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ABSTRACT. In this paper, we determine the Ej-term HXM{ of the chromatic spectral

sequence converging to the E2-teτm of t n e Adams-Novikov spectral sequence con-

verging to the homotopy groups π+(M) of the mod 3 Moore spectrum M. At the

prime p > 3, the 2^-term HιM{ plays a central role determining the homotopy groups

π+(L2M) of the v^BP-localized mod p Moore spectrum.

1. Introduction

Let M denote the mod p Moore spectrum and Ln the Bousfield localiza-

tion functor with respect to v~xBP. Here BP is the Brown-Peterson ring

spectrum at a prime number p and vn (n = 1, 2,...) denotes the generator of

π+(BP) with \vn\ = 2pn - 2. Consider the spectrum N1 obtained as a cofiber

of the localization map M-^L^M. In [12] and [9] H. Tamura and the

second author determined the homotopy groups π+(L2N
ί) by using the

Adaiiis-Novikov spectral sequence at the prime p > 3. For p > 3 the Adams-

No vikov filtration is at most 4 and the homotopy groups of L2N
X is deter-

mined by £ 2 " t e r m [9] At the prime p = 3, on the other hand, it is known

that for any large integer s 0 > 0 there exists an integer s> s0 such that the

E2-term £s

2'* Φ 0 by the Morava structure theorem [8, Th. 6.2.10 (c)].

In this paper we will determine the first line of the £ 2 " t e r m of the

Adams-Novikov spectral sequence converging to π^(L2N
1) at the prime 3.

The £2-term is an Ext group Ext%PΛBP) {BP^M{) for a £P*(5P)-comodule

BP+(L2N
ί) = Ml which will be denoted by H*Ml following the paper on

chromatic spectral sequences due to Miller, Ravenel and Wilson [6].

In order to state the result, we define integers a(n), a'in) and an for n > 0

by:

α(0) = 2 and a(ή) = 6 3""1 + 1 (n > 0);
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a'(0) = 10 and a'(ri) = 28 3"-1 (n > 0); and

α0 = 1 and an = 4 3""1 - 1 (n > 0).

Furthermore we use the notation:

*(*)• = falΛ] and K{n)+= υ?k{n)m = F3[υH9 Ό?]9

where F3 denotes the prime field of characteristic 3.

THEOREM 1.1. H^^Ml is isomorphic to the direct sum of the k(l)+-modules

and

Θ
fc>0,ί

where t, ue Z with 3 J u.

The generators of each cyclic £(1)*-module will be given in Theorem 6.1
which is a finer restatement of Theorem 1.1.

As in [12], we can apply this theorem to the nontriviality problem of
the products of β -elements in the homotopy groups π+(Nf), as we will discuss
in a forthcoming paper. We hope that this will be the first milestone to
determine the homotopy groups πJ|e(L2S°) of L2-localized spheres L2S° at the
prime 3 as in the case for the prime >3 (cf. [6], [12], [9], [14]).

In 2 we restate a key lemma given in [6] to fit our situation so that it
suffies to find some elements in order to discribe Ext-group. After giving
some preparatory computations in 3, we define new elements for the case
p = 3 in 4 (cf. [12]). Then we get the desired elements in 5 which satisfy
the condition given in 2.

2. Key lemma

Let (A, Γ) denote the Hopf algebroid such that Γ is A -flat as an A -
module. Then the category of Γ-comodules has enough injectives (cf. [6,
Lemma A. 1.2.2]) and Ext group Extι

Γ(M, N) is defined to be the ΐ-th derived
functor of Hom-functor HomΓ(M, N) for comodules M and N. Let C*M
denote an injective resolution of a comodule M. Then the Ext group
ExtJ fA, M) is a cohomology of the resolution, that is, the homology of the
complex HomΓ(^, C*M). Here we use a cobar resolution, and the resulting
cobar complex ΩfM is given by:

Ωn

ΓM = M®AΓ®A-®AΓ (n copies of Γ)
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with the differential dr\ Ωn

ΓM -+ Ωn+1M defined by

dr(m ® xt ® ® xn) = ι̂ (m) ® xx ®

- ( - l)nm ® x x

Here φ: M ^ M ®AΓ and Δ: Γ^> Γ®AΓ denote the structure map of M and
the diagonal map of the Hopf algebroid Γ, respectively.

