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ABSTRACT. We obtain two sufficient conditions for a Riemann surface to be maximal.
One is the condition I, N I # {0} and the other is the existence of a function which
has the special behavior in the neighborhood of the ideal boundary.

1. Introduction

Let R be a Riemann surface. If there exists a conformal mapping : of
R into a Riemann surface R, then we call R, or more precisely the pair (R, 1),
an extension of R. According to this definition R itself is an extension of
R. An extension (R, 1) is called a proper extension if R\1(R) # &. A Riemann
surface is called maximal if it has no proper extensions. An extension R of
R is called a maximal extension if R is a maximal Riemann surface. On
the maximality of Riemann surfaces many papers have been written. Bochner
[3] proved that every Riemann surface has a maximal extension. We say
that a Riemann surface R has a unique maximal extension if all maximal
extensions of R are conformally equivalent to one another (cf. [6]). Clearly
every maximal Riemann surface has a unique maximal extension. A closed
subset E of a Riemann surface R is said to be an Np-set if every compact
subset of @(UNE) is an Np-set in the complex plane for every local chart
(U, @) on R; see [10, p. 255] for an Nj-set. Renggli [7] determined the class
of Riemann surfaces which have a unique maximal extension.

THEOREM A [7, Theorem 2]. A Riemann surface R has a unique maximal
extension if and only if R is conformally equivalent to some R\E, where R is
a maximal Riemann surface and E is a closed Np-set in R.

By a neighborhood of the ideal boundary of R we mean the exterior of
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a compact set of R. A connected component V of a neighborhood of the
ideal boundary is called an end if it is not relatively compact. Let D be a
simply connected regular subregion of R, and consider a conformal map from
D onto the unit disc U in the complex plane. Then the relative boundary
0D corresponds to a relatively open subset of dU. We denote by I the
complement of the image set of dD with respect to 0U. We call D a disc
with crowded ideal boundary if I is totally disconnected and is not an Np,-set.
Recently Sakai [8] has obtained a new characterization of non-maximal
Riemann surfaces.

THEOREM B [8, Theorem 4.1]. Let R be a Riemann surface. Then R is
not maximal if and only if one of the following conditions holds for R.

(@) R has a planar end.

(b) R has a border.

(¢) R has a disc with crowded ideal boundary.

In [2, V.14F] it is pointed out that the condition I;o(R)NI;§(R)= {0}
seems to be indicative of a strong boundary, where I;,4(R) is a closed subspace
of the space of square integrable harmonic differentials (see the next section).
In this paper we shall consider the case I;o(R)NI%(R) # {0}. We know by
Accola ([1, Lemma 3 on p. 158]) that if R is a bordered Riemann surface
with boundary p, not necessarily compact, then every w € I,o(R) can be
extended to be harmonic on RUy and the extended w is zero along y. If
w* also belongs to I;,(R), then w* is also zero along y. Hence w =0 and
we have shown

ProposITION 1. If Io(R)NT%(R) # {0} holds for R, then R does not
have a border.

We may expect that the condition I;4(R)NI%(R) # {0} gives us some
information about the ideal boundary of R. We shall show in Theorem 1
that R of finite positive genus belongs to the class O,, if and only if
Lo(R)N T¥(R) # {0} holds. In the paper [4] we have shown that there exists
a Riemann surface of infinite genus which satisfies the condition I;,(R)N
I%(R) # {0} but does not belong to the class O,p; see Lemma 3 and [4,
Proposition 1]. Hence the information is not about the “scale” of the ideal
boundary, but the “complexity” of the ideal boundary in case of infinite genus.
We use Sakai’s characterization of non-maximal Riemann surfaces to show
in Theorem 2 that if R has no planar ends and satisfies the condition I;,(R)N
I%(R) # {0}, then R is maximal.

In Theorem 3 we shall obtain another sufficient condition for a Riemann
surface to be maximal. It will be shown that Proposition 6.1 in [8] follows
from Theorem 3.



On maximal Riemann surfaces 387

2. Preliminaries

We recall some definitions of first order differentials on R. A differential
o = a(x, y)dx + b(x, y)dy is called real if all local coefficients a(x, y) and b(x, y)
are real-valued functions and called of C® class if a(x, y) and b(x, y) are so.
We say that w is square integrable if local coefficients are measurable and

J‘ (@® + b?)dxdy = J o A o*
R R

is finite, where w* = —b(x, y)dx + a(x, y)dy is the conjugate differential of w.
The positive square root of this integral is denoted by |w|g, and we call it
the norm of w. Let I'=TI(R) be the space of all real square integrable
differentials on R. We know that I" is a Hilbert space with the inner product

(01, ;) = (01, W) = j. w; A ©F.
R

Set
I.*(R) = {df; |df |g < 0, fe C*(R)} and I3(R)={df;feCF(R)}

where C®(R) is the class of infinitely differentiable functions on R and C§(R)
is the class of infinitely differentiable functions with compact support on R.
Denote by I(R) and I,,(R) the closures of I, °(R) and I,3(R) in I, respec-
tively. We denote by I, = I(R) the subspace of I'(R) which consists of
harmonic differentials. We introduce important subspaces of I,. Let I}.(R)
(resp. I, (R)) be the subspace of I,(R) whose elements w are exact (resp.
semiexact) on R, that is

I wo=0 for every (resp. every dividing) 1-cycle y on R.
Y

We have the orthogonal decompositions
I'=sL+T,+I% and I, =1+ I,

(cf. [2, V.10A, 10B, and 11G]).

