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ABSTRACT. We extend the result in [13] to those for the quantization of generalized
Kac-Moody algebras introduced in [10]. The existence of the universal R-matrix is
proved, and a structure theorem for the center is given.

0. Introduction

The quantum groups—more precisely, the quantization of the universal
enveloping algebras of Kac-Moody algebras—were independently introduced
by Drinfel’d ([6]) and Jimbo ([7]) through their investigation of R-matrices
which are the solutions to the Yang-Baxter equation. Its importance partly
comes from the fact that there exists a solution to the Yang-Baxter equation
inside the quantum group, called the universal R-matrix, so that one can
obtain various R-matrices as its specialization on the representations of the
quantum group.

On the other hand, the notion of Kac-Moody algebras was generalized
to the so-called generalized Kac-Moody algebras ([1]), and it was used crucially
in Borcherds’ proof of the moonshine conjecture ([2]). In [10], the first-
named author extended the quantum groups to those for the generalized
Kac-Moody algebras, and proved some fundamental results on their structures
and their representations.

In this paper, we continue the investigation by extending the results in
[13] to the quantum groups of generalized Kac-Moody algebras. In the first
half of this paper, we construct an analogue of the Killing form and prove
the existence of the universal R-matrix. The proofs are very similar to those
in [13] and the analogue of the Killing form plays a crucial role. In the
second half, we investigate the structure of the center of the quantum groups
for generalized Kac-Moody algebras. The case of quantized universal en-
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veloping algebras of ordinary Kac-Moody algebras was already treated in
[4], [8], [13]. Hence we restrict ourselves to the non-ordinary case. We
show that the center consists only of certain obvious elements in almost all
cases. The proof is based on the reduction to the small rank cases.
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1. The Quantum Algebra U,(g)

Let F be a field of characteristic 0 and let g € F be transcendental over
the prime subfield Q. We assume that F contains an n-th root of g for any
positive integer n.

Let I be a countable (possibly infinite) index set and let 4 = (a;); ;c; be a
Borcherds-Cartan matrix with a;€ Q for all i, jeI. That is, 4 = (a;); je; 1S
a rational square matrix satisfying (i) a; =2 or a; <O for all ie I, (ii) a; <0
for i #j and a;;€ Z if a;; = 2, (iii) a; = 0 implies a; = 0. Let I" = {ieI|a; =
2}, I' = {i e I|a;; < 0}, and let m = (m;|i € I) be a collection of positive integers
such that m; = 1 for all ie I">. We call m the charge of the Borcherds-Cartan
matrix A. We ‘denote by g = g(4, m) the generalized Kac-Moody algebra
associated with the Borcherds-Cartan matrix A and the charge m ([1], [9],
[10]).

A rational Borcherds-Cartan matrix A4 = (ay); jc; is called symmetrizable
if there is a diagonal matrix D = diag(s;|i € I) with s;€ Z., such that DA is
symmetric. From now on, we assume that 4 is a symmetrizable Borcherds-
Cartan matrix.

Let b= (Pic; Q) D (Pic;Qd;) be the vector space with a basis
{h;, d;lie I}, and let

(1.1) PY = (69 Zhi> ® (@ Zdi>

iel iel
be the Z-lattice of h. For each j € I, we define the linear functionals a; € h* by
(1.2) “j(hi) = ayj, “j(di) = 6ij (,j el

Set Q= DicrZoti, Q4 =Yie1Zso%, and Q_ = —Q,. Let pebh* be a
linear functional satisfying p(h;) = 3a; for all ie I. For each ie I", we define
the simple reflection r; € GL(Y) by r,(h) = h — a;(h)h;. The subgroup W of GL(b)
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generated by the r’s is called the Weyl group of the above Borcherds-Cartan
data. It is a Coxeter group with canonical generator system {r;lie I"}. We
denote its length function by I: W—Z,,. The contragredient action of W
on h* is given by r(1) =1 — A(h;))a;. Since A is symmetrizable, there exists
a nondegenerate symmetric bilinear form ( | ) on b satisfying (s;h;|h) = a;(h)
(iel,hel).

For each ie I, let & = g% — q™%, q; = q***"/2, and define the g-integer by

L% fa,#0,
[n;=< 49— 4
n if a,~,~ = 0.

We also define [n];! = [ [i-, [k];.

