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A chiral model related to the Einstein equation

Hideo Doi
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ABSTRACT. We construct some new rational solutions of the stationary axisymmetric
Einstein equation.

0. Introduction

Our main objective in this paper is to construct a family of solutions
of a field equation for σ ε gl(2, C[[rS ί, z]]):

(0.0) d*(tdσ-σ-*) = Q,

where * denotes the Hodge operator with a Lorentz metric (dt)2 — (dz)2 (i.e.
*df = dz, *dz = dt). This chiral model is the main part of the Einstein equa-
tion for a cyclindrical wave ansatz. Moreover, the equation of motion for
the Ernst potential is written in a matrix form above. So the chiral model
(0.0) is important in construction of exact vacuum gravitational fields, and
much progress has been made on the inverse scattering method and universal
Grassmann manifold approach [2], [3], [4], [5], [6].

Here, we seek solutions of (0.0) by a dressing method. Taking account
of d * (id log t s ) = 0, we consider an ansatz σ = τ deg(ίSl, ί*2) with τ e
GL(2, C[[ί, z]]) and s l 5 s2 e Z. If σ satisfies (0.0) and c is a constant matrix,
then σ-ts and c'^ σ c also satisfy (0.0). Hence we may assume that st > 0
and s2 = 0, without loss of generality. We are mainly concerned with this
ansatz, and we investigate its solutions in a group-theoretic viewpoint.

Let A = C[[ί, z]]. For a e A9 we set ord a = sup{fe e Z; a e (At + Az)k}.
Let Λ/ denote an algebra [a = Σanλ

n e A[[A, A"1]]; ord an + n > 0}. If ψ =
Σ ψnλ

n E gl(2, j/) and I/O e GL(2, ,4), then ψ has a unique decomposition ψ =
ι/r ιA+ with ψ~ = 1 +Σk<ofaλk and φ+ =Σk>oΨΐ*k ([10]). We refer to
this as the Birkhoff decomposition. Then we can construct a solution of
(0.0) as follows.

THEOREM 0.0. Let seZ+, φ e GL(2, C[[x]]) and assume that </>12, Φ2ι e
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C[[x]]xs. We set

λsφ12(ξ) ']•
with ξ = λ + 2z + t2/λ. Let φ = X_1X+ be the Birkhoff decomposition and set
τ = X+(t, z, 0). Then σ = τ diag(ί2s, 1) is a solution of (0.0).

If the entries of φ are polynomials, then we get easily X+ by solving
finite-dimensional linear algebraic equations over a field of rational functions
C(ί, z) (see § 2). Consequently, we see that the entires of σ are rational
functions of t and z.

In § 1, we give a proof of the theorem above and a characterization of
our solutions. A main observation in our approach is to find their behavior
at t = 0. In § 2, we construct some exact solutions of the Einstein vacuum
field equations.

1. Ansatz

To begin with, we derive a field equation of our ansatz for (0.0). Let
τ e GL(2, C[[ί, z]]) and set σ = τ-h with h = diag(ίs, 1). Then (0.0) is rewrit-
ten as:

(1.0) dl(tdfl - τ'1) 4- dt(τSτ~l) = 0,

where d1 = dx = δf, —d2 = d2 = dz9 and 5 = diag(s, 0). Let 5 denote tdt.
Then the equation above is equivalent to

(1.1) 92τ - 5τ τ^θτ - t2(d2τ - dzτ- τ~ldzτ) + 9τS - τSτ~l3τ = 0.

For τ E GL(2, C[[ί, z]]), we set τ = £*>o V* with τfc E gl(2, C[[z]]). If
τ satisfies (1.1), we have

k2τk + fcτfcS — τ05τo1fcτk + <τt ; ί < fe> = 0,

where <τf; i < k) E gl(2, C[[z]]) denotes an element which depends only on
{τf; i < k}. Putting

— τ

we see that

(i-2) LΓ.7.. vv ,2r-| + < T i ; i < f c > = o.(/c2-fes)bkΊ

fcχ j
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Therefore if s is not an integer, we see that all τk (k > 0) are determined by
τ0. But since s is now a non-negative integer, the equation (1.2) becomes a
constraint for τ0 if k = s > 0. To avoid this difficulty, we introduce a special
class of solutions. Let J* denote the subalgebra of gl(2, C[[z]]) consisting
of elements whose (1, 2)-components are zero. Then it is easy to see that
τi e $ for i < s if τ0 e ̂ . Hence we have

LEMMA 1.1. Let s e Z+ and τ0 e GL(2, C[[z]]). We assume that (1) 5 > 0,
τ0 e ,̂ or (2) 5 = 0. Then τ0 and the (1, 2)-component of τs uniquely determine
a solution τ e GL(2, C[[ί, z]]) of (1.1).

This simple fact plays an important role in a characterization of our solutions.

