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1. Introduction

In the previous paper [2] the first author studied the positive self-similar

radial solutions
u(x,1) = éw('f}—l) o(x,0) = (l%)

concerning the system of parabolic differential equations

% =V-(Vu—yuVv) inR? >0,
(KS) ;
sa—jzAv—l-ocu inR?, >0,

where «, y and ¢ are positive constants. This system is one of the mathe-
matical model by [1] describing chemotactic aggregation of cellular slime molds
which move preferentially towards relatively high concentrations of a chemical
substance secreted by the amoebae themselves. At place x and time ¢, u(x, 1)
means the cell density of the cellular slime molds, and v(x, f) the concentration
of the chemical substance. Substitute u = ¢/t and v = ¢ in (KS) and note ¢
and y are radially symmetric in x. Then (¢(r),y(r)) with r = |x|//t satisfies
1 r
(' —xo¥") + (9" —xp¥') + 59 +9=0
1
(KSO) t//ll+;'pl+%’lpl+a¢=0

9'(0) = y’'(0) =0.
From the first equation in (KSO) we have
{2r(¢' — xo¥') + r*p} =0 forr >0,
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which leads to
2r(¢" — xo¥') +r’p = 0.
Dividing this equation by 2rp, we have
(log ¢ - )’ +5 = 0.
Hence
9= e 4t
where A = (0)e=™¥(©® > 0. Substituting this into the second equation in
(KSO), we have
v+ G + %)l/// + ke et = 0.
Transform as
W=y
and put
u=Auy.

Then we have

Since v(x,t) = Y¥(|x|1/?) is the concentration of the chemical substance, we have
v(x,t) >0 and JJRZ v(x, 1) dx < o0,
and so we may assume
J: rny(r) dr < co.
Thus our problem is reduced to finding positive solutions ¥ on [0, 00) of

(1.1)
¥'(0) =0,

with the condition

(1.2) Jm W) dr < .
0
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Let us define u, by u,=u, if e=1 and y,=uloge/(e—1), if e# 1. Let
¥(0) =a. The theorem of the previous paper [2] can be rewritten with a
modification as

THEOREM 1 ([2]). Let 0 < u, < 1/e. Then there exists an 0 < a. < 1 such
that the equation (1.1) with (0) = a. admits a positive solution with (1.2).
Furthermore there exists a yu* such that if u > u*, there are no positive solutions

of (1.1).
We show an existence of another solution with a large initial value, that is,

THEOREM 2. Let 0 < u, < 1/e. Then there exists an 1 < a* such that the
equation (1.1) with Y(0) = a* admits a positive solution with (1.2). Furthermore
Y(0) tends to infinity as p, — 0.

Our objective of this paper is to prove Theorem 2 with the aid of
continuity of the solution with respect to the initial data and the variational
method of an elliptic equation with the Dirichlet boundary condition on
{|x| < R}. Furthermore in Appendix we shall prove Theorem 1. From
Theorems 1 and 2 we can guess an existence of the global branch of (/(0), x,)
which starts from (0,0), turns at some point (a.,x,) and (0) tends to infinity
as u, — 0. Here ¥ is a solution of (1.1) with (1.2). Furthermore we can
expect the positive solutions of (KS) with small data which depends on y,, tend
to the branch of solutions obtained by Theorem 1, as ¢t — oo, and the other
positive solutions blow up at finite time. But these problems are open for us.

2. Preliminaries
Put

®1 o s 2
I(e) = J -e Mdsj e~V /4 g,
oS 0

Then we recall the following lemma in [2] of which proof is simplified
LeMMA 1. I(g) is represented as

loge
Ie)=Q e—1 iferl,

1 if e=1.

Proor. When ¢ =1 it is easy that J(1) = 1. Thus we prove only in the
case ¢ # 1. Since

_2 001 _52/4 —852/4 _2
1(3)_6_ljos(e ey ds= 2,
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Let us calculate I.