DerFINITION 1.1, ([10]) The quantum algebra U,(g) associated with a sym-
metrizable Borcherds-Cartan matrix A = (a;); jo; and a charge m = (mie )
is an associative algebra with 1 over F generated by the elements q* (h e PV),
ew> fuo (€eLk=1,2,---,m;) with the defining relations

R1) ¢°=1, ¢"¢" =¢"*" (h, W e PY),

(R2) qleyq " =q*Me, (heP, iel, k=1,2,...,m,),

R3) q"fuq ™t =q"f, (heP, iel, k=1,2,...,m,),

Ki - Kl_l Ry (s s
(R4) [eik, j}l] = 5ij6kl€4’ Where K,: = qs' ' (l, ] € I, k = 1, 2, ceey m,-,

I=1,2,...,m)

(RS) Zﬁ,:l_,,‘_j(— 1yefee =0 if ay;=2 and i#j (k=11=12,...,
m;), where e = ej/[n];!,

(R6) Zs+t=1—aij(_1)sﬁ;:)]}lﬁg) =0if a;=2and i#j(k=11=12,...,
m;), where f;;:n) = fix/[n]!,

(R7) [ex eyl =0 if a;=0.

R8) [fu [l =0if a;=0.
The algebra U,(g) has a Hopf algebra structure with comultiplication 4,
counit ¢ and antipode S defined by

4@" =9"®q",
dleg) = ez @1 + K, ® ey,
A(fa) = fu ® K + 1 ® fir,
e@) =1,  elea) =e(fu) =0,
S@") =q7"
Sew) = —Ki'ew,  S(fa) = —fuK;

(1.3)
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for he P¥,iel, k=1,---,m;, We denote by U° the subalgebra of U = U,(g)
with 1 generated by q* (he PY) and U™* (resp. U~) the subalgebra of U
generated by the elements e (tesp. f;) foriel, k=1,...,m;. We also denote
by U= (resp. U<°) the subalgebra of U generated by the elements ¢* and
ey (resp. fy) for he PV, iel, k=1,...,m;. For each feQ,, let

Uty = {xeU*|g"xq™" = q*p®x for all he P'}.
Then we have:

ProrosiTiON 1.2. ([10])

(@ UxU @U°QU".

(b) U° =Dy Fe"

© U* =Dpeo. Uiy

(d) (RS5) and (R7) (resp. (R6) and (R8)) are the fundamental relations for
U* (resp. U7).

Define a structure of directed set on Q, by B, > B, if and only if ; —
B,€Q., and set Ut? =P, 0. ,45 U, for fe Q.. We define a completion
U of U by

U= 15;_11 U/UU* A,
Then U is an algebra containing U. The comultiplication 4 and the counit
¢ are naturally extended to those of U ([13]).

A U, (g)-module V is called a highest weight module with highest weight
Aebh* if there is a nonzero vector v, € V such that (i) euv, =0 (iel,k=
1,,m), (i) g"v; = ¢*®Pv, (he PY), (iii) V = U,(g)v;. Let 1€ bh* and consider
the left ideal I(4) of U,(g) generated by e, (ie ,k=1,...,m;) and ¢" — ¢*®1
(he PY). Let M(A) = Uy(g)/I(4) and define a U,(g)-module structure on M(4)
by the left multiplication. Then M(A) becomes a highest weight module with
highest weight A and highest weight vector v; =1 + I(4). The U,(g)-module
M(J) is called the Verma module and it has a unique maximal submodule
J(A). Hence the quotient V(A) = M(A)/J() is irreducible.

Let T denote the set of all imaginary roots «; (ieI™) counted with
multiplicity m;.

ProrposiTioN 1.3. ([1], [10]) Suppose A(h;) =0 for all ie I and A(h,) e Z
for all ieI'*. Then we have

2

—3 e = )' . _ _ﬁ
(a) ch M(l) l—[ue . (1 — e_ﬂ)dimg, e HEZQ+ (dlm U_p)e ,
Z;e w (— 1){M+Flgwid+p=stF) =
() ch V(i) = —F<

|



Quantum generalized Kac-Moody algebras 351

where A, denotes the set of all positive roots of g, g, denotes the root space,
and F runs over all the finite subsets of T such that A(h;) =0 for a;€ F and
that ay(h;) =0 for o, a;€ F with i#j. We denote by |F| the number of
elements in F and s(F) the sum of elements in F.

COROLLARY 14. Let y=)Y,.mo;€Q,. Suppose A(h;)>0 for all iel,
Ah)€EZ for all iel™, and A(h) = n; for all ieI". Then we have a linear
isomorphism UZ, > V(),-, given by u > uv;.