An example of such a Hopf algebroid (A, Γ) is (BP+, BP+(BP)) associated
to the Brown-Peterson spectrum BP at the prime 3. In this case we abbrevi-
ate Ext%PΛBP)(BP*, M) by H*M for a ^(BPJ-comodule M.

We recall [6] the comodules

MZ^ΌΫBPJ&VJ and

M\ = υ?BPJ(3, υf) = {x/v{:j >0,xe M2

0}.

Then we have the short exact sequence

0->M£AMί^Mί->0

of comodules, where φ(x) = x/v1. This gives rise to the long exact sequence

(2.1) 0 - H°M°2 ^ H°Ml V-i H°M{ ^ H'M* * HxMl V-X H'M1, i H2M°2

Following the computation of HxMl in [12] at p > 3, we will work in
the category of £(2)5|c(£(2))-comodules. Here E(2)^ = Z{3)[vl9v29 v2

x^ and the
action of BP# is induced by sending vt to vt for i < 2 and to zero for
ί > 2. E(2) is a ring spectrum representing the homology theory E(2)^(X) =

®BPmBP*{X). Then

and the Hopf algebroid structure of (£(2)^, £(2)+(£(2))) is induced by the
one of (BP+, BP+(BP)). Since £(2)+(£(2)) is flat over £(2)*, we can use
homological algebra in the category and define Ext groups as derived functors
of Horn. Then we have a change of rings theorem ([5]):

WM = Exti(2WJΪ(2))(£(2)φ, M ®BP.E(2)J

for any v2 -local comodule M. Remark that Ml is v2 -local when j'> + k = 2.
By virtue of this theorem, we will hereafter abbreviate Mj®B P,£(2)# to M}\

(39v1) and M} = E{2)J(3, vf),
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and H*Mi will denote

Exti ( 2 M E ( 2 ) )(£(2)φ, Ml).

There will be no serious confusion, since these iί*M's coincide as long as

M = Ml with j + k = 2.

In [7] (cf [8]), Ravenel claimed to have determined the structure of

H*M% at the prime 3, which turned out to be wrong as pointed out by

Henn. There are independent corrections, see [2], [3], [11] and [16]. In

particular they show that RaveneΓs result is correct up to dimension 2 and

we will use only this part:

THEOREM 2.2. a) HιM2 is the K(2)^-vector space generated by

hί0, hix and ζ2.

b) H2M2 is the K(2)^-vector space generated by

ξ, b09 bu hί0ζ2 and Auf2.

These generators have degrees

l*iol = 4, |Λnl = |*ol = 12, |*il = 36, | ζ 2 | = 0 and \ξ\ = 8,

and are represented by cocycles as follows

*io = [ ί i l

* n = ίv-2HH

(2.3)

f ' if] and

ζ2

h

ξ

= Iv2% H

= ίV23h <ί

>, t 2 3<
•) l i

s)t3-t

:3

2-v2

it

-^- l ot?c

* ] .

it?1

Here the generator ξ is represented by any cocycle whose leading term is

υ2*t1®ts + υ2

l0t\®t\. These representatives are in the cobar complex

^£(2M£(2))^(2)* In this paper the same symbol will be used to denote a

cohomology class and its representative as is done in [12].

To compute H^Ml by the exact sequence (2.1) we need the following

lemma that can be proved by an easy diagram chasing:

LEMMA 2.4. {cf. [6, Remark 3.11]) Consider a k{\)^submodule B of H^l

that fits into the following commutative diagram:



The chromatic Extern HγM\ at the prime 3 419

0 φ Ώ Vι v Ώ

2 • & • 25

n n

If the upper sequence is exact, then

H All = ^

To construct the desired k(l)^-module B, we first note that B => Im φ.

