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ABSTRACT. We treat here measures which are invariant with respect to the renorma-

lization map on a self-similar set. A criterion for their absolute continuity with respect

to their associated Hausdorff measures is given in terms of symbolic dynamics. Using

this criterion, we give a striking characterization of the equilibrium state for a certain

potential function.

1. Introduction

In this paper we shall study the properties of ergodic invariant measures
on self-similar sets. Especially we shall investigate the relations between
invariant measures and the Hausdorff measures associated to them from the
point of the absolute continuity. In the sense of [8], a self-similar set K is
constructed from a system Φ = {φ f | ie5}, S = {!,•••,Λ/"} of contractions and

a bounded open set Va Rd by K = Π^°=ι U(iι in)es Ψ^ °'"° Φin(^) Here we

assume that Φ and V satisfy Uf=ιΦi(^) c V and <Pi(V)r\q>j(V) = 0 if iφj,
which is often referred to as the open set condition. See [8] for the details. It
is easy to see that there exists a continuous surjection ψ: SN -» K and this
fact enables us to work on the symbolic dynamics (SN, σ), σ ((xn)πeN) = (Xn+ι)neN
In order to guarantee the existence of the renormalization transformation /
on K corresponding to σ with a measure theoretically negligible exceptional
set, we have to make a further assumption (A7) below. By virtue of this
assumption we can immediately have a one to one correspondence between
/-invariant measures and σ-invariant measures through the map ψ. In this
paper we shall make a little extension of the above notion of self-similar sets.
That is, as in [1], for each N x N aperiodic matrix A we construct a compact

set KA by KA = 0*°°=! Oaίt....i^ΣΛtn <Piι °'"° <M*0 where ΣAtH is the set of all
^-admissible words of length n, that is, those (ϊ1, ,iπ)eSn such that Aijij+l = 1,
7 = 1, •••,/! — 1. Deterministic Markov self-similar sets which are considered
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in [20] are contained in our cases so that the theory developed in this paper
is applicable. Corresponding to the restriction of the renormalization map /
on KA, we consider the subshift of finite type (ΣA9 σ), i.e. ΣΛ = {(xn)neNe
{l9 ,N}N\AXnXn+ί = 1 for all weN} and its left shift is denoted by σ as in
the previous case. As an application of Ruelle-Perron-Frobenius theory, it is
known that the Hausdorff dimension δA of KA is equal to the unique zero
point of the pressure, that is, the unique positive solution δ of the equation
PA(— <5L) = 0 for some function L:ΣA^>R. Furthermore if μ~δAL is the
equilibrium state for the function — δAL, its image measure μ-δΛL°Ψ~l and
3tf&Λ are equivalent as Borel measures on KA and the Radon-Nikodym

du_x T ° ψ~^
derivative *— is bounded away both from 0 and + oo. See [1].

The notion of the (Hausdorff) dimension of measures was introduced in
[21] for invariant measures of certain diffeomorphisms and investigated
elaborately in case of self-similar sets in [7]. Roughly speaking, for an ergodic
σ-invariant measure μ, its dimension δμ can be characterized as the number
δ for which μ([*ι,•••>*„]) decays with the same speed as \φxi o o φXn(V)\δ

as n -> oo. Since {\φXί° ° φXn(V)\δμr} generates the Borel measure <&-» which
differs from Jtfόμ only by a constant factor, it will be not meaningless to
compare μ o ψ~l and tfδμ as Borel measures on KA. Actually in [15], though
there is some difference in the contexts, some equilibrium states are compared
with the (generalized) Hausdorff measures associated to them.

The contents of this paper are as follows. After reviewing some basic
facts in §2, we examine in §3 the absolute continuity and singularity of the
^-images of σ-invariant measures on ΣA with respect to the Hausdorff
measures. That is, for an ergodic σ-invariant probability measure μ, μ o ψ ~1

is absolutely continuous with respect to 3Pδ on KA if δ < δμ while these two
measures turn out to be mutually singular if δ > δμ. On the other hand when
δ = δμ we see by virtue of the ergodicity that ergodic invariant probability
measures are divided into two extreme classes; absolute continuous ones and
singular ones. In other words, a striking feature of an ergodic measure is
that it never has the absolute continuous part and the singular part
simultaneously. These considerations lead to the Lebesgue decomposition of
non-ergodic σ-invariant measures with respect to the Hausdorff measures. In
§4 we deduce a cohomologous relation between the two functions - δμL and
— Iμ below under the assumption that the measures considered are equivalent
to their dimensional Hausdorff measures. In § 5 we shall show that within a
certain class £&σ(ΣA) there exists no equivalent invariant ergodic measure
supported by ΣA except μ-δΛL. See §5 for the definition of &σ(ΣA). In §6,
restricting the class of measures to smaller one than §5, we shall show that
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there exists no absolutely continuous measures supported by ΣA except for

Though there are slight differences, our strategies are almost common in

both §5 and §6. That is, we shall design to deduce some kind of

cohomologous relations under the given assumptions and to apply these

relations to Ruelle-Perron-Frobenius theory to determine the measures. We

should be careful in these procedures because our cohomologous relations are

only given in the measure theoretic sense. This is a main difference between

our arguments and those in [15]. That is, we do not assume the Holder

continuity of Iμ. Under our assumptions the law of iterated logarithm dose

not necessarily holds so that it may be difficult compare invariant measures

with the Hausdorίf measures in more precise form as in [15].

The author would like to express his deep gratitude to Professor I. Kubo

for valuable comments and suggestions. He would also like to offer his thanks

to Dr. S. Ikeda for helpful discussions.

2. Notations and preliminaries

For later use we shall begin this section with some definitions of the

symbolic dynamics called subshifts of finite type. Suppose that 5 is a finite

set with #S = N.

Let JίN be the set of all N x N type 0-1 aperiodic matrices, that is,

JίN = [A = (Aij)ijeS9 ^-€{0, 1}, Ak > 0 for some fceN}.

Let us fix AeJΐN and set

y I /Ύ v ... Y \c Vn\ A 1 ί 1 9 . . *ι 1 \
^A,n — I\xl9 X29 yXn)^^ l^XiXi+ι ~ A» l ~~ 1' *•> >n ~ 1 / »

ΣΛ = {* = (Xn)neNεSN\AXnXn+1 = 1 for all neN}.