Proor. The surjectivity of the map UZ, —» V(4),_, is obvious. Hence it
suffices to show dim UZ, = dim V(4),_,. By our assumption, we have

Zwe - (_ l)l(w)ew(Hp)—p
 lees, (1 — e7)time

=< y (-1)’<W>ew“+ﬂ>-p)< Y (dim U:,,)e-ﬂ).
weW BeQ.

Therefore, it suffices to show that if w(A+p)—p—B=1—y for we W, fe
Q., then w=1. Equivalently, if w# 1, then y+w(A+p)— (L + p)¢ Q..
Let us prove this by induction on the length I(w) of w. If w =r; (i € I'®), then

Y+rA+p)—@A+p)=y—(Akh) + Do ¢ Q.
If w=w'r, and l(w) = l(w') + 1, then

ch V(1)

y+wd+p)—(A+p)=y+wrld+p)—(@A+p)
=y+w@+p)—@A+p) —@Ah)+ Dw'(e) ¢ .,

which completes the proof. []

2. The Killing Form on U,(g)

The Hopf algebra structure of U,(g) defines an algebra structure on (U=°)*
with the multiplication given by (¢, 4,)(x) = (¢; ® ¢,)(4(x)) for ¢,, ¢, € (UZ°)*,
xeU=°% For hePY¥ and iel, k=1, 2, ..., m;, we define the linear func-

tionals ¢,, ¥, € (U>°)* by
$(xq") = e(x)g™ ™" (xeU*, K e PY),
21 Valxq") =0  (xe Uf, Be Qi \{n}),
Yileuq") = du-
Then it is easy to verify that there is an algebra homomorphism {: U<% —

(U=%)* given by {(¢") = du {(fa) = —éwik (heP¥,iel,k=1,...,m). Define
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a bilinear form ( | ): U2° x US° > F by
22 1) =G, x>  (xeU=% yeU=’).
Then we have:

PROPOSITION 2.1. The bilinear form ( | ) on UZ° x U=° defined by (2.2)
satisfies

(x1y1y2) = (AX)|y; ® y,) (xe€ UZO,.VU}’zEUSO),
(x1%21y) = (x2 ® x414(y)) (%1, X, € U2 ye U,

(2.3) (¢"19")=q* (b, W ePY),
(thfik) =0, (eiquh) =0,
1
(eikmt) = —Ei‘sij(ski

for i, jel, k=1,2 -, m,1=12 -, m.
Moreover, the bilinear form on UZ° x U=<® satisfying (2.3) is uniquely
determined.

The proof is similar to that of [13, Proposition 2.1.1].
The following lemmas can be proved inductively using (2.3).

LEMMA 2.2,

@ (S)IS(») = (x|y) for xe U=°, ye U=°.

(b) (xq"lyqg")=q " (x|y) (h, WeP¥,xeU*, yeU").

© (USIUZ)=0if y #B.

For neZ,, we denote by 4,: U, g)— U, (g)®"*" the algebra homo-
morphism defined by 4, =4, 4,=(4® 1)o 4,_,, and we write

4,(x) = (Z): X0) ® X(1) @ *** ® Xy
LeMMA 23. For xeU2° ye U=° we have

yx = Z (x(0)|S(Y(0)))(x(z)|Y(:))xu))’u),

(x)2,(»)2

Xy = Z (x| Y0) X2y S(¥2))) Y1) X 1)

(x)2,(»)2

(2.4)

The following lemma is an immediate consequence of Corollary 1.4.

LEMMA 24. Let fe Q. \{0} and ye UZ;. If eyy = yey for alliel, k=
1,2 -, m, then y=0.

Now we can state the main theorem of this section.
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THEOREM 2.5. For B e Q., the bilinear form (| ): UZ® x US? —F defined
by (2.2) is nondegenerate.

The proof is the same as that of [13, Proposition 2.1.4].

