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Certain maximal oscillatory singular integrals
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ABSTRACT. We prove the L^-boundedness 1 <p < oo, for certain maximal oscillatory

singular integral operators.

1. Introduction

Let y = (y\, . . . , yk) e IR* and V = (d/dy\,. . . , d/dyk) be the gradient on
IR*. K(y) e C^R^O}) is said to be a Calderόn-Zygmund kernel if there is
an A > 0 such that

(1) \K(y)\<A\y\-k; \V K(y)\ ^ A \y\~*^

(2) f K(y)dσ(y)=0 forO<b<B<ao.

h^\y\<B

For a multi-index α = (αi , . . . , α*) e N* U {0}, we write

| α | = α ι + «2 + . . . + α*, /)« = (d/dyι)Λl -
Let &(y) = (Pι(y), . . . ,Pn(y)) be a polynomial mapping from Rfc to 1R", where
each Pj, j = 1, 2, . . . ,«, is a polynomial on Rfc. We define the degree of
by deg(^) = max{deg(Λ), deg(P2), . . . , deg(PΛ)}.

The oscillatory singular integral T^f(x) is defined by

= f ei

JRΛ
(3a)

where Φ e C°°(IR*\{0}) is a real-valued function, / e ̂ IR"), λ e IR and K(y) is
a Calderόn-Zygmund kernel on IR .̂ The maximal operator of Tg>^ is defined
by

(3b) T*pλf(x) = sup
e>0
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For simplicity of the notation, we write

(3c) Tf(x) = T9JJ(x) iϊn = k,&(y) = (yι,...,yn) and 1 = 1 ;

Similarly, we define Tf(x) = T^λf(x) if n = fc, 3>(y) = (yi, . ..,yn) and λ = 1;
I>/(*) = I V X x ) 0 i f A = 0.

The significance and background of studying these operators 7> and T
can be found in Stein's book [7] and in paper [5]. In particular, the following
Z/-boundedness theorem was proved in [5].

THEOREM 1. Let T be defined in (3c). Suppose that Φ satisfies

(4) ID ΦOOI < C b Γ | α | f o r | α | < 3 ,

(5) £ \D«Φ(y)\ > C'\yΓ2

|α|=2

where a φ 0 is a fixed real number, C and C are constants independent of
y e R*\{0}. Then, for 1 < p < oo, there is a Cp > 0 such that

We recall the following boundedness theorem.

THEOREM 2. (see [7]) There is a constant Cp independent of the coefficients
of&(y) such that | | 7 > / | | L , ( R ) < Cp\\f\\LPίβnγ

As a supplement of the paper [5], in this paper we will prove the following
result.

THEOREM A. Let Φ e C™ (β.k\{ϋ}} be a real-valued function satisfying

(7) \D«Φ(y}\ > C'\yΓm

(8) \D*&(y}\ < C\y\a~W for |α| = 0 and m + 1,

for some fixed m>2, a φ 0. Suppose that deg(^) is less than m. Then, for
1 <p < oo, there is a constant Cp > 0 independent of λ and the coefficients of
»(y\ such that \\T^λf\\LP(Rn] < C P | | / | | L , ( R . ) .

REMARKS.

(i) A constant function does not satisfy condition (7), but in this case the
operator T^λ contains no oscillatory factor in its integral so that it is reduced
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to certain singular integral of Calderόn-Zygmund type, whose boundedness is
well-known.

(ii) When k = 1 and Φ(y) = \y\a, if a is not a non-negative integer, then
Φ(y) satisfies (7) and (8) for all integers m. If a is a non-negative integer, then
Φ satisfies (7) and (8) for m = a — 1, unless a = 0 and 0 = 1 . When a = 0,
again 7>^ is reduced to the case in (i). When a= 1, T&^ is known to be
unbounded in Lp.

(iii) When k > 1 and Φ(y) = \y\a, a^Q, clearly Φ satisfies (7) and (8) for
some integer m, since a simple calculation shows

/2
\D«Φ(y)\2 = \a\{(a - I) 2 + (n - ! ) } 1 / 2 b Γ 2

0-1=2

In particular, if a is not a positive even integer then Φ(y) satisfies (7) and (8)
for any positive integer m. For simplicity, we explain the reasoning by
considering an even integer m. Let A be the Laplace operator. By spherical
coordinates, it is easy to see that \Λm/2Φ(y)\ = C\y\a~m. Thus there exist a
constant cw e (0, 1) and a multi-index α with |α|=/w such that \D*Φ(y)\ >
Cm\y\a~m This shows (7). A direct computation can show that Φ satisfies (8).