Let us also define

We shall simply write DΊ,•••,*„] for [ι'ι,•••»*'«]"•

We introduce the topology into the space ΣA with ζ6A = <&Atl as its open

basis. It is easy to see that this topology is nothing but the product topology

induced by the discrete topology on 5, which is also equal to the topology
00 £

generated by the metric d(x, y) = £ -̂  for x = (xπ)MeN, y = (yn)n

«=ι ^
where ditj =1 if i = j and δtj = 0 otherwise.
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The topological Borel σ-algebra on ΣA is denoted by &A. In other words,
&A = σfXJ, i.e. &A is the σ-algebra generated by <&A. Let IN be the N x N
matrix whose entries are all equal to 1. ΣlN, ^/^,π and #/£fι are denoted by
simply Σ, <&„ and # respectively. The left shift on Σ is denoted by σ, i.e.
σ((*w)m=N) = CxWiXieN The restriction of σ to 27^ is denoted by the same
symbol σ. But later we need to treat the inverse images of σ on ΣA. In
these cases in order to avoid the confusion we write in such a way as
σA

 1 x. More concretely σA

 1 x = {jx \ Ajxι = 1, x = (xM)ΛeN}.

For a differentiate map φ on a certain domain in Rd let us denote by
J(φ, x) the Jacobian matrix of φ at x and by j(φ, x) the operator norm of
the linear map induced by J(φ, x).

Suppose that a system Φ = {φ^ieS of maps on Rd and a bounded open
subset V of Rd satisfy the following conditions.
(Al) φh ieS are all C1 in an open set which contains V.
(A2) There exists 0 < cx < c2 < 1 such that ct < [/(φ,-, x)| < c2 for all xe P,
iεS.
(A3) ^(φf, x) is α-Hόlder continuous on V where 0 < α < 1, that is, there
exists C > 0 such that \j(φi9 x) -j(φi9 y)\ <C\x- y\* for all x,yeV, ieS.
(A4) 7*(φ, x)"1 J(φ, x)eθ(d) where 0(d) stands for the d-dimensional orthogo-
nal group.
(A5) V and φ^0"-φin(V)9 (il9"'9in)eSn

9 neN are all convex.

(A6) (JieS<Pi(V) c K Φι(ΠnφXJ) = 0(i ^7).
(A7) The set Z0 = \Jt,jesti*j<Pi(v)n<Pj(v)is at most countable and .4n(x)n Am(x)
= 0 if n Φ m for every xeZ0, where A0(x) = {x}, An(x) = {φfl o . - o φίπ(x)|
(ί1, ,yeS'1}, neN.

REMARK 2.1. From conditions (A2) and the inverse function theorem it
is easy to see that φ^ieS) are all injections in V. The condition (A2) and
(A5) also say that <p f(ieS) are all contractions in V. Indeed \\φt(x) - q>i(y)\\ <
C2IIχ — y II f°r all x, yεV.

REMARK 2.2. When d = 1 some of the above conditions can be
relaxed. Firstly (A4) clearly turns out to be a meaningless condition. So we
can omit it. Next we may replace (A5) by
(A5)' V is an interval.
This is equal to that V is convex. The continuity of φi9 iεS automatically
indicates that φ^ o φin(V), (i1,'-9in)€Sn, neN are all convex (intervals).
Moreover it can be easily checked that (A7) is automatically satisfied under
the other conditions, so that we do not need it.

Fix Φ = {φjies and V which satisfy the conditions (A1)-(A7). Let us set
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TTT r\ oo I I /T7\
/V A == I |tι= 1 Wίi i \eΣ Ψi ° Ψί ° * * * ° Ψ' \ * )

for each AeJίN. KlN is simply denoted by K if there is no danger of
confusion. If is easy to see that KA is a compact subset of V for all A e JIN.

A typical example of Φ and V satisfying the above conditions is d = 2,

, K={(x,y)6R d | y>0,

3'

In this case X is the Sierpiήski gasket.

Let ψ: Σ ^> K be the map defined by

Note that the right hand side of the above definition is indeed a singleton
because (pt, ieS are all contractions as pointed out. Clearly ψ is a continuous
surjection to K. For AeJίN the restriction of ψ to ΣA, which is also denoted
by the same symbol ψ, gives the map to KA.

Though the set KA and the map ψ depends on the choice of the system
Φ as well, we simply write in the above way.

For each AeJPN, KA has the following self-similar structure:

where Kt = Ππ°°=2 U(ί,i2,...,in)e^,n (pi°<pi2°'~° <pin(V).

REMARK 2.3. In [20] the notion of Markov-self-similar set was introduced
and investigted elaborately. Markov-self-similar sets in deterministic cases can
be regarded as self-similar sets in the above sense if we choose defining matrices
appropriately. That is, a deterministic Markov self-similar set K is constructed
from JV2-tuple of contractions Φ = {φ0 |i,;'e{l, ,N}2} and a bounded open

set V, which satisfy the open set condition, by K = ΠΓ=ι U(iι,...,in)€{i ..... NΓ ^1*2 °
Φi2ί3 °'"° Φίn-ιin(^) This set can be γiewe<i as the self-similar set constructed
from the following situation in our case: 5 = {!,-••, A/"}2, Φ and V are the
same and the matrix A = (A-^ is given by

if i=ίιi2J
otherwise.

It is easy to see that AεJtN2. Indeed A2 > 0.

Set Z = U(/1,...,in)es«,neN <Pii °~'° <Pin(
zo)> W= Ά'1^), K* = K\Z and
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LEMMA 2.4. ψ: Σ*-+K* is a bijection and σ~l(Σ*) = Σ*.

PROOF. Since the original map \\ι : Σ -> K is surjective, it is clear from
the definition Σ* = \I/~^(K*) that ψ: Σ*^>K* is surjective.

Assume that ψ(x(i)) = xεK« for x(0 = (x^)neN(i_= I 2), x(1) * x(2). Setting
m = min {neN\x(

n

ί} φ x(

n

2}} and recalling that φ{\ V^> V, iεS are injections, we
have

Z,

which is impossible. Thus the injectivity of ^ : Σ* -> K* was shown as well.
Next suppose that x = (xn)ne^eΣ# and σxφΣ*. By the definition of 27*,

we have y = \l/(σx)φK*, that is, yεZ. By the way xeΣ* implies ψ(x)
= φXl(y)φZ. This is clearly impossible. Therefore the relation Σ* <= σ~l(Σ#)
holds.