3. Universal R-matrix

In this section, we would like to give an explicit formula for the universal
R-matrix of the quantum algebra U,(g). We first recall the definition of
quasi-triangular Hopf algebras and the pre-triangular Hopf algebras ([6],
[13]). A Hopf algebra 5# together with an element # € # @ # is called a
quasi-triangular Hopf algebra if it satisfies:

(T1) £ is invertible,

(T2) Rod(a)=A4d'(@)o X for all ae H#,

(T3) (4@ V)(A) = R,3R,;3,

(T4) A NR) = R332,
where A'=104 with 1(a®b)=b®a (a,be #) and &; is an element of
H @ H# ® # such that the (i, j) component is given by £ and the remaining
component is 1. The element # is called the universal R-matrix of # since
it satisfies the Yang-Baxter equation

9?12@139?23 = 9?2397139?12-

A Hopf algebra together with an element € € # ® # and an algebra auto-
morphism @: # ® # — H# ® # is called a pre-triangular Hopf algebra if it
satisfies:

(P1) & is invertible,

(P2) €od(a)=D(4'(a))o ¥ for all ae K,

(P3) @,30 Dy3(%12) = €12,

(P4) Dy, 0 Dy3(%23) = %23,

(PS)  D,3(%13) 0 €23 = (4 ® 1)(%),

(P6) D15(%13) 0 €12 = (1 ® 4)(%).

A pre-triangular Hopf algebra # becomes a quasi-triangular Hopf algebra
if there is an invertible element & € # ® # satisfying

Pa®b)=Z@@b2Z™,
(3.1) 4@ 1)(Z) = 2,323,
(1 @A)(;‘Z’) = ffugls-

In this case, the universal R-matrix is given by # = Z7'&.
We define an algebra automorphism &: U® U —->U ® U by
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2(¢"®q9")=9"®4q",
(32 Plex®1)=¢;, RK,, D(1 ®ey) = K; ® ey,
P(fu®D)=fa®Ki',  P(1®fi)=Ki'® fa
It can be shown that & can be naturally extended to an automorphism of
U®U=UQ®U).
For p =Y ;. ma € Q,, we denote by C; € U @ Uy the canonical element

of the bilinear form ( | ): U x UZ;—F, and let hy =Y ;. ms;h;, Ky =g" so
that (hg|h) = B(h) (he PY). We define

(3.3) € = ,,ZQ g™"(K;' @ K;)Cpe U U.

We would like to show that (U, %, @) satisfies the conditions (P1)—(P6).
By direct calculations, we can prove the following lemmas.

LemMmA 3.1.

(@) %4(¢") = &(4'(¢")¢ (heP)
(b) (D230 Dy3)(%12) = 6125

© (P20 D13)(623) = b,3-

LEmMMA 3.2. Let

¢ =Y ¢"m1®K,)S®1)CeU®U.
PeQ.

Then €¢' = €'€¢ =1 if and only if for any Be Q, we have
Y, C(K; ® DS ® 1)(Cy) = 9,0,

y,0€Q4

(3.4) vrozh
dgq (K, ® 1)(S ® 1)(C,)C; = 8.0

Yrazp

LemMa 3.3. We have
CA(ew) = D' ()8,  €A(fu) = P (fu))¥'
if and only if
[1® ey, Cpra,] = Cplew ® Ki') — (e ® K;)Cp,
[fa ® 1, Cpia] = Co(K; ® fu) — (Ki* ® fu) Gy
LEMMA 34. We have
D,3(%13)62 = (@ 1)E,  D113(%13)61, = (1R NE
if and only if

(3.5)
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4R 1)(C) = Z g "MK, ®1® 1)(C,)13(Cs)23»

7,0€Q4
y+é=p
ARNC) = ) ¢ ™™1®1®K_;)(C,)3(Cs)iz

7,0€Q4
y+o=8

(3.6)

Hence, in order to show that (U, %, ®) satisfies the conditions (P1)-(P6),
it remains to show that (3.4), (3.5), and (3.6) hold. But they can be proved
in an almost the same manner as in [13, Proposition 4.3.3]. Therefore, we
have:

THEOREM 3.5. Let ®: U ® U be the algebra automorphism defined by (3.2),
and let € be the element of U ® U defined by (3.3). Then the triple (U. %, D)
satisfies the conditions (P1)—(P6).

REMARK. Let {h;, d;Jie I} and {I,d'|ie I} be the dual bases of § with
respect to the bilinear form ( | ) and set & = qLh®"+Ld®d"  Then g = F'¢
gives rise to an R-matrix for any p-diagonalizable integrable representation
V of the quantum algebra U, (g). Therefore, the formula (3.3) can be viewed
as an explicit formula for the universal R-matrix of U,(g).