Since Im φ is isomorphic to Coker (<5: H°M{ -> H1M2) and Ker (i^: H^Ml -•

f ^ M ί ) , we start with

LEMMA 2.5. Ker t^ in HxMl is the F3-vector space with basis consisting

of the cocycles represented by:

v2

 stι/vl9 v2~ ti/vi, v2ζ2lvι and t1/v1

for k > 0, te Z and se Z such that either s = 1(3) or s = —1(9).

This lemma is shown by using the elements xt e v^BP^ defined in [6]

such that

Ki = v2

ι mod(3, i and

M?mod(3,i>?) i = 0,
d

o
(xt) = < v\υ\t

ι
 - υ\v

2
{τ + υ

2
ζ

2
) mod(3, v{) i = 1,

\

(2.6)

where a{ is an integer such that α 0 = 1 and at = 4 3f x — 1 for i > 0. In

fact, the lemma follows from Theorem 2.2 a) and the fact that δ is computed

[6, (5.9)] to be

δ(xl/υl) = sv3

2

s-ίt1 and

δ(xi/ΌΪ)=-svϊ-ι<3'-1kl9 ί>h

and H°M\ is generated by xf/v? and 1/ι ί,; > 1 [6, Th. 5.3]. These elements

may also be considered in E(2)+ and satisfy the same formula there. Hence

we do not distinguish them either.

Consider the pairs (W(Ϊ), e(0) = (*(0» Φ))> (j(0> &(0) a n d (z(0> c(f)) of ele-

ments x(i), y(0 and z(0 in ί2i ( 2 W W ) ) £(2) φ /(3) = £(2)φ/(3) ® £ ( 2 ) . £(2)#(£(2)) and

positive integers (including oo) α(i), b(i) and c(i) such that
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x(i) = Όi

2t1mod(39Ό1)9

y(i) = vitl mod(3, vt),

z(i) = v2ζ2 mod(3, vt) and

e(i) — oo if δ(w(i)/v{) = 0 for any j > 0, otherwise e(i) = min(e'(i)) such that

δ(w(i)/v(M) Φ 0.

We also consider the subsets of Z:

A = {*: ί = 3*s with s = 1(3) or s = -1(9)} and A = {i: i = -1(3)}.

Now Lemma 2.4 implies the following

COROLLARY 2.7. With the above notation, let B be the k(l)+-module gener-

ated by w(i)/vl(ι)'s for i such that

ie A if w = x, ie A if w = y and i e Z if w = z.

// the set

{<5(w(0K(0)} = {δ(x(i)/v?% δ(y(j)/vb^), δ(z(k)/ΌΪk)): i e AJ eA,keZ}^ H2M°2

is linearly independent over F3, then H1Ml = B.

3. Preparatory computations

Before proceeding we need some computations. First we give some for-

mulae on the right unit ηR: BP^ -• BP^.(BP) by tensoring the rational numbers

Q. Note that

, m 2 , . . . ] and BP*{BP)® Q = (BP* ® β ) [ ί l 5 ί 2 , . . . ] ,

where the generators have the internal degrees |m f | = 2(3* — 1) = |ί f | . Recall

[1] that

fofai) = m1 + tl9 ηR{m2) = m2 + m1t\ + t2 and

ηR(m3) = m3 + m2t\ + mxtl + ί3;

and [4] that

vx = 3m l 5 ι;2 = 3m2 — m ^ i and v3 = 3m3 — m2u? — mxv\.

Since 9m2 = v\ mod(3)BP5|e, we have

^κ(^i) = t?! + 3ί l 5

(3.1) ifΛ(i?2) = U2 + »iίi + 3ί 2 -ϋi(3i??ί 1 + 9i?1ί; + 9ί?)-ί 1 iί J r(i;?) and

riR(v3) = v3 + v2t\ + i;^! - v\t2 + Ό\V - txηR{v\) mod(3).
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Here V is an element of BP#(BP) which satisfies

(3.2) 3i>! V=υ\ + v\t\ - υ\t\ - ηR(υ\) mod(9).

Next we will calculate Ext group Ext|('^M£(2))(£(2)J|{, Mi). Following [6],

we will write

x = y mod(3, v{)

for x, y e f l j ί ^ ^ , if pr(x) = pr(y) in β|('2*M£(2))£(2)s|c/(3, i;{) where

P^^£(2^(2))^(2)* ^ β£(2*M£(2))£(2)*/(3, t;{) denotes the natural projection.

