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Linearized oscillations for neutral equations I: Odd order1
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ABSTRACT. In this paper we prove that, under appropriate hypotheses, the nonlinear

dn

neutral delay differential equation — [x(ή - p(t)g(x(t - ρ))]+ q(t)h(x(t - δ)) = 0 has

the same oscillatory character as its associate linear equation for the case when n is

odd. Our result can also be applied to the case when p(t) itself is allowed to change

its sign.

1. Introduction

Neutral delay differential equations are differential equations in which the
highest order derivative of the unknown function appears both with and
without delays. The theory of neutral equations is of both theoretical and
practical interest. Neutral delay differential equations appear in networks
containing lossless transmission lines (as in high speed computers where the
lossless transmission lines are used to interconnect switching circuits), in the
study of vibrating masses attached to an elastic bar and also as the Euler
equations in some variational problems. See Driver [3], Hale [4] and the
references cited therein.

Consider the nth-order neutral delay differential equation

^ [x(t) - p(t)g(X(t - t))] + q(t)h(X(t -δ))=0 (1.1)

where n is an odd positive integer,

p,qeC([to,ao),R),g,heC(R,R), τ>0 and δ > 0. (1.2)

The linearized oscillation theory for (1.1) was first studied in Ladas and
Qian [8], see also Gyori and Ladas [5]. They proved
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THEOREM 1.1 [5, 8]. Assume that (1.2) holds,

limsup p(t) =P0e (0, 1), liminf p(t) = p0 e (0, 1), (1.3)
ί-+oo ί-^00

lim g(ί) = 40 e (0, oo)
ί—

0 < < 1 f o r u^^ l i m = l , (1.4)
W M-^O W V '

ιιΛ(ιι) > 0 /or M φ 0, |Λ(w)| > Λ0 > 0 /or |w| sufficiently large (1.5)

=l. (1.6)
^ M

Suppose that every solution of the linearized equation

£-„ \y(ή - Poy(t - τ)] + ίoX* - V = o (1.7)

oscillates. Then every solution of (1.1) also oscillates.

The question naturally arises as to how one may establish the corre-
sponding linearized oscillation results of (1.1) for the case when the coefficient
p(t) takes values outside the interval (0,1). Also see the open problem 10.10.4
in [5]. In the recent work [10], Yu, Shen and Qian investigated the case
when p(t) > 1. But the case p(t) < 0 has not yet been handled. This case
appears to be more difficult. Our aim in this paper is to deal with the more
general case when p(t) may also be allowed to oscillate. In Section 2 we
establish conditions for the oscillation of all solutions in (1.1) in terms of the
oscillation of all solutions of its associated linearized equation. In Section 3
we show that, under appropriate hypotheses, the converse theorem is also
true. To the best of our knowledge, this is the first paper dealing with the
case when p(t) itself is allowed to change its sign eventually.

For the special case when n = 1, the linearized oscillation problem of (1.1)
has been studied in [1, 2, 5, 6, 9]. Similar results for even-order neutral delay
differential equations have been obtained in [7]. For the general theory of
neutral differential equations, we refer to [4].

Let p = max{τ, δ}. By a solution of (1.1) we mean a function x e
C([ίι -p, oo),Λ) for some t\ > to such that x(ί) - p(t)g(x(t - τ)) is n times
continuously differentiate on [ίi, oo) and such that (1.1) is satisfied for ί > t\.

2. Main results

Throughout this section, we define for any t > ίo

E{ (ή = {s>t: p(s) < 0} and E2(t) = {s>t: p(s) > 0}.
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Clearly, £ι(ί)UE2(ί) = [ί, oo). For any Lebesgue measurable subset E of the
real number set R, let μ(E) denote the Lebesgue measure of E.