PROOF OF THEOREM 0.0. Let W_ = X_H_ and W+ = X+H+ with H_ =
diag((l + 2z/λ + t2/λ2)~\ 1) and H+ = diag((/l2 + 2zλ + £2)s,1). Then

We note that D f£ = 0 (i = 1, 2) for Dx = ίδ, - λdz + 2Λδλ, D2 = tdz - λdt, and
ξ = λ + 2z + t2/λ. Hence DjW = 0 (ί = 1, 2). Since D£ W^+ = DtW- - w, we see
that

D1X+Ή+ + AΓ+AH+ = (DtX- H- + X-DiH-)HI1XI1X+H+,

D{X+ + *+$ = (D, jf. + ̂ SJJSfl1^,

where Si = D^H+Ή^ = diag(2s, 1) and 52 = D2H± H±l = 0. Hence

DtX+ x? + Jf+SiX;1 = A^- -X-1 + -ϊ-SίXi1.

Therefore the both side terms of the equality above are independent of λ.
Comparing the coefficients of λ°9 we have

tdzτ-τ~l = -

where τ = ^+(ί, z, 0). This implies that τ satisfies (1.0). Hence σ = τ
diag(ί2s, 1) is a solution of the chiral model (0.0).

In the rest of this section, we investigate τ0 and the (1, 2)-component
of τ2s for the solution τ constructed in Theorem 0.0. We note that
GL(2, C[[x]]) = SL(2, C[[x]]) GL(1, C[[x]]) and det ψ = det φ(ξ). Also the
Birkhoff decomposition of an element / of GL(1, <$&) is reduced to the Laurent
decomposition of log/. So it is enough to consider the case: φ e 5L(2, C[[x]]).

Let ψ = XIΪX+ be the Birkhoff decomposition. We set N = XI1 and



144 Hideo Doi

P = X+l. First we examine P12 and P22. Because φl2 = Σ^χΦ^(^z + λ)-
t2kλs~k/k\, we see that ψί2 is holomorphic in λ mod ί2s+1. For an element

a = Σanλ
n e Σ C[[ί, z]]Λ", we set α+ = Σn>o α^A". Then ψP = N implies that

WΊΛ2)+ + ^12^22 = 0 mod t2s+l.

We expand <Aιι =

ί2kA5- fc/fe! P22 = ΣV2 f c Then

>ls~kC[[z, A]]. Also we have

< -

2* and ^12P22 = Σ^V(2z + λ)
= d^(2z + λ)λ"k/kl and bke

Accordingly, we see that P12,k
 E λs~kC[[z, A]] by induction. Therefore, setting

ck = lim^oM*"' = 3^12(2z)/k! P22(0,z,0) and pk = limλ^QP,2fkλ
k-s

9 we
have

From this, we can deduce an explicit expression for pk.

LEMMA 1.2. pk = -(^11^12/^

PROOF. If we put ί = 0 and A = 0, then we have φ^pQ + Φi2p22 = 0.

Also ψ2ιPi2 + ^22^22 = ^22 implies that ^21/?0 + ^22P22 = l Since det φ = 1,

we see that p0 = ~Φi2 and ^22 = ^n Hence

Therefore we have inductively

~ Σ

where ι? =
see that

. Since

(*• -W + δk

xΦi2ΦιJk\ = 0,

t?) = Σo<;<fc^>ιιδ^J't;fc!/(fc -j)\j\, we

Hence we complete the proof by induction.

Next we examine P1X and P21. Assume that s > 0. Then

*Ai2^2i = ̂ 11 implies that if ί = 0 and A = 0, then

ΆιιΛι = l, «ΊΛι)* = 0, (0<fe<s) ,

where ('-)k denotes the coefficient of λk. Hence for k < s,
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In particular for k < s,

#Pιι =

Since dl(\l/11P11)/sl + Φ12

pi2 = 0> we have

where A = £j=i ̂ ^"Wii )//!(* ~JV- = ~<Aι
Also φ2ιPu + Φ 22^21 — ̂ 2i implies that (^2ιΛι)s + Φ 22^21 — O There-

fore

with β = Σo<jattΦ2iBΓJ(WιιW (s -7)! =
Using det ^ = 1, we see that

In the case 5 = 0, setting ί = λ = 0, we have i/ΊiPn + ^12^21 = 1>
Λι + U22p2i = O Therefore P21 = -^2ί and Pn = ι/^22.

Since P(ί, z, 0) = τ"1, we obtain

THEOREM 1.3. Let s e Z+ and ^ 6 5L(2, C[[x]]) wίίft Φ^Φ2i^ C[[x]]xs.
Lei τ foe ί/ie solution of (1.1) constructed from φ by the group-theoretic
method. Then

Case (1) 5 > 0:

(2) s = 0:

COROLLARY 1.4. // φ is symmetric, so is the solution σ = τ diag(ί2s, 1).

PROOF. Note that 'σ is also a solution of (0.0). Let χ = lσ diag(ί~2s, 1).
Then χ12 = τ21ί

2s and χ21 = τ12ί~
2s. Hence Lemma 1.1 implies that χ = τ.

