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ABSTRACT. We extend the result in [13] to those for the quantization of generalized

Kac-Moody algebras introduced in [10]. The existence of the universal Λ-matrix is

proved, and a structure theorem for the center is given.

0. Introduction

The quantum groups—more precisely, the quantization of the universal
enveloping algebras of Kac-Moody algebras—were independently introduced
by DrinfeΓd ([6]) and Jimbo ([7]) through their investigation of jR-matrices
which are the solutions to the Yang-Baxter equation. Its importance partly
comes from the fact that there exists a solution to the Yang-Baxter equation
inside the quantum group, called the universal R-matrίx, so that one can
obtain various /^-matrices as its specialization on the representations of the
quantum group.

On the other hand, the notion of Kac-Moody algebras was generalized
to the so-called generalized Kac-Moody algebras ([1]), and it was used crucially
in Borcherds' proof of the moonshine conjecture ([2]). In [10], the first-
named author extended the quantum groups to those for the generalized
Kac-Moody algebras, and proved some fundamental results on their structures
and their representations.

In this paper, we continue the investigation by extending the results in
[13] to the quantum groups of generalized Kac-Moody algebras. In the first
half of this paper, we construct an analogue of the Killing form and prove
the existence of the universal Λ-matrix. The proofs are very similar to those
in [13] and the analogue of the Killing form plays a crucial role. In the
second half, we investigate the structure of the center of the quantum groups
for generalized Kac-Moody algebras. The case of quantized universal en-

* Supported in part by Basic Science Research Institute Program, Ministry of Education of

Korea, BSRI-95-1414 and GARC-KOSEF at Seoul National University, Korea.

1991 Mathematics Subject Classification. 17B37, 17B35, 81R50, 82B23

Key words and phrases. Quantum groups, Generalized Kac-Moody algebras, R-matrices.



348 Seok-Jin KANG and Toshiyuki TANISAKI

veloping algebras of ordinary Kac-Moody algebras was already treated in
[4], [8], [13]. Hence we restrict ourselves to the non-ordinary case. We
show that the center consists only of certain obvious elements in almost all
cases. The proof is based on the reduction to the small rank cases.
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1. The Quantum Algebra Uq(c\)

Let F be a field of characteristic 0 and let q e F be transcendental over
the prime subfield Q. We assume that F contains an n-th root of q for any
positive integer n.

Let / be a countable (possibly infinite) index set and let A = (αy)itJ e / be a
Borcherds-Cartan matrix with a f je Q for all Ϊ, j el. That is, A — (aij)ijeI is
a rational square matrix satisfying (i) an = 2 or aH < 0 for all i e /, (ii) αo < 0
for i φ] and aυ e Z if au = 2, (iii) atj = 0 implies aβ = 0. Let Γe = {i e I\au =
2}, Iim = [i e I\aH < 0}, and let m = {m^ie I) be a collection of positive integers
such that mi = 1 for all i e Γe. We call m the charge of the Borcherds-Cartan
matrix A. We denote by g = §{A, m) the generalized Kac-Moody algebra
associated with the Borcherds-Cartan matrix A and the charge m ([1], [9],
[10]).

A rational Borcherds-Cartan matrix A = (aij)ijeI is called symmetrizable
if there is a diagonal matrix D = diag(Si\i ε I) with st e Z > 0 such that DA is
symmetric. From now on, we assume that A is a symmetrizable Borcherds-
Cartan matrix.

Let \) = (0ί e jQ/i i )θ(0i € jQdi) be the vector space with a basis
{hi9 di\iel}, and let

(1.1) ίv= 0 0
\iel / \iel

be the Z-lattice of I). For each j e /, we define the linear functionals α,- e fy* by

(1.2) φt) = aψ oLj(dt) = δυ ft j G /).

Set β = 0 i e / Z α f , Q+ =Σieiz>o*i, and β_ = -Q+. Let pel)* be a
linear functional satisfying p(hi) = \aXi for all i e /. For each i e Γe, we define
the simple reflection rt e GL(ί)) by rt(h) = h — αf(/i)/if. The subgroup W of GL(i))
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generated by the r/s is called the Weyl group of the above Borcherds-Cartan

data. It is a Coxeter group with canonical generator system {r^ieΓ6}. We

denote its length function by /: FF-*Z>0. The contragredient action of W

on I)* is given by r^λ) = λ — A(ft, )αj. Since A is symmetrizable, there exists

a nondegenerate symmetric bilinear form ( | ) on ί) satisfying (s^lft) = αf(/ι)

