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A chiral model related to the Einstein equation
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ABSTRACT. We construct some new rational solutions of the stationary axisymmetric
Einstein equation.

0. Introduction

Our main objective in this paper is to construct a family of solutions
of a field equation for ¢ egl(2, C[[t71, ¢, z]]):

(0.0) dx*(tdo-07) =0,

where * denotes the Hodge operator with a Lorentz metric (dt)?> — (dz)® (ie.
*dt = dz, *dz = dt). This chiral model is the main part of the Einstein equa-
tion for a cyclindrical wave ansatz. Moreover, the equation of motion for
the Ernst potential is written in a matrix form above. So the chiral model
(0.0) is important in construction of exact vacuum gravitational fields, and
much progress has been made on the inverse scattering method and universal
Grassmann manifold approach [2], [3], [4], [5], [6]-

Here, we seek solutions of (0.0) by a dressing method. Taking account
of dx(tdlogt®)=0, we consider an ansatz o = t-deg(t™,t?) with 1€
GL(2, C[[t, z]]) and s,, s, € Z. If o satisfies (0.0) and c is a constant matrix,
then o-t° and ¢™'-a-c also satisfy (0.0). Hence we may assume that s, >0
and s, = 0, without loss of generality. We are mainly concerned with this
ansatz, and we investigate its solutions in a group-theoretic viewpoint.

Let A= C[[t,z]]. For ae A, we set ord a=sup{ke Z;ae (At + Az)}.
Let o/ denote an algebra {a =) a,A"€ A[[4, A']orda, +n>0}. If y =
Y ¥y, A" € gl(2, &) and Y, € GL(2, A), then Y has a unique decomposition y =
Yooyt with Y~ =1+ Y, 0¥ A¥ and y* =Y, 0¥ AF ([10]). We refer to
this as the Birkhoff decomposition. Then we can construct a solution of
(0.0) as follows.

THEOREM 0.0. Let se Z,, ¢ € GL(2, C[[x]]) and assume that ¢,,, ¢,, €
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Cl[x]]x%. We set

w=[ $11(0) wlz(c)]
163 4220 I

with £ = A 4 2z + t>/A. Let Yy = X_'X_ be the Birkhoff decomposition and set
T = X,(t,20). Then ¢ = 1-diag(t?, 1) is a solution of (0.0).

If the entries of ¢ are polynomials, then we get easily X, by solving
finite-dimensional linear algebraic equations over a field of rational functions
C(t,z) (see §2). Consequently, we see that the entires of o are rational
functions of ¢ and z.

In §1, we give a proof of the theorem above and a characterization of
our solutions. A main observation in our approach is to find their behavior
at t=0. In §2, we construct some exact solutions of the Einstein vacuum
field equations.

1. Ansatz

To begin with, we derive a field equation of our ansatz for (0.0). Let
1€ GL(2, C[[t, z]]) and set ¢ = 7-h with h = diag(t®, 1). Then (0.0) is rewrit-
ten as:

(1.0) oi(tdt- 1) + 9,(eStt) = 0,

where 0'=0,=0, —0?=0,=20, and S =diag(s,0). Let 3 denote tg,.
Then the equation above is equivalent to

(1.1) 927 — 917191 — t2(021 — 0,7 1710,7) + 91§ — 1St %t = 0.

For 1€ GL(2, C[[t, z]]), we set T = ,.oTt* with 7, egl(2, C[[z]]). If
t satisfies (1.1), we have

k%1, + k.S — 10810 kT, + (15i < k) =0,

where {t;;i < k) egl(2, C[[z]]) denotes an element which depends only on

{r;;i <k}. Putting
% b, =157
¢ dy ok

kzak (k2 - ks)bk
(k* + ks)c, k%d,

we see that

(12) ] i< k> =0,
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Therefore if s is not an integer, we see that all 7, (k > 0) are determined by
7o. But since s is now a non-negative integer, the equation (1.2) becomes a
constraint for 7, if k =s>0. To avoid this difficulty, we introduce a special
class of solutions. Let # denote the subalgebra of gl(2, C[[z]]) consisting
of elements whose (1, 2)-components are zero. Then it is easy to see that
1,€B for i<s if 1oe#. Hence we have

LEMMA 1.1. Let se Z, and 1y € GL(2, C[[z]]). We assume that (1) s > 0,
To € B, or (2) s=0. Then 1y and the (1, 2)-component of t, uniquely determine
a solution T € GL(2, C[[t, z]]) of (1.1).

This simple fact plays an important role in a characterization of our solutions.

ProOF OF THEOREM 0.0. Let W_ = X_H_ and W, = X,H, with H_ =
diag((1 + 2z/4 + t?/A%)™%, 1) and H, = diag((A®> + 2z4 + t?)%,1). Then

£%¢,1(0) §‘¢1z(€)]
86210 42208) 1

We note that D, =0 (i=1,2) for D, =td, — A0, + 240,, D, = t0, — Ad,, and
E=A+2z+t*/2. Hence Dw=0 (i=1,2). Since D;W, = D,W_-w, we see
that

w=WI'W, =H_'YH, = [

DX, H, + X,D,H, =(D,X_-H_ + X_D,H_)H*X~'X ,H,,
DX, + X.S; = (D,X_ + X_S)X_'X,,
where S, = D;H, -H;' = diag(2s,1) and S, = D,H,-H;' =0. Hence
DX, X'+ X,$X;'=DX_-X_'+ X_§;X1.