The main result in this section is the following

THEOREM 2.1. Assume that (1.2) holds and that there exists T > ί0 such
that

(2.1)

Suppose further that

p(t) is bounded, and liminf p(t) = — po e (— oo, — 1], (2.2)
ί — »oo

lira q(t) = q0e (0, oo), (2.3)
ί — K30

ug(u) > 0 for u Φ 0 and lim ̂  = 1 (2.4)
u-»Ό U

\h(u)\ > ΛO > 0 for \u\ sufficiently large (2.5)

and

ιιΛ(ιι) > 0 for u Φ 0 ana lim ̂  = 1 (2.6)
w->0 U

and that every solution of the linearized equation

^ [y(t) + PW(t - τ}} + qQy(t - δ) = 0 (2.7)

oscillates. Then every solution of (1.1) also oscillates.

Since p(t) < 0 eventually implies that (2.1) holds, we immediately have the
following corollary

COROLLARY 2.2. Assume that (1.2), (2.2)-(2.6) hold. If

p(t) < 0 for large ί, (2.8)

then the oscillation of all solutions of (2.7) implies the oscillation of all solutions of

(1.1).

PROOF of THEOREM 2.1. Assume, for the sake of contradiction^ that (1.1)
has a nonoscillatory solution x(ί). We will assume that x(t) is eventually
positive. The case where x(t) is eventually negative is similar and is omitted.
Let t\ > to be such that g(t) > 0, x(t — p) > 0 for t > ίi, where p = max{τ, δ}.
Set

z(t)=x(t)-p(t)g(x(t-τ)). (2.9)
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Then by (1.1),

zW(t) = -q(t)h(x(t - δ)) < 0 for ί > tι (2.10)

which means that the consecutive derivatives of z(t) of order up to n - 1 are
strictly monotonic functions eventually. Since z(t) > 0 for t > t\ with t e Eι(ίι),
it follows that z(ί) > 0 for all ί > t\. Furthermore by (2.10), z^n~^(t) > 0 for
ί>ίι. Set

α = l i m z(

ί-κx>

Clearly, 0 < α < oo. Thus, by integrating (2.10) from t\ to oo, we find

Γ q(s)h(x(s - δ))ds < oo
Jίi

which, together with (2.3), implies

ί h(x(s-δ))ds«x>. (2.11)
Jί!

We will prove that

lim x(ί)=0. (2.12)
ί—K50

To this end, we first prove that x(t) is bounded. Otherwise, x(ί) is un-
bounded. Set

β=limz(t).
t—+ao

Then 0 < β < oo. We will show β = oo. Suppose β < oo. Then z(ί) must
be decreasing on [fι,oo). Choose an increasing real numbers sequence
{sm} such that sm > T + τ, sm —> oo, x(sm) > z(T) and x(sm) -> oo as m —> oo.
Hence

p(sm)gf(x(5m - τ)) = x(sm) - z(sm) > 0 and goes to oo as m -̂  oo

which implies sme#2(Ό an(l x(5m — τ) —> oo as m —> oo. By (2.1), sm—
τ e £ι(T), i.e., p(sw - τ) < 0. Hence,

x(5m - τ) = z(sm - τ) -f p(sm - τ)gf(x(sm - 2τ)) < z(sm - τ) < z(T)

which yields a contradiction. And so /? = oo. From (2.5) and (2.6), let TV > 0
be so big that h(u) > HQ for u > N. Set

FI = {t > tι : x(ή > N} and F2 = {t > t\ : x(t) < N}.
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Thus by (2.5) and (2.11), we have

μ(Fι) < oo, μ(F
2
) = oo.

For t e F
2
, we have

-p(t)g(x(t - τ)) = z(ή - x(t) > z(t) - N —> oo as t —> oo

which implies that

te jim^ g(x(t - τ)) = oo

and hence

lim x(t — τ) = oo.
ίeF2,ί->oo

Hence there exists ί2 > t\ + τ such that

x(t - τ) > N for ί > ί2, ί 6 F2

which means that t e [ί2, oo) Π F2 and so ί — τ e FI. Since μ([ί2, oo) Π F2) = oo,
it follows that μ(Fι) = oo, which is impossible and so x(ί) must be bounded.
Let M > 0 be a positive constant such that

x(t-ρ) < M for ί > ίi.