The definition of cobar complex shows that the differentials a{.

( 3 , t > 0 ^ ^ ^ f o r f = = 0 ' l a r e Siven by

o ( ) = ηR(m) — m a n d
(3.3)

d ( ) l J ( )

for » ι e % and x e£(2)φ(£(2)), where ι,Λ: £(2)φ/(3, oί)-*£(2)φ/(3, W)

£(2)^(^(2)) is induced by the right unit ηR of the Hopf algebroid BP+(BP)

and J : E ( 2 ) J | C ( £ ( 2 ) ) ^ £ ( 2 ) S , ( £ ( 2 ) ) ® £ ; ( 2 ) # J E ; ( 2 ) J , ( £ ( 2 ) ) is the diagonal of the Hopf

algebroid. Note that

x®vy = xηR(v) ® y and
(3.4)

Δ(xy) = Λ{x)Δ{y).

We also note that (3.3) shows the derivative formula:

d^mx) = do(m) ® x + md^x)

for m e £(2),, and x e
Furthermore, (c/. [12, (2.3.2), (2.3.5)])

(3.5) dί(t2) = -t1®tl~v1b0mod(3) and

^(£3) = -tx ® if - ί2 ® t\ - v2bx mod(3, vj.

Here ί?f e £(2)J|t(£(2))®2 is defined by

(3.6) fc^-tf ®tf3<-tf3l®rf.

For example, (3.2) is written as 3 ^ V = ϋiί? — υ\t\ — do^iλ a n ( i s o w e obtain
by (3.1)

(3.7) dί(V)^v2

ίb1-v8

ίb0rnod(3).
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The last formula of (3.1) yields the relation in £(2),, (£(2)):

(3.8) v2t\ + v,t\ - v\t2 + v\V- t^M) = 0.

In fact, ηR(v3) = 0 in £(2),(£(2)) = £(2)+[ί 1 ; t2, ...V(ηR(υk):k > 2). More
generally, the relation ηR(vk) = 0 for k > 2 in E(2)^(E(2)) implies (cf. [12,
(3.2.2)]):

(3.9) t\ = vΓ\ - Vlv2ψn+1 e £(2),(£(2)V(3, v\).

Now we see that

LEMMA 3.10. By definition, we have

bl ΞΞ bx mod(3).

Furthermore, we have

up to homology. That is, there exists an elements ωx such that

^ ( ω j = -b\ + v6

2b0 mod(3, v\).

REMARK 3.11. Moreover, we can show

b\ ΞΞ v\b0 + v\v\bγ mod(3, v\)

up to homology.

PROOF OF LEMMA 3.10. Rewriting b\ in £(2)#(£(2)) ®E(2).E(2)^(E(2))/(3, v\)
by (3.4) and (3.9), we get

) mod(3,

ίl + UiϋiMi ® *i

On the other hand we have by (3.4) and (3.9),

(3.12) A(t\) = t\ (g) 1 + v\t\ ® tx 4- 1 ® t\ mod(3, vγ\

Therefore, using the formula άγ{xy) = dx(x){y ® 1 + 1 ® y) 4- A(x)dί{y) —
x ® y — y ® x, we compute
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ltl) = -Ό^ldάφl) mod(3, υ\)

? mod(3, v\)

'ί ® ίi - 1*2*1 ® ί? + »2̂ i ® ί?)

+ vxv\t\ ®t\ + vγv\t\ ® if mod(3, t ί).

Moreover we have

-dx(υxv\t\) = -υxυ\t\® t\ mod(3, t f).

Collecting these terms we get the desired homologous relation:

άx(ωx) Ξ= -b\ + i ffco mod(3, !>?),

by defining ω! = v^ltft\ + ϋiϋfίi q.e.d.

4. The elements * and Y

In this section, we define the elements X and Y, which will yield the
generators of HXM{. Note that there are no corresponding elements for
p > 3 .

