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ABSTRACT. A q-block colouring of a design is a partition of its blocks into q colour

classes consisting of pairwise disjoint blocks. The chromatic index is the least q for

which such a colouring exists. In this paper the bounds of chromatic indices of

designs are given, and some greedy algorithms for colouring the blocks along with

the worst-case colourings are discussed.

1. Introduction

A design is a pair (TΓ, $) where Ψ* is a finite set of v elements and $

is a collection of b subsets called blocks of y, each of size k. A balanced

incomplete block design B(fc, λ; v) is a design (TΓ, 3$) such that \y\ = v, \B\ = k

for all B e J^, and every pair of distinct elements of TΓ is contained in precisely

λ blocks of 0$. The usual parameters of a B(fe, λ; v) satisfy the relations

vr = bk and λ(v — 1) = r(k - 1) where r is the number of blocks containing

an element of V. A partial parallel class in a design is a set of pairwise

disjoint blocks.

Given a design 3 = ( f , $\ a block-colouring of 3 is a mapping ψ:$ ^Ή

such that if ^(B) = ^ ( F ) for β, F e J , £ Φ B'9 then BΠB' = φ. If for the

set of colours # we have |ίP| = <?, then ^ is called a q-block-colourίng. For

each c e ^ , the set ^" 1(c) is called a block-colour class. The chromatic index

of S>, χ ' ί^), is defined by the smallest <? such that there exists a g-block-

colouring of 3. A design ® with χ'{@) <q'is said to be q-colourable. Note

that a block-colour class is a partial parallel class.

In the design of experiments where each block corresponds to a 'test' we

can view disjoint blocks as tests which can be carried out simultaneously. The

chromatic index is precisely the least time required for the entire experiment.
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Designs with small chromatic index have been studied under the guise
of resolvable and near resolvable designs. A design is said to be resolvable
(resp. near resolvable) if its collection of blocks can be partitioned into partial
parallel classes {&ι\iel} such that UBe0>.B = iT (resp. UBeί?.B = V - {x} for
some x e f ) for all ie/. Clearly, a resolvable (resp. near resolvable) design,
if it exists, has the minimum chromatic index among all designs with the
same parameters. For the existence of resolvable and near resolvable designs,
we refer the reader to a recent monograph [7].

The majority of research on block-colourings of designs has focussed on
B(3, 1; v). For example, see [4, 5, 6, 9, 11]. Considerably less is known
concerning block-colourings of designs with general fc, λ and v. In this paper,
the bounds of chromatic indices will be given, and some greedy algorithms
for colouring the blocks along with the worst-case colourings will be discussed.
These generalize some of the results in the literature mentioned above.

The results obtained here will be useful in constructions of resolvable
designs, for example, the construction described in [13].

2. Upper and lower bounds

One of the primary questions on block-colourings is "What is the range
of possible values of chromatic indices of designs?" It seems to be very
difficult. We only know the upper and lower bounds of chromatic indices
until now.

Let rx denote the number of blocks containing an element x in a design
% b the number of blocks in % ps and pt the smallest and largest cardinalities
of the partial parallel classes in % respectively. Then clearly we can obtain
the following.

THEOREM 2.1. In a design % ma.x{b/ph max{rx: x e Ψ*}} < χ'{@) < b/ps.

In particular, when @ is a B(fc, λ; v\ we further have the following improve-
ment. Let |_£J denote the largest integer not greater than a real number ί.

THEOREM 2.2. // 3f is α B(fc, λ; v), then b/lv/k] < χ\@).

PROOF. In a B(fc, λ; v\ rx = r = λ{v- l)/(fc - 1) for every x e Y. On the
other hand, any block-colour class can include at most \v\k\ blocks, i.e.,
p, < Iv/kj. Since b/lv/k} > b/(v/k) = λ(v - l)/(fc - 1), it holds that χ'(0) >
max {b/ph max {rx: x e f } } > max {b/lv/kj, λ(v - l)/(fe - 1)} = b/lv/kJ. This
completes the proof. •

REMARK. Generally, the lower bound as in Theorem 2.2 cannot be im-
proved further. For example, the chromatic indices of resolvable designs and
near resolvable designs attain this bound.
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Another upper bound is a generalization of [5]. We at first need Brooks'

and Vizing's theorems [3,12] in graph theory. The chromatic number of a

graph G is defined to be the smallest number of colours needed to colour

the vertices of the graph so that no two adjacent vertices have the same

colour. The chromatic number of graph G is denoted by v(G). A graph G

with v(G) < q is said to be q-colourable. For undefined terminologies on

graph theory, the reader is referred to [1].