Let I, be a closed subspace of I;,. The orthogonal complement of I
in I}, is denoted by I*. Set I'* ={w* wel,}. Since (v, w,) = (of, 0F)
holds, we have (I;*)* = (I*)*. Then we shall write it simply I;**. We need
the subspace of harmonic measures I, and I;,; see [2, V.15C, 10B, and
14C] for definition. By [2, V.15D and 10C] we have I}, = X' and I, =
L*¥*. By definition it follows that I, > I, > I}, and I, > I}, We have
L. o I, o I, because they are orthogonal complements of %, I;% and
LY., respectively. See also [2, V.15E]. We summarize the inclusion relations
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here:

I, > I, > I,
U U
I—;IODI-;lm'

For a given 1-cycle ¢ on R and a closed subspace I, of I} there exists
uniquely a period reproducing differential o,(c) in I, such that

f o = (o, 6,(c))x for every we I,

We are interested in a;(c), 0u.(c), and a,(c). We consider the set
{Onse(4;), 04se(B;)}, where {A;, Bj} is the canonical homology basis for R
modulo dividing cycles. We note that every w € I, satisfies

(@, 04e(4)))r =0 and  (®, 04s(B)))r = 0.

Hence the-set {0y.(4;), 045.(B;)} is included in L, NI If o€ I, NIE sat-
isfies relations (0, 0y,.(4;)) = (0, 04s.(B;)) = O for every j, then o belongs to I;,.
Hence it is equal to zero. This shows that {6,.(A4;), 045.(B;)} spans I, N 1%,
Moreover a,(c), 0;.(c), and a,0(c) have the following property:

J. oy(c)* = j Opse(O)* = f OrolC)*

=yXxc for 1-cycle y

where y x ¢ is the intersection number of y and ¢ (cf. [11, Theorem 4] and
[2, V. Theorem 21G]).

REMARK. In [11, Theorem 4] the period reproducing differential ,(c)*
in a closed subspace I ** is defined by

J o =(w,0,(c)*)r for every we I}*".

Then a,(c), o4(c) and ay0(c) in this paper are equal to o((c)*, ohm(c)* and
a,(0)* in [11], respectively.

If the differential dh of a function h of the class C' is square integrable,
then we call the integral [gx(hZ + h?)dxdy = ||dh||} the Dirichlet integral of h
and say that h has a finite Dirichlet integral. Let HD(R) be the class of
real-valued harmonic functions on R with finite Dirichlet integral and KD(R)
be the subclass of HD(R) whose elements u have the property
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J du* =0 for every dividing 1-cycle y on R.
Y

Let AD(R) be the class of analytic functions on R with finite Dirichlet integral.
We denote by RAD(R) the class of real-valued harmonic functions u such
that there is a single-valued conjugate harmonic function u* of u and u + iu*
belongs to AD(R). By the Cauchy-Riemann equation we have

du* = —u,dx + u.dy = (u*),dx + (u*),dy = d(u*).

It is easily seen that u e RAD(R) if and only if u e HD(R) and
f du* =0 for every l-cycle y on R.
v

The relations between subclasses of HD(R) and subspaces of I,(R) are the
following:

{du;u e HD(R)} = I(R)
{du; u e KD(R)} = I (R)N I;X,(R)
{du; ue RAD(R)} = I, (R)N [LE(R).

We say that a Riemann surface R belongs to the class O, (resp. Okp) if and
only if AD(R) or equivalently RAD(R) (resp. KD(R)) consists of only constant
functions.

Let w be a real differential defined in a neighborhood of the ideal bound-
ary of R and I, be any closed subspace of I;,. Then w is said to have
I'’,-behavior if the following representation holds in some neighborhood of
the ideal boundary of R:

{w=w1+df,

o* = w, + dg,

where o, € I, w, e I**, f and g are C*-functions on R such that df and
dg belong to I,,. We say that a function u has I',-behavior if du does. We
know by [11, Theorem 4] that o,.(c)* (resp. o,0(c)*) has I;,- (resp. I}.-)
behavior.

REMARK. Suppose that o is defined in a neighborhood V of the ideal
boundary of R and has I-behavior.

1) The above representation may not hold in ¥, but it holds in some
neighborhood V' = V of the ideal boundary. Since w and w* are closed
differentials in V’, from Weyl’s lemma it follows that w is harmonic in V’
(cf. [2, V.9A and 9B]).
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2) Let V, be a neighborhood of the ideal boundary which is a subset
of V. It is easily seen that w|,, also has I',-behavior.

The following basic properties for special I;s will be used later.

LEMMA 1. Let V be a neighborhood of the ideal boundary of R such that
the relative boundary consists of a finite number of mutually disjoint analytic
Jordan curves. Let u be a harmonic function on V =VUGJV. Denote by
HD(V) the set of harmonic functions on V with finite Dirichlet integral over
V and set KD(V) = {ve HD(V); dv* is semi-exact in V}.

(1) If u has I,,-behavior, then

»

(1-1) (du, dv), = vdu* for every ve HD(V).