By (3.2) we compute

(4.1) ηR(v6

2) = (vl + v\t\ - v\t\ - ivx V)2 mod(9)

= v% - βv^lV + 2v\v\t\ - 6v\t\V

+ vit\8 - 2v\v\t\ + βυ\°t\V - 2v\2t{2 + v\8ti mod(9).

LEMMA 4.2. For the element x2 = v\ — Ό\VΊ

2 of E{2)m, we obtain

do(x2) = -vlhlt, - v\2vi(v2ψ2 - v2

3t\2 + v2

9t9

2 + vlV2

3V)

-v{4t\*ηR(v2) + v{5v\t\ - v\Ίv\t\ mod(3, v[s)

in βi(2).(£(2))£(2)* = £(2).(£(2)).

PROOF. Using (3.3), (3.1) and (3.8), we compute mod(3, v\8):

do(v9

2) Ξ v\t2η

= v\(v6

2t\ - v\v?t\ - vfv2

3V3)
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-do(v\vl) = -»?(»! + v\t\ - vit\)2(v2 + v.tl - vltj + v\υl

= -v\{p\ - v\v\t\ + vit{8 + β?»|t?)(»2 +

Ξ -v\v%t\ + v^vlh + v\H\t\ + v\2v\t\2

= -v\v%t\ -

v\2vlt{2 - v[*vlt{° - v\*t\ ηΛ(υ2) - »iM«f

Now by summing up we get the desired congruence, since V = —v\t\ mod(3, v\).

q.e.d.

Next we define an element X of £(2)s|t(£(2)) such that

(4.3) 3v\X S -V\X - 3ι??3; - do(x2) mod(9, i J5).

Here x and y are defined by

x = v\v6

2tι + v\υ6

2ζ
f + v\v\V + v5

ίv2t\
8 and y = t ^ f ? -h 1??!?!^^

By [10, Lemma 2.6] there exists an element ζ' such that

C s Ci mod(3,!??) and d^Γ) = 0mod(9, i;?).

For the following computations note that (9, υ\5) is an invariant ideal.

THEOREM 4.4. The element X e E(2)t(E(2)) satisfies:

X = -v\tγ mod(3, υx\

and

dx(X) = v\°v5

2b0 + υ\°υ5

2t\ ® ζ\ mod(3, i ί1).

PROOF. Note that (9, v\) is an invariant ideal, and we have

3ι??Jfs-d0(ι;|)mod(9,i?f).

Now the first formula follows from

do(vl) = Mvttl ^ 3vMh mod(9, i;*)

implied by (3.3), (3.1) and (3.8).
For the second formula we see from dxd0 = 0 and (4.3) that

* + 3y) mod(9, »}5).

Thus it suffices to compute dx(x) and dx{3y) mod(9, v\). First we compute
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Note that the definitions (3.1), (3.2) and (3.3) show

Using (3.1), (3.5) and (4.1), we compute mod(9, v\):

tJ = 6v1t1 ® v\t1 + vK-βv^lV + 2v\v\t\ - 6v\t\V) ®

= 6vίv2

3tί®t1 + 3v$vlt1

i°(g)ti -6v\v2V®ti9

dΛv\v\V) = 3v3

1vltί ® V and

dM^\%) = ^ih®t\\

Summing up, we have

d1(x) = 6v1υlt1®t1 -βv\v\V®tι + 3^1;^}°®^ -βv\

+ 3v\v\tι ® V -h βv\v2t1 ® ί}8 mod(9, v\).

For d^y), we will use d^V) = 0mod(3, v\) as seen in (3.7) and compute

similarly mod(3, v\\

® tx and

dMvlh V) = -vlvKt, ® V + V® ί j .

Now note that t\ = v\tx mod(3, vx) by (3.8) and F = -υ\t\ - vxv2t\

vjvltί mod(3, vl) by (3.1) and (3.2). Then, we compute mod(9, v{%

3v\v\t\° ®tx + 6v\υ2t1 ® ί}8 + 6v\υ\t\ ®t\ = -?>v\v5

2bQ and

This shows

d,{x + 3y) = - 3 ^ 6 6 + 6t?}ι>it? ® β mod(9, t f).

