HIROSHIMA MATH. J.
27 (1997), 47-75

A family of Yang-Mills connections on
4-dimensional pseudo-Riemannian spaces

Dedicated to Professor Kiyosato Okamoto for his 60th birthday

Hiroshi KaymoTto
(Received September 6, 1995)

ABSTRACT. A family of Yang-Mills connections on 4-dimensional pseudo-Riemannian
spaces S%, S! x 83, §2 x S? of respective indices are constructed by a group theoretic
method. The index and the nullity of their second variations are calculated.

1. Introduction—A Review of Riemannian case

In this article we construct a family of Yang-Mills connections on. 4-
dimensional pseudo-Riemannian spaces S*, S! x §3, §? x §? equipped with
the indefinite Riemannian metrics of the index (4, 0), (1, 3), (2, 2) respectively
by a unified method. And then we study the index and nullity of their
second variations at the canonical connection. We are interested especially
in the compactified Minkowski space S* x §3. On the Riemannian space S*
our connection is the BPST-instanton of the Hopf fibering S7 — S* (see Atiyah
[1], Chapter II and Chapter III, 2). We review this case first from a group
theoretic view point.

The BPST-instanton whose instanton number equals one can be con-
structed on Euclidean 4-space R* (identified with the set H of quaternions)
according to the following diagram:

G=SL,H — K = Sp,
1 . 1
x'—’( x) l o1 Sp./Sp: =5
0 1 l lSm
R*=H=N—1— G/P = K/M = Sp,/Sp, x Sp; = §*

open dense

where we use the following notation. G = SL,(H) = {(Z Z) a,bc,de H
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and the corresponding complex 4 x 4-matrix has determinant 1}. The ele-

ment « + fj € H (o, f € C) corresponds to a complex 2 x 2-matrix < aB g > €

M,(C). The Iwasawa decomposition and its K-projection is denoted by

G=KAN 5K where K = Sp,, A={<g a91>’aeR, a>0} and N =

{5

O .
M= {(g b)'a, beH, |a| = |b] = 1} = Sp, x Sp, is the centralizer of A in

K. We use the decomposition NP = G (open dense). And O is the K-
invariant canonical connection of the bundle K —» K/M. ie, @ is a K-
invariant, m-valued 1-form on K, whose value at identity is the orthogonal
projection relative to the Killing form of f, @,:f =m + s > m, where f, m
are the Lie algebras of K, M and s is the orthogonal complement of m in .

We equip the base space K/M with a positive definite K-invariant
Riemannian metric & induced by the negative of the Killing form. And we
equip the Lie algebra m of the structure group with a positive definite
invariant inner product. Laquer [10] considers the Yang-Mills functional
associated with principal bundles over homogeneous spaces and shows that
the canonical connection © in K - K/M is a Yang-Mills connection relative
to the metric . The embedding j is easily checked to be a conformal map
from the standard Euclidean 4-space R* = H to an open dense subset of the
compact Riemannian space K/M = S* The Yang-Mills functional or the
Hodge star operator * on 2-forms is conformally invariant over 4-dimensional
spaces. Therefore we get the finite-action Yang-Mills connection in R* x
M — R* of the pull-back bundle. Put u =koi and compute the pull back
u*®. Then we have a m-valued 1-form on H

X € H}. P=MAN = {(j 2) € G} is a parabolic subgroup and

(u*@)(x) = the orthogonal projection of (u~'du)(x) to m
xdx
— 0
RS
B Xdx
0
‘ T+ P
Its projection to the second sp;:
xdx

A(x) = Im—2%
() =Imy—
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is an anti-self-dual connection which is a local form of the so called BPST
anti-instanton. This projection corresponds to a projection of the structure
group M = Sp, x Sp, = Sp,, which reduces to the Hopf bundle S” — S* as
above. (The projection to the first sp, is a self-dual connection).

In the above diagram the group G = SL,(H) acts naturally on K,
K/M = §* and N as follows. For geG, ke K and 7ie N, we put

1,(k) = k(gk),  t,(kM) = k(gk)M and 1,(n) = n(gn)
where g = i(g)m(g)a(g)n(g)e NMAN is the decomposition of open dense
subset NMAN of G. Identifying H=N by x— i, = <(1) T), G-action on
H is

7,(x) = (ax + b)(cx + d), g= (a b
c d

>e G, xeH.

G-actions on K/M =5* and N = H= R* are conformal transformations.
Hence G acts on the space % of all the Yang-Mills connections and the
space %~ of all the anti-self-dual connections in K — K/M. Its action is
pulled back on H as

A%(x) = u*(t} @) (x) = J,(x) M (tF A) (x)J,(x) + J,(x) " dJ,
~ (t¥4)(x) modulo gauge group ¥,

where J,(x) = m(gn,) = (cx + d)/|cx + d|e M = Sp,. The gauge equivalence
is valid at least on H\{—c'd}. If geK=Sp, then 6@ =6 by the
K-invariance and hence the map g+ 1(g~!)*@ induces the smooth map

SL,(H)/Sp, > M~ =Y~ %

where the right hand side is the moduli space of anti-instantons. Atiyah,
Hitchin, Singer [3] show that G = SL,(H) acts transitively on the moduli
space .#~ and hence that the above map is an onto diffefomorphism. In
other words the Moduli space is a single G-orbit: ./# = G[@].

This group theoretic method using the structure of a semisimple conformal
transformation group G is available for the construction of Yang-Mills connec-
tions on the other pseudo-Riemannian 4-spaces R:3, R*? or rather their
compactifications S* x §3, $2 x §2, which are identified with appropriate ho-
mogeneous spaces G/P = K/KNM of the conformal transformation group
G. For the group G we take SU(2, 2), SL,(R) and pick up a suitable parabolic
subgroup P = MAN whose N-part is of dimension 4. Note that SL,(H),
SU(2,2) and SL,(R) are real forms of the complex Lie group SL,(C). In
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§2 and §3 we give detailed constructions for R''3 and R*? respectively and
study some related properties of G-orbit G[@]. In §4 we study their second
variations at the canonical connection ® by a method of homogeneous vector
bundle and representation theory of compact Lie groups.

2. The case of R"3—Minkowski space

0 —1I 0 —1I
* —3
g <1 o)g (1 0)} and  the

A O . .
parabolic subgroup P = {( C D) € G}, where g* is the transposed conjugate

Take G =SU(2,2)={geSL,(C)

matrix of g. The Langlands decomposition is P = MAN where A=

I 0 *-1
{(i) a‘11> a>0, aeR}, M={<g0 2) g € M,(C),det g = il}z
SL3(C) and N={<)I( ?)’XEMZ(C),X=X*}. Let K = GﬂSU4={k=
A B
—B 4

0
maximal compact subgroup of G. Then H=KNM = {(i]) g)

A*A + B*B=1,A*B — B*4 =0, detk = 1} = S(U, x U,) be the

g*g =1,

detg= +1,~8SU}. In the subsequent sections we also use another

o Zo=( )}

Two realizations of SU(2,2) are connected by a Cayley transformation

realization of G = SU(2,2) ie., G = {g € SL,(C)

1 (I il .
C= Ad7§<‘1 11>’ e.g. the maximal compact subgroup K = S(U, x U,) is
1

A B A—iB 0 . .
transformed by C (—B A) = < 0 A+ iB>’ A + iBe U,, det(A — iB)

(A+iB)=1. Let g, f, m, a, n and §) be the Lie algebras of G, K, m, 4, N
and H respectively and let g =T + p be the Cartan decomposition. Then we
have the decomposition: G = K x exp(mNp) x 4 x N (cf. [14], 1.2.4.11). Put
K:G—-> KM = K x exp(mNp) and k: G - K be the corresponding projections.