On the other hand assume that x = (xn)ne^eσ~ί(Σ#) and xφΣ*. Set
y = ψ(σx) as before. Then yφZ and ^(x) = φXί(y)eZ. The latter relation
implies that there exists (i1, ,iπ)e5π(n6N) such that φ^iy^^φ^ ° ° Φin(^o)
by the definition of Z. If f x = x l 9 the injectivity of φjcι means y e φ ί 2 o ..0

φin(Z0) c: Z, which is contrary to the condition yφZ. If ι\ 7^x l 5 we have
y£<Pii(V)ftq)x^(V) c= Z0 c Z, which is impossible as well. Thus we have shown
that σ~lΣ*cΣ*.

REMARK 2.5. Let Σ*A = Σ*(}ΣA and K*A = K*nKA for AeJ(N. Then
clearly σA

 x (Z1 )̂ = Σ*A and ψ: Σ^-* K*A is bijective.

In view of Lemma 2.4 the map /: K*^> K*, f(x) = φ^(x) if xeφ^K) is
well defined. This transformation is called the renormalization transformation
on K* and the following diagram is clearly commutative.

Σ# _2L^ Σ*

From now on we shall fix AeJΐN. Let <fσ(ΓJ be the set of all σ-in variant
ergodic probability measures on ΣA and set <£f(KA) = {ve^(KA)\ v(Z[\KA) = 0,
vAof~1 =VA}, where 0>(KA) denotes the set of all the probability measures
on KA, VA the restriction of v to K\. The following lemma shows that the
correspondence between $σ(ΣA) and ^-(K )̂ is easily given.

LEMMA 2.6. μ(ΣAnW) = 0 for every με£σ(ΣA).
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PROOF. Let xeZ0 and set Γn(x) = ΣAnψ~1(An(x)). Then from (A7) we
have Γn(x) Π Γm(x) = ΣA n ψ ~ 1 (An (x) n Am(x)) = 0 if n φ m. Moreover it is easy

to see that ΓH(x) = σA»Γ0(x). Therefore we have μ(\J?=0Γn(x)) = Σ»%M/;M)
and μ(Γw(x)) = μ(σ^T0(x))) = μ(Γ0(x)) for all neN. This means that μ(Γn(x))
= μ(.Γ0(x)) = 0 for all neN. Since Z0 is countable, we have μ(ΣAΓ\ψ~ί(Z)) =

z0 U."-o ΓΛ*)) = 0.

REMARK 2.7 From Lemma 2.6 it is clear that the map ψ*:$σ(ΣA)^>
(^(K^), ψ*(μ) = μ ° \j/~^ is a bijection. It is also easy to see that if μeδσ(ΣA)9

then μo^- 1(φ j c ιo...oφ χ n(i?)nXA) = μ([x1,...,xJ) for all (xl9 9xJεΣAtn.

For μef^ΣJ let us set χμ = Σί6Slmμ([i] k;1^)) and^μ= -logχμ,
where lβ is the indicator function of the set B and μ([ΐ] \GAI(&A)) i§ Λe
conditional probability measure. Note that χμ > 0 μ-a.e. so that /μ is
well-defined μ-a.e. It is not difficult to check from the definition of χμ that

for every μ-integrable function /, where Eμ(f\σA

1(^A)) stands for the condi-

tional expectation. In other words, [ £ Xμ(y)f(y)]dμ(x)= \f(x)dμ(x) for
J zeσ^σx J

every μ-integrable function /. Since μ is σ-invariant we also have

f[
J

[ Σ Xμ(y)f(y.ndμ(x)=f(x)dμ(x). (2.1)

Next we shall quote from [3] the thermodynamic formalism on (ΣA, σ)
in general. See also [17]. Let us denote the set of all the (real-valued)
continuous functions on the space ΣA by C(ΣA). For θeC(ΣA) we define an
operator J27/: C(ΣA)^C(ΣA) by

Its dual operator (&*)* can be defined on the set of signed measures
that is,

*μ= \&Afdμ9feC(ΣA)foτ

Here the usual topologies are given on C(ΣA) and Jt(Σ^. That is, we give
C(ΣA) the topology induced by the norm 11/1100 = sup£eΓJ/(x)|, /eC(Σ"κ) and
J/(ΣA) the vague topology (weak-* topology).

For feC(ΣA), set
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var?> (/) = sup (\f(x) -f(y)\ \x = (xπ)M6N, y = (yn)ne»eΣA, xn = yΛ9 n = 1, 2,-,m}

Then for 0 < β < 1 the space

//^ = {/eC(27A)| there exists C > 0 such that var^(/) < Cβn for all neN}

var(w)( Π
is a Banach space with the norm ||/||^ = H / H o o + sup — - - . Let us set
<& — i i if πeN βn

^A — \Jβe(Q,l)nβ

Then the Ruelle-Perron-Frobenius operator theorem says that for every
there exist unique A 5>0, Q<h9eC(ΣA) and v9e&(ΣA) such that

and

im - f

for allfeC(ΣA).
On the other hand there exist unique μθe£σ(ΣA)(in fact weak Bernoulli;

see [3]) and P^eR such that for some y1 ? y2 > 0

71

for all neN and for all x — (xπ)πeN

e^

μ5 and PA(ff) are called the equilibrium state and the pressure respectively for

Another characterization of PA(θ) is given by PA(ι9) = sup \hμ(σ) +
Λ Λ μe^<r(i:^) (

3dμ>, where «/σ(^) is the set of all the σ-invariant probability measure on

ΣA and hμ(σ) is the entropy of σ with respect to μ. Furthermore μ9 is

characterized as the unique maximizer so that PA(Θ) = h^σ) + 9dμ9.