Also we can state a characterization of the solutions obtained by our
group-theoretic method.

PROPOSITION 1.5. Let s 6 Z+, τ e GL(2, C[[ί, z]]), and let σ = τ diag(ί2s, 1)
be a solution of the chiral model (0.0). // (1) s > 0 and τ0 e Λ> or if (2) s = 0,
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then τ is constructed from a suitable φ e GL(2, C[[x]]) by the method as in
Theorem 0.0.

2. Applications

Let φ e GL(2, C[x]) with φl2, φ2ί e C[x]x5. Define ^ as in Theorem 0.0
and let ψ = XI1X+ be the Birkhoff decomposition. We set

X. = 12 + £ Xίλ1

i<0

and

* = Σ iM'
— m<i<m

Since the entires of Jf_ = X+ψ'1 and i/f"1 are Laurent polynomials in A,
we see that Xt = 0 for i < — m. Also ΛΓ+ = X_ψ = ^(X_\l/)^ implies that
(X-ψ)i = 0 for i < 0. Therefore we have

(2.0) ψ-t + X X_^ -i = 0, i = 1, 2, . . . , m.

Hence for a solution X_i9 i = 1, . . . , m of the linear algebraic equation (2.0),
setting

Σ *-A
'

we get a solution σ = τ diag(ί2s, 1) for the chiral model (0.0).
In the rest of this section, we construct some vacuum gravitational fields.

Let 5 = 1 and g(p, z) = σ(ip9 z). Then g satisfies

where *dp = dz, *dz = — dp. Hence if we can solve

dp log / = - ί/p + Ίr(U2 - V2)/4p, dz log / = Ύτ(UV)/2p

with U = pdpQ'g~l and V = ρ8zg-g~^, we obtain a stationary axially symmet-
ric Einstein field:

ds2 = gabdxadxb-f(dp2 + dz2\

(cf. [3]).

EXAMPLE 2.0. Let u = ax + bx2 + ex3 and φ = , e GL(2, C[x]).
\_u 1 + M^J

Then we have the following:
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9ab = hab/f>

/ = 1 + ί> V - 2c V + c4p12 + 12fecp4z + 36c2p4z2,

*ιι= ~P2 + C2P8,

*i2 = *2i = -P2(a - 3cP2 + &2<V6 - <rcV + 3c3p8 + 4ί?z + 8bc2pβz

+ 12cz2 + 24c3p6z2),

h22 = (-l -ap + 4cp3 - Z?2p4 + acp4 - 2c2p6 - c3p9 - 4bpz - 8bcp4z

- \2cpz2 - 24c2p4z2)(- 1 + αp - 4cp3 - fe2p4 + αcp4 - 2c2p6

+ c3p9 + 4bpz - 8fecp4z + 12cpz2 - 24c2p4z2).

Finally we consider the WeyΓs static axially symmetric solution:

ds2 = evdt2 - p2e~vdφ2 - e^v(dp2 + dz2).

Then the field equations are
(a) (pdp)

2v + p232v = 0,
(b) yp = P((8pv)2 - (dzv)2)/2, yz = pdpv - 8zv.

Here we notice that the equation (a) is the axially symmetric Laplace equa-
tion. Then our proof of Theorem 0.0 implies

PROPOSITION 2.1. For ueC[[x]], the constant term v of the Laurent
expansion of v(λ + 2z — p2/λ) is a solution of (a).

Also setting d = (dp + idz)/29 we can rewrite (b) as

By = p(dv)2.

For φ(x) = x + 2m, we set ψ = φ(λ + 2z + t2/λ). Let ψ = XI1X+ be the
Birkhoff decomposition. Since XI1 = ΨX+1, we have λXI1 e C[[ί, z, A]]. So
we can set XI1 = 1 - a/λ with a e [[ί, z]]. Then X_ψ e C[[ί, z, A]] implies
that a2 + 2(z + m) + ί2 = 0. Hence a = -(z + m) + ^/(z + m)2 - ί2, and

+(ί, z, 0) = 2(z + m) + a = (z + m) 4- ^/(z + m)2 - ί2.

Let μ = (z + m) + ^/(z + m)2 + p2. Then v = — log μ is a solution of (a). We
note that dzμ = 2μ2/(μ2 + p2) and dpμ = 2μp/(μ2 + p2). Thus

d log μ =
p-ψ

It is now ready to construct a generalized multi-Schwarzschild solution (cf.
[3]). Let mi (ί = 1,..., n) be distinct real numbers. We set μt = (z + m f) +
y/(z + W;)2 + p2 and vt = log μt. Then for real numbers a{ (i = 1,..., w),
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n
v~<

i=l

is a solution of (a). A direct computation shows that

, -2x P

(p-iμ)2'

Hence

7 = Σ α2 log( 2

μi

 2 ) + Σ 2aiaj Io8(/*i - μ/)
i=l \/*i + P / »<J

satisfies 5y = p(δv)2.
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