5

an open dense subset NP of G:NP=N x M x A x N denoted by g =
n(g)m(g)a(g)n(g).

X*=X } Then we also have the decomposition of

LeMMA 2.1. The decomposition G =K x exp(mNp) x A x N=KM x
A x N is given by the following: For
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A B
= N =1 * _— * =
g (C D)GG, detg=1, A*D—C*B=1,

A*C — C*A = B*D — D*B = 0,
A B\ (E F\(h* O\(sI 0\(I 0
¢ D) \—-F EJ\0o n/\0 sUJ\X 1

B (s“(A—BX) sB)(sI 0)(1 0)
“\s(c-DpXx) sDJ\0 sU)\X I

s =det(B*B + D*D)"*e R,  h=s(B*B+ D*D)"? e SL(C)

where

E=D(B*B+ D*D)"'?,  F = B(B*D + D*D)™*?,
X = (A*B + C*D)(B*B + D*D)™".

And the decomposition: NP =N x M x A x N is given by
A B\ (I BD™'\(D**' 0
c p/ \0o I C D
_ (I BD™'\(s7'D** 0\(sI 0O I 0
“\o0 I 0 sD)\0 s™'IJ\C*D*™! I

where s = det(D*D)"'* e R. O

We consider the principal M-bundle KM - KM/M = K/KNM = K/H
and the canonical K-invariant connection @. @ is by definition a K-invariant
m-valued 1-form on KM whose value at identity is the projection 6,:s + m —
m where the tangent space T,(KM) is identified with f+ m =35+ m and

(% o)

to the Killing form of g. In other words, s and its left K and right M-
translates are horizontal subspaces in KM. The base space K/H = U, is

B= B*} is the orthogonal complement of m in f + m relative

A B
homeomorphic to S* x S>. The isometry K/H = U, is given by ( B A>H ~

(A —iB)(A + iB)"!. We give a K-invariant (1,3)-metric h as follows. =
A B
—B 4

0
h=fNm=~su,. We see tT=3+f, where 3= RZ <Z=< I é)) is the

A+ A*=0,trA=0, B* = B} =s + b is isomorphic to s(u, x u,).

1-dimensional center of ¥ which is contained in s and {, =[£,f]=h + sNf; ~
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su, x su,. Hence s =3+ sNf, is isomorphic to u, as h-module. The Kill-
ing form of ¥, >~ su, x su, is B(X, Y)=4tr(XY) for X, Yef,. Define h on
s=T(K/H) as h(X,Y)=4tr(XY), h(X,Z)=0 for X, YesNE, and Ze3}
with h(Z,Z)= —4tr Z>* =16. h is (Ad H)-invariant, so that h is extended
to a K-invariant (1, 3) metric on K/H. Under the isometry K/H = U, this
metric corresponds to h = —4 det(g 'dg), ge U,. We give the Lie algebra
m = sl,(C) of the structure group M an indefinite inner product <X, Y) =
Retr(XY). We can prove in the same way as Laquer [10]’s Riemannian
case that the canonical connection @ is a Yang-Mills connection relative to
the invariant metric h (see [10], Theorem 3.1). Put H(2) = the space of all
2 x 2-Hermitian symmetric matrices. Take the coordinates on H(2) by X =

Xy — Xy  iX3— X4
(—ix3 — X4 Xyt X,
dx3 — dx2 and regard it as the standard Minkowski space R':3. Identify

HQ2) = N by the map XH((I) )I(>

>. We give H(2) the (1, 3)-metric det dX = dx? — dx3 —

Consider a diagram:

G=SU@22) —> KM

/ l eJM=SL§(C)

R'“3=HQ2 =N —— G/P = K/H=U,~S§"x8
I X
X — (O I) — » (I —iX)(I +iX)™.

The embedding j: N - K/H = U, has an open dense image and j(X)=
(I —iX)(I +iX)™, j*h = —d4det(j'dj) = 16 det(I + X2)"'(det dX). Since
16 det(I + X?)™* >0 on H(2) we might say that the map j is conformal.
Hence we get a finite-action Yang-Mills connection on R'3. Put u=xoi
and compute the pull-back u*@ on R':3 = H(2). Then

PROPOSITION 2.2. The local form B of the canonical connection O is given
by the following m-valued 1-form on H(2).

B(X) = u*@)(X) = Im(I + X?)"' XdX, x € H(2),

. a b\ _ ((a—4d)2 b
where Im-part of a matrix means Im(c d> —< . d—ay2) The

curvature form Fg=dB + B A B is

Fy(X) = (I + X2)'dX (I + X?)"'dX.
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Proor. The canonical connection ® in the bundle KM — K/H is ex-
pressed as in the Riemannian case by

O = proj(u~tdu), ue KM,

*

—_ — A*
where proj: g = M,(C) is proj( (:,4 i) =A,g= {( g ﬁ)’tr(A — A% =

—A4* 0 —A* 0
* — * — = = o~
0,C*=C,B B}, m {( 0 A) tr A 0} sl,(C) by ( 0 A)'—*

A. In fact let X e T,(KM), u=kme KM and let u(t) = k(t)ym(t) (k@)= k,
m(0) = m) be a C*-curve in KM tangent to X at u. Then

d dk dm
X= <a>,=o““) = (7)'" * "(ﬂ;

in the matrix algebra. The value of the connection ©(X) at u is in m and
given by

o< (8). ) 1(5)) <= (2) )= (5))
o (8) o),

due to the left K-invariance and right M-equivariance of our connection

dk dm —A* B
. h il e i — A=
@. We note that k (dt)od’m (dt)oem,f+m {(—B A> tr
—A* B .
0, B*=B; and 6,| B 4)° A. If we extend @, to the map proj on

g as above, we know that m™'@,| k™ % m = proj| m~*k™? d_lf ml.
dt ), dt /o

Hence
dk dm
_ Y IS TRS Y Bt -1 4™
O,(X) = proj (m k (dt)om +m (dt >0>

= proj (u’l (%) (0)) = proj(u~'du(X)).

Now by Lemma 2.1 we know that if u=xoi and X € H(2),
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u(X) = K<(I) )I(>

o X)X+ X7 (sTHI 4+ X2 0
C\-XT+ XY (4 xR 0 s(I + X?)?

B < s I+ X3t sX

—-S_lX(I + X2)“1 SI) where s =det(l + X2)_1/4.

