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ABSTRACT. In this paper, we determine the E,-term H!'M!} of the chromatic spectral
sequence converging to the E,-term of the Adams-Novikov spectral sequence con-
verging to the homotopy groups m, (M) of the mod 3 Moore spectrum M. At the
prime p > 3, the E,-term H*M} plays a central role determining the homotopy groups
n,(L, M) of the v;*BP-localized mod p Moore spectrum.

1. Introduction

Let M denote the mod p Moore spectrum and L, the Bousfield localiza-
tion functor with respect to v,?BP. Here BP is the Brown-Peterson ring
spectrum at a prime number p and v, (n =1, 2,...) denotes the generator of
n,(BP) with |v,| = 2p" — 2. Consider the spectrum N' obtained as a cofiber
of the localization map M - L, M. In [12] and [9] H. Tamurd and the
second author determined the homotopy groups =,(L,N') by using the
Adams-Novikov spectral sequence at the prime p > 3. For p > 3 the Adams-
Novikov filtration is at most 4 and the homotopy groups of L,N! is deter-
mined by E,-term [9]. At the prime p = 3, on the other hand, it is known
that for any large integer s, > O there exists an integer .s > s, such that the
E,-term E%* # 0 by the Morava structure theorem [8, Th. 6.2.10 (c)].

In this paper we will determine the first line of the E,-term of the
Adams-Novikov spectral sequence converging to =, (L,N') at the prime 3.
The E,-term is an Ext group Ext}p gp (BP,, M}) for a BP,(BP)-comodule
BP,(L,N') = M{ which will be denoted by H*M| following the paper on
chromatic spectral sequences due to Miller, Ravenel and Wilson [6].

In order to state the result, we define integers a(n), a’(n) and a, for n >0
by:

a(0)=2 and a(n)=6-3"'+1 (n>0)
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a(0)=10 and a’'(n)=28-3"! (n>0) and
gg=1 and a,=4:3"'—1 (n>0).
Furthermore we use the notation:
k(n), = F3[v,] and K(n), = v, 'k(n), = F5[v,, v;'],
where F; denotes the prime field of characteristic 3.
THeOREM 1.1. H'M} is isomorphic to the direct sum of the k(l),-modules
K(1),/k(1), D K(1),/k(1),
and

kg-?‘ (k(1),/(v§®) D k(1) /0*1?)) D @ k(1),/(v}) D kgﬁo} k(1), /(v1*),

where t, ue Z with 3}fu.

The generators of each cyclic k(1),-module will be given in Theorem 6.1
which is a finer restatement of Theorem 1.1.

As in [12], we can apply this theorem to the nontriviality problem of
the products of f-elements in the homotopy groups =, (M), as we will discuss
in a forthcoming paper. We hope that this will be the first milestone to
determine the homotopy groups =, (L,S°) of L,-localized spheres L,S° at the
prime 3 as in the case for the prime >3 (¢f. [6], [12], [9], [14]).

In 2 we restate a key lemma given in [6] to fit our situation so that it
suffies to find some elements in order to discribe Ext-group. After giving
some preparatory computations in 3, we define new elements for the case
p=23in 4 (¢f. [12]). Then we get the desired elements in 5 which satisfy
the condition given in 2.

2. Key lemma

Let (4, ') denote the Hopf algebroid such that I' is A-flat as an A-
module. Then the category of I'-comodules has enough injectives (cf. [6,
Lemma A.1.2.2]) and Ext group Ext'{(M, N) is defined to be the i-th derived
functor of Hom-functor Hom (M, N) for comodules M and N. Let C*M
denote an injective resolution of a comodule M. Then the Ext group
Ext¥%(A, M) is a cohomology of the resolution, that is, the homology of the
complex Hom (A4, C*M). Here we use a cobar resolution, and the resulting
cobar complex Q¥M is given by:

QM=MRSQT®,  ®,I (n copies of I')
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with the differential d,: QM — Q"*'M defined by

dm@x; @ ®@x,)=ymMAx, @ ®x,
+ Zl (_l)im®x1®'”®xi—1®4(xi)®xi+1®"'®xn

—(-I)'m®x;® " ®x,® 1.