For each i G /, let ξt = qSi - q s\ qt = qiwuV2, and define the q-integer by

M , = χ

ifα« = <

We also define [π],! = Π*=i M/

DEFINITION 1.1. ([10]) The quantum algebra ί/g(g) associated with a sym-

metrizable Borcherds-Cartan matrix A = (aij)ij€l and a charge m = (mj|iε/)

is an associative algebra with 1 over F generated by the elements qh (h e P v ),
eiio fik (i ε J, fc = 1, 2, , mf) with the defining relations

(Rl) q° = 1, tfV = qh+h' (Λ, Λ' G P V ) ,

(R2) g\>Λήf* = « - < % (/i G P v , i 6 /, k = 1, 2,..., m,),

(R3) ίVttί"* = β- 'W/tt (ft G P \ i G /, k = 1, 2,.. ., mf),
1̂  jζ~^

(R4) [ e Λ , yj7] = δijδkl

 i! f , where iCf = ̂ fSίΛί (i, G /, fe = 1, 2 , . . . , mi9

(R5) Σ . + i - i - β v ( - l ) s ^ / ^ = 0 if au = 2 and i Φj (k = 1, / = 1, 2 , . . . ,
my), where e$ = 4 / W i l

(R6) Σ.+ί-i--< /(-1)I/ιf )J5i/ά f ) = 0 if aH = 2 and i # ; (fe = 1, / = 1, 2 , . . . ,

" (R7) [ ^ , ^ ] l = 0 i f ' α 0 = 0.

(R8) ίfik,fjJ=0iϊaij = 0.

The algebra 1/̂ (9) has a Hopf algebra structure with comultiplication A,

counit ε, and antipode S defined by

(1.3)
φ Λ ) = 1, β(βft) = β(/tt) = 0,

S(q") = q~\

S(eik) = -XΓ^ft, S(fΛ) = -AX,
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for h e Pv, i e /, k = 1, , mf. We denote by U° the subalgebra of U = Uq($)
with 1 generated by qh (/ ieP v ) and ΐ/+ (resp. U~) the subalgebra of 1/
generated by the elements eik (resp. fik) for i e I, k = 1,..., mf. We also denote
by C/-° (resp. U~°) the subalgebra of 1/ generated by the elements qh and
eik (resp. /ίfc) for hePv, i e /, fc = 1,..., m^ For each /?e Q+, let

l / ^ = {xe l/±|^Λx^-/l = q±β{h)x for all ftεPv}.

Then we have:

PROPOSITION 1.2. ([10])

(a) C/^L/-®C/°®1/ + .
(b) U° = @ h

(c) t/± =
(d) (R5) and (R7) (resp. (R6) and (R8)) are ί/ie fundamental relations for

U+ (resp. U").

Define a structure of directed set on Q+ by βt> β2 if and only if βx —
β2 E Q+, and set U+iβ = 0 y 6 < 2 + , y ^ U+ for j8 e β+. We define a completion
U of 1/ by

Then 1/ is an algebra containing U. The comultiplication Δ and the counit
ε are naturally extended to those of V ([13]).

A l^(g)-module F is called a highest weight module with highest weight
λ e I)* if there is a nonzero vector vλeV such that (i) eίfcυλ = 0 {iel,k =
1, , m,), (ii) tfX = g A ( % (ft ε P v ) , (iii) V = L^(g)t;λ. Let λeψ and consider
the left ideal I(λ) of I7β(g) generated by eik {i e /, k = 1,..., mf) and 4h - ^fλ(/I)l
( Λ ε ? v ) . Let M(A) = L^(g)//(2) and define a (7q(g)-module structure on M(λ)
by the left multiplication. Then M(λ) becomes a highest weight module with
highest weight λ and highest weight vector vλ = 1 + I(λ). The l/q(g)-module
M(>i) is called the Verma module and it has a unique maximal submodule
J{λ). Hence the quotient V(λ) = M(A)/J(/l) is irreducible.

Let T denote the set of all imaginary roots ô  (ielim) counted with
multiplicity mf.

PROPOSITION 1.3. ([1], [10]) Suppose λfa) > 0 for all i e I and λ{h{) e Z
for all i e Γe. Then we have

(a) chM(A) = π f l

C \ - « y U m h = βA Σ (dim l/Γ
1 lαe J+ V1 "" e )

(b)
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where Δ+ denotes the set of all positive roots of g, gα denotes the root space,

and F runs over all the finite subsets of T such that λ(hi) = 0 for αf e F and

that (Xi(hj) = 0 for αί5 α,eF with iφj. We denote by \F\ the number of

elements in F and s(F) the sum of elements in F.