Jov

If u has I,,-behavior, then
(1-2) (du, dv), = udv* for every ve KD(V).
Jov

(2) For every h e H(OV), there exist ugy, u; € KD(V) such that ug=u, =h
on 0V, uy has I, -behavior and u, has I,,-behavior, where H(0V) is the class
of harmonic functions defined in some neighborhood of dV.

See [11, Propositions 1 and 2] for the assertions (1-1) and (1-2), and
[11, Theorem 6 and p. 203] for (2).

Let (R,1) be an extension of R. We denote by 1*#(®) the pull back of
a differential @ on R induced by 1. For a closed subspace I}(ﬁ) of I(R)
we set z#(l}(ﬁ)) = {1*(65);(7)61}(§)}. It is easily seen that :*(@*) = 1 *(®)*
and 1#(dii) = d(ii o 1) hold for & e I}(R) and ii e HD(R).

3. Results

We know that if R is of finite genus and belongs to the class O,;, then
R has a unique maximal extension. (See [6].) In this case a maximal exten-
sion of R is a compact Riemann surface R of the same genus as that of R
and we may assume that R is a subregion of R such that R\R is an Np-set;
see [9, II.15A]. We say that a Riemann surface R has (W)-property if

L (RN I3 (R) = I;Z(R)
holds; see [5]. We obtain the next theorem.

THEOREM 1. Let R be a Riemann surface of finite positive genus. Then
the following properties are equivalent:
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(@) Lo(RINTAR) # {0} holds.

(b) R belongs to the class O,p.

() R has (W)-property.

Furthermore if IE € 0,p and R is the unique maximal extension of R, then
To(R)NI(R) = T(R)Ig-

Our results in case of infinite genus are Theorems 2 and 2'.

THEOREM 2. Let R be a Riemann surface of infinite genus having no
planar ends. If R satisfies the condition Io(R)NI§(R) # {0}, then R is
maximal.

THEOREM 2'. Let R be a Riemann surface of infinite genus. If R satisfies
the condition Io(R)N I}%(R) # {0}, then R has a unique maximal extension and
the following relation holds for a maximal extension (R,1) of R:

1#(Lo(R)N L(R)) = Fo(R)N IA(R).

In particular Theorem 2’ is a generalization of the last part of Theorem 1.
We obtain

CoroOLLARY 1. If R satisfies Io(R)NI%(R) # {0}, then any extension
(R,1) of R satisfies

1#(Lo(R)N L(R)) = Lo(R)N LA(R).
We have another sufficient condition for R to be maximal.

THEOREM 3. Let R be a Riemann surface of infinite genus having no
planar ends. Suppose that there exists a harmonic function u on a neighborhood
V of the ideal boundary of R such that u is non-constant in each component
of V and has I,,- and I,,-behaviors simultaneously. Then R is maximal.

The next is a generalization of Theorem 3.

THEOREM 3'. Let R be a Riemann surface of infinite genus. Suppose that
there exists a harmonic function u on a neighborhood V of the ideal boundary
of R such that u is non-constant in each component of V and has I, and
I, ,,-behaviors simultaneously. Then R has a unique maximal extension and u
is extended over a maximal extension R of R so that the extended one has
I, (R)- and I,,(R)-behaviors simultaneously.

Let PeR and z be a local parameter in a neighborhood of P. There
exists the principal function p, (resp. p,) with respect to the singularity $R(1/z)
at P and the operator L, (resp. (Q)L,); see for example [9, Chapters I and II].
We say that R belongs to the class %p if p, = p, for some Pe R and :z.
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This class %p includes Ogp. In fact by [10, IL2E] R belongs to the class
Okp if and only if p, = p, for every P € R and every local parameter about
P. We know by [11, Theorem 6] that every principal function with respect
to L, (resp. (Q)L,) has I}, (resp. I,,)-behavior. If Re %p, then po(=p,)
satisfies the condition of Theorem 3. Now we have

CoRrOLLARY 2 [8, Proposition 6.1]. Let R be a Riemann surface having
no planar ends. If R belongs to the class %p, then R is maximal.

By Lemma 1 (2) there exist many principal functions other than p, and
p;. For example o,,.(4;)* and 0,,(4;)* are exact in R\A;. Then harmonic
functions | g, (4;)* and [o,0(4;)* in R\A; have I,- and I; -behaviors, respec-
tively. Hence Theorem 3 is a generalization of Sakai’s result [8].

4. Proofs

If R has a planar end G whose relative boundary 0G consists of one
analytic Jordan curve, then G is mapped conformally into the unit disc
U = {|z| < 1} so that G corresponds to dU. Denote by E the inner bound-
ary of the image of G, which is considered as a realization of the ideal
boundary of G (cf. [9, I.8E]). We show

PROPOSITION 2. Let R, G, and E be as above. If I,(R)NI%(R) # {0}
holds, then E is an Np-set.

Proor. We shall use the following lemma.

LemMa 2 [5, Lemma 4]. Let R be a Riemann surface of finite genus.
Suppose that there exists a non-constant harmonic function u in a neighborhood
of the ideal boundary of R which satisfies the relations (1-1) and (1-2) in
Lemma 1. Then R belongs to the class O,p.