Therefore

1 sl —sX _(* Xds + sdX
u(X)™ = <s"1X(I + X)) s+ Xz)'1>’ du(X) = <* dsI )

Hence we get the pull-back connection on H(2):

' * * *  Xds + sdX
B(X)=(“"‘@)(X)=pr°J<s-1X(I+X2)‘1 s +X2)“><* s )

=s7ldsI + (I + X?)"' XdX
= Im(I + X?)"' XdX.

The curvature form Fz=dB + B A B is calculated by using the expression
B(X)=s"tdsI + (I + X*)™' XdX. d

The Yang-Mills equation dg* Fz = 0 is checked also by a direct calcula-
tion on R'3> = H(2). We remark that F; does not satisfy the self-duality
condition: *Fz = +iFy (note x> = —1 on R'3). Its density function D(B)(X) =
{Fg, Fg>(X) is computed from <{Fg, Fg)dv =<Fg A %Fg), dv=dx, A dx, A
dx; A dx, by a lengthy computation as follows:

—24

DB = e+ X7

The group G = SU(2, 2) acts naturally on KM, K/H = S* x S* and N =
H(2) as follows. For ge G, ke K, me M and 7ie N, define
T,(km) = k(gkm), t,(kH)= k(gk)M = k(gk)H and t,(n) = n(gn).
Then we know that t,(kH)=7,(k)H, jort,(n)=r1,0j() and 7,0u(n)=
(u o 1,)(M)m(gn) hold. Identifying H(2) = N, G-action on H(2) is given by
7,(X) = (AX + B)(CX + D)7, g= c D eG, XeH(Q).

G-actions on K/H = S! x S* and H(2) = R"3 are checked to be conformal
transformations, ie. t;h = fh, f, >0, €e C°(K/H). Hence we get a G-action
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on the space % of all Yang-Mills connections in KM — K/H. The G-action
can be computed by pulling-back to H(2) as

PRrOPOSITION 2.3. Let @ be a connection in KM — K/H and let A = u*w
be a local form of w which is a m-valued 1-form on H(2). If g = (2}1 g) €eG
and X € H(2) then

wTro)(X) = J(X) T (tFA)(X)J,(X) + J(X)dJ,

I X\ -—

0 I)eN and
s = (det(CX + D)*(CX + D))** e R. Hence t}A is gauge equivalent to a local
form of T¥w on the open dense subset H(2)\{X|det(CX + D) =0} of H(2).

where J(X) = m(gny) = sYCX + D)e M = SL¥(C), ny= <

PrOOF. The formula: (7, o u)(71) = (u o 7,)(n)J, (1) (J,(n) = m(gn)) says that
the difference between two maps 7,ou and uo 7, is the right action of the
structure group given by J;: N> M. Let YeTyN and let n, (n, = iiy = X)
be a C®-curve in N tangent to Y at X. Then we have

o0 =(%)_Gonm=(3) wormsm

=d(u o 7,)(Y)J,(X) + (u o 7,)(X)dJ,(Y)
=d(u o 1,)(Y)J,(X) + (T, 0 u)(X)J,(X)1dJ,(Y), J(X)'dJ,(Y)em.
Hence
u*(TFw)x(Y) = (T, o w*w)x(Y) = o((T, o u),(Y))
= o(d(u o 1) (Y)J,(X)) + (T, © u)(X)J,(X) ™ dJy(Y))
= J,(X) " 0((u 0 7,),(Y)J,(X) + J,(X) " dJ,(Y)
= (,(0 7 @3 A (Y)],(X) + J,(X) " dJ(Y),
by the definition of the connection form. O
Since @ is a K-invariant Yang-Mills connection we have a map:
@:G/K =8UQ2,2/S(U, x U)) > M =%,  ¢(gK)=[1(g7")*6]

where ¢ denotes the gauge group, .# is the moduli space of all Yang-Mills
connections and [w] denotes the class of a connection w modulo 4. Since
dim G/K = 8 we obtain an 8-dimensional family G[@] of Yang-Mills connec-
tions as seen in the following:
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PRrOPOSITION 2.4. The map ¢ is injective.

Proor. If two connections coincide in .# then the corresponding density
functions coincide. It suffices to show that if two density functions coincide:
D(t(g")*B) = D(B) on H(2) then ge K. According to the decomposition
G=Nx A xexpmNp)x K, set g=pk and p=rnam. Then 1(97')*B =
t(k™'p 1)*B = 1(p~)*t(k™')*B ~ 1(p ')*Bmod ¥4, by the K-invariance of 6.
We may put

A0 . . .
m =( ); A= A* detA=1 and A4 is positive definite, (2.1)

0 4
e
a—( 0 tl)’ teR,t>0 and 22
_ (1 Y\
n—(O I)’ YeH(Q2). (2.3)

—1y4-1
Then p~' = (man)™* =<t(/)1 _tt-lj’ﬁ > For g=(g g>eG, we have
7,(X) = (AX + B)(CX + D)™* (X e H(2)) and t*(det dX) = h,(X) det dX where
hy(X) = det(4 — 1,(X)C) det(CX + D)™'. We also have F,,.;=1}F; and
D(t}B)(X) = (13Fg, 13Fp)(X) = <Fp, Fp)(1,(X))hy(X)* = D(B)(z,(X))hy(X)>.
Using these formula we get

D(z(g™1)*B)(X) = —24t%/det{I + (PAX A — Y)?}2.

We note that a positive function det(I + X?) =1+ tr X2 + det X2 on H(2)
attains its absolute minimum only at X = 0.

Suppose that D(B) = D(t(g~*)*B). Then comparing absolute minima we
get —24 = —24¢% hence by (2.2) t=1, ie. a=1. We then have det{I +
(AXA — Y)?} =det(I + X?). Put X =0. Then det(I + Y?>)=1, hence Y =
0, ie. =1 The identity reduces to det{l + (4XA)*} = det(I + X?), hence
tr(AX A)* = tr(42X)®> = tr X? for all X € H(2). From this and the form of
matrix A (2.1), a direct calculation shows that 4 =1, ie. m=1. O

We shall compute the value of the Yang-Mills functional:
%.M(B) = J D(B)dv.
N

Since N = K/N is open dense the above integral gives the value of Yang-Mills
functional at 6.

PROPOSITION 2.5. The value of %M is equal to —3n> on the G-orbit G[O].
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Xy —Xy IX3— x4)
—iX3—X4 X+ X,
in HQ), dv=d*x =dx,dx,dx;dx, and det(l + X?>)=(1 —x? +x2 +x3 +
x2)? + 4x2. Put x =x,; and y? = x2 + x2 + x2. Then

ProoOF. Just a calculation. For the coordinates X =<

D(B)(X) = —24/{(1 + y* — x?)? + 4x*}2.
Hence,

d*x
{1+ y? = x?)? + 4x?)?

amm:-mj
R

[=e] © 2
_ y*dxdy 4o _ 2
= —192n J;) L T+ — P+ 4] (d*x = y*dxdydo)
© (=2 r? sin? Ordrdf
e p— —3 — 1 0
19271‘[0 J;) (1 + 2% + 4 cos? 20)° (x =rcos 0,y =rsin0)
© =2 sin? 0d6 )
= —9%n L sds _[0 (1 + 2s + 52 cos? 26)° (s=r7)
Put
1) = /2 sin? 0d6
V=), 0+ 2s + 5% cos? 20)°
L1 (™ (1—cos20)d 1 (™ a9
T2), (1+2s+5%cos?20)> 2J, (1+ 2s+ s?cos?26)*