Here y: M > M ®,I" and 4: I'> I'®,I" denote the structure map of M and
the diagonal map of the Hopf algebroid I, respectively.

An example of such a Hopf algebroid (4, I') is (BP,, BP,(BP)) associated
to the Brown-Peterson spectrum BP at the prime 3. In this case we abbrevi-
ate Ext}p zp(BP,, M) by H*M for a BP,(BP)-comodule M.

We recall [6] the comodules

M3 =v3'BP,/(3,v;) and
M{ = v3'BP,/(3, v7) = {x/v]:j > 0,x € M3 }.
Then we have the short exact sequence
0->M)SMI B M -0
of comodules, where ¢(x) = x/v,. This gives rise to the long exact sequence
21) 0-HMS% HOM! 3 HOM! 3 H'MS S HIM! 3 HIM! B H2MY & -+

Following the computation of H'M} in [12] at p > 3, we will work in
the category of E(2),(E(2))-comodules. Here E(2), = Z,[v,, v,,v3"] and the
action of BP, is induced by sending v; to v; for i <2 and to zero for
i>2. E(2)is a ring spectrum representing the homology theory E(2),(X) =
E(2), ®pp, BP,(X). Then

E(2),(E(2)) = E(2), ®pp. BP,(BP) ®gp, E(2),

and the Hopf algebroid structure of (E(2),, E(2),(E(2))) is induced by the
one of (BP,, BP,(BP)). Since E(2),(E(2)) is flat over E(2),, we can use
homological algebra in the category and define Ext groups as derived functors
of Hom. Then we have a change of rings theorem ([5]):

H'M = EXt}:‘(Z).(E(Z))(E(Z)*’ M ®pgp, EQ2),)

for any v,-local comodule M. Remark that Mj is v,-local when j + k = 2.
By virtue of this theorem, we will hereafter abbreviate M; ®gp, E(2), to M;:

Mg = K(Z)* = E(Z)*/(3, v;) and Mll = E(Z)*/(3, v7’),
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and H'Mj will denote

EXt} ). ey (EQ2)y Mi).

There will be no serious confusion, since these H*M’s coincide as long as
M = Mj with j+ k=2.

In [7] (¢f. [8]), Ravenel claimed to have determined the structure of
H*M?2 at the prime 3, which turned out to be wrong as pointed out by
Henn. There are independent corrections, see [2], [3], [11] and [16]. In
particular they show that Ravenel’s result is correct up to dimension 2 and
we will use only this part:

THEOREM 2.2. a) H'MJ is the K(2),-vector space generated by
hio, By, and (.
b) H?M? is the K(2),-vector space generated by
&, by, by, hiol, and hy, ;.
These generators have degrees
lhyol = 4, |hyyl = lbol = 12, 1] = 36, [{,| =0 and |¢] =8,

and are represented by cocycles as follows

h1o = [t1],
hyy = [v2'13],
2.3) (o = [v3tty + 03383 — v3'td],

b=[-i®t}¥ -3 ®}'] and
E=[0t @t + 023 @17 + -]

Here the generator £ is represented by any cocycle whose leading term is
073t ®ty + ;%3 ®13. These representatives are in the cobar complex
82).e2yK(@2),. In this paper the same symbol will be used to denote a
cohomology class and its representative as is done in [12].

To compute H'M] by the exact sequence (2.1) we need the following
lemma that can be proved by an easy diagram chasing:

LEMMA 24. (cf. [6, Remark 3.11]) Consider a k(1),-submodule B of H'M|
that fits into the following commutative diagram:
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H'M} —*> B —> B —— HM}

o]

H'MY —%— H'M!} —2 H'M!} —— H*MQ.

If the upper sequence is exact, then
H'M! =B.