Therefore the both side terms of the equality above are independent of A.
Comparing the coefficients of A°, we have

ottt +1S;t = —0,X_, + Sy,
to,t 1= —0,X_4,

where 7= X,(t,20). This implies that t satisfies (1.0). Hence o=r1-
diag(t?, 1) is a solution of the chiral model (0.0).

In the rest of this section, we investigate 7, and the (1,2)-component
of 1,, for the solution 7 constructed in Theorem 0.0. We note that
GL(2, C[[x]]) = SL(2, C[[x]1])- GL(1, C[[x]]) and det y = det ¢(£). Also the
Birkhoff decomposition of an element f of GL(1, ) is reduced to the Laurent
decomposition of log f. So it is enough to consider the case: ¢ € SL(2, C[[x]]).

Let = X_'X, be the Birkhoff decomposition. We set N = X_! and
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P = X;'. First we examine Py, and P,,. Because Y, =Y 0r$;,(2z + )
t2k)s7*/k!, we see that y,, is holomorphic in Amod t>**!., For an element
a=YaA"e) C[[t, z]]A" we set a, = Y ,50a,A". Then Y P = N implies that

(11Pi2)s + ¥12P2, =0 mod t#*
We expand ¥y, =Y Yy 4%, Py =) Piost®™ and Yy, Py = Y 05622 + )

%Ak Py, = Y bto*. Then Yy, = 0%,z + ) k! and bee
A5*C[[z,A]]. Also we have

Zkll/ll,jPIZ‘k—j'f'bk:O k=0,...,5).

0<j<

Accordingly, we see that Py, , € A*"*C[[z, 4]] by induction. Therefore, setting
G = ]imi-—~0bk'1k_s = 6:’:¢12(22)/k!'1322(0’ z,0) and p, = 1im1—»oP12,klk_s, we
have

Z . 3,{¢11(22)/j! Dk-jt &= 0.

0<j<

From this, we can deduce an explicit expression for p,.

LEMMA 12. pp = —(¢;105(P12/01 1)Kz,

Proor. If we put t=0 and A =0, then we have ¢;,po + ¢;,P, =0.
Also Y, P, + ¥,, P, = N,, implies that ¢,,p, + ¢,,P,, = 1. Since det ¢ =1,

WE see that Po = _¢12 and P22 = ¢11' Hence
Z a:{¢11'l’k—j j' + 0¥pyy- dy1/k! = 0.
0<j<k

Therefore we have inductively

B11Dx — Z 0£¢11 '¢11la:—jv/(k =Dy + 6!“¢12¢11/k! =0,

1<j<k

where v = ¢;,/81;.  Since 05y, = 05(110) = Y 0<j<k 0361105 Tok!/(k — j)lj!, we
see that

$110x + $7108v/k! = 0.
Hence we complete the proof by induction.

Next we examine P;; and P,;. Assume that s>0. Then Y, Py, +
V1,P,; = N;, implies that if t =0 and A =0, then

Vi Py =1, W1:1P11 ) =0, 0O<k<ys),
('/’11P11)s + ¢12P21 =0,
where (---), denotes the coefficient of A*. Hence for k <,

afPu = af(‘//uPu/‘//u) = af(wupu)/‘/’u + ‘//11P1laf(1/'/’11)-
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In particular for k <s,
03Py = O0;(1/11).
Since 0;(Y1,P;1)/s! + ¢1,P;, =0, we have
Vi103Py /s! + A+ ¢,P =0,

where A =3 5_; 0y, 03I )/ji(s — D! = =¥, 05(1 /1, /st
Also Y,,P;; + ¥,,P,; = N,, implies that (¢,,P,,); + ¥,,P,; =0. There-
fore

$210;Py1/s! + B + Y5, P, =0,

with B =} 0<;<0{6210 (1 /11)/j!(s — )! = 05(b21/¥11)/5! — 21 05(1/11)/sL.
Using det ¢ = 1, we see that

Py = ¢4 — Y1 B= —y,,0i($21/911)/5!.

In the case s=0, setting t=41=0, we have P, +VY,P; =1,
Vi1,Piy + Yy, Pyy =0. Therefore Pyy = —y,; and Py = ¢,,.
Since P(t, z,0) = t~!, we obtain

THEOREM 1.3. Let se Z, and ¢ € SL(2, C[[x]]) with ¢,,, ¢,, € C[[x]]x".
Let © be the solution of (1.1) constructed from ¢ by the group-theoretic
method. Then

Case (1) s> 0:

P11 0 :|
0 =
*0, 2) [¢lla;(¢21/¢ll)/8! 1/$14 x=2x’
Typ = t201,03(12/011)/5! =22 + 0(%),

Case (2) s=0:

_ P11 P12
T(O’ Z) - l:¢21 ¢22:|x=2x

COROLLARY 1.4. If ¢ is symmetric, so is the solution ¢ = t-diag(t*, 1).