(iv) Other functions satisfying (7) and (8) are easily available (see [5]).
By the above (ii) and (iii) in Remarks, we easily obtain the following

corollary of Theorem A.

COROLLARY. Suppose that Φ(y) — \y\a is not a polynomial of y =
(y\,...,yn) then \\T^λf\\p<Cp\\f\\p for any 9(y\ where Cp is a constant
independent of the coefficients o

Thus our Theorem A is also an extension of Theorem 2. We notice that
in Theorem A, the Calderόn-Zygmund kernel K(y) must be a smooth function
on JR^\{0}. Now we will consider a kernel with a certain roughness. Let
Sk~l be the unit sphere in IR ,̂ k > 2, with induced Lebesgue measure dσ. For
any y ^ 0, let y1 =y/\y\ so that y' e S*-1. Suppose that Ω(y) = Ω(y') is a
function in Lq(Sk~l), q > 1, that satisfies the mean zero property

(9) f Ω(y'}dσ(y'} = Q.
Js*-1

The rough kernel which shall be studied is defined by R(y) = Ω(y)\y\~k. The
Lp boundedness for the singular intergral operator R*f(x) and its varieties
were well-studied by many authors (see [2], [4], [1], [3], [6], etc). One of these
results is the following theorem.
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THEOREM 3. The maximal integral operator

sup
e>0

f R(y)f(x-P(y))dy
J\y\>ε

is bounded in Z/(R Λ ) and the bound is independent of the coefficients of 0*.
The proof of Theorem 3 (actually a more general version) can be found

in [6], where one considers R(y) = b(\y\)Ω(y)\y\~k with Z?eL°°(0, oo) and
ΩeHl(Sk~l).

Instead of conditions (7) and (8), we require the phase function Φ(y) is a
homogeneous function that satisfies

(10) φ(ty) = taΦ(y) fort>Q and some a Φ 0; ,

(11) Φ(y'}εL™(Sk-1) and [ \Φ(y'}Γδ dσ(y') < CΦ < oo.

with some δ > 0.

THEOREM B. Let Ω(y') e Lq(Sk~l), q > 1, satisfy (9). Suppose that Φ is a
function satisfying (10) and (11), where either the index a φ 0 is not a positive
integer or a is a positive integer larger than deg(^). Then the maximal singular
integral

£ / ( * ) = sup ί eiφ^R(y)f(x -
ε>0

is bounded in Z/(IRW). Moreover, the operator norm is independent of the
coefficients of ^ .

2. Some known lemmas

In this section we list several known lemmas which will be used in the
proofs of the theorems.

LEMMA 1. Suppose that Ψ e (^(IR/1), φ is real-valued and for some m > 1

Σ wwi ^ l

|α|=m

throughout the support of Ψ. Then
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and the constant Cm(φ) is independent of λ and Ψ, and remains bounded as long
as the C m + 1 norm of φ is bounded.

Lemma 1 is a slightly stronger version of Proposition 5 in Chapter VIII of
[7]. The proof given by Stein in [7] can be used here with a little modification.

LEMMA 2. Let the maximal function M&f be defined by

= sup r~k\ \ f(x -
r>0 \J\y\<r

Then ll-Λ/̂ /IL/'fR'1) <Ξ C/jll/llLPΠR")? where C is a constant independent of the
coefficients of 3P(y). The proof of Lemma 2 can be found on page 485 in [7].

For the rough kernel R(y) — \y\~kΩ(y'\ we define the maximal operator
by

(16) #(/)(*) = sup f \R(y)f(x - 0>(y))\dy
jeZ Jy-i£\y\<2JjeZ

Then the following lemma is Theorem 7.4 in [6].

LEMMA 3. The operator μ*p is bounded in Z/(1RΛ) for p e (1, oo). Further-
more, the bound for the operator norm is independent of the coefficients of ^ .