To construct the desired k(1),-module B, we first note that B > Im ¢.
Since Im ¢ is isomorphic to Coker (6: H'M} - H'M?) and Ker (v;: H'M} —
H'M}), we start with

LemMa 2.5. Ker v, in H'M} is the F;-vector space with basis consisting
of the cocycles represented by:

3ty /vy, V373 /vy, Vh0o/0, and ty/v,
for k>0, te Z and se€ Z such that either s =1(3) or s = —1(9).

This lemma is shown by using the elements x; e v;'BP, defined in [6]
such that

x; = v3 mod(3,v,) and
v,t3 mod(3, v3) i=0,
(2.6) do(x;) = < v3vit, — viv,(t + v,¢,) mod(3,v3) i=1,
0023 "¢ mod(3, v3*%) i>1,

where g; is an integer such that ay =1 and a;,=4-3"'—1 for i>0. In
fact, the lemma follows from Theorem 2.2 a) and the fact that ¢ is computed
[6, (5.9)] to be

O(x3/v,) = sv5 e,
d(x{/v3) = sv3't, and
S(xffv¥) = —sv3 GV i1,
and H°M] is generated by x§/v{' and 1/v], j > 1 [6, Th. 5.3]. These elements
may also be considered in E(2), and satisfy the same formula there. Hence
we do not distinguish them either.
Consider the pairs (w(i), e(i)) = (x(i), a(i)), (y(i), b(i)) and (z(i), c(i)) of ele-

ments x(i), y(i) and z(i) in Q4 ).e2)E2)4/(3) = E(2),/(3) ®g2). E(2),(E(2)) and
positive integers (including o) a(i), b(i) and c(i) such that
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x(i) = v3t; mod(3, v,),
(i) = v3t} mod(3, vy),
z(i) = v5{, mod(3,v,) and

e(i) = oo if d(w(i)/vi) =0 for any j> 0, otherwise e(i) = min(e’(i)) such that
S(w(i)/vs®) # 0.
We also consider the subsets of Z:

A={iri=3% with s=1(3) or s=—-1(09)} and 4 ={i:i=-103)}.
Now Lemma 2.4 implies the following

COROLLARY 2.7. With the above notation, let B be the k(1),-module gener-
ated by w(i)/v¢®s for i such that

iedif w=x, ied if w=y and ieZ if w=z.
If the set
{8(w()/vi®)} = {8(x(D)/vi®), (y(j)/v3?), 6(z(k)/v{®):ie A,je A, ke Z} = H*M3

is linearly independent over F;, then H'M} = B.

3. Preparatory computations

Before proceeding we need some computations. First we give some for-
mulae on the right unit ng: BP, - BP,(BP) by tensoring the rational numbers
Q. Note that

BP,® Q= Q[my,m,,...] and BP,(BP)® Q =(BP,® Q)[t;,t;,...],

where the generators have the internal degrees |m;| = 2(3' — 1) = |t;]. Recall
[1] that

nr(my) = my +t;, ng(my) =m, + m;t3 +t, and
Nr(mz) = my + myt? + myt3 + t3;
and [4] that
vy = 3my, v, =3my, —myv} and vy = 3my; — myuw] — myv3.
Since 9m, = v}{ mod(3)BP,, we have
nr(vy) = vy + 3ty
(3.1) ngvy) = v, + v,t3 + 3t, — v,(30%t; + v, t3 + 9t3) — tynr(v}) and

Nr(V3) = v3 + V517 + 0,83 — 03t, + V3V — t;nR(v3) mod(3).
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Here V is an element of BP,(BP) which satisfies
(3.2) 30, V =03 + vit] — 03t — ng(v3) mod(9).