L, ’s [
I = J - J —{ e‘”z/“} dt = lim J 2 dsJ e A ds
0 04 N

K} p—00

. € pS 2 /4 . 81 2
= hmJ dtJ et s = hmJ —(1—e"/*dt
1 Jo4 12t

p—00 p—0

T —1p2/ayie 1 P —tp*/4
= plgg)z [(logt)(1 —e )y — l’ll‘n;)—S_Jl (log t)e dt

Thus the proof is complete.
Let us denote the solution y -of (1.1) with ¥(0) =a by ¥(r;a).

LemMA 2. Let uy, = ul(e). Then for r >0,

(i y'(ra)<o0, .,

(i) W'(ra)>-57,

(i) Ww(r;a)>a— e

Proor. Proof of (i): Since y satisfies (1.1), we have

(p(W") + up(r)e™"/4e¥ = 0,

where p(r) = recr’ /4, Integrating from 0 to r the above equation, we have

(2.1) p(rw':—uj seeDs eV s,
0

which together with p(r) > 0 yields the assertion of (i).
Proof of (ii): Since we have a = ¥(0;a) > y(r;a) by (i), it follows from
(2.1) that

r
p(NY' > —pue® Jo sele=1s*/4 g

> —uee” /4J se5'14ds
0

ﬂeaeer2/4r2
— _T.,

which leads us to (ii).
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Proof of (ili): From (2.1) it follows that

(2:2) Y(r;a) — Y(0;a) = —,LtJ -l—e'”z/“dsJ' el b gy,
0 0

Thus we have from (2.2)

71 s
Y(r;a) —a> —,ue“J ;e_”z/“dsj e e D/4 4o
0 0

a
Ee’

o0 1 s
> —ue Jo ;e_“z/“ds Jo rele= /4 g = —U

which implies (iii). The proof is complete.

149

Since (r;a) is monotone decreasing and bounded from below with
a—ue®, if a—pe®>0, then we have lim y(r;a) >0. The inequality

a — p.e® > 0 is equivalent to the inequality 0 <r7120< ae™®. Since the maximum

of ae™ is 1/e, if 0 < u, < 1/e, the line y = pu, and the curve y = ae™ intersect

at a, and B, (@, <p,). Then if
a, <a<p,,

then

a— pe’ > 0.

N I

0 Oy Bue

Fig. 1

Thus we have
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LemMa 3. Let 0<pu,<1/e and put Y(co;a) = lim y(r;a). If a, <
a<p,, then y(co;a) >0 holds. e

LemMA 4. Let ¢, = max{u,u/e} and x, =min{l,e}. Then
Y(r;a) < y(o0;a) + e"cﬂ,ae"“’z/4 (r>0).
Proor. From (2.1) we have

0 1 2 4 $ —1 2
—es/ ds[ et AV gr
§ 0

V(r;a) =w<oo;a)+yj

r

1 e~ 4 ds JS ze(E=07/4ge
s

< tp(oo;a)+e",uro .

If e>1, then

00

b(ria) < (eoia) +e'u |

r

le““z/"e(‘_l)sz/“ds r tdt
s 0

a

[ee]
= V(i) + ezﬂj se=*/4ds = (005 a) + e*ue ™4,
r

If 0 <e< 1, then

Vria) < p(eoia) + e[

r

1 _ 24 s
—e/ dsj tdt
s 0

a

[ee]
= Y(oc0;a) + e2,uj se~/4ds

ea
=(o0;a) + e'ue_”z/“.

The proof is complete.

LEmMMA 5. Put

h(t) = 16(5—1)12/4J ;e_“z/“ds and ¢ = max{a,b}.

t

Then
@) Jo h(r)dr=1(),
(i) |W(r;a) — Y(r;b)| < |a — bl exp(ue [§ h(1) dt),
(iti) [y(c0;a) — Y(o0;b)| < |a — bl exp(u,ec).

