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Certain maximal oscillatory singular integrals
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AssTrACT. We prove the LP-boundedness 1 < p < oo, for certain maximal oscillatory
singular integral operators.

1. Imtroduction

Let y= (31,...,y%) e R¥ and V = (8/dy1,...,0/0yx) be the gradient on
R*. K(y) e C'(R*\{0}) is said to be a Calderén-Zygmund kernel if there is
an A4 > 0 such that

(1) KO < Aly[™; VK@) <4 |y ™

2) K(y)do(y) =0 for0<b< B< .

J.bslylsB
For a multi-index o = (ay,...,0) € N*U {0}, we write
o] = o1 + o2+ +oax, D*=(8/oy1)™---(8/dyx)*.

Let 2(y) = (P1(»),...,Pa(y)) be a polynomial mapping from R to R”, where
each P;, j=1,2,...,n, is a polynomial on R¥. We define the degree of 2(y)
by deg(#) = max{deg(P;),deg(Ps),...,deg(P,)}.

The oscillatory singular integral Tz, f(x) is defined by

(3a) Toaf () = | #OK0)f(x- 20))

where @ € C*°(R*\{0}) is a real-valued function, f € s(R"), A€ R and K(y) is
a Calderén-Zygmund kernel on IR¥. The maximal operator of Ty, is defined
by

(3b) T3,/ (x) = sup

>0

L'emmxwvu—wwnw.
V>
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For simplicity of the notation, we write

(Bc)  Tf(x) = Touf(x) ifn=k2G)=(1,....ys) and A=1;
Taf (x) = Topf(x) if 4=0.

Similarly, we define T°f (x) = T, f(x) if n =k, 2(y) = (y1,...,y») and A= 1;
Ty f(x) = Ty, f(x)° if 2=0.

The significance and background of studying these operators T and T
can be found in Stein’s book [7] and in paper [5]. In particular, the following
L?-boundedness theorem was proved in [5].

THEOREM 1. Let T be defined in (3c). Suppose that & satisfies

@) |D*®(y)| < Cly|*™ for |a] <3,
(5) > Ip*e(y)| = C'ly|*
=2

where a #0 is a fixed real number, C and C' are constants independent of
ye RN\{0}. Then, for 1 <p < oo, there is a C, >0 such that

ITA 1l o mey < Coll fll Lo mey-

We recall the following boundedness theorem.

THEOREM 2. (see [7]) There is a constant C, independent of the coefficients

of P(y) such that T3 [ Loy < CollfllLower)-
As a supplement of the paper [5], in this paper we will prove the following

result.

THEOREM A. Let @ € C®(R¥\{0}) be a real-valued function satisfying

(7) > Do) = '
|ot|=m "
(8) [D*®(y)| < Cly|* ™™ for|a]=0 and m+1,

for some fixed m > 2, a#0. Suppose that deg(P) is less than m. Then, for
1 < p < oo, there is a constant C, > 0 independent of A and the coefficients of

P(y), such that | Tg, fllLomry < Coll fllLomry:

REMARKS.
(i) A constant function does not satisfy condition (7), but in this case the
operator T, contains no oscillatory factor in its integral so that it is reduced
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to certain singular integral of Calderén-Zygmund type, whose boundedness is
well-known.

(i) When k=1 and &(y) = |y|, if a is not a non-negative integer, then
&(y) satisfies (7) and (8) for all integers m. If a is a non-negative integer, then
@ satisfies (7) and (8) for m=a—1, unless a=0 and a=1. When a=0,
again Ty, is reduced to the case in (i). When a=1, Ty, is known to be
unbounded in L7,

(ili) When k > 1 and ®(y) = |y|, a # 0, clearly @ satisfies (7) and (8) for
some integer m, since a simple calculation shows

1/2
(Z ID“¢(Y)IZ) =lal{(a—1)* + (n — D}/*y* 2.

|o|=2

In particular, if a is not a positive even integer then &(y) satisfies (7) and (8)
for any positive integer m. For simplicity, we explain the reasoning by
considering an even integer m. Let 4 be the Laplace operator. By spherical
coordinates, it is easy to see that |4™/2®(y)| = C|y|*™. Thus there exist a
constant ¢, € (0,1) and a multi-index a« with || =m such that |D*®(y)| >
cm|y|*™™. This shows (7). A direct computation can show that & satisfies (8).

(iv) Other functions satisfying (7) and (8) are easily available (see [5]).

By the above (ii) and (iii) in Remarks, we easily obtain the following
corollary of Theorem A.

COROLLARY. Suppose that ®(y) =|y|" is not a polynomial of y=
(1, yn) then || Ty, fll, < Gl fll, for any P(y), where C, is a constant
independent of the coefficients of 2(y).