Next we will calculate Ext group Ext} z2)(E(Q2),, M1). Following [6],
we will write

x = ymod(3, v§)

for x, yeQ5SwanE@,, if pr(x)=pr(y) in QFHpe)EQ)y/(3,v]) where
pr: Q3. 2y EQ)y = Q. 2)E(2),/(3, v]) denotes the natural projection.
The definition of cobar complex shows that the differentials d;:
Q52)e@nEQ2)/(3, v1) > Q5. e2nEQ2)/(3, v]) for i =0, 1 are given by
do(m) = ng(m) —m and
(3.3)
dx)=1®x—4x)+x®1

for me EQ2), and x € E(2),(E(2)), where ng: E(2),/(3, v]) - E(2),/(3, v]) ® k).
E(2),(E(2) is induced by the right unit ng of the Hopf algebroid BP,(BP)
and 4: E(2),(E(2)) = E(2),(E(2)) ®E(2). E(2),(E(2)) is the diagonal of the Hopf
algebroid. Note that
x®@ vy =xng(v) ® y and
A(xy) = A(x)4(y).

We also note that (3.3) shows the derivative formula:

(34)

dy(mx) = do(m) @ x + md,(x)

for me E(2), and x € E(2),(E(2)).
Furthermore, (cf. [12, (2.3.2), (2.3.5)])

di(xng(m)) = d;x @ m — x ® do(m),
(3.5) dy(ty) = —t; ® 13 — vyb, mod(3) and
di(t;)=—t; ®t3 —t,®t] — v,b, mod(3, v,).
Here b, € E(2),(E(2))®* is defined by
(3.6) by=—-t} @2 —t3¥ @1}

For example, (3.2) is written as 3v, V = v3t] — v3t] — dy(v3), and so we obtain
by (3.1)

(3.7) d,(V) = v2b, — v3by mod(3).
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The last formula of (3.1) yields the relation in E(2),(E(2)):
(3.8) th? + vltg - v?tz + v%V el tlnR(U;) = 0-

In fact, ng(v3) = 0 in E(2),(E(2)) = E(2),[t;, t5,...1)/(ng(ve) : k >2). More
generally, the relation ng(v,) =0 for k> 2 in E(2),(E(2)) implies (cf. [12,
(3.2.2)7):

(3.9) ta = 03" 'ty — 01071541 € E(2),(EQ))/3, v}).
Now we see that
LemMa 3.10. By definition, we have
b3 = b, mod(3).
Furthermore, we have
b} = vSb, mod(3, v})
up to homology. That is, there exists an elements w, such that
d,(w,) = —b} + v§b, mod(3, v).
REMARK 3.11. Moreover, we can show
b} = v5$b, + viv3b, mod(3, v3)
up to homology.

PROOF OF LEMMA 3.10. Rewriting b} in E(2),(E(2)) ® ). E(2)(E(2)/3, v?)
by (3.4) and (3.9), we get

-B=tti®*+t1*®1t]
= (v3t; — v,07'13) ® (V3] + vy 0,t,13)
+ 0322 + v,0,t,t3) ® (v3t, — v,05't3) mod(3, v?)
=0t @2+ 0,03t} @t + 0,03, @1yt — v 033 @12
+ 052 @t; — 0,03t @ t; — 0,032 @ 83 + v 3¢t ® t, mod(3, v}).
On the other hand we have by (3.4) and (3.9),
(3.12) AB)=8Q®1+ 33 ®t; + 1 ®t3 mod(3, vy).

Therefore, using the formula d,(xy) = d;(x)(y ® 1 + 1 ® y) + A(x)d.(y) —
x®y—y® x, we compute
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—d (v,v3t283) = —v,03d,(t3£3) mod(3, v?)
= -0 R)BER1+1®1t)
+003t®1 -, @t + 1) (5t ®ty)
+ 0,032 @ t3 + v,03t3 ® t? mod(3, v?)
= -0, Rt +t; @ty td)
+ 00303 @ty — V3T @ t] + 03} ® 1)
+ 0,032 @ t3 + v, v3t3 ® t2 mod(3, v?).
Moreover we have
—d,(v,v3t7) = —v, 03t} ® t] mod(3, v3).
Collecting these terms we get the desired homologous relation:
di(w;) = —b} + v8by, mod(3, v?),

by defining w, = v,v3t3t3 + v, v3t5. q.ed.