Proor. Proof of (i): Since
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*© *® 2 “©1 2
J h(r)ydr = J re(s=1)r /4er —e~® /gy
0 0 r S

«© 1 2 g 2
= J —e ¥ /4dsJ re® D gy = I(e),
0o 0

we have (i).
Proof of (ii): Make use of (2.2). Then we have, by change of the order
of the integral,

r

Y(r;a) =a—ﬂJ

1e—ssz/4ds Js te(e—l)t2/4el//(t;a)dt
oS

0

=a-—pu Jr eV (60 1ole=*/4 gy Jr % e~ /4ds.
0 ‘

Thus it follows that
r ' . "1
W (r;a) — y(r; )| < la—b| + ”J |e¥(ta) — eV/('vbnte(f-”'Z/“dzJ ;e‘”z/“ds.
0 t
Since

e¥15) — ¥0)| < ely(t5a) — (5 b)

with ¢ = max{a, b}, we have

W (r;a) — Y (rb)| < la—b] + et jo W (t;0) — w(s; ) (1) b,

from which together with the Gronwall inequality (ii) holds.
Proof of (iii): By letting r tend to infinity in the both sides of (ii), we have
(iii). The proof is complete.

3. The Dirichlet problem of an elliptic equation

In this section we consider the Dirichlet problem of finding the radial
solution of the
DP) { V(e Vo) + pee-DMAxer =0 in Bx © {x e R?||x| < R}
v=0 on 0By

by the aid of the Mountain Path Theorem and the Principle of symmetric
criticality.

PROPOSITION 1. For small R there exists a radially symmetric positive
solution v(x) of the Dirichlet problem (DP).
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First we recall the Palais-Smale condition.

DEFINITION 1. Let X be a Banach space and J € C'(X,R). Then we say
J satisfies the Palais-Smale condition, if any sequence {x,} = X such that

(3.1) |J(xn)| S ¢ for some c,
(3.2) J'(x,) > 0in X" asn— oo,
has a strongly convergent subsequence.

THEOREM A (Mountain Path Theorem, e.g. see [6]). Let X be a Banach
space, Je CY(X,R), U,={xe X|||x|y< p} and ee X\U, be such that
J(0) =0 and

(3.3) ”irulf J(x) = a for some o > 0,
x||=p

(34) J(e) <0.

Let T ={yeC([0,1],X)|y(0) = 0,y(1) =e}. If J satisfies the Palais-Smale
condition, then

c=1inf sup J(x)
7€l xey(o,1])

is a critical value of J.

THEOREM B (Principle of symmetric criticality, Palais [5], e.g. see [7]). Let
G be a topological group on a Hilbert space X which acts on X continuously, that
is,

GxX—X:lg,x] - gx
is continuous map such that
l-x=x,
(gh)x = g(hx),
x — gx is linear.

Furthermore assume ||gx|| = ||x||. Let Je C'(X,R) satisfy Jog=J for every
ge G. If x is a critical point of J restricted to {x € X |gx = x,Vg € G}, then x
is a critical point of J.

Let H be a Hilbert space defined by

H = {ve W,*(Bg) | v(x) = v(|x])}
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with the inner product

(u,0)y = J e Ay y . Vo dx.
Br
Put
(3.5) J(v) = % llollZ — ﬂj eV /40 _ 1) dx, veH.
Bg

Then J e C!(H,R) and furthermore J satisfies the assumption in Theorem B
with the orthogonal transformation group O(2) as G, where H = {ve Wol’2

(Br) |v(gx) = v(x), Yg € O(2)}.
Let us recall here the Trudinger-Moser inequality in two dimensional case.

THeorREM C (The Trudinger-Moser Inequality [3]). Let 2 be a domain in
R? such that

2] = J dx < .
fo)
Let ue WOI’Z(Q) and
J |Vul?dx < 1.
fo)
Then if o < 8m, there exists a positive constant c¢ such that

J e’ dx < c|f|.
Q

COROLLARY. Let Q be the same as in Theorem C. Let ue WOI’Z(Q).
Then there exists a positive constant ¢ such that

eMdx < c|Q| exp(||Vul|?/167).
0 2

As for the proof of the corollary, for example see [4].

ProOF OF PROPOSITION 1. We show an existence of the weak solution of
(DP) only in the case of ¢ = 1, because in the case 0 < & < 1 it is shown in the
similar way. Since we make use of the Mountain Path Theorem, we show the
functional J(v) in (3.5) satisfies (3.3) and (3.4) in addition to the Palais-Smale
condition.