Putting ¢t = tan 6, we then have

1) = 1 © (2 + 1)dt where = s+ 1
=20+ 22 ), @+ a2 T N+

B 1 © 1 b i b= s2
T2(1 4252 Jo \tP+a* (t*+a?)? T 142

_ 1 n_bn m s2+4s+2
T2(1 +25)*\2a 4d®)  8(1+25)P(s + 1)*

Therefore

<] 2
YM(B) = — 127 f S+ As+2)

o (1+28)%(s+1)3
© (u? — 1)(u* + 6u® + 1)

= —12n?
n . P+ 1)

du  (W*=1+2)
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/1 2 4 8
- — 1222 . _ d
12m Ll( 2ttty (u2+1)3) u
= (—127?) x%: — 3,

Conformal transformations t(g) (g € G) leave the functional #.# invariant,
thus the value of ¥ is —3n® on our G-orbit G[@]. O

3. The case of R»?

A 0
Take the group G = SL,(R). Let P= MAN = {( C D) € G} be a para-

A 0
aeR,a>0},M—{<0 B)

det B = il} and N = {(}I( ?)}X € MZ(R)}. We take the identity compo-

nent P, = MyAN instead of P itself, for G/P, = S0,/S0, x SO, = §? x §2.
Let K = SO, be a maximal compact subgroup of G. Then the diagram is

det A =

I
bolic subgroup, where 4 = a4 g
0 a'l

G = SL,(R) —— KM, =KM

/ l 91M0=SL2(R)XSL2(R)

R*2=M,R)=N —— G/P, = K/KNM, = SO,/SO, x SO, = §* x §?

I X
X
| — <0 I>

where M,(R) = N is identified with R*? by the metric detdX. Let X =
< X, — X,  X3— X4

—X3— X4 X3+ X,
u=rxoi Then a Yang-Mills connection on R*?2 is obtained by the pull-back:

)e M,(R). Then detdX = dx? —dx3 + dx% — dxj. Put

(6)(X) = (—Im dX(I +'XX)™"'X | 0 ) cm

0 | Im(I +'XX)"1'XdX

where m = sl,(R) + sl,(R) and ‘X is the transposed matrix of X. The projec-
tion to the second sl,(R):

B(X) = Im(I + 'XX)™"'XdX

is a self-dual connection (xFgz = Fz on R?*?2) and that to the first sl,(R) is
anti-self-dual. The curvature form and its density function are
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Fo(X)=(I +'XX)'d'X(I + X'X)"'dX  and

16

D@ = det(I + X X)*'

G-actions on N and K/KNM, are conformal transformations. Hence
we get a map:

G/K = SL,(R)/SO, — M* = Y* ¥ by gK~—[t(g71)*@]

where .#* is the moduli space of self-dual connections. This map is proved
to be injective by the investigation of the density function D(t¥B)(X). Since
dim G/K =9 we then obtain a 9-dimensional family G[@] of self-dual Yang-
Mills connections on S2 x S2. The value of the functional #.# on this G[O]
is computed to be 872

4. Nullity and index of the second variation

In this section we compute the nullity and the index of the second
variation at the canonical connection of the pseudo-Riemannian spaces. We
recall general facts on the second variation of a Yang-Mills functional (see
[2], 3 and 4). Let P — M be the principal bundle with structure group G
and compact oriented pseudo-Riemannian base space M. This adjoint bundle
gp=P x8 is by definition the bundle associated with P via the adjoint

action of the structure group G on its Lie algebra g. A fixed pseudo-
Riemannian metric and a fixed orientation on M define the Hodge *-operator
in the space Q?(M) of p-forms by

0 A xn=<6,n>dv for 0, ne Q2°,

where { , ) denotes the natural pseudo-Riemannian structure on Qf(M), and
dv is the volume form of M. Then the inner product { , ) on g and the
Riemannian metric of M combine to give the space Q*(gp) = I'(A T*M ® gp)
of gp-valued forms a natural inner product (, ) which possibly has an
indefinite index:

6, 9) =f <0 A x@).
M

We shall equip the space Q*(gp) = I'°(A T*M ® gp) with the Frechet space
& topology which is defined by the collection of supremum norms of a section
and each of its derivatives measured by a fixed norm in fibers of A T*M ® gp.
The convergence 6, - 0 in &-topology implies that (6,, @) — (0, ¢) for any ¢
and (6,, 6,) — (0, 0).
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The space of connections 7, has an affine structure with associated
vector space 2'(gp). The Yang-Mills equation is the first variational equation
of the Yang-Mills functional on o/p:

YMA) = (Fy, Fy) = j D(A)dv,
M

where F, = dA + 1[A A A] € 2%(gp) is the curvature form of the connection
A and D(A)(X) = (F,, E,)(X) is the density function. D(A4) and #.#(A) are
not necessarily positive on pseudo-Riemannian manifolds. Because o/ is an
affine space we can vary A along lines

A=A+,  neQ'(gp)
Then the curvature F, of A, is given by
F, = F, + tdyn + 3t*[n A 1],

where d, is the covariant exterior derivative of the connection 4. Taking
the inner product in Q2%(gp),

(F,, F)) = (Fy, Fy) + 2t(dan, Fy) + t2{(d4n, dan) + (Fy, [n A 1]} + O(2).

Hence at an extremum (d,#, F,) =0, or equivalently (1,,F,) =0, for all
ne Q2'(gp). Hence at an extremum §,F, =0. Here §, is the adjoint of d,
relative to the inner product on Q*(gp) and just as in the usual Hodge theory
0, = t*d,*. Therefore the first variational equation of #.# is

dA*FA::O‘

The above expansion also yields the Hessian Q of #.# at an extremum
A. Q is a quadratic form on the tangent space to o/p at A, which is presicely
Q'(gp). Thus the second variational formula of #.# is

Q(n, m) = (04dan + Fyn, ).
Here we write %, for the endomorphism of Q(gp)
Fan (= 1) [*F4 A 7] (4.1)
where (p, q) is the index of the metric on M. &£, is also characterized by
(Fam, &) = (Fy, [n A £])

and is therefore self-adjoint. The functional #.# is invariant under the action
of the group ¥ of gauge transformations. The tangent space T,% is identified
with Im d, of Q°g,) in T,/ = Q'(gp). Hence d,dn + Fn=0if nelmd,.
We shall define the nullity and the index of 4 as follows.
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DerINITION. The nullity of a Yang-Mills connection A is the dimension
of the null space of the operator d,d, + %, in the quotient space Q'(gp)/Im d,.
The index of A is the dimension of the negative eigenspaces of the operator
8,dy + F, in Q'(gp)/Imd,.