The relation between A5, v5, Λ5 and PA($), μ9 above are given by

P^(θ) = log λ9 and μ, = h9v9 which means μfl(5) = h9dv9 for all Be^.
JB

A simple observation of the proof of Ruelle-Perron-Frobenius theorem
tells the following fact: If 9 e^A and there exist μG^(ΣA) and λ>0 such
that (&*)* μ = λμ, then λ = λ9 and μ = v9. Furthermore if the above μ
belongs to $σ(ΣA) we can conclude that μ = μ9 and h9 = 1, for μ9 is absolutely
continuous with respect to v9 = μ and the ergdicity of μ9 means μ9 = μ = v9
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so that h& = 1.
In what follows some definitions and notations on Hausdorff measures

and dimensions are given. See [5], [6] or [16] for the details. For a
bounded B c Rd and δ > 0, a finite or countable family <% = {Ut \ l/f c Rd, ieN}
(fll is called finite if £7, = 0 with finite exceptional ieN) is called δ-cover of
B if B c U f i i U , and 117,1^5 (ieN), where |l/| = supx>yeC7 \x - y\ for 17 c
Rd(|0| = 0). For β > 0 we define Jί*(W) = £;°=1 \Ut\

β if'# = {l7 f | ieN}.
For a family ^ of subsets of Rd we define

> ̂  is a finite or countable <5-cover of B},

= lim

Here we conventionally put ^(A) = + oo if there is no finite or countable
<5-cover of B which is contained in ®.

When ® = 2Rd, we simply write jf/ and jf ^ respectively. Furthermore
we define dimH (B) = sup {j8: jf?β(B) = + oo}. It is well known that dimH (B)
is also given by inf {β: Jjfβ(B) = 0}, and it is easy to see from the definition
that jf£ < tf* for all & and β > 0. Jt?β(B) and dimH (B) are called the
^-dimensional Hasudorff measure of B and the Hausdoff dimension of B
respectively.

Define the function L:ΣA^R by L(x) = —Iog\j(φxι9ψ(δx))\. Then it
is standard to show the following facts. We mention here that the convexity
condition (A5) is used in obtaining (B2) and (B3).

(Bl) Le^.
(B2) There exist 0 < C1 < C2 such that

Ci \φxι o-o φXn(V)\ < exp ["j] L(σfx)] < C2 |φxι o-o φXn(V)\
ί = 0

for all neN and all xeΣA.

(B3) For all β > 0 there exists a constant 0 < C3 < 1 such that

where # = {φxι o o φ
It immediately follows from these results that, if we put δA = dimH (KA),

δA is equal to the unique positive solution δ of the equation PA(— δL) = 0.
Indeed by virtue of (B2) the equilibrium state μ~δAL satisfies

< y 25 f°Γ all [ * ι - > ' ' ' 9 ίJ 6^>A «ί "eN
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for some 0 < y± <y2 Therefore we can easily obtain 0 < 3^~A(KA) < + oo,
or equivalently 0 < tf δA(KA) < + oo in view of (B3). Furthermore it can be
also seen that 3tf*Λ is equivalent to μ~δAL as Borel measures on KA and the

Radon-Nikodym derivative —-̂  has a version uniformly bounded away

both from 0 and +00 on KA. See [4], [7] and [18].
On the other hand the variational characterization of the pressure gives

the equality δA = supμeSσ(ΣA)δμ where δμ = -jτ Moreover μ~δAL is the

unique maximizer, that is, dimH (KA) =

Ldμ

h,,-A

3. Comparison with μ and

In what follows the Hausdorff measures are always restricted to the Borel
field on Rd unless otherwise stated. Let μ and v be (not necessarily σ-finite)
Borel measures on a Borel measurable set C a Rd. μ is said to be absolutely
continuous with respect to v if v(B) = 0, Be$(C) (the Borel field on C) implies
μ(B) = 0. Note that the absolute continuity does not necessarily mean the

dμ
existence of the derivative — in Radon-Nikodym sense because the measures

dv

considered here are not necessarily σ-finite. μ and v are said to be equivalent
if each of them is absolutely continuous with respect to the other, μ and v
are said to be singular if there exists Be$t(C) such that μ(B) = 0 and v(Bc) = 0.

Results similar to the following Lemma 3.1, Lemma 3.2, Theorem 3.6 and
Lemma 4.1 in the next section can be found in [18] (Theorem 67) and [23]
in general contexts. Specifying the situation, we can obtain the absolutely
continuous or equivalent conditions in terms of the information function Iμ

in a sharper and more useful form for the research below.

LEMMA 3.1. Let v be a Borel probability measure on KA such that
v(KAΠZ) = 0. For δ > 0 and 0 < a < + oo, set

Ba = x e ^ J s u p - * a,

Then the restriction of v to Ba which is denoted by vBa is absolutely continuous
with respect to J^δ on Ba.
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PROOF. From (B3) it is sufficient to show that vBa is absolutely continuous
with respect to Jί*J. Note that

v(φxt o . .o φXn(V)) <a\φxί o. . o φXn(V)\\ xeBa. (3.1)

Suppose that Ce3$(Ba) satisfies <#~(C) = 0. Then by the definition of Jtf% for
any given ε > 0 and ε' > 0 there exists ^ = {l/J which is an ε'-cover of C
such that <% a <% and Λr*(ίf) < &*#(€) + ε < ̂ J(C) + ε = ε. Since we may
assume that every U etft contains at least one xeBa (if otherwise we can
exclude such 17), (3.1) implies that v(U)^a\U\* for all UeW. Therefore

oo oo

i = l i = l

Therefore v(C) < αε. Since ε > 0 is arbitrary we have v(C) = 0.

LEMMA 3.2. Let b > 0 and v be a Bore I probability measure on KA such
that v(KAf]Z) = 0. If v satisfies

- + oo for v-a.e. x, ψ (x) = (xπ)neN, ^

then 3tfδ and v are mutually singular on KA.

PROOF. If we set

B = x 6 K\ \ lim sup xι x

δ = + oo, ^ ' λ (x) =
5

we have v(K*A\B) = v(KA\B) = 0 by the assumption v(X^nZ) = 0 and
(3.2). If we show tfδ(A) = 0, these equalities mean the singularities of v and
3tfδ. As in Lemma 3.1 we treat JfJ instead of 3tfδ.