Substitute this to 3171^(^0 = — v\dx{x H- 3y)mod(9, ι?}4), and we obtain the

result. q.e.d.

Next we define the element Y. First we need a lemma.

LEMMA 4.5. For i = 1, 2 ίftere exist elements κt of £(2)^(^(2)) such that

dΛ*i) = ^ 2 " 3 ( ί 2 ® ί? - ί? ® ίϊ 8 ) - ^(^23°ί3 ® t\ ~ V212t9

2 ® t?) mod(3, vl)

and

tl ®t\-t\®t\ + v\b0)

i;|ί?t|) - υ\ζ\ ® if + i JtfCl ® ί? mod(3, »?).
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PROOF. Define

„ __ ,,3f.-27*9*27 J,3,,-27 f9 ,, τ/ _ι_ r9OT /,,3\ «3 f .-18 Λ 1 3
κ1—viv2 1^2 —v1v2 t3 — Vj^v-\-(S2ηR{v2)-r vxv2 (θ1.

We continue our computation using the formulae (3.1), (3.3) and (3.5). We
recall the relation in £(2)*(£(2)): v3

2tn = υ2t
9

nΛ- v^3^ mod(3, υ\) given in (3.9).
Then the right hand side of the first congruence in the lemma is:

(A 6\ «3tΓ"3ί>3 6?\ t9 f3 (Q\ tls\ ii6ίii~30t9 (Q\ t9 iΓ12t9 6?\ tls\

= v\v2

2ηt2

2

Ί ®t\- v\v2

9t\Ί ® ί}8 mod(3, υ\).

Now mod (3, v\\

\l 2(tl6 (8) ί?1 + t\η ® t90 + t9® t? + i f (8) t\\

? ® ί|7 + ίS ® ί?1 + v9

2b\\

( — v1V)= — t̂ i(ff fci) and

Noticing that C2 = v2

9(t9

2 - t\β) + i;^2 7^7 mod(3), 90 = 81 + 9 and ί?1 = ι;iβt?
for our modulo, the sum of these terms equals the right hand side of (4.6).
Thus the first part follows from the congruence dί{v\v2

ί8ωl) = —v3

1v2

18b9 +
v\bi mod(3, v9) obtained by Lemma 3.10.

To prove the second assertion, put

κ2 = υγv2H\t\ + v^ciφ + ηR(v2

2)ζl

Where c: E(2)*(E(2)) -• E(2\(E(2)) denotes the Hopf conjugation. Note that
c satisfies Δc = {c®c)TΔ for the switching map T (cf. [1], [8], [15]). Fur-
thermore, c(ίx) = -t1 and c{t2) = τ = t\-t2 (cf. [8]). Thus mod(3, υ\)\

dΛv^hltl) ΞΞ v\v2h\ ® t\t\ - vxv2

2{t\ ®t\ + t\® t\2 + t\ ® t\ + t\ ® t\\

ti7 ®t3

2- t\η ® t\2 -τ9®t\- υ\b\) and

dΛηR(v2

2)ζ3

2) = -ζ\ ® i-v^t3 + v2if).

Here we used ζ2 = v2

1t2 — v2

3τ3 mod(3, O±). Thus the second congruence
follows. q.e.d.

Now define an element T of £(2)* (£(2)) by

(4.7) T = z + w + vγκx + v\κ2

for

z = v2t\ + vιt2 + v\V and w = υ\υ2

2t\* + v^v^tl.
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THEOREM 4.8. There is an element Y e E(2)m(E(2)) which satisfies:

Y = v\t1 mod(3, vx)9

and

PROOF. First we compute for z:

t\ - υx(t\ ®t\

mod(3, i f) by (3.5) and (3.7), which equals -υ\t1 ® t\. By (3.8), we also have
v\t± s t?2ί? + ^iίi + ϋfK — t?Jί}° mod(3, v\). Therefore,

t\°) ® t? mod(3, i J).

Now we consider the other elements:

- t f i?2 2t\ ®t\ + vlv^tl ®tl- vlv^tl ® t\ mod(3, i J).