It suffices to show the existence of u. By assumption we can take a
non-zero o € [o(R)NI;5(R). This w is semi-exact on R, and hence exact on
G. Thus we can choose u € HD(G) such that du = w. Every ve HD(G) can
be extended over R\G as a C®-function such that v =0 in the exterior of
some neighborhood of dG, which will be still denoted by v. Since dv belongs
to I°(R)c= I, (R) and I,(R)=I,,(R)+ I,(R), it follows that (w,dv)g =0.
Now we have

(du, dl))G = ((1), dU)G = (a), dv)R - ((D, dU)R\G = 0 + J‘ vw* = J‘ vdu*-
oG oG

This shows that u satisfies the relation (1-1).
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Moreover if ve KD(G), then the conjugate harmonic function v* of v
belongs to HD(G). Since w* is also a non-zero element in I};4(R) N I;%(R),
by the above equality we have

(du, dv)g = (du*, dv*)g = — j @*)du.
G

From integration by parts it follows that

(du, dv)g = f udv*.

G

This shows that u satisfies also the relation (1-2). Since G is a neighborhood
of the ideal boundary of a Riemann surface S = C\E, S belongs to the class
O,p by Lemma 2 so that E is an Np-set. []

We recall the following result.

THEOREM C [5]. Let R be a Riemann surface and a,./(c) (resp. 6,0(c)) be
the I, (resp. I,) period reproducing differential for a l-cycle c. Then the
following properties are equivalent:

(@) R has (W)-property.

(b)  lonse)ll = liguo(c)ll (equivalently 6,.(c) = ayo(c)) for every 1-cycle c.

Furthermore, if R is of finite positive genus, then the next properties are
also equivalent to (a):

(c) R belongs to the class O,p,.

(d) lonse(©)ll = llono(c)ll (equivalently 6y4.(c) = a,0(c)) for some non-dividing
1-cycle c.

By this theorem if R has (W)-property, then the set {0,,.(4;), 04se(B;)} is
included in I;,. Hence I, NI% which is spanned by {6)..(4;), 61.(B;)} is
included in I, and we have I, ,NI;% = I,,NI%5. Conversely if I,,, N I;§ =
I, NI% holds, then every I, period reproducing differential o;,(c), which
is represented as a finite linear combination of {0,.(A4;), 04s.(B;)}, belongs to
I,,. This means that o.(c) is also I, period reproducing differential. By
the uniqueness of the period reproducing differential a,,.(c) = g,0(c) holds.
Therefore R has (W)-property. We have shown that R has (W)-property if
and only if I, NI = I,oNIE.

Suppose that a non-planar surface R has (W)-property. Since we have
[ 4,01se(B)* = A; x B; =1, 6,,.,(By) is not zero. Then I;,N I3} contains a non-
zero element g, (B;). Hence R satisfies the condition I}, NI% # {0} so that
(W)-property implies the condition I;,N 1% # {0}.

We have hence shown
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LemMmA 3. If a non planar Riemann surface R has (W)-property, then
Lo(R)N TE(R) # {0} holds.

REMARK. In general the converse is not true. We recall an example of
a Riemann surface R on which there exist non-dividing 1-cycles c¢; and c,
with the property

llonse(c )z = llono(c1)llr # 0, louse(c2)llr # lgnolc2)llr

(see [4, Example 2]). The Riemann surface R satisfies the condition I;4(R)N
L%(R) # {0} because a non-zero element 6y, (c;) = g,0(c;) belongs to I;4(R)N
I%(R). But R does not have (W)-property.

We now give

Proor oF THEOREM 1. The equivalence (b)<>(c) follows from Theorem
C and by Lemma 3 (c) implies (a). The assertion (a)=-(b) follows from
Proposition 2.

To prove the last part of Theorem 1 suppose that R belongs to the
class O,p. Then there exists a compact Riemann surface R of the same genus
as that of R such that E = R\R is an Np-set. By [6] R is a unique maximal
extension of R. Let R, be a regular subregion of R defined in [9, 1.8E]. For
every w € Io(R)NI¥%(R), @ and w* are exact on R\Ry\E. Hence an analytic
function | (w + iw*) with finite Dirichlet integral can be extended to be analytic
on R\R,. Therefore w can be extended to be harmonic on ﬁ\Ro and the
extended w belongs to I;(R). We obtain I;o(R)NL;A(R) < I(R)|z. Now we
prove the inverse inclusion relation. Since R is of finite genus and R € O,
R belongs to the class Ogp; see for example [9, I1.1SA]. Note that KD(R)
consists of only constant functions if and only if I}, (R)NX(R) = {0}. On
the other hand by the orthogonal decomposition I}, = I} + (1% NI} )* we
know that I (R)NI;X,(R)= {0} if and only if I} (R)=I};,(R). Thus R belongs
to the class Ogp if and only if I, (R) = I;,(R) holds. Let & be an arbitrary
differential in I;(R). Since &| is semiexact in R, it belongs to I;,.(R) = I;(R).
If we consider the conjugate differential &*, then we see that ®*|g is an
element of I;,(R), too. Hence we have @|ge I;,o(R)NI§(R) and conclude
L(R)|g © Lo(RINTA(R). This completes the proof. [

Let (R, 1) be an extension of R and Hl(ﬁ) (resp. H,(R)) be the homology
group of R (resp. R). Then the mapping : maps a closed curve on R to a
closed curve on R. Thus : induces a natural homomorphism * of H,(R)
into H,(R). Since 1 is injective, the image set {1*(4;), 1*(B;)} of the canonical
homology basis {4;, B;} for R modulo dividing cycles is linearly independent.