Now set

j?ι = sup -̂  and β2 = inf -̂  .
0<u<M U 0<«<M M

Then by (2.4)-(2.6), 1 < β{ < oo, 0 < β2 < 1. Thus, we get

g(x(t - τ)) < βlX(t - τ) and h(x(t - δ)) > β2x(t - ί), ί > ί l β

By (2.11), we have

x(s - δ)ds < oo
J t\

and hence

g(x(s — τ))ds < oo.

This yields by (2.2) that

j OO

-p(s)g(x(s - τ))ds < oo
Jίi
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and therefore

ΓOO

z(s)d
Jίi

s < oo.

Since z(i) is positive and eventually monotonic, it follows that lim^oo z(t) = 0.
Since for t ε Eι(fι),

we get

lim x(t)=0. (2.13)

Also by (2.1), we see that ίeE2(ίι+τ) implies t — τeE\(t\). Thus, we have

lim g(x(t - τ)) = 0
feE2(ίι+τ),ί->oo

and hence

lim p ( f ) f l f ( x ( ί - τ ) ) = 0

which implies that

lim x(t) = lim [z(t)+p(t)ί(x(t-τ))]=0. (2.14)

Since £ι(ίι)U£2(ίι + τ) 2 [ίi-f τ, oo), it follows from (2.13) and (2.14) that

lim x(ί) = 0
ί->oo v '

which completes the proof of (2.12). Set

p'(t) = -p(ήg(x(t - τ))/x(t - τ), β*(t) = q(t)h(x(t - δ))/x(t - δ).

Then (1.1) becomes

^ [x(ή + p*(t)x(ί - τ)] + β*(t)x(t - ί) = 0. (2.15)

In view of (2.2)-(2.4), (2.6) and (2.12) we obtain

lim sup p*(t) = po, ϋm q*(t) = q^. (2.16)
ί̂ oo ί-^00

By the definition of z(ί), (2.15) reduces to

*M(t) + p*(t - 5 ) - ί z W ( t - τ) + ̂ (ί)z(ί - 5) = 0. (2.17)
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For any ε e (0, q$), let η = η(ε) e (0,1) be sufficiently near to 1 such that ηq$ >
qo — ε. Also choose γ = y(ε,η) > 1 to be near to 1 such that ηqo > y(q$ — ε).
By (2.16),

limsupp*(t-δ) f® = p o > l .
ί^oo <Γ\t — τ)

Then there exists ti > t\ + δ such that

<po + ε, 4*(ί)> for ί > t2.

Substituting this into (2.17), we have

z(n}(t) + (po + ε)z(w)(ί - τ) + — z(ί - δ) < 0 t > t2. (2.18)
7

Now set

β(ί) = -[zM(f) + (po + β)zW(ί - τ)]/z(ί - δ). (2.19)

Then by (2.18), we have

β(ί) > ̂  for ί > t2. (2.20)

Rewrite (2.19) as

^(n)(0 + (Po + Φ(n)(* - τ) + β(ί)z(t - δ) = 0. (2.21)

It is easy to see that \imt-,aoZ^(t) = 0, for i = 0,1,..., n - 1. In what follows,
for the sake of convenience, we define

(s - t)n-2Q(s}z(s - δ}ds, when n > 1

β(ί)z(ί - ί), when n = 1.

Integrating (2.21) from t to infinity n — 1 times and recalling that n is odd, we
get

which yields

f°°
*W + (Po + β)z(ί - τ) = β*(5)ds

Jί

or equivalently

z(t) = -- ί_z(t + τ) +— |- Γ β*(s)d5. (2.22)
Po + ε Po + βJί+τ
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By iteration, we have

z(ή =
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1=1

Γ Q*(s}ds + (-l)m(po + ε)-m

Jf+fr
mτ).

Since 1 and z(ί) — > 0 as t — > oo, we let m — > oo to have

t+iτ
Q*(S}ds

oo i ί+(, -|_i)τ

1+Po

=ττfr7 Γ (1 - (-po - ε)"[(s"ί)Λ1)β*(5)d5
1 H- po 4- e J(+τ

where [•] denotes the greatest integer function. From (2.20), we have for t > £2,

(« - tΓ2z(s - δ)ds, when n > 1

whenn = l.