COROLLARY 1.4. Let y = Σiei^^i e Q+. Suppose X(h{) > 0 for all i e /,

λ(hi) e Z for all i e Γe, and λ(hi) > n{ for all i e Γe. Then we have a linear

isomorphism UIy-^V(λ)λ-y given by u\-+uvλ.

PROOF. The surjectivity of the map UZy -• V{X)λ_y is obvious. Hence it

suffices to show dim UIy = dim V(λ)λ_y. By our assumption, we have

ch Σ
ch

Therefore, it suffices to show that if w(λ + ρ) — p — β = λ — γ for w e W, β e

Q+, then w = 1. Equivalently, if w φ 1, then y 4- w(λ + p) — (λ + ρ)φ Q+.

Let us prove this by induction on the length l(w) of w. If w = rf (i e Γe\ then

l)αf φ Q+.

If w = w'rt and l(w) = l(w') + 1, then

γ + w(λ + p) - (λ + p) = y + w'rf(λ + p)-{λ + p)

= y + w'(A + p)-(λ + p)- (λ(ht) + l)w'(α|) ^ β + ,

which completes the proof. •

2. The Killing Form on Uq($)

The Hopf algebra structure of Uq(q) defines an algebra structure on (U-0)*

with the multiplication given by (φ1φ2)(x) = (Φι ® Φ2)(^(χ)) f°Γ Φ\-> Φi e (ί/~ 0 )*,

x e ί / - ° . For hePv and ΐ e / , fe = 1, 2, . . ., m/5 we define the linear func-

tionals φh9 ψike(U>0)* by

φh(xqh) = ε(x)q-WhΊ (x e C/+, fc' ε P v ),

(2.1) φik(xqh) = 0 (x G I//, β e β + \{αj),

Then it is easy to verify that there is an algebra homomorphism ζ:

(U*0)* given by ζ(qh) = φh, ζ(fik) = -yφik (h e P\ i ε /, k = 1,..., mf). Define



352 Seok-Jin KANG and Toshiyuki TANISAKI

a bilinear form ( | ): U*° x l/^°-F by

(2.2) (x\y) = <C(Λ x> (x e U*°, y ε

Then we have:

PROPOSITION 2.1. TΛe M/iweαr /orm ( | ) on (/^° x l/-° defined by (2.2)

satisfies

(x\yιy2) = ( J ( x ) | Λ ® y2) (x 6

(xix2\y) = (xi ® Xi\Λ(y)) (xu

(2.3) ( g *| 9 *') = (*l*')

(eik\fji)= -yδijδki
Si

/or i, j e /, fc = 1, 2, , mί5 / = 1, 2, , m̂  .

Moreover, the bilinear form on U~° x l/-° satisfying (2.3) ΐs uniquely

determined.

The proof is similar to that of [13, Proposition 2.1.1].

The following lemmas can be proved inductively using (2.3).

LEMMA 2.2.

(a) (S(x)|S(y)) = (x\y) for x e U*°, y ε 17^°.
(b) (xqh\yqh) = q-(hlh'\x\y) (h, h' eP\xe U+, y ε U~).
(c) (Uγ

+\UIβ) = 0i{ yΦβ.

For neZ>0, we denote by Δn\ Uq(gί)-+ C/€(g)<8)(n+1) the algebra homo-
morphism defined by Δx = A, Δn = (Δ®\)o J π _ l 5 and we write

Λ(X) = Σ X(0) ® ̂ (1) ® ' * ® X(n)
(x)n

LEMMA 2.3. For xeU-°, yeU^°, we have

yx= £ (x

(2.4)

xy = Σ (χ

(*)2,0θ2

The following lemma is an immediate consequence of Corollary 1.4.

LEMMA 2.4. Let β e β+\{0} and y e UIβ. If eiky = yeik for all iel, k =

1, 2, ••, mi9 then y = 0.

Now we can state the main theorem of this section.
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THEOREM 2.5. For β e Q+, the bilinear form ( | ): UjF° x Uίg -> F defined
by (2.2) is nondegenerate.

The proof is the same as that of [13, Proposition 2.1.4].