To prove Theorems 2 and 3 we need the following lemma.
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LeEMMA 4. Let R be a Riemann surface of infinite genus having to planar
ends. If R is not maximal, then there is an extension (R,1) of R having the
following properties:

(1) R\i(R) is a set of two dimensional Lebesgue measure zero.

(2) R has a border.

(3) Every dividing cycle on R is mapped to a dividing cycle on R by 1*
and {1*(A;), 1*(B))} is the canonical homology basis for R modulo dividing cycles.

Proor. By Theorem B we know that R has a border or a disc with
crowded ideal boundary. If R has a border, then R itself is an extension of
R which satisfies (1), (2), and (3).

Suppose that R has a disc D with crowded ideal boundary. Let ¢ be
a one-to-one conformal mapping of D onto the unit disc U and I be the
complement of the image set of 0D with respect to 0U. Let y be a Mobius
transformation which maps U onto the upper half plane H with y(I) = I < 6H.
Let ¥ be the family of univalent functions F on C\I with the following expan-
sion around oo:

F(z)=z+gl+'".

By [10, VI. Theorems 2B and 2C] there exists a unique function P;(z) =
P,(z; ) (resp. Py(z) = Py(z; o0)) which minimizes (resp. maximizes) Ra[F] in
v and P, (resp. P,) maps C\I onto a vertical (resp. horizontal) slit plane.
Since P, (Z) has the expansion z + a[P, ]/z + - around oo, we conclude P, (z) =
P,(Z) by the uniqueness of P,. Let zoe H. If |z,| is sufficiently large, then
from the expansion of P, it follows that P,(z,) € H. For any ze H we join
z with z, by a segment [, , in H. By the univalency of P, and the property
P,(z) = P,(Z) the image set P;(l, ;) does not intersect the real axis. Hence
P;(l,,;) is included in either the upper half plane or the lower half plane.
Since Py(zo) € H, Py(l,,) is included in the upper half plane H and we con-
clude P;(z)e H. Therefore we obtain P,(H)= P,(C\I)NH. For the same
reason we have Py(H) = P,(C\I)N H and C\P,(H) = (C\P,(C\I)) U(C\H).
We shall show that P,(H) = z. Suppose that C\P,(C\I) contains a point
z;€ H. The connected component C, of C\P,(C\I) which contains z,
is a horizontal slit or a point. Then C; is included in H. Set E,=
{z; dist(z, C\Py(C\I)) < 1/n} for ne N. Let E! be the connected component
of E, which includes C,. Since N2, E} = C,, there is a number ny e N such
that E} < H. Then Int E, (=the interior of E; ) and C\E} are mutually dis-
joint open sets such that (Int E)U(C\EL) o C\Po(H) = (C\Po(C\)) U(C\H)
and that (C\Py(H))N(Int E; ), (C\P,(H)) N(C\E, ) are not empty. This shows
that C\P,(H) is not connected, which contradicts the simply connectivity of
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Py(H). Therefore Py(H) must coincide with H. Hence Py(z) is a Mobius
transformation which preserves H. Since P, fixes oo and its expansion around
oo has a vanishing constant term, we conclude Po(z) =z Since I is not of
class Np, by [10, VI. Theorem 2D] we have P,(z) # Po(z) = z. Therefore we
see that P,(H) # H. By the same arguement as above we can show that
every connected component of the complement of P;(C\I) is either a point
on the real axis or a vertical slit which intersects the real axis. Let | be
one of the vertical slits not degenerating to a point. . We construct a Riemann
surface R as the union of R and H\! by identifying p € D with (P, o § o ¢)(p) €
H\l. There is a natural inclusion mapping 1 of R into R. Then (R, ) is an
extension of R. It is easily seen that R satisfies properties (1) and (2).

Let y be a piecewise analytic dividing curve on R. If yND = ¢, then
it is clear that i(y) is dividing also on R. We consider the case when y
intersects D. Since dD and y are piecewise analytic, y\ D consists of a finite
number of components and H\/\1(y) consists of a finite number of components
which are simply connected regions with piecewise analytic boundary. If
R\1(y) is connected, then there exist points z,, z, € R\y which are not in the
same component of R\y and a piecewise analytic arc § which joins Z, = 1(z,)
with %, =1(z,) in R\i(y). It is easily seen that $N(H\l) is not empty and
consists of a finite number of components, 7,, ..., §,. Since each endpoint
of §; is Z;, Z,, or some point on dH\I, we can deform i to a piecewise
analytic arc y; on P,(H) whose endpoints are equal to those of §; continuously
in H\I\i(y). If we replace 7; by 7, then we obtain a new piecewise analytic
arc y* on R\y which joins z, with z,. But this is a contradiction. Therefore
y is a dividing curve on R. Since every dividing cycle is homologous to a
finite linear combination of piecewise analytic dividing curves, we deduce that
1* maps dividing cycles on R to those on R.