4. The elements X and Y

In this section, we define the elements X and Y, which will yield the
generators of H'M}. Note that there are no corresponding elements for
p>3.

By (3.2) we compute

4.1) nr(®9) = (03 + v3t] — v}t — 3v, V)?> mod(9)
=08 — 60,03V + 20303t] — 6v}t]V
+ v?tis 200383 + 6v1%63V — 20}2t12 + 0188 mod(9).
LEMMA 4.2. For the element x, = v — viv] of E(2),, we obtain
do(x,) = — 018t — 0120803383 — 03312 + 0v3°t5 + v,033V)
—01*t1°nr(v2) + v1%03t] — v17v3t mod(3, v}°)
in Qé(z).(E(z»E(z)* = E(2),(E(2)).
Proor. Using (3.3), (3.1) and (3.8), we compute mod(3, v}®):
do(v3) = vit}

= 0] (V583 — v3v73t5 — v§33V3)
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—do(v3v]) = — 030} + vit] — 03132 (v, + vyt — vity) + viv]
= — 0305 — v303e] + v8ei® + v03ed) (v, + vyt — vit)) + V3]

—0305t3 + vitoSt, + vitvde] + 0120312

1]

14,3,10 _ 14,18 17,43
—v1 03ty — 01t nR(vy) — v1 V3L

= —ojvse — vi'vst, + vi'v3(—v 03"t} — 302"V + v}07'11°)
12,3,12 _ ,14,3,10 _ 14,18 17,4,3
+o1°v3t1% — vi*v3t° — vt () — vy V3.

Now by summing up we get the desired congruence, since ¥V = —v$t] mod(3, v3).
q.ed.

Next we define an element X of E(2),(E(2)) such that
4.3) 303X = —vix — 30}y — do(x,) mod(9, v13).
Here x and y are defined by
x = v3v§t; + v30S¢ + viv3V + 0iv,ti® and  y = 0,08t7 + v3vit, V.
By [10, Lemma 2.6] there exists an element {’ such that
= mod(3,v3) and d,({’) = 0mod(9, v3).
For the following computations note that (9, v}°) is an invariant ideal.
THEOREM 4.4. The element X € E(2),(E(2)) satisfies:
= —v8t, mod(3, v,),
and
d,(X) = v1%3b,y + v1%3t3 ® {3 mod(3, vit).
Proor. Note that (9, ¢$) is an invariant ideal, and we have
3v3X = —dy(v3) mod(9, v$).
Now the first formula follows from
do(v3) = 3v308t] = 3v}vst, mod(9, v})

implied by (3.3), (3.1) and (3.8).
For the second formula we see from d;d, =0 and (4.3) that

3vid,(X) = —vid,(x + 3y) mod(9, v}°).

Thus it suffices to compute d,(x) and d,(3y) mod(9, v;). First we compute
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d,(x). Note that the definitions (3.1), (3.2) and (3.3) show
d,(V) = 0 mod(9, v,).
Using (3.1), (3.5) and (4.1), we compute mod(9, v}):
d (0205t,) = 6v,t; @ v8t; + vH(—6v, 03V + 20303t — 6V} V)R t,
=6v,05t, ®t; + 30}dti’°@¢t, — I3Vt
d;(03v30) = — 613V ® L,
d,(w}v3V)=3viv3t, ® V and
d,(v30,t18) = 6viv,t, @ 18
Summing up, we have
di(x)=6v,05t, ®t; —60303VR ¢t + i3ttt — i3V L
+ 30303t ® V + 6viv,t, ® t18 mod(9, v3).

For d,;(3y), we will use d,(V)=0mod(3,v?) as seen in (3.7) and compute
similarly mod(3, v3),

d;(v,05t%) = 2vtv3t; ® t2 — 20,08, ®t, and
d w33t V)= -3, @V + V@ t,).