Proor. Note that ‘c is also a solution of (0.0). Let y = ‘o diag(t™2 1).
Then y,, = 7,,t and x,; = 1,,t"*. Hence Lemma 1.1 implies that x = t.

Also we can state a characterization of the solutions obtained by our
group-theoretic method.

ProrposiTION 1.5. Let se Z,, t € GL(2, C[[t, z]]), and let 6 = - diag(¢, 1)
be a solution of the chiral model (0.0). If (1) s> 0 and to€ B, or if (2) s=0,
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then t is constructed from a suitable ¢ € GL(2, C[[x]]) by the method as in
Theorem 0.0.

2. Applications

Let ¢ € GL(2, C[x]) with ¢,,, ¢,; € C[x]x*. Define ¢ as in Theorem 0.0
and let Y = X_'X, be the Birkhoff decomposition. We set

X_=1,+ Y XA

i<0

and

v= 3 Wl

Since the entires of X_ = X,y and ¢! are Laurent polynomials in 4,
we see that X; =0 for i< —m. Also X, =X_y =) (X_y);A' implies that
(X_y); =0 for i <0. Therefore we have

(2.0) Yo+ Y X =0, i=12 ..., m
1<j<m
Hence for a solution X_;, i =1, ..., m of the linear algebraic equation (2.0),
setting
=Y+ ) X_¥;
1<j<m

we get a solution o = 7-diag(t?, 1) for the chiral model (0.0).
In the rest of this section, we construct some vacuum gravitational fields.
Let s=1 and g(p, z) = a(ip, z). Then g satisfies

d(pxdg-g') =0,
where *dp = dz, *dz = —dp. Hence if we can solve
d,log f = —1/p + Tr(U? — V?)/4p, 0, log f = Tr(UV)/2p

-1

with U = pd,g-g™' and V = pd,g-g~!, we obtain a stationary axially symmet-

ric Einstein field:
ds? = g,dx°dx® — f(dp® + dz?),
(cf. [3]).

1
EXAMPLE 2.0. Let u = ax + bx? + cx® and ¢ = [u ) :uz] € GL(2, C[x]).

Then we have the following:
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Gab = ha/f,
f=1+b%p*—2c%p% + c*p'? + 12bcp*z + 36¢2p* 22,
hyy = —p* + c2p,
hy; = hyy = —p%(a — 3cp® + b%cp® — ac?p® + 3c3p® + 4bz + 8bc?pS:z
+ 12¢z% + 24c3p®2?),
hy, = (=1 —ap + 4cp® — b?p* + acp* — 2¢?p® — ¢3p°® — 4bpz — 8bcp*z
— 12cpz? — 24c?p*2%)(—1 + ap — 4cp® — b?p* + acp* — 2¢?p®
+ c3p® + 4bpz — 8bcp*z + 12cpz? — 24c%p*2?).
Finally we consider the Weyl’s static axially symmetric solution:
ds? = e*dt? — p?e~"do? — e'*(dp? + dz?).

Then the field equations are

@ (pd,)*v+ p?d2v=0,

(6) 3, = POV — @V)2: 1. = pd,v-2,v.
Here we notice that the equation (a) is the axially symmetric Laplace equa-
tion. Then our proof of Theorem 0.0 implies

ProposiTION 2.1. For ve C[[x]], the constant term v of the Laurent
expansion of v(A + 2z — p?/A) is a solution of (a).

Also setting 0 = (9, + i0,)/2, we can rewrite (b) as
dy = p(0v)>.

For ¢(x)=x + 2m, we set ¥ = ¢(A + 2z + t?/2). Let ¥ = X_'X, be the
Birkhoff decomposition. Since X~! = yX;!, we have AX_' e C[[t,z 4]]. So
we can set X_! =1 —a/i with ae[[t,z]]. Then X_y e C[[t, z, A]] implies
that a®> 4+ 2(z+m) +t>=0. Hence a= —(z + m) + \/(z + m)*> — t?, and

X, (t,2,00=2z+m+a=(+m)+/z+m? -1

Let p=(z+m) + /(z + m* + p>. Then v = —log u is a solution of (a). We
note that d,u = 2u*/(u* + p*) and d,u = 2up/(u* + p?). Thus

dlogu =

p—in
It is now ready to construct a generalized multi-Schwarzschild solution (cf.
[3]). Let m; (i=1,...,n) be distinct real numbers. We set u;, =(z + m;) +

J(z +m)*+ p? and v, = log ;. Then for real numbers a; (i =1,...,n),
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is a solution of (a). A direct computation shows that

p

20log p — dlog(u® + p*) = ———,
(p— i

_ 3 p
0log(p; — py) = (p —im)(p — in)

Hence

n 2
= a?lo —ﬂ'__) + 2a:a. lo L — U
v=2 a g(ﬂ2 e ,-;,- a;0; 10g(p; — 1)

satisfies 0y = p(Ov)>.
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