Let ¢ be a piecewise analytic Jordan curve on R. By the same deforma-
tion as above we can show that ¢ is homologous to some piecewise analytic
Jordan curve ¢ on R. Then ¢ is homologous to a finite linear combination
of {1*(4;), 1*(B))} modulg dividing cycles. Hence {1*(4;), 1*(B;)} is the canoni-
cal homology basis for R modulo dividing cycles. This completes the proof.

g

PrOOF OF THEOREM 2. Suppose that R is not maximal By Lemma 4
there exists (R, 1), an extension of R, which satisfies conditions 1), (2), and
(3). Let w be a non-zero element in I;,(R)N [;%(R). Then L, (&) = (1 *(6), w)r
is a bounded linear functional of & e I} ,(R). Hence there exists a unique
@ € I,(R) such that L_(&) = (6, ®)z for every &€ I;,(R). We shall show
that & belongs to I;o(R)N I;%(R). Since every ii € KD(R) satisfies (dii*, @)z =
(d(ii o 1)*, w)g = 0, we deduce that & belongs to I;(R) from the orthogonal
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decomposition [ (R) = [o(R) + IG(R) N L;¥(R). Similarly we obtain
L,,(dii) = (d(#i o 1), w)g = O for every i€ HD(R) and so (dd, @)z =0. Hence &
belongs also to I},’{,(ﬁ). It is shown that cbel",,o(ﬁ)ﬂl’,,’g(ﬁ).

If we show that & # 0, then I;,(R)NI;%(R) # {0}. By Proposition 1 R
does not have a border. This contradicts the property (2) of R in Lemma 4.

Now we show that & is not 0. By Lemma 4 (1) and (3) we see that
1#(G (R)NTX(R)) is a (closed) subspace of I, (R)NTX(R). Let n be the
orthogonal projection of I, (R)NI;%(R) onto 1*([;, (R) NI (R). We re-
mark that n(c*) = n(c)* holds for every o € I}, (R) N IX(R), because n(c*) —
n(o)* satisfies the equation

(m(a*) — n(0)*, g = (n(6™*), T — (7(0)*, T)r
= (0%, Dr — (—7(0), )&
=(=0,7%)r — (=0, ™)
=0

for every t € 1*(I;,(R)NIX(R)).
If 6 € I}, (R)N I;%(R) and c is a non-dividing 1-cycle of R, then we have

[.o=] @ =0 @ anion

= (l #(&), 7':(o'hse(c)))lb

where ¢ =1*(c). On the other hand

J & = (8, Bse(@) = (17(8), 1 ¥ (Bse()))r

¢

holds, where 6,,(¢) € I;,.(R)N I;%(R) is I,(R) period reproducing differential
for a 1-cycle ¢. By the uniqueness of the period reproducing differential in
1#(, (R) N LX(R)) we obtain T(Onse(€)) = 17 (Grse(€)).  If we restrict the linear

functional L, to I, (R)N ;*(R), then
L,(@) = (1*(3), @)z = (*(8), n(@))r
= (6, D) = (1%(8), 1*(D))r

holds for every 6 € I (R) N L*(R). Since n(w) and 1*(®) belong to
1#(5,,(R) N T;%,(R)), we conclude n(w) = 1#(®). Since w e Io(R)NI;%(R) and
L*R) = I,;(R),  does not belong to I*(R). Hence there exists a non-
dividing 1-cycle y such that

((D*, ahse('Y))R = J CD* =0 # 09

b4
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where a,,.(y) is I}, (R)-period reproducing differential for y. We construct a
complete orthonormal system {¢,} of I}, (R)NI;,(R) from {0.(4;)*, 0,..(B;)*}
by Schmidt’s orthogonarization. Expand w* = Y2, a,4,, where a, = (0*, )z
The orthogonal projection of w* is equal to ) =2, a,7n(¢,), so that

1#(0%) = n(w)* = i a,n(,)

Set Zj =1%(4;), I?; =1%(B;), and 7 =1*(y). Let us recall the relations

(Onse(4)*s Onse(V))r = f Ohse(4))* =y X 4;

b
and
(1* Gnse(A))*); Thse)r = Grse( A%, Grse @i =7 x A; =y x 4;

given in Section 2. The same is true for B;. Since ¢, is a finite linear
combination of {0,..(4,)*, 6,.(B)*} which is denoted by ) 'z, {o"0;..(4;)* +
B"0,..(B;)*}, we have

(ﬂ(¢"), ahse(?))R = jvgnl {a}”)(n(ahse(Aj)*)9 ahse(y))R + ﬁ,]( n)(n(ahse(Bj)*)’ ahse()}))R}
= 3 (0 Cual ) Ol + B BB e}
= 3 (o y x 4+ By x B}
Jj=1

= 3 (5", T + Ol B), )

= (¢n9 ahse(y))R‘
We conclude that
j @* = J‘ l#((;j*) = <i a,,n(¢,,), ahae()’))
j y n=1 R
= ( ) an¢m o-hse('y)>
n=1 R

=Iw*=a#0.
Y

Now it is shown that @ # 0 and it deduces that R is maximal. [

In order to prove Theorem 3, we need the following.
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LemMmA 5. Let R be a bordered Riemann surface with boundary y and
(V, @) be a parametric half disc about a point on y (cf. [2, II. 7C]). Suppose
that a C® function f on R whose differential df belongs to I,,(R) is harmonic
in VNR. Then f is extended to be constant on yNV.