Now note that t] = v3t, mod(3,v,) by (3.8) and V= —0v3t] — v,0,t5 +
v?v3t, mod(3, v3) by (3.1) and (3.2). Then, we compute mod(9, v3),

3vto3tl® @ ¢, + 6viv,t;, ® 118 + 6vivdt] @12 = —3vtvib, and
— 60103V ® (' = 6vin3t} ® (3.
This shows
d,(x + 3y) = —3vtv3b, + 6vtv3t ® (3 mod(9, v3).

Substitute this to 3v}d;(X) = —v3id,(x + 3y) mod(9, vi*), and we obtain the
result. q.ed.

Next we define the element Y. First we need a lemma.
LeMMA 4.5. For i =1, 2 there exist elements «; of E(2),(E(2)) such that
di(ky) = 010 @ 1] — 1] @ 11°) — (0 B3 ® 1] — 12" %13 @ £1°) mod(3, v]
and
dy(icy) = 0,033 @ 13 — 1] @ 1] + v3bo)

+ v303°13 @ (c(t3) + v38313) — V13 ® 15 + v3t3(3 ® ¢} mod(3, v3).
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ProoF. Define
-27,9,2 -27,9 -18
Ky = 03032763657 — 03072763 — v, V + (Gnp(v3) + v3v7 0},

We continue our computation using the formulae (3.1), (3.3) and (3.5). We
recall the relation in E(2),(E(2)): v3't, = v,ts + v,t3,, mod(3, v}) given in (3.9).
Then the right hand side of the first congruence in the lemma is:

(4.6) 3073 @1t — 3 @ t18) — 180733 ® 1] — v;1%t5 ® t1B)
= 03032727 @ t] — v305°t27 @ t18 mod(3, v]).
Now mod (3, v]),
d (0303271113 = — 030 (130 @3 + 27 R0 + 11 @2 + 37 @ 1)),
d(—030377t)) = 030773 @ 37 + 1 @ 18 + v3bY),
di(—v, V)= —v,(v?b,) and
d;((5nr(@3) = =3 ® (v31}).

Noticing that {3 = v;°(t — £3%) + v327t2” mod(3), 90 = 81 + 9 and 8! = v3%}
for our modulo, the sum of these terms equals the right hand side of (4.6).
Thus the first part follows from the congruence d,(v3v;'%w?) = —v}v;!8b] +
v3b, mod(3, v]) obtained by Lemma 3.10.

To prove the second assertion, put

Ky = 010721385 + 0103 °¢(t3) + nr(v3)(3.

Where c: E(2),(E(2)) - E(2),(E(2)) denotes the Hopf conjugation. Note that
¢ satisfies 4c = (c ® ¢)T4 for the switching map T (¢f. [1], [8], [15]). Fur-
thermore, c(t;) = —t, and c(t,) =t =1t{ —t, (cf. [8]). Thus mod(3, v3):

di(0,0:%8383) = 20383 @ 8313 — 0,028 R+ R+ B3R B+ 5 R 1),
d,(v;07°%¢c(t3)) = v103°13 ® (1)
-8B -t Rt12 -1 @13 —v3bl) and
di(nr(@3)(3) = — (3 ® (—vyv,t] + v315).

Here we used {, =v;'t, — v;°t®>mod(3,v,). Thus the second congruence
follows. q.ed.

Now define an element Y’ of E(2),(E(2)) by
4.7) Y =z+w+v,k, + 03k,
for

z=0,t] + 0,83 + 03V and w = 0307218 + vivy'e3.
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THEOREM 4.8. There is an element Y € E(2),(E(2)) which satisfies:
Y = v3t; mod(3, v,),
and
d,(Y) = v]v,& mod(3, v8).
Proor. First we compute for z:
di(2) = (0,83 —vit) ®t] — v, (3 @] + v3b,) + V3 (v2Dy)

mod(3, vl) by (3. 5) and (3.7), which equals —v3t, ® t]. By (3.8), we also have
v3t, = vyt + 0,83 + 2V — 03t mod(3, v}). Therefore,