3. Proof of Theorem A

We will only prove the case a > 0 since the proof for a < 0 is similar; see
also the proof of Theorem B. Without loss of generality, we may assume
λ > 0. let Ψ be a non-negative C°° radial function satisfying

SUpp(Ψ) c (y E R* : 1/2 < \y\ < 2}

and

y=-oo

Now for any fixed λ > 0, choose an integer N such that 2N ^ λ~l/a. We let

Ψj(y) = Ψ(2-'y), η(y) = \ - Ψj(y), Ω<*(y) = eiλΦ^K(y)η(y) and
j=N+l

Ωj(y) = eiλφWK(y) Ψj(y) for j = 1 , 2, . . . . We also write

Σ eiλφ^Ψj(y)K(y).
j=N+l
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e>0 I J\y\>B
+ sup A(y)f(x -

ε>0 J\y\>ε

Noting that suppί20 ^{yeJR.k: \y\ < 2N+l} and η(y) = 1 for \y\ < 2N, we can
decompose

- K(y)X{M<2N

Then we easily see that

Here

Jlf(x)

= sup I f K(y}χM<2N}(y}f(x - 0>(y}} dy
e>0 \J\y\>e ' ' '

= sup
ε>0

K(y}f(x-&(y)}dy

< sup K(y)f(x -
e>0 \J\y\>e

+ \ f
I J|y|>2^

K(y)f(x -

By Theorem 2 we know that J\f(x) is bounded in Z/(1RΛ). Next, by (8) it is
easy to see

i\y\<2N

<Cλ

<c

J2f(x}< f \K(y)\\eiλΦW-l\\f(x-,
J\y\<2N

J\y\<2N

. Vl
<CλΣ 2ai2-ίk I ^ \f(x-&(y))\dy < Cλ2aNM?\f\(x}.

So by the choice of N and Lemma 2, we easily see | | /2/ | | p < CpH/j^.
Finally,

\y\~ \f(x - CM#\f\(x).

~l <\y\<2N+l
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This proves the //-boundedness for I\f. It remains to prove the Lp

boundedness for sup | J w > θ A(y)f(x - 0>(y)) dy .

By the support condition of Ωj, we know sυppΛ(y) c {^ [y| > 2^}. Thus

= sup I I Δ(y)f(χ-P(y))dy
ε^2" \i\y\>ί

sup If A(y)f(x-»(y))dy
e>0 I J\y\>ε

= ™P Σ J >£

 Qj(y)f(* - ̂ W) #

For any ε ̂  2N choose an integer v > N + 1 such that 2""1 < ε < 2V. Thus

£ f Ωj(y)f(x-!?(y))dy
y=ΛΓ+l JW>«

£ Σi,
y=Λ^+l J l >

00 f

+ Σ °j(
j=N+l Je<b|<2v

By the support condition of Ωy, it is easy to see that

v+1 f

= Σ
/ =v-l J :

_ m wιι/(^-^ω)irfv<cM^ι/i(x).
7 " l J2v-ι<M<2v

Thus we have \\Bf\\p < Cp\\f\\p. To estimate Af(x), we notice that, by the
support condition of ΩJ}

CM<?f(x)
00 f

JίiL*
j^βy W/^-^W)^

f Ωj(y)f(x-<r(y))dy
j ~ , , . «'bl<2v

Σj.
j=v+\ J R
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The last inequality above follows from the fact that the support condition of Ωj
implies

for all j > v + 1. This proves

f Ωj(y)f(x-0>(y))dy =
Jlvl<2"

sup f Ωj(y)f(x-&(y))dy
J\y\>ε

< C M<?f(x) + sup
v>N

Let

sup
v>N

= G(f)(x).

To prove the theorem, it suffices to show that for 1 <p < oo,

ll<?(/)IL,(iR") * CP\\

In fact, if we write

fl, * / ( * ) = [ Ω}(y)f(x-.
JR*

then

G(f)(x) = sup
v>N

Ωj+v * sup \Ωv+j *

It is easy to see supv>^ |β y + v */( jc) | < CM<?f(x), where C is a constant
independent of N and y. So

(17) sup \Ωj+v * / | 11̂  < Cp\\f\\p, Kp<co
v>N

with Cp independent of j , N, f and the coefficients of 0*(y). On the other
hand,

SUP | β y + v

v>ΛΓ
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Thus

00

II sup IΩ/+V * f(x)\ I I^R.) < Σ HΩ./+V *
v^N V = Λ Γ

v=N v=N

We note that

Ωj(ξ) = 2* f eW^-r^(2W>}jφ^ Ψ(y) dy.
JR*

Let fljO = 2~*{*(26θ-*~kf,^(26θ>} If |α| = m > 2 then D«φ(y) =
2J(m-aϊ(D*Φ)(2Jy), since deg(^) < m - 1. Thus by (7), for 1/2 < \y\ < 2, we
have

|α|=w

Similarly, for |y| < 2 and |α| = m-h 1, by (8) we have |Dα^(^)| < C. Invoking
Lemma 1 and (1), we obtain that ||4|loo ^ C2-^mλ~l/m for ally. Thus by the
choice of N, we have

This proves

(18)

By (17) and (18) and interpolation for any 1 <p < oo, we have

sup \ΩJ+V * / | < C2~jδ\\f\\p for some δ > 0.