Lemma 4.5 then shows

- t^ϊ(^3Oί3 ® ί? - t;212ί2 ® t\8) mod(3, ι?ϊ) and

ddΌlκ2) = v\v-2

2(t\ ® if - if ® t? + ϋiftb) + »ϊίiCl ® ί?

+ v\v-2

9t\ ® (c(tl) + vffitl) - vlCl ® if mod(3, t f).

Notice that

{0 ® ί? - vfv23t1 ® ί}8 - ^^25ί? ® ίί 8 = -vϊv2b0 + v\ρ mod(3, ι?f).

Since ί? = t ̂ ίi — ̂ ^2^2 mod(3, v\) by (3.8), p does not involve ί3. Therefore
we obtain

where Ξ involves —Όl*°t%®t\ — Ό'ϊ9t\®t\= -V22t3®tί-v2~
9tl®tl mod(3, vx)

which is the characterization of the homology class [v2ζ]. So there is a
cochain ω2 such that d^2) = — Ξ + v2ξ. Now we define the element Y by

q.e.d.

5. Construction of w(ϊ)

First we consider ξ. The generator ξ is represented by a cocycle whose
leading term is tί ® t3 + ί3 ® t\ and there is no other generator of the same
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degree. So any cocycles whose leading terms are t t (g> t3 + tf ® ί3 are homol-
ogous. Therefore, (3.9) shows that we have a cochain ω3 such that

(5.1) dί(ω3)sξ3 + υ2ξmod(3,v1).

N o w w e d e f i n e x(m)e£(2),,(E(2)) f o r m = 3 * s w i t h /c > 0 a n d f o r s e Z
w i t h S Ξ I O Γ S = - 1 ( 9 ) b y

vxτ,

*(3) = r,

t>3x(3n+1) = t^x^")3 + ( - I)*t^<">+It>ti(n>ω3 - do(v?*ι+1) n > 0, and

x(3"(3t + 1)) = x'n+iΦn) n > 0, t e Z; and

x(9ί - 1) = -x^X,

t>?x(3(9t - 1)) = vlX(9t - I)3 + v\9v2

2

ηt-ί2V - do(v3

2

(9i-1)+1) and

x(3"+1(9ί - 1)) = iΊx(3"(9t - I))3 + vγ(.

for the integers a(k) and a'(k) for k > 0 defined in the introduction, and i(k)
and ί'(t; fc) for k > 0 and ί e Z defined by

i(0) = 0, i(k + 1) = 3i(k) + 1,

i'(t; 0) = 9t - 4, ϊ(t; k + ί) = 3*(9(3ί - 1) - 1).

PROPOSITION 5.2. Let s denote an integer such that s = 1(3) and s = —1(9).
Then there exist elements x(m) of £(2)#(£(2))/(3) for m satisfying m = 3*s such

x(m) Ξ t^ίi mod(3, o j ,

and /or n > 0 and ί e Z,

+ 1)) = v\vl% mod(3, υl),

1))) = - ( - lyVί Ί f * l r + ι w ξ mod(3, ra

1

(n)+1)(n > 0); and

- 1)) = -ϋ}°^'- 4 b 0 - ϋ } 0 ^ ' " 4 ! 3 ® ζ | mod(3, t;}1),

ίί1(x(3"(9t - 1))) Ξ - p f W p ^ t j ® C|"+1 mod(3, << B ) + 1)(n > 0).

PROOF. The first part is proved by induction as follows: First x(l) =
v2tχ mod(3, vt) follows from the definition. Theorem 4.8 shows the assertion
for x(3). Since do(v3

2"*ι+1) = »Γ+I(»i«i - »i«i) mod(3, vt), we have t;?x(3π+1) s
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vlvln+lt1mod(39v*) for n>\ if we assume that x(3 n ) = vψtx mod(3, v^).
Noticing that xn = v3," mod(3, i^), we see

x(3"(3ί + 1)) = vf i3t+ί)tί mod(3, ΌX).

Second, x(9ί — 1) = Ό^"1t1 mod(3, υx) follows from Theorem 4.4. The other

part is shown inductively as above.

For the second part, first we get the congruence d^x^)) = v\b0 mod(3, v\)

from the fact d^τ) = —t\ ® tx + V^Q.