> <

Thus, we obtain

z(t )>

_ r_nn _ Prl(«-')Λ]

: f (u-sf-2z(u-δ)duds,
JS

if n > 1 (2.23)

f+τ
(1 - (-Po - ε)-[(s-t)/τl)z(s - δ)ds, if n = 1.

Since every solution of (2.7) oscillates, it follows by [5] that the characteristic
equation of (2.7)

f ( λ ) = λn(l+pve-λτ) + qoe-** = 0

has no real roots. Consequently

τ < δ. (2.24)
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Next we will need the following claim, which can be proved by a slight

modification in the proof of Lemma 2 of [6].

Claim: There is an εo e (0, qo) such that for every η e [0, εo] every

solution of the equation

j£ b(0 + (Pθ + 1)y(t - τ)] + (qo - η)y(t - S) = 0 (2.25)

also oscillates.

We choose the above ε > 0 to be in (0,εo]. Our aim is to prove the
equation

b(ί) + (PO + e)y(t - 1)] + (βo - «)y(t - ί) = o (2.26)

has a positive solution. The method used here is the Banach contraction

principle. We consider the Banach space X of all bounded functions defined

on [t2 4- τ — <5, oo) with the sup-norm. Let

A = {ω E X : 0 < ω(ί) < 1 for ί > ί2 4- τ - δ}.

Then A is a bounded, closed and convex subset of X. Define a mapping

S: ,4 -> X as follows for ί > t2

( l+po + e)(n-2)!z(ι

ί
oo

(11 - s)n~2z(u - S)ω(u - δ)du ds, if n > 1
S

j OO

— (1 — ( — po — ε)~'^~ί^τ)z(s — δ)ω(s — δ)ds, if n = l
(t) Jt+τl(l+Pθ + Φ(ί) Jt+τ

(2.27)

and for ί2 -f τ - δ < t < t2

(Sω)(ή = (Sώ)(t2) + eh(t2~V - 1 (2.28)

where h = ln(2 - η)/(δ - τ) > 0. It is very easy to see by (2.22) that S maps A

into itself. Next we prove that S is a contraction on A. In fact, for any

ωι,o)2eA and ί > ti , we have if n > 1

|(Sωι)(ί) - (Sω2)(t)|

qp-ε f00

 EΓ[(s-ί)/τl<)
(1 ( P° ε) }

ί°°(u - s)n~2z(u - δ)|ωι(u - δ) - ω2(u - δ)\duds
JS

fOO

X

Js
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X
Js

+ ε)(n-2)!z(ί)M ' ""

f (u-s)"-2z(u-δ)duds
Js

fc£) (by (2.23))

ω2||

and if n = 1

I(sωι(t)-(sω2)(t)|

x z(s — δ)\a*ι(s — δ) — 0*2(3 — δ)\ds

And for ί2 + τ - δ < ί < ί2,

|(Sωι)(ί) - (Sω2)(t)\ = |(Sω!)(ί2) - (Sω2)(ί2)| < ι/||ωι - ω2||.

Hence

||Sωι - Sω2|| = sup |(Sωι)(ί) - (Sω2)(ί)| < if||ωι - ω2||.
t>t2+τ-δ

Since 0 < η < 1, this shows that 5 is a contraction on A. By the Banach
Contraction Principle, S has a fixed point ωe A. That is for t > ί2

90-

fJί-

fCO

X

ε)(n-2)!z(t)J t+τ

v v "" '

Γ (u - s)"-2z(u - δ)ω(u - δ)du ds, if n > 1
Js

POO

— \ (1 - (-po - ε)~^s~t^τ^)z(s - δ)ω(s - δ)ds, if n = 1
V Jf+τf+τ

(2.29)

and for ί2 + τ — (5 < ί < ί2
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Set

Then y(ή satisfies for ί > t2

= ω(t)z(t).

y(t) =

t+τ

qo-

(1+Pθ
^ Γ (1 - (-Po -
+ ε)Jt+τ

if n > 1 (2.31)

if n = 1.