3. Universal Λ-matrix

In this section, we would like to give an explicit formula for the universal
Λ-matrix of the quantum algebra l/q(g). We first recall the definition of
quasi-triangular Hopf algebras and the pre-triangular Hopf algebras ([6],
[13]). A Hopf algebra Jf together with an element Me 2tf ® 34? is called a
quasi-triangular Hopf algebra if it satisfies:

(Tl) M is invertible,
(T2) moA(a) = Δ\a)o0t for all α e / ,
(T3)
(T4)

where Δ' — τ o A with τ(a ® b) = b ® a (a9be Jf) and 0ttj is an element of
Jf ® 3tf ® 3tf such that the (i,j) component is given by $ and the remaining
component is 1. The element 0ί is called the universal R-matrix of Jf since
it satisfies the Yang-Baxter equation

A Hopf algebra together with an element # e Jtf* ® Jf and an algebra auto-
morphism Φ: Jίf ® Jf >̂ Jf ® Jίf is called a pre-triangular Hopf algebra if it
satisfies:

(PI) V is invertible,
(P2) <€ o zί(α) = Φ(4'(α)) o * for all α 6 Jf,

(P3) Φ 2 3 o # 1 3 («i2) = «12>
(P4) Φ 1 2 o Φ 1 3 ( y ^ 2 3 )

(P5)
(P6)
A pre-triangular Hopf algebra Jf becomes a quasi-triangular Hopf algebra

if there is an invertible element 2£ e 2tf <g) 2tf satisfying

φ(a

(3.1)

In this case, the universal jR-matrix is given by 0t — 2t~lc€.
We define an algebra automorphism Φ: U ® U -+ U ® U by
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Φ(qh®qh') = qh®qh\

(3.2) Φ(eik ® 1) = eik ® Ki9 Φ(\ ® eik) = Kt ® eik,

Φ(fik ® 1) = fik ® KT\ Φ(l ® /*) = XΓ1 ® A

It can be shown that Φ can be naturally extended to an automorphism of

For β = Xie/n^i G β+, we denote by Cβ e Uβ ® Uβ the canonical element

of the bilinear form ( | ): Uβ x UIβ -* F, and let hβ = Xie/ΠiSi^, X^ = ̂ h p so

that {hβ\h) = β(h) (/ieP v). We define

(3.3) *= Σ ^'^(K^OK^eί/®!/.

We would like to show that (£7, % Φ) satisfies the conditions (P1)-(P6).

By direct calculations, we can prove the following lemmas.

LEMMA 3.1.

(a) <$Δ{qh) = Φ(A'(qh))<# (hePv).

(b) ( Φ 2 3 o Φ 1 3 P 1 2 ) = ^

(c)

LEMMA 3.2. Let

= <€'<€ = 1 ι/ and only if for any βeQ+ we have

Σ Cy(Kδ®l)(S®l)(Cδ) = δβ,0,

(3.4) ^ β

β
y+δ=β

LEMMA 3.3. We have

ik) = Φ{Δ\eik))% <$A{fik) = Φ(A'(fikW

if and only if

[1 ® eik, Cβ+ai-] = Cβ{eik ® K;1) - (eik ® Kt)Cp9

Uik® I < W = CβiK,®^) - (K;1 ®fik)Cβ.

LEMMA 3.4. We have

if and only if
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(A®l)(Cβ)=
y

(3.6)

y,δeQ+
γ+δ=β

Hence, in order to show that (ϋ,%Φ) satisfies the conditions (P1)-(P6),

it remains to show that (3.4), (3.5), and (3.6) hold. But they can be proved

in an almost the same manner as in [13, Proposition 4.3.3]. Therefore, we

have:

THEOREM 3.5. Let Φ:U ®U be the algebra automorphism defined by (3.2),

and let <# be the element of U ® U defined by (3.3). Then the triple (U. % Φ)

satisfies the conditions (P1)-(P6).

REMARK. Let {hh dt\iel} and {h\ dl\iel} be the dual bases of ί) with

respect to the bilinear form ( | ) and set X = gΣ W + Σ < W . Then 01 = a r 1 *

gives rise to an Λ-matrix for any l)-diagonalizable integrable representation

V of the quantum algebra Uq(o). Therefore, the formula (3.3) can be viewed

as an explicit formula for the universal K-matrix of Uq($).

4. The center of Uq($)

In this section, we will describe the center of the quantum algebra t/g(g).