Thus our Theorem A is also an extension of Theorem 2. We notice that
in Theorem A, the Calderén-Zygmund kernel K(y) must be a smooth function
on R¥\{0}. Now we will consider a kernel with a certain roughness. Let
S%=1 be the unit sphere in R¥, k > 2, with induced Lebesgue measure do. For
any y #0, let y' =y/|y| so that y’ € S¥"1. Suppose that Q(y) = Q()') is a
function in L9(S*"!), ¢ > 1, that satisfies the mean zero property

Q [ 207dat) =0

The rough kernel which shall be studied is defined by R(y) = Q(y) ly|™*. The
L? boundedness for the singular intergral operator R x*f(x) and its varieties
were well-studied by many authors (see [2], [4], [1], [3], [6], etc). One of these
results is the following theorem.
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THEOREM 3. The maximal integral operator

sup
0

jl RO = 20D

is bounded in LP(R") and the bound is independent of the coefficients of 2.
The proof of Theorem 3 (actually a more general version) can be found
in [6], where one considers R(y)=b(|ly|)R2(»)ly|™* with beL®(0,00) and
Qe H'(S¥).
Instead of conditions (7) and (8), we require the phase function ®(y) is a
homogeneous function that satisfies

(10) D(ty) =t°d(y) fort>0 and somea # 0;,
(1) 00N el* () and [ |00 doy) < Co< oo
Sk-1

with some 6 > 0.

THEOREM B. Let Q(y') € L4(S*1), ¢ > 1, satisfy (9). Suppose that & is a
function satisfying (10) and (11), where either the index a # 0 is not a positive
integer or a is a positive integer larger than deg(?). Then the maximal singular

integral

I3/(x) = sup

e>0

jw EPIR(G)S (x - () dy

is bounded in L?(R"). Moreover, the operator norm is independent of the
coefficients of Z.

2. Some known lemmas

In this section we list several known lemmas which will be used in the
proofs of the theorems.

LEMMA 1. Suppose that ¥ € C}(IR"), ¢ is real-valued and for some m > 1

3 ID%(x)| = 1

|o=m

throughout the support of ¥. Then

< Cu(@)A7 (¥l + IV 111),

J eMI P (x) dx
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and the constant Cp, (@) is independent of A and ¥, and remains bounded as long
as the C™*! norm of ¢ is bounded.

Lemma 1 is a slightly stronger version of Proposition 5 in Chapter VIII of
[7. The proof given by Stein in [7] can be used here with a little modification.

LEMMA 2. Let the maximal function Mg f be defined by

Mpf(x) =sup r'*

r>0

]l S 20)b)

Then |Ma f|lLowry < Cpll fllLo(wny, Where C is a constant independent of the
coefficients of P(y). The proof of Lemma 2 can be found on page 485 in [7].
For the rough kernel R(y) = |y|‘kQ(y'), we define the maximal operator

Hp(f)(x) by

(16) 15(f)(x) = sup j |
JEZ JU-1<|y|<Y

|R(») S (x — 2(y))|dy.
Then the following lemma is Theorem 7.4 in [6].

LemMMA 3. The operator uy is bounded in LP(R") for p € (1,0). Further-
more, the bound for the operator norm is independent of the coefficients of 2.

3. Proof of Theorem A

We will only prove the case a > 0 since the proof for a < 0 is similar; see
also the proof of Theorem B. Without loss of generality, we may assume
A>0. let ¥ be a non-negative C® radial function satisfying

supp(?) = {yeR*: 1/2 < |y| < 2}

and

Z Y(27y)=1 forally#0.

J==w

Now for any fixed 4 > 0, choose an integer N such that 2V ~ 24, We let

00
i) = ¥@7y), 10)=1- 3 (), Q) =**VKp)n(y) and
J=N+1
Qi(y) = VK (y)¥;(y) for j=1,2,.... We also write

40)= 3 0w ()K().
J=N+1
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Then

J|y|>e A(5)f(x— P () dy

T3/ (%) < sup jl BN (= 20) |+ sup
&> y[>e &>

0

=NLf(x)+ Lf(x).

Noting that supp 2y < {y € R* : |y] <2¥*!} and 5(y) = 1 for |y| < 2V, we can
decompose

20(9) = KWxgp1<m () + K3) (€D = Dxgpi<am ()
+ e POKWxm <y < w013 (9)-
Then we easily see that

Lf(x) < J1f(x) + 2 f(x) + T3 (x).

