the p-integrable function exp [— g]f. (Note that |exp[— g]f| <exp [— u-
essinf(g)]]f].) W

REMARK 5.5. As can be easily seen, if 3=1, and g =0 in (5.1), (5.2) is
nothing but the relation (2.1).

COROLLARY 5.6. Let u, 3 and g are the same as in Lemma 5.3.
Furthermore we assume that 9 %,. Then PA($) =0 and pu = p,.
ProOF. By Lemma 5.3 we have J‘,?;‘fdpg = deyg for all feC(2,). In

other words, (£)*u, = u,. Therefore by remarks in §2 we have P4(9)=0
and u=pu,, N

COROLLARY 5.7. If 1,€%,, then P4(—1,)=0 and pu_;, = p.
ProoF. We have only to put $= — I, and g = 0 in Corollary 5.6. W

ReMark 5.8. (1) Since (,%’:‘,M)*u: p and p_;, = p, the uniqueness of
the eigenfunction implies that £_;, 1 =1, that is Zze(,;,iexp[— 1,0] =
Yyeogix %) =1 for all xeZ,.

(2) The result P(—1,) =sup,.s (s {hl(a) — flvdl} = 0 implies that h,(o) =
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fl 2dA < ledl for Aeé&,(X,) with the equality if and only if A = pu.

(3) In order to deduce &* pu=pu, we do not need to assume that
I,e#,. For that purpose we have only to assume that I,eC(Z,). But in
this case the uniqueness of the equilibrium states for — I, is not asured.

These results are already obtained in [12] and [22] in somewhat different
contexts.

THEOREM 5.9. Suppose that pe2,(X,) and p# p_5,.. Then poyy™' is
not equivalent to #°.

PrOOF. Suppose that ue2,(X,) and poy ! is equivalent to #° on
K, . Then clearly supp (1) = 2,. Furthermore Theorem 4.2 and Lemma 5.2
indicate the existence of u-a.e. finite function g such that — I, + 6, L=g —goo
p-a.e. with p-essinf (g) > — co. It follows from Lemma 5.6 that P4(— §,L) =0
so that §, =6, and again from Lemma 5.6 that u=pu_; ;. But this is a
contradiction. H

6. Absolutely continuous measures with respect to their dimensioinal Hausdorff
measures

In this section we treat a class of measures which have a considerable
mixing property and examine their absolute continuity with respect to the
Hausdorff measures. The central limiting property of these measures enables
us to work under a weaker condition than the previous section. That is, we
shall develop our arguments only assuming the absolute continuity to the

Hausdorff measures.
First let #" and 4, be sub o-fields of £, generated by the families €” ;
and €3, respectively. For ue#?(X,), we define

¢,(n) = sup sup (esssUPycs, |u(B|2")(x) — u(B)I).

neN Be®Bn+m

Under these notations we define
FuZ) =D, )N{HeP(Z Y1, eL*(Z4, 1), Y, /un) < 0}.
n=1

Now we quote a central limit theorem from [11]. See also [9] and
[14]. For felL?*(X,, p) the following limit (f) exists:

n-t 2 \1/2
Y fo a"—nffdu dﬂ) .
=)

6(f)=<lim-1—f
ﬂ_'wn k

Furthermore if ¢(f) > 0 then the following central limit theorem holds:
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Y @ x)—nffdu 1
li P =
A B XESa 5(f)/n N

On the basis of the above theorem we have the following theorem.

THEOREM 6.1 Suppose that pe #,(X,) and p+# ps,;. Then poy™?
% are mutually singular on K ,.

ProoF. Set 9= —1I,+ 6,L. By the assumption 9e L*(u) and deu =0.

Assume that poy ™! and #°% are not mutually singular on K,. Then
by Theorem 3.6 poy ™! is absolutely continuous with respect to #°* on
K,. Again by Theorem 3.6 we have

o -1 [<ERXNC] I—/ K
hT—i})‘lp U 'ﬁ |(p((p:1.“o p (p(x‘:/()ld‘)‘n A)
X1 Xn

<+ u-a.e.
Since ue2,(x,), this is equivalent to the condition
n—1
lim sup S,(x) < + o0 p-a.e. x€X,, S,(x)= Y. 9(c¢'x) (6.1)
n—w i=0

as we have seen in §5.