Let us denote by %(U) the center of U = Uq(o). For each i e / with au Φ 0,

define the simple reflection rt e GL(fy by

(4.1) φ) = h--φ)hi9

and let W = <ri|i*G/, au Φ0} be the subgroup of GL(fy generated by the rf's

(i e /, au φ 0). Let (U0)^ be the subspace of U° consisting of the elements

ΣhePvCh<lh ( C Λ G F ) such that chΦ0 implies w(h)ePv and cw{h) = ch for any

we W. We define an algebra automorphism φ: U° -+ U° by φ(qh) = q~mqh

(hePv), and let η be the linear map given by

(4.2) η: U ^ U~ ® U° ® U+ ^ ^ U°.

The linear map ξ: φ o (^|3): 3 -+ U° is called the Harish-Chandra homomorphism.

PROPOSITION 4.1.

(a) ξ is an algebra homomorphism.

(b) ξ is injective.

(c) Im(ξ) c (U°f.
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PROOF, (a) can be proved in a standard way (for example, see [Di]),

and (b) can be proved as in [13, Theorem 3.1.2].

For (c), let M(λ) be the Verma module over Uq(o) with highest weight

λ. Then it is easy to see that z\M{λ) = χλ+p(ξ(z))I for all z G 3, where χλ: U° -»

F (λel)*) is the algebra homomorphism defined by χλ(qh) = qλ(h) (hePv).

Moreover, if aH φ 0 and (λ + p)(Λ, ) G -^ Z>0, then Hom^M (Γj(λ + p) — p),

0. Indeed, if vλ is a highest weight vector of M(λ) with highest
weight λ, then fWau)(λ+p)(hi)Vλ is a highest weight vector with highest weight

r& + P)- P
Let i G / be such that % φ 0 and let z e 3. Then χA(£(z)) = χrM{ξ{z)) =

χMξ(z))) for any λ e ψ such that λ(ht) e | z , 0 . Hence χΛ(ξ(z) - r£(z)) = 0

for any λei}* such that yl(Λ f)G^Z>0, which implies £(z) = rf(£(z)) for all

i G / with % # 0 . •

For J cz {(i, fe)|f G /, fc = 1, 2, , mj, let L/7 = <eik, fik, U°\(i, k) e J> be the

subalgebra of U generated by U° and eik9 fik with (i, fe) G J. We denote by

3J the center of l/j and ζj'.$j-+U° the Harish-Chandra homomorphism for

Uj. We would like to show Im(ξ) c Im(ξj). Let 17/ (resp. 17/) be the

subalgebra of Uj generated by eik (resp. fik) with (i, fe) G J, and set

R+j ={xe U+\(x\Uj-) = 0} = {x G l7+|(xH77l7°) = 0},

(4.3) ΛJ = {y G I7"|(l7/|y) = 0} = {y e U-\(U°Uj+\y) = 0},

Then we have:

LEMMA 4.2.

(a) 17=17,0*/,
(b) UJRJUJCRJ,

(c) (ε<g>l<

PROOF, (a) It suffices to show l/y

+ = £7/y φ JRj y for any y G β+. Since

*; . , = Ker(l7y

+ -^ (l7Γyf -> (17,%,)*),

dim κ;> y = dim (7y

+ - dim C/f;y = dim Uy

+ - dim U^y.

Since ( | ) is nondegenerate on 17/y x t7^-y, we have RjfyΓ\Ujfy = {0}.

(b) First, note that Kj" (resp. RJ) is a two-sided ideal of U+ (resp. 17"),

and that U°R} = RfU°. Hence it suffices to show

(4.4) 17/JRJ c KJ17, R; 17/ c
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Let yeKjt-y. For (i,k)eJ, by Lemma 2.3, we have

eiky =

357

Σ
(yh

Σ («ι
(yh

Σ
(yh

Hence it suffices to show

(yh

002

for all x e [//. Indeed, we have, for example,

Σ (KMojMβftlsϋk)))*!,) = Σ (&ι\.
(yh / (yh

Σ
(yh

= (S-1(eik)xKi\y) = 0.

The other cases can be proved in a similar way.
(c) Clear. •

PROPOSITION 4.3. Im(ξ) c= Im(^).

PROOF. Let z e 3 and write z = zx + z2 with zx e Uj, z2 e Kj. By Lemma
4.2 (b), zx G3J, and hence by Lemma 4.2 (c), ξ(z) = ξjizjelmiξj). Π

We now consider the special cases when |/| = 1 or |/| = 2. By a direct
calculation, we have:

PROPOSITION 4.4. Suppose I = {i} and mx = 1.
(a) // au Φ 0, then

(b) // au = 0, then 3 c t/°.