Therefore we prove that HG^/)!^ < C^H/H^ for 1 <p < oo. From the above
proof, we can see that the constant Cp in the last inequality is independent of
all the essential variables. The theorem is proved.

4. Proof of Theorem B

The proof of Theorem B is essentially the same as that of Theorem
A. For the sake of completeness, we will prove the case a < 0. Let Ψ and
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Ψj be the same as in the proof of Theorem A. Let

Then

sup
£>0 \y\>ε

o (y)f(χ - + sup A(y)f(x - 0>(y)) dy
e>0 | J\y\>ε

+ Λ/W + /3/W

Noting that supp Ω^ c {y e IR^ : |^| > 2~3} and η(y) = 1 for \y\ > 2, we can

decompose

fl.ω = R(y)x{M>2}(y)

Then we easily see that

Here

- sup
ε>0

By Theorem 3 we know that J\f is bounded in Lp(Sin}. Next, by (10) it is
easy to see

\R(y}\\eiφW-\\\f(x-&(y)}\dy

\y\-k+a\Φ(yl)Ω(y')f(X-

*~l), we have

< C

Thus, noting that Φ(/)eL°°(ί

Λ/W < cφ £ 2-1

00

<c

x -

i=l
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So by Lemma 3 and the fact a < 0, we easily see
easy to see

\y\~k \Ω(y')f(x - 0>(y))\dy

179

,. Also it is

2-3<bl<2

This proves the ZΛboundedness for ί\f(x). It remains to prove the Lp

boundedness for sup If , A(y)f(x - 0>(y}]dy .
ε>0 '

By the support condition of Ωj, we know suppA(y) ^ {^ [y| < 2}. Thus

sup
ε>0 I J\y\>e

Δ(y}f(x-<?(y))dy = sup If Δ(y)f(χ-P(y))dy
0<ε<2 I J\y\>ε

= sup
0<e<2

Σ } >eΩj(y)f(x-0>(y))dy.

For any ε e (0,2), choose an integer v < 1 such that 2V - 1 < ε < 2". Thus

Ωj(y)f(X-0(y))<fy

;|>e

0 f

Σ .
y=-oo J -

Σ I Ωj(y)f(X-!?(y))dy

By the support condition of ί2y, it is easy to see that

v+lv + f

Bf(x)< 2
ί J2'-

To estimate Af(x), we notice that, by the support condition of Ω/,

4f(*) = ^ f Ωj(y)f(X-0(y»dy
jΞ^\ %|S2'

f Ωj(y)f(X-P(y))dy
jΞ^i JR"

+

The last inequality above follows from the fact that the support condition of β/
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Jb|<2v

for all j > v + 2. This proves

sup If A(y)f(x-9(y))dy
e^O I J\y\>e

Ωj(y)f(x-P(y))dy
>ε

up Σ f Ωj(y)f(x-0>(y))dy
<ι jΞ^i JR"

< sup
e<2

Let

sup f
y=v-i •'*

To prove the theorem, it suffices to show for 1 <p < oo,

In fact, we write

β * / ( * ) = [ Ωy
JR*

Then

sup |flv+/*/(*)!•

It is easy to see sup |fly+v*/(jc)| < Cμ^

So

(18) HsuplOy+v*/! !^
v<l

On the other hand,

sup \ΩJ+v*f(x)\ <

K p < oo.
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Thus

i
|| sup\Ω j+Ό * f(χ)\\L2(lκ ) < 5 Z \\ΩJ+V *

where

\Ωj(Q\ = I [ Ω(y') [ e?
I Js*-ι J

0

< f \Ω(y'}\Ij(Φ(y'}}dσ(y1}
isk~l

and

o

Defining a function Ψ by ^(ί) = ^(ί) if t > 0 and !P(f) = 0 if ί < 0, we have

/;(*(/)) < Cmin{l, \2"J Φ(y')\^m} ,

by Lemma 1. Thus we let /,(Φ(/)) < C\2"Jφ(y')\-s/q ', where 0 < δ < q'/m.
Then using Holder's inequality and the condition on Φ, we have

\Ωj(ξ)\

This shows

i

||0/+v||oo ^
v=— oo v=— oo

since a < 0. Now using (18) and interpolation, we obtain the Lp boundedness
of G(f}. The theorem is proved.
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