Here

J1f(x) = sup

e>0

J,,., KO0/~ 200 ]

= sup
>0

KO)/(x = 2() dyl

L<(y|<2”

jw KO)f(x - 2() dy\ +

< sup
e>0

By Theorem 2 we know that J; f(x) is bounded in LP(IR"). Next, by (8) it is
easy to see

| kOMx-20) )|
[y|>2¥

RI@ <[ KON - 1]17(x - 20)]dy

[vj<2¥

<l j DI £ (e = 2 () dy

[yl<2¥

N
scy 4 I (k= 20)) dy

i=—o0  J27<|yI<2

N
<CA Y 2t |f(x = 2(»)|dy < CA2*N M| f|(x).
lyj<2!

i=—00
So by the choice of N and Lemma 2, we easily see ||2f||, < Gl fll,-
Finally,

nws | WEIe- 20)Id < CMalfI).

2N-1 SlylszN-H
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This proves the LP-boundedness for I;f. It remains to prove the LP?
boundedness for sup 'lel>e A f(x - 2(»)) dy‘.
e>0

By the support condition of €2;, we know supp 4(y) < {y, |y| > 2"}. Thus

sup | | A(y)f(x—ﬂ’(y))dy‘= sup | [ A(y)f(x—g"(y))dy’
>0 y|>e g2V | J|y|>e
s | 3 [ a0)e-20)8]
e>2N j=N+1 Jlyl>e

For any & > 2" choose an integer v > N + 1 such that 2"! <e¢<2'. Thus

00

S Qf(y)f(x—g”(y))dy’

j=N+1 JlyI>e

00

> [ a0se-2o)s

j=N+1

IA

0

Y| Qj(y)f(x—w(y))dy}
j=N+1 Je<|yl<2

= Af (x) + Bf (x).
By the support condition of £;, it is easy to see that

e8]

Bf(x) < Z

j Q1 (x - 2(y))] dy
J=N J27I<yl<2

v+1

Lv—l<|y|<2v 12 Sf (x — 2(»)dy < C Mg|f|(x).

Jj=v-1

Thus we have ||Bf||, < Gp||f|l,- To estimate Af(x), we notice that, by the
support condition of ;,

0

> |, 20E-20) B|+ C Mo 1)
y| =2

J=v+1

Af (x) =

]

> [ avre-20)a)

Jj=v+1

<

00

D> | 20 x=20)B|+ Mo s

J=v+1

+

0

> [ 20 =200 B+ C M)

j=v+1

<
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The last inequality above follows from the fact that the support condition of £;
implies

J,,.. a0V G- 20Ny =0

for all j > v+ 1. This proves

sup J () f(x=2(») dy'
e22V | j=n31 Jlyl=e
< CMpf(x)+ sup jg; J,Rk Q) f(x—2(») dy‘-
Let
swp |3 |, 901/ 6-20) b| = 6.

To prove the theorem, it suffices to show that for 1 < p < oo,
IGN o mmy < Coll fll Lo (mr.

In fact, if we write

Q109 = [ QOIf - 20)

R*

then

00

< Z sup 2,4 * f(x)|.

j=1 v=N

G = sup | S Qv # 1)
v=N =1

It is easy to see sup,.y |[Qj4v * f(x)| < CMgpf(x), where C is a constant
independent of N and j. So

(17) I sup 1240 % f1l, < Goll fllps 1<p <0
v=

with C, independent of j, N, f and the coefficients of #(y). On the other
hand,

[0 0]
sup 24y % f(X)| < Y Q0 * f(X)]-
v=>N v=N
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Thus

Q0
| sup [Ljry * ()] || 2mmy < Z 12)+v * £l 2wy
v=N v=N

0 00
<CY 1 12mllo < Clfla Y 194l
v=N v=N

We note that
A.(£) — Wk i{B(2y)-1"(P2Y) O} g (2
=2 JN e K(2/y)¥(y)dy.

Let ¢(y) =27{D(27y) — 47K, P(2/y)>}. If |al=m=2 then D*¢(y)=
2/(m=a)( D) (27y), since deg(?) <m —1. Thus by (7), for 1/2 < |y| <2, we
have

Y 1Dy = CY Iy > C

|a]=m

Similarly, for |y| <2 and |a| = m+ 1, by (8) we have |D*¢(y)| < C. Invoking
Lemma 1 and (1), we obtain that |||, < Cc27a/m)=1m for all j. Thus by the
choice of N, we have

© ©
Z "Qj+v”w < 2—ja/ml—1/m Z o—av/m < Cc2Ja/m.
v=N v=N

This proves

(18)

Sup |24, * /| || < caim| £
v>N 2

By (17) and (18) and interpolation for any 1 < p < 00, we have

< C27”|f|, for somed > 0.
»

sup [y * f]
nu>N

Therefore we prove that ||G(f)||, < G| fl|, for 1 <p < oco. From the above
proof, we can see that the constant C, in the last inequality is independent of
all the essential variables. The theorem is proved.