Next we will prove

) Ξ -(-l)nvfn)v^ξ mod(3, υt>+1),

inductively. For n = 1, this follows immediately from Theorem 4.8.

Now suppose that ^(x^*)) = -(-ίfvfV^ξ mod(3, vf)+1) with i(k) =

1(3). Then d^xQ")3) = -(-l) fct;? f l(k)ι;iί(fc)ξ3 mod(3, ̂ β ( k ) + 3 ) . On the other

hand,

dMa(k)+1v\mo)i) = t;3 Λ ( k ) + 1t;| ί ( f c )(^ + ι;2{) mod(3, v^k)+2)

by (5.1), which completes the induction for *(3W).

Note that ak+1 > a(k), where ak = 3k + 3*"1 — 1. Then we have the con-

gruence for dγ{x{2>k{2>t + 1))) since do(x^+1) = 0mod(3, t?;(k)+1) for ί > l and

fc>0.

Now we turn to the last claim. By Theorem 4.4, we see that

dx(x(9ί - 1)) EE -v\°v9r% - v\0v9r*t\ ® ζ\ mod(3, v1,1).

Cubing this we obtain

di(x(9ί - I)3) = -vfvl^-^b, -vlov9

2

i3t-ί)-1t1 ® ζf mod(3, v\3).

On the other hand,

υ\1υψt'Af\ mod(3, v\2).

This gives rise to the formula for di(x(3(9t - 1)».

For k > 0, we may suppose inductively that

ί - 1))) = -va

1'
ik)v?t*hi ® ζΓι mod(3, < (

Then, cubing this again, we obtain

d1(x(3k(9ί - I))3) = -υ\a>{k)υf^k)t\ ® ζf+2 mod(3, t;3β'(k)+3).

Finally, we compute

dMa'{k)v¥{vmKΓ2) = vY^υf^iυ^l - υfa) ® ζΓ2 mod(3, t;3fl'(k)+3),

and get the assertion for k + 1, which completes the induction. q.e.d.
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The other terms y(i) and z(i) are defined similarly to the corresponding

ones in [12]:

y(3t - 1) = vϊ-3V and z(3nu) = xu

nζf+1 for 3\ueZ,

where xn is the element of (2.6). Next we verify the following

PROPOSITION 5.3. For t, ue Z with 3\u,

- 1)) = vWr % mod(3, v*),

n = l ,

n > 1.

6. iTΛ!}

Recall the notation:

fe(l)* = F3^i] and

From Corollary 2.7 we deduce our main theorem:

THEOREM 6.1. HxMl is the direct sum of k(l)+-modules A and B. Here

A is ίsomorphic to K(l)χ/k(l)χ ® K(l)χ/k(l)#, in which each factor is generated

by tx and ζ2. B is the direct sum of cyclic k(l)^~modules generated by

x(3*(3ί + l))/vf\ x(3k(9t - l))K ( k ), y(3t - 1)/Ό\ and z(3ku)/va^

for fe > 0 and t9 ueZ with 3\u.

Note that a cyclic k(l)+ -module generated by x/v° is isomorphic to the

truncated polynomial algebra

PROOF. By Corollary 2.7 it suffices to show that δ-images of these gener-

ators are linearly independent. Notice that

d^x) = v\y mod(3, va

x

+1) implies δ(x/u?) = y,

for a representative y of a generator of H2M% (see Theorem 2.2). Propositions

5.2 and 5.3 yield the classification of the set of δ-images of the generators

as follows:

(I) ^o^Γ^o + ̂ Γ'Λnfi (teZ)9

(II) v3

2

n+it+mξ (n>0,teZ),

(III) Όp*h10ζ29 vΓH3u-1%0ζ2 (n>0,teZ9ueZ-3Z),

(IV) vl<-% {teZ)9

(V) ΌΓ%ιζ2 ( i ιeZ-3Z) .
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Here we remark that the cocycles ζf1, n > 1, represent the same coho-

mology class ζ2 in H^M®. Every element in the same class has an distinct

power of υ2. It is clear that the elements classified in different classes are

linearly independent and so are δ -images of the generators. q.e.d.
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