For a given fceN, ε > 0 and xe£, there exists n = n fc,ε,xeN such that

\φ* »•••» ̂ n(ήl < £> vfo,, —° ̂ (κ» > fc|ς»xι o. .o φjy)\ . (3.3)

Therefore setting C(x) = φ,, ° ° <j»XB(^)(n = "*,£,*)> we obtain #M = {C(x)|xe
B] which is an ε-cover of B by (3.3). Recalling that #M is at most countable,
we may choose a sequence {x(ί)}teN c B such that "<?»,„ = {C(x(i))|ίeN}. We
may assume that v(C(x(i))nC(x0'>)) = 0 if i *j, for v(C(x(ί)) n C(xϋ))) = 0 if i *j,
for v(C(x(i)) n C(xω)) < v(Z) = 0. Therefore

v(UΓ=ιC(x(ί)))= Σ v(C(x(ί>)). (3.4)
ί=l

Using (3.3) and (3.4), we have
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J = Σ IC(*(ί))l* < Σ vW')) = v(UΓ=ι c(χ(ί))) = .
i=ι fc/=ι k k

Letting k -> oo and ε -» 0, we have 3f~(B) = 0. Thus the lemma is proved.

The following Lemma 3.3 is easy to be assured. So we omit the proof.

lOg £

LEMMA 3.3 Suppose that cn, dn>0 and lim dn = 0 and lim - - = ε. If
n->oo "-^logα,,

c c
— oo < ε < 1, then lim — = + oo and if 1 < ε < + oo, then lim — = 0.

»->« °̂°

PROPOSITION 3.4. Suppose that μe<fσ(27A). If 0 < δ < <5μ, then μ°φ l

is absolutely continuous with respect to tfδ on KA and if δμ < δ, then μoψ'1

and tf6 are mutually singular on KA.

PROOF. The Shannon-McMillan-Breiman theorem and the Birkhoff

ergodic theorem say that

1 1 w~1 Γ
Jim - log μ([xx, , xJ) = - hμ(σ), Jim - £ L(σx) = - Ldμ μ-a.e.

It follows from (B2) and Remark 2.7 that

lim - log μ o i/, -! (φ o... o φ (V) n KA) = - hμ(σ),
π-^oo n

Jim llog \φxι o . .o φXn(V)\δ = - δ \ Ldμ μ-a.e.

It is easy to see that for δ > 0, lim \φx o - o φ (F)^ = 0 μ-a.e. Moreover
* H-»ro ' ' •*! ' -*Π x

*„ _

Γ Γ
Lαμ d Lαμ

J J
<5

Therefore if 0 < δ < δμ, then we have from Lemma 3.3 that

..-. , „ ,



Measures on self-similar sets 13

In view of Lemma 3.1 we see that μ ^ i / / ' 1 is absolutely continuous with
respect to Jt?δ on KA.

Next suppose that δμ < δ. Then we have again from Lemma 3.3 that

+ „ χ = ( )
~ π/πtm

\<PXI°'~°<PX

Therefore from Lemma 3.2 we see that μoφ'1 and 2tf* are mutually singular
on KA. M

REMARK 3.5. For μe<fσ(ΓJ, δμ has another characterization. That is,

δμ = dimH (μ) = inf {dimH (£) | £ e Λ(X J, μ(£) = 1} .

The above equality can be shown as in Billingsley's book (see Section 14 in
[2]) by using the set

log μ([*ι, •••,*„])

Indeed the set Mμ has the Hausdorff dimension equal to δμ and
μ(Mμ) = 1. See also [21] and [7]. For general treatments of the computation
of Hausdorff dimension in Billingsley's method, see [10].

THEOREM 3.6. For μ e $σ(ΣA) the only one of the following (1) or (2) holds.
(1) μoψ'1 is absolutely continuous with respect to Jtfδμ.
(2) μoψ'1 and tfδμ are mutually singular.

Furthermore (1) occurs if and only if

juίTxi ••• x 1)

(2) occurs if and only if

lim sup "- Λ = + oo μ-a.e. x = (xπ)πeN.

PROOF. Suppose that μe^σ(ΣA). Then μ o ψ ~ l (Z n KA) = 0 by Lemma 2.4
Set

j.
J

oo

B = ϊ = (xB)πeNβ^|limsuplog— —- < + o o .
π-oo exp[-5μX,=0L(σ'x)]

Then from (B2) and Remark 2.5 we have
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Let us set for x = (xn)πeNeZ^ an^ neN

(x) = lo M[*ι»-,*,J) =lo ,Γχ χ-|) + 5 V
exp [- 5μΣ"Γo L(σ'x)] *' ' μ ;=0

Then the following equality is easy to be checked:

By Doob's theorem lim log - — — — - = I (x) μ-a.e. so that

limjjupg n(σx) = limjmpgn(x) + Iμ(x) - δμL(x) μ-a.e. x. (3.5)

If we set 0 = limsup0Λ, then B = {xeΣ^\g(x) < 00} and (3.5) means that

σA

lB = B mod(μ) since Iμ is μ-a.e. finite. Therefore by the ergodicity of μ
we have μ(B) = 0 or 1.

Firt assume that μ(B) = 0. Then

^\
= + oo μ-a.e. x = (xπ)πeN

Therefore putting v = μ o ψ ~1 and δ = δμ in Lemma 3.2 we see that μ o ψ ~1

and J^δμ are mutually singular on KA.
Next suppose that μ(B) = 1. Since

[ nne m=N |φxι o . o φ

if we set for feeN

we have B = (J?=1Bk. Then we see that for each fceN the restriction μ^φ'1

to ψ(Bk) is absolutely continuous with respect to 3tfδμ by Lemma 3.1. Therefore
μoφ'1 is absolutely continuous with respect to Jίfδμ on ψ(B). Since
μ o ψ ~l(ψ(B)) = μ(B) = 1, we can conclude that μ°ψ~l is absolutely continuous
with respect to Jf*** on KA itself.

The statement in the later part of the theorem is clear from the proof
above.

Let <#σ(ΣA) be the set of all the σ-invariant probability measures on
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(ΣA9$A) and μe^σ(ΣA). Let us denote by ζ the ergodic decomposition of

(ΣA9 $A, μ, σ) and by π the projection from ΣA to ζ. Let {μc |Ce(} be the

regular conditional probability measure with respect to ζ. Here we regard μc

as a probability measure on ΣA. Therefore μce<ίσ(Σ^).