When the Riemannian metric on the base space and the inner product
on g are positive definite, and the space (, ) in Q2*(gp) is also positive definite
and the space 2'(gp) has the orthogonal decomposition:

Q' (gp) =Ker 5, ®Imd,, 4.2)

relative to the inner product (cf. [13] 5.8.10 for the case where g, is a
homogeneous vector bundle). This implies that the spaces Ker , and Im d,
are closed in 2'(gp) with respect to the topology defined by the inner product
(, ). Hence they are also closed with respect to our &-topology. Thus
QY(gp)/Im d, is identified with Ker §,. Define the Jacobi operator S, and
the quadratic form Q by

Sq=d,+ Fy=d 0, + 0444 + F4 and O, ) = (S4n, ).

Then S, = d,d, + %, on Kerd,, S, =d,6, on Imd,, and hence Q is strictly
positive definite on Im d,. Thus in the Riemannian case we may define the
nullity of A as the nullity of S, on Ker §, and define the index of 4 as the
index of the quadratic form Q on Ker d,, ie. the dimension of a maximal
subspace on which Q is strictly negative definite. And they are equal to the
index and the nullity of S, on all of 2'(gp). The ellipticity of the operator
S, =4, + #, implies that they are finite. When the metric on base space
and the inner product on g are indefinite, these nullity and index are possibly
infinite. Furthermore the above decomposition (4.2) does not hold in general
(see Lemma 4.4 below), but the spaces Ker d, and Imd, are closed with
respect to &-topology because the space Im d, is invariant under the change
of metric. Hence the quotient space '(gp)/Imd, is a Hausdorff, locally
convex, topological vector space.

We are concerned with the canonical connection @ for principal M-
bundles of the form P: KM — KM/M = K/H where K, M and H=KNH
are subgroups of a larger group G and KM = {km|ke K, me M} is a sub-
manifold of G. This bundle is an associated principal bundle of the principal
bundle K — K/H via the inclusion homomorphism H=KNM — M, i.e.

P2K§M=KXM/(kh,m)~(k,hm), keK, heH, meM.

This construction effects a change of the structure group. The adjoint bundle
m, is a homogeneous vector bundle:
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mP:KﬁmaK/H,

via the adjoint representation of H on m. The space QP(mp)=1TI °°(K§

(APs* ® m)) of mp-valued p-forms is naturally isomorphic to a K-module of
the induced representation CR(K, APs* ® m).

We review basic facts on induced representations and homogeneous differ-
ential operators (cf. [4] or [13], 5.3 and 5.4). Let H be a closed subgroup
of a compact group K and let (o, V) be a finite dimensional complex represen-
tation of H. Suppose that V has an H-invariant, nondegenerate, Hermitian
inner product ¢ , > which possibly has an indefinite index. The induced
representation p = IndX V is the function space:

Ca(K, V)= {/: KS VIf(gh) = o(W)*f(g), g € K, h e H}
with the K-representation p:

(p(9)f)(x) = f(g7"x).

This space has a K-invariant Hermitian inner product:

(f1, f2) =f {f1(9), f2(9)>dg,  dg is a Haar measure on K,
K

where f;, f, € CR(K, V). (, )is nondegenerate and possibly has an indefinite
index. Nondegeneracy of (, ) is easily seen from the eigenspace decomposi-
tion of V with respect to the Hermitian form ¢ , >. We shall equip the
function space Cy(K, V) with the Frechet space & topology which is defined
by the collection of supremum norms of a function and each of its derivatives
measured by a fixed norm in V. Frobenius reciprocity theorem states that

Homy (W, IndX V) = Homg(W|y, V),

where W is a K-representation and W|y is its restriction to H. Let U(f) be
the universal envelopping algebra of €, the complexification of . Then U(¥)
is identified with the ring of left invariant differential operators on K. Let
(6, V) and (tr, W) be finite dimensional complex representations of H. If
XeU(®) and if L: V> W is a linear map then define a differential operator
X® L: C*(K, V) - C*(K, W) by

(X ®L)f(9) = L(Xf(9)) [feCK,V) gek.

The product of such operators is given by (X; ® L)(X,® L,) = X,X, ®
L,L,. The differential operator D is called a homogeneous differential oper-
ator if it commutes with K-actions. We know that a differential operator
D: CE(K, V) - CF(K, W) is homogeneous if and only if D has an expression
as above such that D e (U(f) ® Hom(V, W))H.
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In the case of the Riemannian base space S* the index and the nullity
of the canonical connection @ are, respectively, the number of negative and
zero eigenvalues of the Jacobi operator Sg of @ on Q'(mp). T. Laquer [10]
computes these numbers for all compact irreducible symmetric space. For
§* = Sp,/Sp, x Sp, (or SO;/SO,) the index is equal to O and the nullity is
10 (see [10], 5, Table II). The index and the nullity of the (anti-)self-dual
part of the canonical connection are 0 and 5, respectively.

For the (1, 3)-Riemannian space S! x S we determine the nullity and
the index of the canonical connection ®. We treat the space of mp-valued
p-forms:

Q7(mp) = I™(K % (A?s* @ m)) = CE(K, A’s*®m), p=0, 1,2

We first note that the vector space APs* @ m has a complex structure induced
from that of m =sl,(C) and has an (Ad H)-invariant indefinite Hermitian
inner product induced from h on s = T,(K/H) and (X, Y) = tr(XY*) on m. So
QP(mp) is a complex vector space on which K acts naturally by the induced
representation. The covariant exterior derivatives of invariant connection @
are denoted by

Q(mp) S Q'(mp) > Q2(my).

(Hereafter all covariant operators are relative to the connection @, so we
omit subscripts in the symbols). They commute with the K-action, hence
homogeneous differential operators. Hence their formal adjoint 6, the opera-
tors & of (4.1), 6d + & and S are also homogeneous. We find the explicit
form of these operators as follows. We realize the Lie algebras of K =
S(U, x U,) and H = SU; as

A O
f={<0 B) A,Beu,, trA+trB=0}=b+s,

A 0 0
b={(0 A)Aesuz}:suz, s={<g —B) Beuz}‘

We take the orthonormal basis (U,)S-, of T relative to the inner product h
as follows:

_ _Lfuy O _Lfu, O _Lfuy 0
a=zia =y 5) weis S vl D)

_lfu; 0 _lfu, O _1fu; O
U4_Z<0 u1>’ US_Z(O u2>’ U6_Z<O uy)’

where



64 Hiroshi KayiMoTO

il 0 i 0 0 i 0 -1
o R T

Then RU, is the center of f which is contained in s, (U,, Uy, U,, Us) is a
basis of s, (U,, Us, Ug) is that of h. We have h(U,, Uy) =1, h(U,, U;) =0,
h(U, U) = —6; (1 <i,j<6). Let (u*)¢-, be the dual basis of (U,)s=,. Then
the covariant exterior derivative d and its formal adjoint 6 are given by

w

3

a

where e(u): APs* @ m — APTIs*@m, i(U): APs* @m - AP ls*@m (ues*
U € s) are, respectively, the exterior and the interior products on A s* tensoring
with identities on m (cf. [10], 3). Let C =) ¢_, U? be the negative of Casimir
element of [f, ] =su, x su,. Then we have

Lemma 4.1. (1) For ¢ € Q°%mp) which is a m-valued function on K, we
have

1
ddop = (-Ué +C + §> o, 4.5

ie. 6d=(—U2 +C+3)®IeU®®Endm, on Q°m,).
(2) For ne Q'(mp), we have

1
Sn=<—U§+C+§>rl, 4.6)

ie. S=(—U¢+C+31)®IeU®F)®End(s*®m), on Q*(m,).