We are now going to prove that y(i) is continuous on [(2 + τ - δ, oo). Clearly,

y(t) is continuous on fo + τ - δ, ti}. Next we show that y(t) is continuous on

[ί2, oo). We suppose n > 1. The case n = 1 is exactly similar and the proof is

omitted. For any «ι,82 6 [(2,00),

(l + p0 + ε)(n-2)!

= I f°° (1 - (-PO - ε)-[(s~Sl)/τl) f°°(M - s)n-2y(u - δ)duds
I Jsi+ τ Js

- Γ (1 - (-Po - ε)-[(s-S2)/τ!) f°°(M - s)n~2y(u - δ)duds
Jsi+τ Js

rS2+τ ΛOO oo rsι+(i-fl)τ roo

(u-Sr
2y(u-δ)duds-^(-Po-εΓi\ (u-s)

Jsι-|-τ Js j_ι Jsi+iτ Js

00 rs2+(i+l)τ roo

^-po-ε)"' (u-s)"-2y(u-δ)duds
i=l Js2+iτ Js

I fS2+τ TOO co I /»sι+(j+l)τ foo

< (u - s)"-2Xu - δ)duds + ^(po + εΓ (u - s)"'2

I Jsi+τ Js j =l I Jsi+iτ Js

S2+(i+l)τ

ί
S 2 + i + τ fee

(u-s)"~2y(u-δ)duds
S2+iτ Js

i oo

(U - S)-2XH -

Js

δ)duds

j_l

i | S2+iτ roo

(« -
I Jsi+ΐτ Js

rs2+i f l)τ rx

y(u - δ)du ds-\ \ (u - s)n~2y(u - δ)du ds
Jsι+(i+l)τ Js



568 L. H. ERBE and J. S. Yu

< |*2 - si I Γ(ιι - t2Γ
2z(u - δ)du(l + 2 f>0 +

J'2 V <=!

which shows that y(t) is continuous on [ί2, oo). Finally, we show that y(ί) > 0

for t>t2 + τ-δ. Obviously, y(t) > 0 for £2 H- τ - δ < t < t2. It suffices to

prove that y(t) > 0 for all t > t2. In fact, if there is a ί* e [ί2, £2 — τ 4- 5) such

that y(ί*)=0, then by (2.31),

[°° (1 ~ (-PO - er[(s~nA]) Γ(u - s)n~2y(u - δ)duds = 0
Jt*+τ Js

which implies

(11 - ί* - τ)n~2y(M - δ)du = 0i:
and hence y(u) = 0 for all u > t* + τ - δ. But since ί* + τ - 5 6 [t2 H- τ - δ, 12),

it follows that y(t* + τ - 5) > 0. This is a contradiction and so y(t) is posi-

tive on [ί2,ί2 — τ + <5). In general, by induction we have y(t) > 0 for te

[t2 4- ί(-τ H- δ), ti + (i 4- l)(-τ 4- δ)), i = 0, 1, 2, . . . , which shows that y(ί) > 0
for all ί > ί2. Thus, we have proved that y(ί) is positive and continuous on

[ί2 4- τ - δ, oo). From (2.31), we have for t > t2 4- τ

(f^ji Γ Γ(w " s)n~2y(M ~
^

(^o - ε) y(w - ^)^w,
V Jί

if n =

Differentiating both sides n times, we have

dn

+ (PO + ε)y(ί - τ)] + (βo - Φ(ί - ί) = 0, ί > ί2 4- τ

which contradicts the Claim and hence the proof is complete.

Since (2.8) together with n = 1 implies that every nonoscillatory solution

of (1.1) is bounded, it follows that (2.5) can be removed in this case. Thus, we

immediately have the following Corollary, which is an essential improvement

of Theorem 1 in [1].

COROLLARY 2.3. Assume that (1.2), (2.2)-(2.4), (2.6) and (2.8) hold. If
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every solution of the linearized equation

jt b(0 + PoV(t - τ)] + ίoy(t - δ) = 0 (2.32)

oscillates, then every solution of (1.1) with n = 1 also oscillates.