For δ > 0 we put

(Cί)' = {Ce£|<5μc = <5, μc o ι/f "̂  is absolutely continuous with respect to Jf5 on

KA}>
(ζ%y = {Ceζ\δδc = δ, μc°Ψ~l and 3tf& are mutually singular on KA}9

Cί = {Ce£ |<5μc > a}u(Cίy and ̂  = {Ceζ|<^c < <5}u(C^)'.

Under these notations we construct μ£ and μ? by

μ\=\ μcdμ°π-l(C), and μ* =
Jζf Jζ?

The following Lebesgue decomposition of σ-invariant probability measures with

respect to the Hausdorff measures is an easy consequence of Propositio 3.4 and

Theorem 3.6.

COROLLARY 3.7. Let μeSσ(ΣJ and δ>0. Then μ = μ{ + μ*2 and μl is

absolutely continuous with respect to Jjfδ on KA and μ2 and 2tfδ are mutually
singular on KA. Especially if 0 < δ < essinf (<5μc) for μ°π~l-a.e. C, then μ is

absolutely continuous with respect to J^δ on KA and if δ > essinf (δμc) for

μ°π~l-a.e. C, then μ and 3fδ are mutually singular on KA.

4. Equivalence of μ and 3tfδμ

We consider the conditions for invariant measures under which they are

equivalent to their dimensional Hausdorff measures. In view of (3.5) a

cohomologous relation can be easily obtained.

LEMMA 4.1. Suppose that δ > 0 and v is a finite measure on KA such that

= 0 and

o, ,-i(x) = WneN|) > 0. (4.1)
})

Then v and 3tfδ are not equivalent on KA.

PROOF. As in §3, we show that v is not equivalent to Jίf~. Set

K0 = xeKl l lim = 0,
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and

I sup »fr*.° e

for meN and ε > 0. Then there exists m = m£eN such that

v(Km,ε)>^(>0). (4.2)

cm

Suppose that 0 < η < —, where cx and C2 are the constants which

appeared in (A2) and (B2). Then there exists an ff-cover <% = {Ut} of
such that

(4.3)

We may asume that for each ieN, Ut contains at least one point
since if otherwise we can exclude such l^ from .̂ Therefore I/4 is written
in the form Ut = φx<p o . . . 0 φ^o ( K) for some x(ί) e Kw ε and fc ( = fcf) E N.
(ψ-i(xU) = χW = (χU)nen.) Since

exp^fclogcj _ c

we must have k>m. Then it follows from the definition of Xm>ε that
v(l/,) < ε I L7f |

a for all f 6 N. Therefore

which yields

0) + 1).
Therefore together with (4.2) and (4.3) we have

v(K0) < 2ε(J^I(K0) + 1). (4.4)

If Jf|(K0) < + oo, then we have v(X0) = 0 since ε > 0 in (4.4) is arbitrary. But
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this is contrary to the assumption so that 3ίf~(KQ) = + oo. Then we see that
there exists a compact C a K0 such that jf|(C) = 1. (See [5].) Suppose
that v(C) > 0. Then repeating the same argument as above for the set C
instead of K0 we have v(C) < 2ε(^f|(C) + 1) = 4ε. It follows that v(C) = 0
since ε > 0 is arbitrary. Thus 3tf~ and v are not equivalent. (̂  J is not
absolutely continuous with respect to v on K*A.)

PROPOSITON 4.2. Suppose that με$σ(Σ^ and that μ is equivalent to
. Then there exists a μ-a.e. finite measurable function g such that

Iμ = δμL+goσ-g μ-a.e. (4.5)

u([χ '" x 1)
PROOF. Let g((xn)neκ) = lim sup 1? — ? _ Λ be the function which

-αo \ φχι

 δ

appeared in the proof of Theorem 3.6. Then the absolute continuity of μ
means that g(x) < + oo μ-a.e. as was seen in the proof of Theorem 3.4. Next
g(x) > — oo μ-a.e. can be assured by putting v = μ and δ = δμ in Lemma
4.1. Therefore the relation (4.5) can be deduced from the equality (3.5).

5. Equivalent invariant measures

Let us write @σ(ΣA) for the set of all the measure μe&σ(ΣA) such that
n-l

the set { £ {Iμ(σlx) + logμ(^xl9" 9xn])}}neN is bounded μ-a.e. In this section
i = 0

we shall show with the help of Ruelle-Perron-Frobenius operator theorem that
there is no measure in @σ(ΣA) which is equivalent to its dimensional Hausdorff
measure except for μ~δAL.

LEMMA 5.1. Suppose that μeS^Σ^, supp (μ) = {x e ΣA \ there exists an
open set ϋ(x)^x such that μ(U(x)) = 0}c = ΣA and that there exists μ-a.e. finite
function g such that — Iμ + δμL= g — g ° σ μ-a.e. Then

π-l

lim sup ̂  {- Iμtfx) + (5μL(σfx)} = g(x) - μ-essinf (g) μ-a.e.
n-»oo ι = Q

PROOF. Since supp(μ) = ΣA, χμ > 0 μ-a.e. or equivalently Iμ is finite
μ-a.e. Therefore we may assume that Iμ is everywhere defined and
finite. Taking an everywhere finitely defined version g^ of g and putting
#2 = δμL— Iμ + 0ι ° σ, we have g^ = g2 = g μ-a.e. By the way, it follows from

n-l n-l

the definition of g1 and g2 that Sn(x) = Σ {-^(σfx) + δμL(σ'x)} = X {g2(a*x)
i=0 i=0

-^ι(σί+1x)}. Let us set G = {xeΣA\gι(x) = g2(x)} and G^ = ft?=QσA

nG.
Then μ(GJ = 1 and for all xeG^ we have Sn(x) = g^x) - g^(σnx). Therefore
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Poincare's recurrence theorem says that

lim sup Sn(x) = lim sup {^(x) — gι(σnx)} = 0ι(x) — lim inf g^nx)
n->ao /ι-*oo n-»oo

= g i (*) - μ-essinf (0) μ-a. e.

LEMMA 5.2 Suppose that μe@σ(ΣA) is absolutely continuous with respect
to Jίfόμ with supp (μ) = ΣA and that there exists a μ-a. e. finite function such
that — Iμ + δμL= g — g oσ μ-a.e. Then - oo < μ-essinf (g) < + oo.