Proor. We follow the arguments in Appendix of [10] adapted to our
(1, 3)-Riemannian case. We first note three facts. If U es* and ues* we
have e(w)i(U) + i(U)e(u) = {u, UDI on As*®@m. If (o, V) is a H-representa-
tion and if Uebh, L e Hom(V, W) then for fe C§(K, V), ge K,

d
U L)f(g) = L ((z) fig ext tU)) -L ((%) atexp —tU)f(g))
t=0 t=0

= —L(a(U)f(9)) = —(I ® La(U))f(9).

We know that a value of the Casimir element Y §_, U2 of b is ad(}.f_, UZ) =
(—1/2)I on m and on [f, f].

For the identity (1), the operator dd has the following form on Q°(m;) =
Ci(K, m).
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3 3
od = {_ Uo ® i(Up) + Z,l U ® i(Uﬁ)} Zo U, ® e(u*)
3
ZO{ UoU, ® i(Up)e(u®) + Z Up U, ® i(Up)e(p” )}

=< U02+i >®1_< Ui +C— ZUk>®I

(—U§+C+§>®I,

6
because i(Up)e(u®) =051 on m and —) P ,U2®I=—-I® ad( Yy U,f) =
k=4

(1/2)1.
For the identity (2), we know that the curvature form F of the canonical
connection 6O is

t\)l"-l

3
BZ- > Uglu® A pb.

a. 1

See [10], (3.3) or if we use the Ricci formula: d,d,w = [F, A @] for definition
of curvature, we have

Mw

dd =

U, ® o(u”) z Up®aluh) = 3. UU,®e(u)elu’)

a=0 a. 0

(U Ul @ e(u® A pf) =1 ® <— Y e(u* A pf)adlU,, Ug])

a<p a<p

1 3
= I®(_§ ﬂz— £(ﬂa A ”ﬂ) ad[Ua’ Uﬂ]>,

1

since &(uf)e(u”) = —e(u®)e(u’) = —e(u* A p¥) and [U,, Usleb, [U,, U,] =0.
This shows that F = —3) 2 ,_, [U,, Us]u* A u®. From (4.1) we get a formula
for the operator &:

3

F=IQ® (— Y e(p®) ad[U,, Up]i(U,,)).
a,p=1

The operator dé + 6d has the following form on Q!(mp) = CZ(K, s* ® m).

3 3
d+5d= 3 U,® s(u“){— Uy ® i(Up) + ﬂzl Uy ® i(Uﬁ)}

+ {— U, ® i(Uy) + ﬂi U ® i(U,,)} 20 U, ® e(u®)
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3 3
= { —U,Up ® e(u?)i(Up) + ﬂ; U.Up ® 6(#“)!'(%)}
3
)

3
—UpU, ® i(Up)e(u”) + ﬁ; UpU, ® i( Uﬂ)ﬁ(u“)}

]

[

o
—A—

3
=Y {— U U, ® (e(1*)i(Uo) + i(Up)e(1™))
3
)

UpU, ® (e(u*)i(Up) + i(Uﬂ)e(u“))}

3
,Z:: [Us, U] ® &(1*)i(Up)

1

3
2. U U] ® s(u)ilUj)

k=4 a 1

6
=<—U02+C— y Uf)®1+
6
=<—U5+c>®1—1®ad(z U,?)
k=4

3
—I®< Y e(u)i(Up) ad[U,, Up]>,

a,f=1

since U, Up = UyU, + [U,, Uyl and e(u®)i(Up) + i(Up)e(u®) = d5. Here we
note that operators —ad(}.§UZ), —Y.2,_; e(u®)i(Uy) ad[U,, U;] and & =
=¥ 3 -1 8(u*) ad[U,, UyJi(Up) act on s*@m. If v@ X es*@m,

3
'g;(v®X) = - BZ= <V, Uﬂ>#a® [[Uaa Uﬂ]’ X]

a 1

s

i e(u*)i(Up) ad[U,, U,,])(v ® X)

1

R

'ua ® (<ad[Uaa Uﬂ]v’ Uﬂ>X + <V, Uﬁ>[[Ua’ Up]a X])

M

II

a,f=1

Z<v, (Zad Uﬁ)Ua>u“®X + Fv® X)
a []

=

3
Zl MUpp* @ X + F(v® X),

N —

since Y 3_;ad Ui = —(1/2)I on [f,f]. And we have
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—ad(i )(v@X)

- i {(ad U2y ® X + 2(ad Uy ® [Uy, X] + v® (ad U?)X}

k=4

3 6
Z vUa>u"®X—2Z(adUk)v®[Uk,X]+%v®X.
=] =4

a

l\.)l'—l

Since

3 3
(ad Uk)v = ;0 <(ad Uk)v5 Ua>#a = - Zl <V, [Uk, Ua]>ﬂa

3 3
- Z <V, Uﬂ><.uﬂa [Uki Ua]>tua = - ﬂz= <V, Uﬂ><ﬂks [Uas Uﬂ]>.ua;

a,p=1 a,f=1
</Jﬂ, [Uk’ Ua]> = _B(Uﬂa [Uk, Ua]) = _B([Uaa Uﬂ]a Uk) = <ﬂka [Uw Uﬂ]>

where B is the Killing form, we have

6
_‘;4 @d U)v®[U, X] = v Upp*® [Z LU, U D U, X]

e

a,f=1

3
= ;:1 v, Uﬁ>'u“® [[Ua, Uﬂ]’ X]=-F(v® X).
Hence —ad(Zf=4 UkZ)(v®X) = 22 _, v, Ua>lla®X + 2-9'_(V®X) + %v@X
These show that dé + 6d = (—UZ + C)® I + (1/2)] — #. Therefore

S=d6+5d+%=< U2+ C+ >®1 a

Let K be the set of all equivalence classes of irreducible, finite dimensional

unitary representations of K. Decompose the induced representations:
Q%(mp) = Z e Wy, Q'(mp) = Z ® W and Q*mp)= ) @ W
AeK AeK AieK

to K-primary components. Here A-component WP of QP(m;) is precisely the
subspace under which K transforms according to the irreducible representation
A€ K and by the notation Y., @® WP we means that the algebraic sum YWy
is direct and dense in ©2P(mp) with respect to the Frechet & topology (cf.
[6], pp. 553, Theorem 3.5(iii)). Each primary component is finite dimensional
and has an indefinite, nondegenerate inner product induced from (, ) and
distinct components are mutually orthogonal with respect to (, ). We see
that homogeneous differential operators d and éd + & are continuous and

WS WS W2, 6d+ F: WL Wi
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Hence we get a decomposition of locally convex spaces:

Qi(my)Imd =Y @& W/ImdNW;.

ek

We shall determine the nullity N, on each W} ie.
Nl = dimR Kel‘(&d + f'Wll/Im dn Wll).