d,(2) = —v3(v32t] + v,073t3 + V3033V — 03073t1%) ® t] mod(3, v8).
Now we consider the other elements:
d;(w) = 030,073t — 3073t — 03075t] — V37512 @ 18 + 3V ] ® 1]
— %0728 ® 83 + v]v; 38 ® 13 — vivy't ® t; mod(3, vd).
Lemma 4.5 then shows
di(viky) = 031033 @ 1] — ] @ 11°)
—0](07%° @ t] — 13123 ® t1%) mod(3, v¥) and
d(v3K,) = 05072 @3 — 8 @ t] + v3by) + V]33 @ 13
+ v]v37°8 ® (c(t3) + v863t3) — v] {3 ® t§ mod (3, v8).
Notice that
0807310 @ 1] — v$05%t, @ 18 — 0§35t} ® t18 = —v8v,b, + v]p mod(3, vl).

Since t] = v3t, — v,0;'t3 mod(3, v?) by (3.8), p does not involve t5. Therefore
we obtain

d,(Y') = v]Z mod(3, 1),

where Z involves —0;3%5®1t] —0;°6@t3= —v,%t,®t; —v;°t3®t3 mod(3, v,)
which is the characterization of the homology class [v,£]. So there is a
cochain w, such that d,(w,) = —& + v,&. Now we define the element Y by
Y=Y +v]w,. ged.

5. Construction of w(i)

First we consider £. The generator ¢ is represented by a cocycle whose
leading term is t, ® t; + t3 ® t; and there is no other generator of the same
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degree. So any cocycles whose leading terms are t; ® t; + t3 ® t; are homol-
ogous. Therefore, (3.9) shows that we have a cochain w; such that

(.1) dy(@;) = & + v,¢ mod(3, vy).

Now we define x(m)e E(2),(E(2)) for m = 3%s with k>0 and for se Z
with s=1 or s= —1(9) by

x(1) = vyt, + vy7,
x3) =17,
v3x(3"Y) = v, x(3")? + (= D} +13Me, — do(w3" ' *) n>0, and
x(3"Bt + 1)) =x,,x(3") n>0, teZ; and
X0t — 1) = —x,"1X,
03x(B30Ot — 1)) = v, %9t — 1)? + 0302712V — d,(@3®V*) and
03x(3"*1(9t — 1)) = v, x(3"(9t — 1))* + 3@ Mp3FEm+13ne2
— dy(@3"TOVY) >0

for the integers a(k) and a’(k) for k > 0 defined in the introduction, and i(k)
and i'(t; k) for k >0 and t € Z defined by

i0) =0, i(k+1)=3i(k)+ 1,
i(t;00=9t — 4, i'(t;k+ 1) =393t — 1) — 1).

PROPOSITION 5.2. Let s denote an integer such that s = 1(3) and s = —1(9).
Then there exist elements x(m) of E(2),(E(2))/(3) for m satisfying m = 3*s such
that

x(m) = v3t; mod(3, v,),
and for n>0 and te Z,
d,(x(3t + 1)) = v?v3'b, mod(3, v3),
d;(x(3"(3t + 1))) = —(—1)"v5™p3"" " HME mod (3, 3™+ )(n > 0); and
dy(x(9t — 1)) = —v}%3""*by — v1%3' 4] ® {3 mod(3, v1"),
d,(x(3"0t — 1)) = — o™i @ (3™ mod(3, v¥™*1)(n > 0).

Proor. The first part is proved by induction as follows: First x(1) =
v,t; mod(3, v,) follows from the definition. Theorem 4.8 shows the assertion
for x(3). Since do(®3"* ') = 03" (v, 23 — v3t,) mod(3, v?), we have v3x(3"*!) =
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v303""'t, mod(3,v}) for n>1 if we assume that x(3") = v3"t, mod(3, v,).
Noticing that x, = v3" mod(3, v,), we see
x(3"(3t + 1)) = v3"3"* Y, mod(3, v,).

Second, x(9t — 1) = v3'"'t, mod(3, v,) follows from Theorem 4.4. The other
part is shown inductively as above.