PROOF. We may assume that Iμ is everywhere finitely defined. Let us
n-l

set dn(x) = Σ Iμ(σ'x) + log μ([xx, , xJ). Then by the definition of @σ(ΣA)
i = 0

- oo < inf {dn(x)} < sup {dn(x)} < + oo μ-a.e.
πeN πeN

First clearly μ-essinf (g) < + oo since g is μ-a.e. finite.
On the other hand the equality μ([xι, 9^J) = exp [dn(x)] x

π-l
eχp[~ Σ Aι(σ^)] f°r ^ = (x«)neNe^ means that the absolute continuous

i = 0

condition in Theorem 3.6 is equivalent to

w-l

lim sup Sn(x) < + oo μ-a.e., where Sn(x) = £ {- Iμ(σx) + δμL(σlx)}.
π-^oo ί = 0

Therefore by Lemma 5.1 we have lim sup Sn(x) = g(x) — μ-essinf (g) < + oo
n->αo

μ-a.e. Thus we obtain — oo < μ-essinf (g).

LEMMA 5.3. Suppose that μe^Z^), supp(μ) = Z^ and that everywhere
defined (on ΣA) and finite function 9 and μ-a.e. finite function g with
— oo < μ-essinf (g) satisfy the relation

(x) = - Iμ(x) + g(σx) - g(x) μ-a.e. (5.1)

Then for every /e C(ΣΛ)

[[ Σ exp[5(y)]/(>:)]^(x)= ίf(x)dμβ(x), (5.2)
•/ y.eσA l ΐ J

μg denotes the probability measure on ΣA such that

μθ(B) = 1 J exp [- g(x)]dμ(x)9 Be<%A, D = j exp [- 0(x)] dμ(x)

REMARK 5.4. By the assumption of the lemma 0 < D < exp [ — μ-essinf (#)]
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< + 00.

PROOF. We may assume that Iμ is everywhere defined and finite as in
previous lemmas. Let us take an everywhere finitely defined version g^ of g
and put g2(x) = — 9(x) — Iμ(x) + gι(σx). Then (5.1) implies that g = g± = g2

μ-a.e. Therefore we have

D x f[ Σ
J ^σA^x

= f [ Σ exP
J ΣeσAlx

= f [ Σ «P
J ΣeσAlx

= ί[ Σ χ^(ϊ
J j>arx'ϊ

= f exp [- 02<
J

x)

where we used the fact that for yeσ^1(x)9 gι(σy) = g(x) and the equality (2.1)
for the μ-integrable function exp [— g ] f . (Note that |exp [— g ] f \ < exp [- μ-

essinfto)]|/|.)

REMARK 5.5. As can be easily seen, if 5 = Iμ and g = 0 in (5.1), (5.2) is
nothing but the relation (2.1).

COROLLARY 5.6. Let μ, 9 and g are the same as in Lemma 5.3.
Furthermore we assume that 9e^A. Then PA(9) = 0 and μ = μθ.

PROOF. By Lemma 5.3 we have &*fdμg = \fdμg for all feC(ΣA). In

other words, (&9

A)*μg = μg. Therefore by remarks in §2 we have PA(d) = 0
and μ = μ9.

COROLLARY 5.7. If Iμe^A9 then PA(- Iμ) = 0 and μ_/ μ = μ.

PROOF. We have only to put 5 = - Iμ and g = 0 in Corollary 5.6.

REMARK 5.8. (1) Since (JSf^/μ)*μ = μ and μ_/ μ = μ, the uniqueness of

the eigenfunction implies that ^f_ / μl = l, that is Σyeσ^x exP [— ^μ(U] =

Σye,-x^(U = 1 for all XE^.
" " ί Γ 1

(2) The result P(— Iμ) = supλεfσ(ΣΛ)<hλ(σ) - Ivdλ> = 0 implies that hλ(σ) =
I. J J
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Ivdλ for λe&σ(ΣA) with the equality if and only if λ = μ.

(3) In order to deduce 3?*Iμμ = μ, we do not need to assume that
Iμe^A. For that purpose we have only to assume that IμeC(ΣA). But in
this case the uniqueness of the equilibrium states for — Iμ is not asured.

These results are already obtained in [12] and [22] in somewhat different
contexts.

THEOREM 5.9. Suppose that μe@σ(ΣA) and μ¥^μ-δμL Then μ°ι/ '~ 1 is

not equivalent to rff6*.

PROOF. Suppose that μe^σ(ΣA) and μoψ'1 is equivalent to jf*» on
KA. Then clearly supp(μ) = ΣA. Furthermore Theorem 4.2 and Lemma 5.2
indicate the existence of μ-a.e. finite function g such that — Iμ + δμL = g — g o σ
μ-a.e. with μ-essinf (g) > — oo. It follows from Lemma 5.6 that PA(— δμL) = 0
so that δμ = δA and again from Lemma 5.6 that μ = μ~δμL. But this is a
contradiction.

6. Absolutely continuous measures with respect to their dimensioinal Hausdorff

measures

In this section we treat a class of measures which have a considerable
mixing property and examine their absolute continuity with respect to the
Hausdorff measures. The central limiting property of these measures enables
us to work under a weaker condition than the previous section. That is, we
shall develop our arguments only assuming the absolute continuity to the
Hausdorff measures.

First let "̂ and @n be sub σ-fields of @A generated by the families ̂ Atl

and #£« respectively. For με0>(ΣA)9 we define

φμ(n) = sup sup (QSSSUpχeΣΛ\μ(B\@n)(x)- μ(B)\).
neN Be&n + m

Under these notations we define

n = l

Now we quote a central limit theorem from [11]. See also [9] and
[14]. For feL2(ΣA, μ) the following limit σ(/) exists:

/ 1 Γ "-1 Γ
= ( l i m - Σ/'**-" \fdμ

\π^°° n J fc = o J

2 \ l / 2

dμ\

Furthermore if σ(/) > 0 then the following central limit theorem holds:
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lim μ xeΣA e *2dx.

On the basis of the above theorem we have the following theorem.

THEOREM 6.1 Suppose that μe^σ(ΣA) and μ¥^μδΛL. Then μo^" 1 and
1 are mutually singular on KA.