Then the whole nullity N is the sum of N, if it is finite: N =) ,.¢N,. From
lemma 4.1 we know that dd and S =dd + dd + & are the same scalar opera-
tors on A-primary component, i.e.

dd=c(A)I on W2 and S=c()I on Wl

Here the scalar constant c(4) is evaluated below. Put Ker; = Ker 6 N W;!
and Im; d = ImdNW;!. Then we have

LemMma 4.2. (1) If c(A) #0 then W! = Ker, 6 ® Im, d (orthogonal direct
sum) and the nullity N, =0. (2) If ¢c(A) =0 then Im,d < Ker; 6 and N, >
dimy W! —2dimg WP. (3) If c¢(4) =0 and furthermore the map d: W — W}
is injective, then N, = dimgz W;! — 2 dim , W_.

Proor. W} is a finite dimensional complex vector space equipped with
a nondegenerate Hermitian inner product ( , ). With respect to (, ) we
see that

Ker,; 6 = (Im;d)* and  dim W}! = dim Ker, 6 + dim Im, d.

For the claim (1), suppose that feKer,6NIm,d. Then S =doép +
0d+ F)p=0 since 6d+ F =0 on Imd. On the other hand SB = c(1)p
and c¢(4) #0. Hence f=0. So Ker,6NIm;d=0. By dimension counting
we know that

W =Ker, 6 ®Im, d (orthogonal direct sum).

Let Be W\Imd and (6d + #)B=0. Then B is decomposed as B =B, +
B, (ByeKer;d, f,elm,;d). We have 0= (6d + F)B = (0d + F)B, = Sp;, =
c¢(A)B,. Hence B, =0: a contradiction.

For the claim (2), let ¢(1) =0. Then we know that 6d =0 on W? and
hence Im, d = Ker; 5. We know that if fe W then

0 =SB = dop + (5d + F)B.

Hence, that feKer,d implies that (éd + #)B =0. Thus we know that
N, >dimgzKer; 6 — dimgIm;d, dimg W? > dimgzIm;d and dimg W} =
dimg Ker; 6 + dimzIm, d. From these we obtain that N, > dimg W;' —
2 dimg W
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For (3), we know that feKer;é if and only if (6d + #)B=0,
since d is injective. Hence that N, = dimgz Ker; 6 — dimgz Im, d, dimy W, =
dimgIm;d and dimz W}! = dimgKer; 6 + dimgIm; d. These imply that
N, = dimg W;! — 2 dim, W2. O

To decompose the induced representation we study irreducible representa-
tions of K = S(U, x U,) and H = SUS (cf. [12] and [13] 4.6.12 for exam-
ple). We realize both groups as

g 0

0 h)‘g,hEUz,detgh= 1} and

K=S8(U, x Uy = {(

sy}

Both representations are constructed from irreducible representations of SU,.
Let (m,, V,) be the irreducible unitary representation of SU, of dimension
n+1,(n>0). Then we know that the Casimir element Q = —(u? + u% + u3)/8
of SU, acts on V, as the scalar operator: m,(Q2) = n(n + 2)/8. Let Z, =exp RZ

he U,,deth = il}.

0
know that K = Z,(SU, x SU,). Equivalence classes K of irreducible unitary
representations of K are parametrized by

il 0
(Z = (l ﬂ)) be the identity component of the center of K. Then we

K={i=(k 1l meZxNxNk—(+m)e2Z),

where Z denotes the set of integers and N denotes the set of nonnegative
integers. The representation (n(4), V(4)) = (n(k, I, m), V(k, I, m)) corresponding
to A =(k, I, m) is determined by the following three conditions:

Vi, Lm)=V,®V,. 4.8)

n(k,l, m)|SU, x SU, = n, M=, ie. for g, he SU,,

Oh> = Tcl(g) ® Tcm(h) on Vl ® Vm‘ (4'9)

n(k, I, m) <g
n(k, [, m)| Z, are scalar operators with the differential
dn(k, I, m)(Z) = (ik)1. (4.10)
Hence for A= (k,I,m)e K we get

1 k?
dn(A)(U3) = Edn(/l)(zl) =16
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dn(3)(C) = —_;-{1(1 +2) + m(m + 2)}.

Thus by lemma 4.1 we have the value of c(A)

2
Lemma 4.3. c¢(A) = % — %{l(l +2)+ m(m + 2)} + %

On the other hand H has two connected components: H = SU;f = SU,U

0 i

to the identity component p|SU, is also irreducible, hence coincides with
i
0
sufficient to determine the representation p. Equivalence classes H of irreduc-
ible unitary representations of H are

i 0 . . . . . . i
( >SU2. If p is an irreducible unitary representation of H its restriction

0
some m,. The value of p( i) which is a scalar by Schur’s lemma is

H = {(n}, V;")Ine N}U{(n,, V;")Ine N}.

Here the representation (ni, V,*) is determined by the following:

=V, @.11)
nt|SU, = =, 4.12)

L1 0\ &I if ne2Z
o <0 i>_{ii1 if ne2Z + 1. (4.13)

. . . h 0O -
The inclusion map H - K is hH(O h)' Thus the restriction of n(k, I, m)
to H is given by the Clebsch-Gordan formula:

n(k, , m)H = (1; @ 7,)E = (M) + Tpemprz +°* + Tpamez + Tpip)®

where the sign + is determined by (k, I, m);

i 0 il 0 .
- — p2l—kmij2
(n(k, I, m)| H) <O i> n(k, I, m)(O iI) e L

il 0 —I 0\(/—il O -1 0
h = = — )
Here note that <0 ”) ( 0 I>< 0 iI> ( 0 I) exp(—nZ/2)

LeMMA 4.4. The map d: Q°%mp) - Q1 (mp) is injective.

Proor. We know that Kerd =) @, g WX2NKerd. Let WlNKerd #
0 for A=(k,I,m) and take pe WXNKerd, ¢ #0. We get that U,p =
dn(A)(U,)e =0 (0<a<3) by (44). Hence dn(4)(C)e =dn(A)(}.$U)e =
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Y'$(ad U)*¢ = —(1/2)¢. On the other hand we know dn(4)(C) = —{I(l + 2) +
m(m + 2)}/8. Hence we get that I(I + 2) + m(m + 2) = 4, but there is no such
(Lm)e N x N. O

To determine the nullity we have to search for A = (k, I, m) € K such that
c(A) = 0 and to count dimg W;! — 2 dim, WP. Note that as H-representation:
ms* = sLIC)R(CZ +s,L,(C)) = V,, @V, + V') = Vo +2V, + V',
By the Frobenius reciprocity theorem V(k, I, m) occurs in Q*(m,) if and only
if l—m|=0, 2 4, k is even and 2l — k=0 (mod4). Among these A’s
only two representations A =(+2,1,1) satisfy ¢(4)=0. For 1=(42,1,1),
dimg V(4) =2 dimg V(1) =8 and V(A)|H = V' + V,". By the Frobenius reci-
procity again we see that each V(1) occurs 3-times in 2!(m;) ie. W' = 3V(J).
We know similarly that WP = V(4) for A =(+2,1,1). By Lemma 4.2(3), we
get N;=(3—-2)x8=8 for A=(+2,1,1). Thus the whole nullity N of @
is counted to be 2 x 8 = 16. We next show that the index of @ is infinite.
We know by Lemma 4.1(1) that if ¢(1) <0 then W;!/Im,d = Ker,;d and S =
dd + F = c(A)I on this space. So for each Ae K such that ¢(1) <0 we have
a negative eigenspace of dd + # of dimension: dimz W}!/Im, d = dim, W}! —
dim, WPQ. Tt suffices to consider a series A =(0,1,1), I>2. Then c(4) <0
and dimg W! —dimg W2 =6(l + 1), 1 > 2. Thus we see that the index of
@ is infinite.