1 1/2
Set ¢ =a(9) = <hm JlS Izdu> . Suppose that ¢ >0. Then

: ® })
lim y({xez e 5 dx, for all aeR.
nm e 4 a\/_ V2r Ja

But this is impossible in view of (6.1). For, if we put h(x) = sup S,(x), then
neN

for neN we have
S
p({)_cEZA 5% > 1}) s,a({erA o\(;); }) = flA,(x)du(x), (6.2)

where A, = {erAl— \/_} Since 1,, <1 and 1, —0 p-ae. by (6.1),

7

Therefore ¢ = 0. Then there exists ge L?(Z,, p) such that 9= — 1, + §,L
=g—goo p-ae. (see for example Lemma 2.1 of [15]) and Lemma 5.2
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indicates that p-essinf(g) > — co. Therefore by Corollary 5.6 we easily have
0,=0,4 and p=p_;,, as in Theorem 5.9. This does not match our

assumption. Hence u is not absolutely continuous with respect to #° and
this means that y and 5% are mutually singular on K, by Theorem 3.6. W

REMARK 6.2. Suppose that J II,[**%dp < + o0 for some 6>0 and

¢(1) < 1. With these aditional assumptions the following law of iterated
logarithm

n—1
2 {~ 1,9 + 9,L(e")}
lim sup =0 =1,

n= o a./2nloglogn

n—1
Z {_ I"(O'i_)_(f) + 6;4L(OJ)_‘)}
lim inf £=2 = —1, p-ae.
noe 6/2nloglogn
holds if 6 > 0. Thus in this case the condition ¢ = 0 can be obtained by the
above equality as well. For general treatments of the law of iterated logarithm
for weakly independent random variables, i.e. random variables with the

condition corresponding to ) *_, \/$(n) < + oo, see [11] and [14].

We call a contraction map ¢: R?— R? is a similar map if there exists a
constant 0 < r(¢) < 1 such that |¢(x) — ()| = r(¢)|x — y| for all x, yeR?. If
@ is a similar map it is easy to see that j, =r(¢) and that L((x,),n) =
—logr(p,,) for the self-similar set K constructed from an N-tuples of
contractions @ = {@,,---,@x}. In this case P4(— SL) is equal to log A;, where
A5 is the maximal eingenvalue of the matrix Lj = ((L3););. jes» (L3)i; = Aijr(9) ~°.
Furthermore the equilibrium state for — L is the (simple) Markov measure

A..r.

vp, where the defining probability matrix P = (P,)); s is given by P;; = AU 1)
T

(r)ies is the (simple positive) right eigenvector of 4 corresponding to the
eigenvalue ;. This is obtained just by an appication of the classical
Perron-Frobenius theorem. See [19] for the classical Perron-Froebnius
theorem and [13] for its applications. The Hausdorff dimension of K, is
given by the unique positive solution of P4(— dL) =log A; = 0. Theorem 6.1
enables us to characterize u_;,; as the unique absolutely continuous multiple
Markov measure supported by X, with respect to its dimensional Hausdorff
measure. Moreover, since I,_;,; €%, in this case, we see that there exists

geF, such that —1,_; , = —90,L+g—ge-o. But Corollary 42 in [13] in
fact says furthermore that g depends only on the first coordinate.



Measures on self-similar sets 23

7. Remarks on cohomology

In §4 we obtained a coholomogous relation (4.5) for peé,(2,) and used
it in the arguments in §5 and §6. We mention here that the following stronger
results holds.

LemMa 7.1. If ue2,(%,) and poy ™! is equivalent to H#°+, then there
exists a measurable function g and F € B , which satisfy the following conditions.
(1) g(x) is finite for all xeF.

2 —-1,x)=—0,LKx) —g(x) + g(ox) for all xeF.
(3 o 'F=F, u(F)=1

PrROOF. As before we may assume that I, is everywhere finitely
defined. As was seen in Lemma 5.5 we have lim sup S,(x) < + oo p-a.e. where

n— o

n—1
S,x)= Y {—1I,(0'x) + 6,L(¢'x)}. Set g(x) = lim sup S,(x). Since S,,,(x) =
i=0 n— o
—1,(x) + 6,L(x) + S,(0x) for all neN, we clearly have
9(x) = — I,(x) + 6,L(x) + g(0x). (7.1)

Set F={xeX,|—o <g(x)< +o}. Then u(F)=1. On the other hand
since (7.1) indicates that g(x) is finite if and only if g(ox) is finite, we have
0;'F=F. Of course it follows from (7.1) that — I, (x)= — §,L(x) + g(x)
—g(cx) on F. A

The lemma above enables us to relax some tediousness arising from the
ambiguity of functions on null sets in §5. (But it seems of no direct use in
§6.) In fact for an example we can carry on the computation in Lemma 5.3
with g, = g, = g if we restrict the integrated domain to F.

We next consider the uniqueness of the function g in the cohomologous
relation up to constant.

LEMMA 7.2. Suppose that pe 9,2 ,) and poy~' is absolutely continuous
with respect to #°%. If

-1,=-6,L+g—geco, —I,=—06,L+h—hoo pae.
for u-a.e. finite g and h, then g = h + ¢ p-a.e. for some constant c.

ProoF. By Lemma 5.1 we have
lim sup S,(x) = g(x) — p-essinf (g) = h(x) — p-essinf (h) p-a.e.

Recalling that Lemma 5.2 says that u-essinf(g) and u-essinf (h) are both finite,
we have g = h + ¢ p-a.e. for ¢ = p-essinf(g) — u-essinf (h). W
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