Proor. Set U ={z;|z| <1}, U* ={z;|z| < 1,32>0}, U” ={z;|z| < 1,
3z<0} and I={z|z] <1,3z=0}. A parametric half disc (V, ¢) satisfies
o(V)={z;]z| < 1,3z > 0} and p(yNV)=1. The local representation of f in
(V, @) is also denoted by f. Set g(z) = —f(Z) for z in U~ and

df in U*
o= N
dg in U™
If we can prove that w is a harmonic differential in U, then there exists a
harmonic function u in U such that du = w. We have

_{f@+C inU*
u(@) = {g(z) +C  inU

with constants C and C’. Consider a harmonic function v(z) = u(z) + u(2) in
U. Then we have v(z) =f(z2) + C+g(z2)+ C =C+C inU* andv=C+ C
in U. We conclude

lim u(z) = c+c
Utaz—l
so that
lim f(z)= c-c
Utaz—] 2

Thus f can be extended continuously over I and the extended f is a constant
function on I = @(yNV).

Now we shall show that o is harmonic. Since df is an element of
I'o(R), there is a sequence {h,} in CZ(R) such that lim,_ ||df — dh,||z = 0.
The local representation of h, in (¥, ¢) is also denoted by h,. Set

. (h(z  inU*
hale) = {—h,,(z) in U

Since every h, vanishes in some neighborhood of I, {h,} is a sequence in
C>*(U) which satisfies lim,_,, | — dh,||y =0. Let ¢(z) be an arbitrary func-
tion in CP(U). We have (w,d¢*)y = lim,_, (dh,, dp*)y =0. On the other
hand

(@, df)y = (df, dB)y+ + (dg, dp)y- = (df, dg)y-
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holds, where $(z) = ¢(z) — #(Z) in U. Set U;t = {z;|z| < 1,3z > §} for 6 > 0.
From here we use the same argument as in [2, V.13B]. We note

@, df)y+ = lim (df, df)y; = lim ”U dé A df*

= lim { —J f dAfdxdy + f de*}.
-0 Ui aug

(df, dd)y+ = —lim f T G+ i8S e + i8)d

Since f is harmonic, we have

520 )~ /i
Hence for any ¢ > 0 there is a positive number §, such that if 0 < y < §, then
-~ v l—yz -~ -~
df, dg)y+ — e < —I ] d(x + iy)f,(x + iy)dx < (df, dp)y+ + &

holds. Integrate by y from 0 to 4, d < d,. We have
o{(df, dg)y+ — ¢} < —j dy I of,dx < 6{(df, do)y- + &}
0 -J1-y

and

_y2 -
(df, dd)y+ — e < ——J dy f ¢fydx < (df,dd)y+ + &.

V12

Therefore we have

_y2
(df, d¢)u+ = —hm J dyj dx
—_ 1_y2

Since @(x) =0 on the real axis and @e CP(U), we have an estimate
|@(x + iy)] < My with constant M. We obtain

1-y2 1—y2 F \/T_?
' J dyj - ¢fydx f dyf . My|f,|dx sf j _ M|f,|dxdy
—_ y2 - _yz P y2

<M<IJ -y dxdy) <JJ e |fy|2dxdy)1/2
-J1-2 -J/1-y

< M(28)"2 | df | g-

This shows that (w, d¢), = 0 for all ¢ € CP(U). By Weyl’s lemma we conclude
that @ is a harmonic differential. [

Now we show
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Proor oF THEOREM 3. We may assume that 0V consists of a finite
number of mutually disjoint analytic Jordan curves and u is harmonic on
av too.

Assume that R is not maximal. Let (R, 1) be an extension of R satisfying
properties (1), (2), and (3) in Lemma 4. Set V= R\i(R\V). By Lemma 1
(2), there exist ii, and @i, e KD(V) such that fi, and #i, are equal to uo;™!
on 9V and iy (resp. ;) has I (R) (resp. B,m(ﬁ))-behavior.

Since R has the property (3) in Lemma 4, figo1 and @, o1 also belong
to KD(V). Since u has B,e(ﬁ)- and E,m(ﬁ)-behaviors, from Lemma 1 (1-1)
and (1-2) it follows that

(du, d(@; o 1))y = f ud(i; o ))* = f (@ 0 du* = ||dul}}.
o v

We have by Lemma 4 (1) |dif;||3 = |d(@; o )2 and by Lemma 1 (1-1)

Id;|13 = f _dit = J ud(i; o 1)* = || dull}.
v

o

Therefore
Id(@; o 1) — dull = I|d@; o DI} + lldully — 2(d(d; o 1), du)y
=0 fori=0, 1

and we have fipo1=1d;0o1=u on V. So ii,(=ii;) has I’,,e(ﬁ)- and I;,(R)-
behaviors. Now represent dii, as follows

dily = w, + df, 0, € [, (R), df € I,o(R)
dii§ = w, + dg, o, € Io(R), dg € I,,(R)

By [1, Lemma 3 on p. 158] w; and w, are extended to be harmonic on a
border y of R and zero along y. By Lemma 5 df and dg are zero along 7.
Then dii, and di} are also extended to be harmonic on a border y of R
and zero along y. Hence dii, must be 0 on some component of V. But
this contradicts that u is non-constant on each component of V. Therefore
R is maximal. [J

To prove Theorem 2' and Theorem 3’ we construct an extension R of
R such that R has no planar ends as follows: Let {R,},-0,1,,,... be a canonical
exhaustion of R. Let GV, ..., G*» be the planar components of R\R, each
of which is not included in any planar component of R\R,_;. Map GY
conformally into the unit disc UY = {|z| < 1} so that dG¥ corresponds to
oUY, and denote by EY the inner boundary of the image of GY¥. We obtain
a new Riemann surface as the union of R and U, j-q, ., U by identifying
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GY with UY\EY. There is a natural inclusion mapping : of R into R. In
this way we obtain an extension (R, 1) of R which has no planar ends. We
use the extension (R, 1) in the proofs of Theorem 2’ and 3.