4. The center of U,g)

In this section, we will describe the center of the quantum algebra U, (g).
Let us denote by 3(U) the center of U = U,(g). For each iel with a; # 0,
define the simple reflection r;e GL(h) by

1) ) = h— - afhyh,

and let W= (rliel, a; #0) be the subgroup of GL() generated by the r/s
(iel,a; #0). Let (U°)¥ be the subspace of U® consisting of the elements
Y her chq" (cy € F) such that c, #0 implies w(h) e PV and c, = ¢, for any
we W. We define an algebra automorphism ¢: U° —» U by ¢(g") = ¢ *"q"
(he PV), and let n be the linear map given by

4.2) nUSU @U°®U* =222 po.
The linear map &: ¢ o (nl,): 3 > U° is called the Harish-Chandra homomorphism.

PROPOSITION 4.1.

(@) ¢& is an algebra homomorphism.
(b) ¢ is injective.

(© Im(@) <= U
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Proor. (a) can be proved in a standard way (for example, see [Di]),
and (b) can be proved as in [13, Theorem 3.1.2].

For (c), let M(4) be the Verma module over Uy (g) with highest weight
A. Then it is easy to see that z|y ;) = x14,(£(2))] for all z € 3, where y;: U® —
F (Aeb*) is the algebra homomorphism defined by yx,(q") = ¢*® (he PY).

Moreover, if a; # 0 and (A + p)(h;) € %ZZO, then Homy (M (r;(A + p) — p),

M) #0. Indeed, if v, is a highest weight vector of M(4) with highest
weight 4, then f{2/*)@*+Ph)y j5 a highest weight vector with highest weight

(4 + p) — p.
Let iel be such that a; #0 and let ze3. Then y,(¢(2)) = x,,3(E(2) =

xa(r:(€(2))) for any A € h* such that A(h;) € %ZZO. Hence x,;(&(z) — rié(2)) =0

for any Aeb* such that /".(h,-)e%i-iZzo, which implies £(z) = ri(é(2)) for all
iel with a; #0. O

For J c{(i,k)lie Lk=1,2,---,m;}, let U; = ey, fu> U°|(i, k) € J> be the
subalgebra of U generated by U° and e, f with (i, k)eJ. We denote by
3, the center of U, and ¢&;: 3, - U° the Harish-Chandra homomorphism for
U,. We would like to show Im(¢) = Im(&,). Let U; (resp. Uy) be the
subalgebra of U, generated by e, (resp. f,) with (i, k) € J, and set

R} = {xe U*|(x|Uy) =0} = {x e U*|(x|U; U°) = 0},
(4.3) Ry ={yeUT|(US]y) =0} = {y e UT|(U°US|y) = 0},
R, = R;U°U* + U"U°R}.
Then we have:

LEMMA 4.2.

(@ U=U®R,,

(b) U;R;U; =Ry,

© (®1®e(R;)=0.

Proor. (a) It suffices to show U, = US, @ R}, for any y e Q.. Since
R},y = Ker(U;’ S (UZ)* = (Us,-)*),
dim R;, = dim U;’ — dim U;, = dim U, — dim Uy,

Since ( | ) is nondegenerate on U;, x Uy _,, we have R;,NU;, = {0}.
(b) First, note that R} (resp. Rj) is a two-sided ideal of U* (resp. U™),
and that U°R} = RFU°. Hence it suffices to show

(4.4) U}R; <cRjU, R}U; < UR}.
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Let yeR; _,. For (i,k)eJ, by Lemma 2.3, we have

€y = (Z): (eikU’(O))(l|S(J’(2))),V(1) + (z): (Kily(O))(lIS(y(Z)))y(l)eik
y)2 y)2
+ (Z) (Kilyo) €l S(ye))ya) K-
)2

Hence it suffices to show

(
(13

Z (Ki|)’(0))(1|S(Y(2)))Y(1)> =0,
<x

y)2
for all x € Uf. Indeed, we have, for example,

(%: (eik|)’(0))(1|S(J’(2)))Y(1)> =0,

(Z)‘, (Ki|.V(0))(eik|S(Y(2)))Y(1)) =0

Z (Ki|)’(0))(eik|S(Y(2))))’(1)) = Z (Kil.V(O))(eiklS(y(Z)))(xly(l))

€
() )2

y)2

- 3 (K@ ® 5 El420)

= (S (ex)xKily) = 0.

The other cases can be proved in a similar way.
(c) Clear. [

ProrosITION 4.3. Im(¢) < Im(&)).