PROPOSITION 4.5. Assume either
(a) / = {i} with au < 0, m{ = 2, or
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(b) / = {ij} with ait < 0, α̂  < 0, αo < 0, and m{ = mi = 1.
Then 3 c U°.

PROOF. Set e = eul9 e' = eul9 f = / u , / ' = / i t 2 in case (a), and e = eiΛ9

e' = ̂  1? f = fitl9 f =fj,i in case (b). Then the subalgebra U+ = <e, e'> =
®?=o ^n+ (resp. l/~ = </, /'> = ©£L0 ^-«) i s the free associative algebra over
F generated by the elements e, e' (resp. /, / ' ) , where l/n

+ (resp. UIn) is the
homogeneous subspace of degree n (resp. — n). Then, for n > 1, we have

= Σ Σ JΆ*«**iβ + Σ Σ y'x,h<ihxxe'+ y,

Let ze3Π(^ = o ί /-(7 o l / t

+ ) , and let {xx} be a basis of U^. Then

Σ Σ
λ heP"

where y e Σ ϊ ^ i t/" U°Uk

+, yiwh, y'λ,h e 17". Hence we have

<* = Σ Σ yχ.kQ-'φVexίe + Σ Σ ^ . ί
λ ΛeP v λ ΛeP v

and

» = Σ Σ y^β^A^ + Σ Σ yί.*«*
A ΛeP v λ ΛeP v

where zr, z/r eΣϊ-o U-U°Uf. Hence ^ , h = 0 for all λ and ft. Similarly,
^ = 0 for all λ and A. Therefore, z e 3 Π ( φ J ^ U~U°U^)9 and hence, by
induction, we see that 3 = 3 Π [/" U° = 3 Π £/°. Π

PROPOSITION 4.6. Assume that I = {i,;} and aίf = 2, a^ < 0, ao < 0, and
m7- = 1. TÂ n we have 3 cz U°.

PROOF. Let 7' = QA* © QA, and 7 = {A e \)\θLt(h) = a,(A) = 0}. Then t) =
7 0 7'. Note that W preserves 7 and V and that

det I lJ I = flHα« — α2iα,{ < 0.

We would like to show Im(£) c 0 Λ e F n p v F ^ h Since Im({) cz (U°)*9 it suffices
to show heί) and |W (̂A)| < 00 if and only if A € 7. Hence we need only to
show if A G tyf = 7', I J7(A)| < 00, then A = 0. Therefore, it suffices to show
that the eigenvalues of r^l^ are not roots of unity. Since the characteristic

polynomial of rfr7 |κ, is t2 — ί — ^ — 2 lί + 1, r^l^ has an eigenvalue that is
V ajj )

a root of unity if and only if — ^ = 0, 1, 2, 3, 4, which is a contradiction

to our assumption. •
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LEMMA 4.7. Assume that the Borcherds-Cartan matrix A = (aij)ijeI is

indecomposable. If there is a nonempty subset J of {(i, k)\i e /, k = 1,..., m j

such that 3J CZ U°, then 3 is contained in U°.

PROOF. Let J = {ie I\(i,k)eJ for some k}. Then we have

3Πt/°= 0 ¥q\ 3jΠί/°= 0 ¥qh.
hePv ΛePv

ai(h)=θ(iel) α f(/i)=O ( ί e J)

For i e I, set Tt = 0 h e P v ¥qh. We would like to show Im(ξ) cz f^\ieI 7J. By

Proposition 4.3, we have Im(< )̂ c Im(£j) cz Pj i ej7J.

If flji = 0, then by Proposition 4.4 (b), Im(ζ) cz Im(ξ { ( i f l ) } ) cz τt. Hence it

suffices to show that if an Φ 0, aΆ φ 0, then T^ijϋ0)* c 7J.

Let * = Σ Λ e P v c Λ β * e 7 ; n ( l / 0 Λ Then x = 0(x) = X Λ e p v c Λ ^ Λ ) . Hence
αi(/i)=0 αi(Λ)=0

if cΛ φ 0, then α^r^ft)) = α£(Λ) = 0, which implies OLj(h) = 0. Π

By Proposition 4.4-Lemma 4.7, we have the following theorem.

THEOREM 4.8. Suppose that the Borcherds-Cartan matrix A = (aij)ijeI is

indecomposable and Iιm φ φ. Then

O3(1/) = 0 Έqh cz U
ΛeP v

<Xi(h)=0(ieI)

except for the case I consists of a single element i with aa < 0 and mt = 1.
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