PROOF. Set d = — Iμ + δμL. By the assumption 5eL2(μ) and ddμ = 0.

Assume that μ o ^ " 1 and Jtifδμ are not mutually singular on KA. Then

by Theorem 3.6 μ^φ'1 is absolutely continuous with respect to J4fδμ on
KA. Again by Theorem 3.6 we have

hm sup '
r

< + oo μ-a.e.
^

Since μE<2>σ(ΣA), this is equivalent to the condition

π-l

lim sup Sπ(x) < +00 μ-a.e. xeΣA, Sn(x) = £
n-^c» ί = 0

as we have seen in §5.

(6.1)

/ 1 f \ l / 2

Set σ = σ(5) = lim - \Sn\
2dμ . Suppose that σ > 0. Then

V -' n J /

^22dx, for all

But this is impossible in view of (6.1). For, if we put h(x) = sup 5Π(x), then
for neN we have neN

l

—=- > ^ n >. Since lXn < 1 and
σ

where AΠ =

letting n -* oo, we have a contradiction that

, (6.2)

^-^O μ-a.e. by (6.1),

_x2_
e 2 dx < 0.

Therefore σ = 0. Then there exists geL2(ΣA, μ) such that 9 = - Iμ + <5μL
= g — g°σ μ-a.e. (see for example Lemma 2.1 of [15]) and Lemma 5.2
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indicates that μ-essinf(#)> — oo. Therefore by Corollary 5.6 we easily have

δμ = $A and μ = ̂ -δΛL
 as in Theorem 5.9. This does not match our

assumption. Hence μ is not absolutely continuous with respect to tfδμ and
this means that μ and 2tfδμ are mutually singular on KA by Theorem 3.6.

REMARK 6.2. Suppose that \\Iμ\
2+δdμ<+ao for some δ > 0 and

φ(i) < 1. With these aditional assumptions the following law of iterated
logarithm

n-l

£ {— Iμ(σlx) + δμL(σlx)}

lim sup — — = 1,
Z w l o g l o g π

) + < " "

liminf — - — - = — 1, μ-a.e.
σχ/2n log log n

holds if σ > 0. Thus in this case the condition σ = 0 can be obtained by the
above equality as well. For general treatments of the law of iterated logarithm
for weakly independent random variables, i.e. random variables with the

condition corresponding to ΣΓ=ι \/Φ(n) < + °°» see [H] anc^ [14].

We call a contraction map φ : Rd -> Rd is a similar map if there exists a
constant 0 < r(φ) < 1 such that \φ(x) - φ(y)\ = r(φ)\x - y\ for all x, yeRd. If
φ is a similar map it is easy to see that jφ = r(φ) and that L((xn)neN) =
— log r(φxι) for the self-similar set K constructed from an Λ/-tuples of
contractions Φ = {φι, -9φN} In this case PA(— δL) is equal to log λδ, where
λδ is the maximal eingenvalue of the matrix Lj = ((L^)y)ίt7 6S, (L^)/7 = Aίjr(φi)~δ.
Furthermore the equilibrium state for — δL is the (simple) Markov measure

~ ~ ~ A r
Vp, where the defining probability matrix P = (Pij)iJeS is given by Ptj =

(ri)ies is the (simple positive) right eigenvector of A corresponding to the
eigenvalue λδ. This is obtained just by an appication of the classical
Perron-Frobenius theorem. See [19] for the classical Perron-Froebnius
theorem and [13] for its applications. The Hausdorff dimension of KA is
given by the unique positive solution of PA(— δL) = log λδ = 0. Theorem 6.1
enables us to characterize μ~δΛL as the unique absolutely continuous multiple

Markov measure supported by ΣA with respect to its dimensional Hausdorff

measure. Moreover, since Iμ-δΛL
e^A in this case, we see that there exists

gε &A such that - Iμ-δΛL = - δAL+ g - g ° σ. But Corollary 42 in [13] in

fact says furthermore that g depends only on the first coordinate.
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7. Remarks on cohomology

In §4 we obtained a coholomogous relation (4.5) for με$σ(Σ^ and used
it in the arguments in § 5 and § 6. We mention here that the following stronger

results holds.

LEMMA 7.1. If μe@σ(ΣA) and μ°ψ~l is equivalent to tfδtί, then there
exists a measurable function g and F e &A which satisfy the following conditions.
(1) g(x) is finite for all xeF.
(2) - /„(*) = - δμL(x) - g(x) + g(σx) for all xεF.
(3) σ^1F = F, μ(F)=l.

PROOF. As before we may assume that Iμ is everywhere finitely

defined. As was seen in Lemma 5.5 we have lim sup Sn(x) < + oo μ-a.e. where

Sn(*) = "Σ {-/X2d + VV*)} Set g(x) = ϊim sup Sn(x) Since Sπ+1(x) =
i = 0 n-»oo

— Iμ(x) + δμL(x) + Sn(σx) for all neN, we clearly have

g(σx). (7.1)

Set F = {xeΣA\ - oo < gf(x) < + 00} . Then μ(F) = 1. On the other hand
since (7.1) indicates that g(x) is finite if and only if g(σx) is finite, we have
σA

1F = F. Of course it follows from (7.1) that - Iμ(x) = - δμL(x) + g(x)
on F.

The lemma above enables us to relax some tediousness arising from the
ambiguity of functions on null sets in § 5. (But it seems of no direct use in
§6.) In fact for an example we can carry on the computation in Lemma 5.3
with 0! = 02 = g if we restrict the integrated domain to F.

We next consider the uniqueness of the function g in the cohomologous
relation up to constant.

LEMMA 7.2. Suppose that μe^σ(ΣA) and μ o ^ " 1 is absolutely continuous
with respect to J4fδtί. If

- Iμ = - δμL + g - g°σ, - Iμ= - δμL +h-h°σ μ-a.e.

for μ-a.e. finite g and h, then g = h + c μ-a.e. for some constant c.

PROOF. By Lemma 5.1 we have

lim sup Sn(x) = g(x) — μ-essinf (g) = h(x) — μ-essinf (h) μ-a.e.
n->oo

Recalling that Lemma 5.2 says that μ-essinf (g) and μ-essinf (h) are both finite,
we have g = h -h c μ-a.e. for c = μ-essinf (g) — μ-essinf (h).
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