4. Proof of Theorem B

The proof of Theorem B is essentially the same as that of Theorem
A. For the sake of completeness, we will prove the case a < 0. Let ¥ and
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¥; be the same as in the proof of Theorem A. Let

10) =Y Vi), Qo) = *ORG)(),
=1

0
2i(y) = VIR ¥i(y), A(y)= > €*URM)¥;().

j==

Then

Inf (x) < sup

>0
=hf(x)+Lf(x)

Noting that supp 2, < {y e R¥ : |y| > 2%} and #(y) =1 for |y| > 2, we can
decompose

>0

j A0 =20 dy
y|>e

jl L 20) (= 20) dy} + sup
y|>e

Qu(¥) = RW)xqy>23(0) + R(y)(e®V) — D> (%)
+ PRI 12> < praay ()-
Then we easily see that
Lf(x) < W f(xX) + 1S (%) + B ().

Here

jlf(x) = sup

>0

By Theorem 3 we know that J) f is bounded in L?(R"). Next, by (10) it is
easy to see

JM)E RO x>y (0 f(x = 2(y)) dy)-

Lf(x) < Jl o IR)|[€90) — 1] | f (x = 2(»))| dy
=

<c|  pIe0)e0 Y - 20l
)Y
Thus, noting that &(y’') e L®(S*"!), we have

R <CaY 2 [ WIIROIc- 20)ay

2-1<]y<2

<cZza' () (x
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So by Lemma 3 and the fact a < 0, we easily see ||.72fl|1J < Gl fll,- Also it is
easy to see

Biws | bI*I00 - 20D 4 < Cup ()
2-3<|y|<2

This proves the L?-boundedness for [;f(x). It remains to prove the L?
boundedness for sup |f|y|>£ A)f(x — 2(»)) dy|.
0

By the support condition of ;, we know supp 4(y) < {y,|y| <2}. Thus

sup | [ A(y)f(x—ﬂ”(y))dyl = swp [[ 40) G- 20)a
>0 ly|>e 0<e<2 | Jiy|>e
0
AP J,,. a0)re=20)a|

For any ¢ € (0,2), choose an integer v < 1 such that 2! <e<2'. Thus
0

> |

j=—o0 J>e

Qi) f(x—2(») dyi

0
<

[ avre-204)
j=—o0 J2>|y|22v

0
+

. aose-20a]
e<|y|<2’

j=—o0
= AF(x) + Bf (x).

By the support condition of £, it is easy to see that

v+1

Bf(x) < Z

==

1 Joorn o 1RO = 2O < CU 1)

To estimate Af(x), we notice that, by the support condition of £;,

0
i)=Y | 20— 20) |+ a0
j=v—1 Jly|22
0
<| % [, 20)/- 200 | + i)

j=v—

The last inequality above follows from the fact that the support condition of ;
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implies
| amre-20na =0
[yl<2¥

for all j > v+2. This proves

sup | | A(y)f(x~9"(y))dyl
e=>0 ly|>e
0
<sp| Y | Qj(y)ﬂx—wy))dy[
e<2 |5 Joi=e

0

> sz Q) f(x— W(y))dy‘.

j=v—1

< CUp(N)) +sup

Let

0

> [ 20 -20) ] = 6.

j=v-1

sup
v<1

To prove the theorem, it suffices to show for 1 < p < oo,

IG(N) |Lomey < Coll Fll o (we-

In fact, we write

910 = [ QO (- 20) .

Then

0

< ) sup Q% f()].

Jj=— v<l1

0
GUN(x)=sup | 3 Duvx f(x)

o

It is easy to see sup |2, * f(x)| < Cuy(f)(x).
So ’

(18) I sup 12i0v % flll, < Gl fllp, 1<p<oo.
v

On the other hand,

1
SUp [y x S| < Y 140 +S ().

v=—00
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Thus
1
I S‘;ll’ |Q2j40 f(x)”Lz(lk") = E (1824 * f||L2(1R")
v V=-00
1 . . 1 R
<C Y I 12lo < CIAl D 19405
V=-—00 y=—00
where
o0
301 = |, 0/ [ ermer-eenoicte aaty)
k—1
§ 0
< | 1R0O@0) doty)
and

© j / j ¢v!
[(®(y") = UO 200N~ EX)O (1) gy

Defining a function ¥ by ¥(7) = ¥(¢) if > 0 and ¥(¢) = 0 if 7 < 0, we have
L(D(y")) < Cmin{1,|2%®(y")| "1™},

by Lemma 1. Thus we let I;(®(y')) < C|29®(y')| /7, where 0 <6 < ¢'/m.
Then using Hoélder’s inequality and the condition on &, we have

12,(8)| < Co27%9/7 |2,

This shows

1 1
S 19l < ClE 3 2wl < comoale,

y=—00 V=00

since a < 0. Now using (18) and interpolation, we obtain the L? boundedness
of G(f). The theorem is proved.
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