For the second part, first we get the congruence d,(x(1)) = v?b, mod(3, v3)
from the fact d,(tr)= —t] ®t, + v,b,.

Next we will prove

d,(x(3") = —(— 1)"v"™piE mod (3, v2m*1),

inductively. For n =1, this follows immediately from Theorem 4.8.

Now suppose that d,(x(3*)) = —(—1)*{®Pi®¢ mod(3, vi®*) with i(k) =
1(3). Then d,(x(3*)*) = —(— 1) v}*®p3®E3 mod(3, v3°®*+3). On the other
hand,

4,01 03M5) = 0 NE +0,) mod(3, o)

by (5.1), which completes the induction for x(3").

Note that a;,, > a(k), where g, = 3* + 3*"! — 1. Then we have the con-
gruence for d,(x(3*(3t + 1))) since dgy(x%,;) =0 mod(3, vi®*!) for t > 1 and
k>0.

Now we turn to the last claim. By Theorem 4.4, we see that

dy(x(9t — 1)) = —01°3""*by — v1°03"*1] ® {3 mod(3, v1").
Cubing this we obtain
dy (x(9t — 1)3) = —p30p3O=9p _ p30,93-11p @ 32 mod(3, v33).
On the other hand,
d; #0307 YY) = 313" Yb, mod(3, v3?).

This gives rise to the formula for d,(x(3(9t — 1))).
For k > 0, we may suppose inductively that

d; (x(3*(9t — 1)) = — v Poi®, @ (3" mod(3, v; ).
Then, cubing this again, we obtain
d,(x(3¥(9t — 1))3) = — @3 E03 @ (37 mod (3, 3¢ ®+3),
Finally, we compute
dy (03 P P = 03O R, 2 — 03,) @ (3 mod(3, 03 W),

and get the assertion for k + 1, which completes the induction. q.ed.
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The other terms y(i) and z(i) are defined similarly to the corresponding
ones in [12]:
yBt—1) =033V and z(3"w)=x“3"" for 3jueZ,
where x, is the element of (2.6). Next we verify the following
PROPOSITION 5.3. For t, ue Z with 3}u,
d,(y(3t — 1)) = v?v373b, mod(3, v3),

w, s ® 83 n=0,
d(z(3"w) = < wivd 't @ {3 n=1,
—upinp G (T n> L.

6. H'M;
Recall the notation:
k(1), = F3[v,] and K(1), = F3[vy,v7']
From Corollary 2.7 we deduce our main theorem:

THEOREM 6.1. H'M] is the direct sum of k(1),-modules A and B. Here
A is isomorphic to K(1),/k(1), ® K(1),/k(1),., in which each factor is generated
by t, and {,. B is the direct sum of cyclic k(1),-modules generated by

x(3¥(3t + 1))/v3®, x(3¥(9t — 1))/v¥®, y(3t — 1)/v? and z(3‘u)/vix
for k>0 and t, ue Z with 3}u.

Note that a cyclic k(1),-module generated by x/v{ is isomorphic to the
truncated polynomial algebra k(1),/(v{).

Proor. By Corollary 2.7 it suffices to show that d-images of these gener-
ators are linearly independent. Notice that

d;(x) = vy mod(3, v{*') implies &(x/v{) =y,

for a representative y of a generator of H2M? (see Theorem 2.2). Propositions
5.2 and 5.3 yield the classification of the set of d-images of the generators
as follows:

(D) v3'by, v57%*by + 137 3hy1, (L€ 2),

(I) 3" et n>0,te2),
(D) 05%"hyoL5, 037 C*Phyol, (n>0,teZue Z—-32),
V) v3 b, (te 2),

V) v57'hy ueZ-32).
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Here we remark that the cocycles (3", n > 1, represent the same coho-
mology class {, in H'MJ. Every element in the same class has an distinct
power of v,. It is clear that the elements classified in different classes are
linearly independent and so are d-images of the generators. q.ed.
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