Choose p > 0 arbitrarily and put

U={veH||olly <p}
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Step 1. If R is small, then

p?
J(v) > vy forvedU.

In fact
1
J0) 2 3ol = u [ DA 1 ax
Br
s 2
> T — pelt-DR /4J (e = 1) dx
2 Bg

(\

2
% + /te(e_l)Rz/47rR2(1 - cep2/16”).

Here we used the Trudinger-Moser inequality and the fact that ||Vv|, <
|lv]l . If we take R so small that

(e-1)R? /4, p2 2/16 p?
ue nR*(1 — ce?”/ ”)>—Z,
we have
2 2 2
P> Pt p
Jo)>ZL 2 -2
©)>5-7=3

Step 2. There exists v* € H\U such that J(v*) < 0.
Let b be a positive constant which is determined later and put

v'(x)=0b —%|x|.
Then v* € H and

1 *
J(U*) =§J e£|x|2/4|VU*|2dx—#J e(£_1)|x|2/4(e11 B l)dx
Bgr Br

1 s b2 2 2 b —b|x|/R
Eee / -FmR + un R* — pe JBRe /R g

IIA

eR?/4p2 R

= MT + unR? — 2npe® J re b /Ry
0

n.eeRz/4 b2

2

b2

1Y 2npue’R?
b b2 '

1
+ unR? + 2nuR? (— +

On the other hand
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1071l = 20 /et 1)/

Therefore if we choose b large enough, then
J(0*) <0 and [o"]y > p,

which implies our claim.

Step 3. J satisfies the Palais-Smale condition.

Let {v,} = H satisfy

(i) J(vn) is bounded,

(i) J'(vp) — 0 in H' as n— oo.
Then we have only to show {v,} has a strongly convergent subset. We show
first {v,} is bounded. Note that

J'(v)h = J ey Vhdx — ,uJ eV Mgrp dy for he H.
B Bx
Since
J'(v)o = ||v||% — uJ =D /4oy gy
Bg
and
te' 3
7€ +1=2 —(e’/4—1) forallteR,

we have

| VNS ST eDixzafl o

J)—-=J'(wpv==|vllz+ul e —ve’ —e'+1)dx
4 4 5 4

v

JIoll = (e[ eV ra

Br

v

1
4 ||U||31 - n,u(e3/4 — 1)R2e(e_1)R2/4’
and therefore
lonlls < 417 0n)] + 17 @)l - ol + 7(e® — 4)R2C- DR,

From this inequality together with the assumptions (3.1) and (3.2) in the Palais-
Smale condition it follows that {v,} is bounded in WOI’Z(BR). Since Wol’z(BR)
is compactly embedded in L?(Bg), {v.} has a subsequence {v, } convergent in
L?(Bg). Then
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2
”vnk - Unl”%{ = J e€|xl /4|Vl’nk - valzdx
Br

= JB eI’/ W, (Von, — V) dx — ,uJ ele=DIx*/4gon, (v, — Vn,) dx
R B

R

- JB esl"'z/“Vv,,, (Vvy, —Vop,)dx + ,uj e(e= Dkl /4gon (v, — n,) dx
R B

R

+”J DM/ (e — e (v, — v,,) dx
Bg
< IJI(Unk)(v”k — )| + |J'(1.7m)(vnk - Um)'
DR [ (gl o, — g
. Bg

Note that from (ii) in the above assumption for any J there exists an integer N
such that if n = N, then

1
' (on)h| < Ol < 5 4|3 + 6% forallheH.
Hence

2 _ 1 2 _DR?
llon, — vnlly = §||Unk — vn ||y + 20% + pele= DR/ JB (el + elnl) v, — vy | dx
R

1/2 1/2
nvnk—vn,ué§4«52+2"6(8"”R2/4{(J "’2'”"*"”‘) *(J ez'”""""‘) }ank—vn,nz-
BR BR