ProOF OF THEOREM 2. By Proposition 2 EY is an Np-set. Let o be
an arbitrary differential in I o(R)N I;§(R). Since I, < [, holds, ¢ and o*
are exact in GY. Since [(o + io*) belongs to AD(GY), it can be extended
to be analytic on UY. Then ¢ is extended to be harmonic on UY. Therefore
o, more precisely the differential (:7!) #(s) on 1(R), is extended to be harmonic
over R. We denote the extended one by & Since R\:(R) is a set of
two dimensional Lebesgue measure 0 (cf. [9, I. Theorem 8C]), (dii, 6*)z =
d@o1),0%)g=0 and (dii,6)g =(d(@io1),0)g =0 hold for any ii e HD(R).
Hence we have &e Fo(R)N5(R). Therefore 1*(F0(R)NL(R)) > Fo(R)N
T%(R) # {0}. By Theorem 2 we conclude that R is a maximal Riemann
surface. Hence R has a maximal extension R such that R\i(R) is a closed
Np-set. By Theorem A, R has a unique maximal extension.

Let @ be an arbitrary element in I",,O(R)ﬂl",,o(R) Since each boundary
component of JR, is a dividing curve on R or homologous to 0 on R, 1#(®)
belongs to I, (R)NLX(R). In GY any u e KD(R) has a single-valued conju-
gate harmonic function u*. Since u + iu* belongs to AD(GY), it can be
extended to be analytic on UY. Then u is extended to be harmonic on UY.
Therefore u, more precisely u 17!, is extended to be harmonic over R. We
denote the extended one by #. It is easily seen that # belongs to HD(R).
We have

(* (@), du®)gr = (@, dii*)g =0 and (*(@*), du*)g = (@*, dii*)z = 0.

By the orthogonal decomposition I}, = I + I}, N I;* we conclude that 1 #(®)
belongs to I,o(R)NI5(R). We have shown the relation 1#(1},0(§)ﬂl;,3(§)) =
T0(R)N L;5(R) for the special maximal extension (R, 7). Let (R, ') be another
maximal extension of R. By [7, Lemma 4] the conformal mapping ' o017}
is extended to that of R onto R. We denote the extended one by F. Then
the pull back F* induced by F is a bijection of I;(R’) onto I;(R). It
is easily seen that & eTl,(R)NI;%(QR’) if and only if the pull back
F#(@') e T;(R) N L;X(R). Since i’ #(®') = 1#(F #*(&')) holds, we conclude that
' #(Lo(R)NLX(R)) = Io(R)YNE(R). This completes the proof. []

ProOF OoF THEOREM 3. We may assume 0V = R,. Since u has [;.- and
I,,-behaviors, by Lemma 1,

(du, dv)go = j vdu*  for every v e HD(GY)
GY
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and

(du, dv)gy = f . udv*  for every ve KD(GY).
0GY
By Lemma 2 we conclude that EY) is an Njp-set. Since du and du* are exact
in G, u can be extended to be harmonic over E>. By the same argument
as in the proof of Theorem 3 we can show that the extended u has I;,(R)- and
I},M(ﬁ)-behaviors. By Theorem 3 R is maximal. By Theorem A, R has a
unique maximal extension. Denote the extended u over R by &i. Let (R, 1)
be another maximal extension of R. Then i’ o' is extended to the conformal
mapping F of R onto R. It is easily seen that iio F~! has I;,(R)- and
I;,(R))-behaviors simultaneously. Since uo1 ! =do F! holds on #/(R), uo

' is extended to @io F~!. This completes the proof. []

The last one is

PrOOF OF COROLLARY 1. Let (R, 1) be an extension of R, not necessarily
maximal. There is a maximal extension (R,7) of R. Then (R,7'01) is a
maximal extension of R. By Theorem 2’ R\(’ o 1)(R) is an Np-set and there
exists a non-zero element & in I;4(R)N I;%(R). Since R\i(R) is also an Nj-set,
we have for any i € HD(R)

(' *(®), dii)g = 1 *(' *(@)), d(fEi 0 1)g = 0
and
(#(@*), di)g = (* (' #(@¥)), d(Eo1))g =0

because 1#(i’ #*(d)) = (' o 1)*(d) and 1*(' *(D*)) = (@’ o 1)*(d*) belong to
Io(R)N;X(R). Therefore a non-zero element 1’ * (&) exists in I;o(R) N I;%(R).
Again by Theorem 2’

U *(Lo(R)NLE(R)) = Lo (R)N L3(R)

holds. Since (i’ o1)* =1* o1'* holds, we have a conclusion. [
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