LEMMA 2.3 ([3, 12]). Let G be a connected simple graph with maximum

degree h. Then G is h-colourable, unless

(1) h φ 2, and G is a Kh+ί, the complete graph on h + 1 vertices, which is

(h + 1)-colourable;

(2) h = 2, and G is an odd cycle, which is 3-colourable.

This lemma can be used to show the following theorem.

THEOREM 2.4. // 3 is a B(fc, λ; υ), then χ'(@) < λk(v - l)/(fe - 1) - λ(k - 1).

PROOF. Construct the block-intersection graph of % whose vertices are

the blocks of % and two vertices are adjacent if and only if the corresponding

blocks intersect. Hence the chromatic index of <2> is the chromatic number

of its block-intersection graph. For each vertex, there are at most

other blocks which intersect the corresponding block. Thus the block-

intersection graph has maximum degree less than λk(υ — l)/(fc — 1) — λ(k — 1).

Therefore Lemma 2.3 shows that the chromatic number is at most

λk(v - l)/(fc - 1) - λ(k - 1). •

3. Computation

Another primary question on block-colourings is "Can we easily compute

the chromatic index of a design?"

As far as algorithmic results are concerned, the complexity of computing

the chromatic index is unknown. The current best method involves back-

tracking which could require an exponential amount of time. However, in-

stead of employing the exhaustive algorithms, we may search for algorithms

guaranteed to run in polynomial time but possibly giving only approximate

answers. Two general classes of algorithmic greedy methods and hill-climbing

methods, for approximating the chromatic index of a B(3, 1; v), were studied

in [6]. Note that the achromatic index defined later is always larger than

or equal to the chromatic index.
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Here the use of the greedy methods is generalized. We investigate two

fairly simple greedy algorithms, and study the worst-case colouring for each

of these two algorithms in the following two subsections.

3.1. Achromatic index

A block-colouring of a design 3f is said to be complete if the union of

any two distinct colour classes does not form a partial parallel class. The

achromatic index of Si, ψ'(@% is defined by the maximum possible number

of colours in a complete block-colouring of Q). It appears that the achromatic

index is the maximum number of colours needed in the greedy colouring

technique operating as follows: Initially, each block is assigned with a different

colour, then join together two disjoint colour classes (eliminating a colour),

until there are no two disjoint colour classes. The achromatic index reflects

the worst-case behaviour of a greedy block-colouring algorithm that proceeds

by merging two disjoint block-colour classes while possible.

THEOREM 3.1. For any B(fe, λ; v) % ψ'(@) < c(fc, λ)v3/2 for some constant

c(k9λ).

PROOF. Suppose we have a t -complete-block-colouring; the ith colour

class contains b(ί) blocks. Then £ί=i ^(0 = λv(v — l)/{k(k — 1)}. Now for

each i, (r — l)kb(i) > t — 1, since each pair of the t classes intersect. Thus

Σ ι - i * ( 0 ^ Φ - *)/{(* ~ !)*}• H e n c e Φ - 1) ^ λΦ - l)/{k(fe - 1)} fc •
{λ{v _ i ) / ( k _ i ) _ 1 } = λ φ _ 1){λ{v _ 1 } _ ( k _ 1 ) } / ( k _ 1 }2 <

λ2v3/{k - I) 2 and ί < {λ/(k - \)}v3'2 + 1 < {λ/(k - 1) + l}v3'2 which completes

the proof. •

This bound is the best in some sense, as described below.

THEOREM 3.2. For any prime power q, there exist infinitely many

B(g + 1, l i;) % where v is of form q2'3" + q3" + 1, such that φ'{9)>

cx{q -h 1, l)v3/2 for some constant c^q + 1, 1).

PROOF. The existence of a resolvable B(q + 1, 1; q3 + 1) is shown for

any prime power q by Bose [2]. By reduction, there exists a resolvable

B(q + 1,1; q3n + 1) for all n e Jί. Now take a projective plane of order q3n,

and replace each line (block) of the plane by a resolvable B(q + 1, 1; q3n + 1)

which has q3"'1 parallel classes. Assign each parallel class of each resolvable

B(q + 1,1; q3n + 1) a unique colour. Moreover, the plane properties ensure

that there are q2'3" + q3n + 1 blocks in the plane and every two blocks of

the plane intersect. Then ψ'(@) > (q2'3" + q3n + I)*?3""1 > (2^)"1t;3/2. •
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THEOREM 3.3. For any prime power q, there exist infinitely many

B(q + 1,1; v) % where v is of form 42<2n+1> + q2n+1 + 1, such that ψ'(2) >
ci(^ + 1> l)v3/2 for some constant c2(q + 1, 1).