3. The existence of positive solutions

Consider the nth order neutral delay differential equation

- τ)] + g(t)Λ(x(t - $)) = 0 (3.1)

where n is an odd integer

p > l , τ > 0 , <5>0, 4eC([ί0,oo),tf+) and Λ e C ( Λ , Λ ) . (3.2)

The next theorem is a partial converse of Theorem 2.1 and shows that, under
appropriate hypotheses, (3.1) has a positive solution provided that an associated
linear equation has a positive solution.

THEOREM 3.1. Assume that (2.24) and (3.2) hold and that there exist
positive constants q$ and M such that

0 < q(t) < <Zo, (3.3)

and either

0 < h(u) <u for 0 < u < M (3.4)

or

0 > h(u) > 0 for - M < u < 0. (3.5)

Suppose also that h(u) is nondecreasing in u and that the linear equation

^\y(t)+py(t-τ)] + goy(t-δ)=Q (3.6)

has a nonoscillatory solution. Then (3.1) has also a nonoscillatory solution.

PROOF. Suppose that (3.4) holds. The case when (3.5) holds is similar
and will be omitted. Let y(t) be a positive solution of (3.6). It is easy to see
that lim^oo y(t) = 0. Thus, there exists a T > ί0 such that 0 < y(t) < M for
t>T — δ. Now integrate (3.6) from t > T to infinity n times, we have

py(t - τ) - ̂ yy J"(s - tΓM* -
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which yields for t > T — τ

f 00
gO /

+ p)(n- 2)! Jm

x [ (u - s)n~2y(u - δ)duds, if n > 1 (3.7)
Js

/I f°°
#0 I /1 / \-f(s-f)/τl\ / c \ j -c ι(1 — (—p) )y(s ~ o)ds, it n = 1

where [•] is the greatest integer function. In light of (3.3) and (3.4), (3.7) yields
for ί > T - τ

!_£<,_ <_„-,<.„„,

f (u-s)"-24(w)%(u-c5))<iu<is, i f n > l (3.8)
Js

rbf if n = 1.

Define the set of functions

W = {ω 6 C([T - <5, oo), Λ+) : 0 < ω(ί) < y(ί) for ί > T - 5}

and define the mapping 5 on W as follows for t>T

(Sω)(t) = : [ (u-s)"~2q(u)h(ω(u-δ))duds,
J S

1 f°°
rb ί1-*-'1 +PJt+τ

if n > 1

if n = l

and for T - δ < ί < Γ

where Λ > 0 is a constant with T + h > δ.
It is easy to prove that 5 maps Winto itself. Now define the following

sequence of functions on W:

= y(t) and zm(ή = (Szm-ι)(ί) for t > T - δ, m = 1, 2, . . . .
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By induction, we have

0 < zm(ί) < zm_ι(ί) < y(t) for t > T - δ.

Set x(t) = limm_>oo zm(i) for t > T — δ. It follows by Lebesgue's dominated

convergence theorem that x(ί) satisfies for ί > T

x(t) = x f (u - s)"~2q(u)h(x(u - δ))du ds, if π > 1 (3.9)
Js

-J- Γ (1 - (-pΓί(s-ή/τ])q(s)h(x(s -
L 1+P Jt+τ

if n = 1

and for T -δ<t<T,

Then by a similar method to the proof of Theorem 2.1, we can easily prove that

x(ί) is continuous and positive. By (3.9), we have

x(t) + px(t - τ) = ̂ TjT j" (s - O"'1? (s)h(x(s - δ))ds, t>T + τ.

Clearly, x(ί) is a positive solution of (2.1) on [T + τ, oo). The proof is

complete.

By combining Theorems 2.1 and 3.1, we obtain the following necessary

and sufficient condition for the oscillation of all solutions of (3.1).

COROLLARY 3.2. Assume that (2.6), (2.24) and (3.2) hold and that h(u) is

nondecreasing in u. In addition, assume that there exist positive constants go

and M such that either (3.4) or (3.5) are satisfied and

0 < q(i) <qQ= lim q(t).
—t— »oo

Then all solutions of (3.1) oscillate if and only if all solutions of (3.6) oscillate.
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