Finally for the (2, 2)-Riemannian space S? x S? we show that the nullity
and the index of self-dual part of the canonical connection are both infinite.
For a technical reason we use a local isomorphism: 0, = 05 X 05 = su, X su,.

SU, x SU,/Z, _ So,

T_xT./2Z, 503 xS0,—SLy(R)xSLa(R)

S? x §2 = SU,/T. x SU,/T, ———  S§0,/S0, x SO,

e 0
where T, = {to = (0 e‘“’)

{£(, I)}. This local isomorphism is given by

GGR} is a maximal torus of SU, and Z, =

SU, x SU, «———Sp, x Sp; ——> SO, = SO(H)

« P v 0\ . )
<<_B &)’(—5 7)) 1(x, y)t > L, Ry_1

hence,
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T xT, » SO, x SO,

RO —n) 0 )

(tg, t))—— (€%, e™M) - ? ( 0 RO + 1)

where x =a + fj, y=y + dje H, L, and R, are left and right multiplications

by x in H and R(0) = (“’SO —sin §

sind  cosd > In the Lie algebra level,

si, X su, — D,
( ix, X, + X5 ( iy, y, + iy3>>
—X, +ixy  —ix; [ \~y,+iys —iy,
0 =Xyt Y1 | —X2+Yy2, —X3+ Y3
o [ 51T n 0 —X3— Y3 X3+,
X;—Y2 X3+);3 0 —X;— W
X3—Y3 —Xp—Ya2| X1+ 0
and hence,
o xt, — 0, X D,
0 —x+y 0
ix O iy 0 x—y 0
. ) . |
0 —ix 0 —iy 0 0 —x—y
x+y 0

(4.14)

Put K=K_xK,/Z,, K, =SU, and H=T_ x T,/Z,. Their Lie algebras
aref=% xf, =su, xsu,and hp=t_xt,. Thenf, =t, +s, wheres, =
{( 0 , *2 t lx?‘)}. We give I, an invariant bilinear form h, such
—X, + iX;3 0

that h.(X, Y)= F(the Killing form) = F4tr(XY) for X, Yel, and give
s_ x s, = T,(K/H) the restricted (2,2)-inner product. Then §2 x $*> = K/H
has the invariant (2, 2)-Riemannian metric. And we give the Lie algebra
m = m! + m? of the structure group M, = SL,(R) x SL,(R) an indefinite inner
product: <X, Y) = tr(XY). We proceed as in the (1, 3)-Riemannian case and
use the notations in (4.3). Let (Uf, Us, Ui) = (u, /\/g, uz/\/g, u3/\/§) be the
orthonormal basis of f, =su, such that U*ef, and U7 ef_. Then we
define negative of the Casimir element C* of f, by

C* = (UF) + (UF)? + (U™

Given an H-representation (p, V), we let I;f be the operator:
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I = p(Uf),
and let 1,:s=s_ x s, = s, be the projection. Then we have
LemMMA 4.5, dd=(—C*" +C)QI+I1Q ([} — I;) on Q°%mp)
S=(-C*+C)RI+IQ — Iy +1, +2I7" —1_—2I7) on Q'(mp).

The set K of equivalence classes of irreducible unitary representations of
K =8SU, x SU,/Z, is parametrized by

K={A=(k1)eNx Nk +1e2Z}.

For A =(k,I)e K, the corresponding representation is given by the exterior
tensor product of two representations of SU,: (n(k,l), V(k, 1)) = (n, @ =, V, ®
V;). The irreducible unitary representations of an Abelian group H = T_ X
T./Z, are all one dimensional and parametrized by

H={nmeZx ZIn+me2Z}.

Let (x,, C,) be the one dimensional representation of the torus T given
by x.(ts) = €. Then for (n,m)e H, the corresponding representation is
(Xn,m’ Cn,m) =(Xn ® tm» G ® ), €. Xn,m(ta, tr,) = emleim™,

We have QF(m;) = QP(mp) + QP(m3). We prefer to treat its complexifica-
tion: QP(mp)€ = QP(m})€ + QP(m2)€ and decompose QP(m3)€. As H-represen-
tation, (M) =3sl,(C)=Co o+ Cy,_, +C_,,, M) =Coo+C,,+C_,_,
by (414) and s€ = sSxsf = (G o+ C_,,)+(Co,+ C, ). Hence
M?*®s%) = 2(Coo+ Cop + C30+ Co2) + Cuy + Gy + Cy_, +
C_,_4. We know that V(k,I)|H = @, . C, » Where (n, m) runs over |n| <k,
|m| <1 satisfying n=k, m=1 (mod2) and that dim V(k,I)=(k + I)(I + 1).
Hence we know that V(k, ) (k and [ are odd) cannot occur in 2'(m2)¢. And
we see that V(0,0) occurs once in Q°(m32)€ but it cannot occur in Q*(m32)C.
Hence the map d: Q°(m2)€ - Q'(m2)€ is not injective. We estimate the
nullity from below. Put %, =I& . Then I}, = y, .(Uy)?/8 = —m?/8 and
I .= —n?8. So we get that I'; — I', =0 and (1 + 2I;), =0. Hence we
have dd= —C* +C  =c(A)I on WQ and S= —C* +C™ =c(A)I on W}
where c(A) = {—k(k +2) + I(l + 2)}/8 for A= (k,1). Thus c(k,I)=0 if and
only if k=1 Hence V(2k,2k) (k>1) occur in Q'(m2)¢ and satisfy that
c(2k, 2k) = 0. Reciprocity shows that for k > 2, V(2k, 2k) occurs 12-times in
Q'(m2)€ and 3-times in 2°(m3)€. Hence by Lemma 4.2(2), we have for k > 2,

the nullity in W(2k, 2k) > (12 — 2 x 3) x (2k + 1)?

= 6(2k + 1)2.
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This shows that the nullity of @ and its self-dual part are infinite. The index
of @ is checked to be infinite by a similar argument involving Lemma 4.2(1).

The following table summarizes the local form B of canonical connections
or its (anti-)self-dual parts pulled back on 4-dimensional flat spaces, the value
%M(B) of their Yang-Mills functionals, their nullities and indices, on these
pseudo-Riemannian spaces S*, S' x §* and S? x S2.

THEOREM.
space B Y A(B) nullity index
xdx
4 I 2
S mi———3 I /6 5 0
S!x 8% | Im(I +X?*)'Xdx  —3n 16 infinite
S§2 x §2 | Im(I +'XX)"''XdX 8n? infinite  infinite
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