PROOF. The existence of a resolvable B(q + 1, 1; v), where v is of form

q2n+1 + 1, is shown by Ray-Chaudhuri and Wilson [10]. Take a projective

plane of order q2n+1, and replace each line (block) of the plane by a resolvable

B(q + 1,1; q2n+1 + 1). By assigning each parallel class of each resolvable

B{q + 1,1; q2n+1 + 1) a unique colour, we can get the required result. •

THEOREM 3.4. For any k, there exist infinitely many B(fc, k — 1; v\ %

where v is of form t2k2 — tk + 1 and tk — 1 is a prime power, such that

ψ'{β) > c3(fc, k — l)v3/2 for some constant c3(fc, k — 1).

PROOF. Dirichlet's theorem guarantees the existence of infinitely many

u such that u = 0 mod k and u — 1 be a prime power. Now, take a projective

plane of order u — 1, and replace each line (block) of the plane by a resolvable

B(fe, k — ί u) (see [8]). Then assign each parallel class of each resolvable

B(fe, k — 1; u) a unique colour. •

3.2. Block-by-block colourings

In this section, we consider a more sensible way of colouring blocks. The

"block-by-block" greedy method proceeds as follows: We use integers to repre-

sent colours. Initially, the blocks are not coloured. We colour the blocks

one at a time, by assigning a block the least integer so that the resulting

colour class contains disjoint blocks.

THEOREM 3.5. The block-by-block greedy method takes at most k{λ(v — 1)/

(k - 1) - 1} + 1 colours for a B(fc, λ; v).

PROOF. Suppose that the number of colours exceeds k{λ(v — 1)/

(fe — 1) — 1} + 1. Then, at some stage, a block {x1? x29..., xk} could not be

assigned to any of the first k{λ(v — l)/(fe — 1) — 1} + 1 colours. Then the block

{xl9 x2,..., xk} intersects each of these colour classes. But each of xh 1 <

i < k, appears in only λ(v — l)/(fe — 1) — 1 blocks other than {xl9 x 2,. . ., xk}.

This is a contradiction which completes the proof. •

This bound cannot be improved further, as the following shows.

THEOREM 3.6. If k— \ is a prime power, then the block-by-block greedy

method may require λ{v — k) + λ(v — l)/(fc — 1) colours for a B(fe, λ; v), when

v = 1 mod k(k - 1).
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PROOF. Let a resolvable B(fe, λ; u) be based on {1,2,..., u}. We construct

a B(fc, λ; (fc - \)u + 1) on ({1, 2,..., u} x {1, 2,..., fc - l})U{αo} as follows:

For each block B of the resolvable B(k, λ; u), we have (k — I) 2 blocks Bi9

1 < i < (fc - I) 2, of the transversal design TD(fc, k - 1) on B x {1, 2,..., k - 1}.

We also have blocks {(i, 1), (i, 2),. . ., (ί, fc - 1), oo} for all i e {1, 2,..., w}, each

repeated Λ, times. (For a definition of the transversal design see [13].)

Now we colour the B(fc, λ; (k — 1)M + 1) by the block-by-block method.

Let 0>u &>2,..., ^ Γ , r = Λ(M - l)/(fc - 1), be the parallel classes of the resolvable

B(fc, λ; u). For each block B of &>h, assign Bt colour (i - l)r + K 1 < i <

(k — I) 2 . Finally, assign each {oo, (z, 1), (i, 2),. . . , (i, k — 1)} a different colour.

This is a (Λ,u + r(k - l)2)-block colouring. That is, a B(fc, λ; v) takes λ(v - k) +

λ(i; — l)/(/c — 1) colours to colour its blocks by the block-by-block method. •

THEOREM 3.7. // fc — 1 is a prime power, then the block-by-block greedy

method may require (k - l)(v — 1) colours for a B(fc, fc — 1; v\ when v = k

mod fc(fc - 1).

PROOF. Let a near resolvable B(fc,fc— l u) be based on {1,2,..., tι}.

We construct a B(fc, fc — 1; (fc — l)u + 1) similarly, and colour the block B(

corresponding to &*h9 1 < h < u, the near parallel classes missing {h} of the

near resolvable B(fc, fc - 1; M), by colour (i - 1)M + h, 1 < i < (fc - I) 2 . Finally,

assign {oo, ( , 1),..., ( , fc - 1)} colour (i - \)u +j for some i, 1 < i < (fc - I) 2 .

This is a (fc — ί)(v — l)-block-colouring, which the block-by-block method

proceeds. •

In subsections 3.1 and 3.2, we discussed two algorithms. Obviously, both

of them can be improved by introducing certain heuristic improvement

techniques.
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