Proor. Let z € 3 and write z =z, + z, with z, e U,, z, e R;. By Lemma
42 (b), z, € 3;, and hence by Lemma 4.2 (c), &(z) = &,(z,) e Im(&;). O

We now consider the special cases when |I| =1 or |I| =2. By a direct
calculation, we have:

PROPOSITION 4.4. Suppose I = {i} and m; = 1.
(@ If a;#0, then

(@.K; + ¢ 'K, q"

3= <f.-,1ei,1 + a;(h) = 0>.

&ilai—ait)
(b) If a; =0, then 3< U°.

PROPOSITION 4.5. Assume either
(@ I={i} with a; <0, m;=2, or
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(b) I={ij} with a;<0, a; <0, a;<0, and m;=m; = 1.
Then 3 < U°.

PROOF. Sete=e; , e =¢,, f=f,1, f'=f,,in case (a), and e=¢, ,,
e =¢,, f=fi1, [ =f, in case (b). Then the subalgebra U* = (e, e') =
o Uy (tesp. U™ = (f, f'> = @, UZ,) is the free associative algebra over
F generated by the elements e, e’ (resp. f, f’), where U} (resp. U_,) is the
homogeneous subspace of degree n (resp. —n). Then, for n > 1, we have
Ul=U'e®@ U}, e
Let z€3N(Ph-o U U°Uy), and let {x,} be a basis of U,",. Then

z=1Y, Z Yand'xze + Y Z Yand"x.e’ + v,
P A hePv

hePY

where ye Y iso U U°U, yin vin€ U”. Hence we have

ez = Z Z J’A,hq_a‘(h)qhex,'e + Z Z ya,;.q“‘("’q"ex,le’ +z,
7 heP” o e

and

ze=Y) Y Vand"x:® 4+, ) Yinq"xze'e + 2,
A hePV A heP¥

where z', 2" €Y iU U°U}. Hence y;, =0 for all A and h. Similarly,

Van=0 for all A and h. Therefore, z €3N (P4=o U"UU;"), and hence, by

induction, we see that 3=3NU-U°=3NU° O

PROPOSITION 4.6. Assume that I = {i,j} and a;=2, a; <0, a;<0, and
m;=1. Then we have 3 < U°.

ProoF. Let V' = Qh;® Qh; and V = {he b|ay(h) = aj(h) =0}. Then h =
V@ V'. Note that W preserves V and V' and that

a.: Qi
det ( " U) = a,-,-ajj - aijaﬂ < O-

aj,- a”

We would like to show Im(¢) =« @yevnp Fg"  Since Im(€) = (U°), it suffices
to show hel and |W(h)| < oo if and only if he V. Hence we need only to
show if heh/V = V', |W(h)| < oo, then h =0. Therefore, it suffices to show
that the eigenvalues of 7|, are not roots of unity. Since the characteristic

. . 2a::a;: . .
polynomial of r;rjy. is t* — <~M — 2>t + 1, r;rjly- has an eigenvalue that is
i
o .. 204 C -
a root of unity if and only if — 2 =0, 1, 2, 3, 4, which is a contradiction
i
to our assumption. []
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LeEMMA 4.7. Assume that the Borcherds-Cartan matrix A = (a;); jc; is
indecomposable. If there is a nonempty subset J of {(i,k)lielLk=1,...,m}
such that 3, < U°, then 3 is contained in U°.

Proor. Let J = {ieI|(i,k)eJ for some k}. Then we have

3NU°= @ Fg&, 3NU°= P Fq"

v

he hePvV _
a;(h)=0 (iel) a;(h)=0 (ieJ)
Foriel, set T, = P.p Fg" We would like to show Im(¢) = ();c; T;. By
a; (=0
Proposition 4.3, we have Im(¢) = Im(¢)) = (i3 T-
If a; = 0, then by Proposition 4.4 (b), Im(¢) = Im({;;,,);) = T;. Hence it
suffices to show that if a; # 0, a; # 0, then TN < T.
Let x=Y,.p cng"e TNWU)". Then x=r(x)=Y,cp cyq"™. Hence

a;(h)=0 a;(h)=0

if ¢, # 0, then «;(r;(h)) = a;(h) = 0, which implies a;(h) =0. []
By Proposition 4.4-Lemma 4.7, we have the following theorem.

THEOREM 4.8. Suppose that the Borcherds-Cartan matrix A = (a;); jc; is
indecomposable and I'™ # ¢. Then

)= @ Fg"<U°®
P

he
a;(h)=0 (iel)

except for the case I consists of a single element i with a; <0 and m; = 1.
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