Since from the corollary of Theorem C
2 2
J el < cnR2eN7 I < cnR2eMon i
Br

and {v,} is bounded in H, there exists a positive constant ¢ such that
— v 1% < 46 -
0n, — On ||z < + cllon, = vn 5,
from which we have

. 2
im |lvn, — vp |y = 0.
k,1—00

Thus since {v,, } is the Cauchy sequence in H, the sequence {v,} has a strongly
convergent sequence.
Step 4. There exists a radially symmetric solution of (DP).
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From Step 1 through Step 3 we see J satisfies the assumption of the
Mountain Path Theorem. Consequently J has a critical point v, in H which is
also the critical point in Wol’2 (Br) by Theorem B. Thus v, is a weak solution
of (DP). Since e” € L?(Bg) for any 1 < p < oo, by the standard regularity
theorem to an elliptic equation we see v, € C2(Bg). The radial symmetry of v,
is evident, because v, € H. Finally the positivity of v, follows from the strong
maximum principle.

The proof of Proposition 1 is complete.

4. Proof of Theorem 2

Let v, be the classical solution of (DP) found in Proposition 1. Then
since v, is radially symmetric, it follows that
(ré’""z/“vé)' + rpeeDrt/den — vl (0) =0,
and v.(R) =0.

LeEmMMA 6. If we choose R small enough, then v.(0) > By, where B, is the
largest point of intersection y = ae® and y = u,. (see Fig 1)

ProoF. Suppose 0 < v.(0) <f,. Since

J(ve) < %J e 14\, 2dx

Br
R a2
li
=7tj re® /4(v!) dr,
0

by (ii) of Lemma 2 we have

R 2,20
J(ve) < nj re”z/“u——————»4 © rldr
0

2 2
< 71.'/12€2ﬂ“£ etR?/4 JR r3dr _ nyzezﬂm Ré4etR/4 .
4 0 16

If we take R small, we have

2

'Z‘ )
which contradicts the result J(v.) > p?/4 in Step 1 of the proof of Proposition
1. Thus we have

J(v:) <

ve(0) > B, -
The proof is complete.
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LemMMA 7. Put
Y, ={ae (1,)|¥(0;a) > 0},
Y_ ={ae(l,00)|y(o0;a) <O0}.
Then Y, and Y_ are open sets.

Proor. It follows from (iii) of Lemma 5 that Y, is open. On the other
hand we see Y_ is open, since the solution of the initial value problem of (1.1)
is continuous with respect to the initial data by (ii) of Lemma S. The proof is
complete.

Proor oF THEOREM 2. Since v.(r) is monotone decreasing and v.(R) = 0,
we have v.(r) <0 for r> R, that is, v,(0)e Y_. On the other hand if
ay, <a<p,, then by Lemma 3 we have aeY,. Thus Y, # ¢ and
Y_#@. Put

a*=inf Y_.

Then
a* e|[f,, o).

From Lemma 7 it follows
a*¢Y, and a*¢Y_.
Consequently, we see
Y(c0;a*) = 0.
From Lemma 4 we have
@ * © 2
j ry(r;a*)dr £ e CMJ re %" Ady = 2c,,,€e“'/lc£.
0 0

Since a* = B, and B, — oo as u, — 0, we have Y(0) — oo as y, — 0. Thus the
proof is complete.

5. Appendix
Let us here prove Theorem 1. First we show the following

ProprosiTION 2 ([2]). Let y(r) be a solution of (1.1). If p, =1, then
Y(o0) < 0. Hence there exists no positive solution of (1.1).

Proor. Since (r) is monotone decreasing, from (2.1) it follows

v'(r) < _g o= /4o () J 1ee=Vr /gy
0
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from which it follows that

(=) < — Beer/a Jr et D7/ 4ge,
r 0

Integrating this from 0 to oo, we have
e VO _ V=) < _ul(e) = —p,.
Thus we have
Y(o0) < ~log (4, +e ™),
which together with x4, = 1 implies y(o0) < 0. The proof is complete.
LEMMA 8. The inequality
¥(0;a) < a— peV =
holds.

Proor. From (2.2) it follows that

[e¢] 1 s
Y(o0;a) =a~— ,uJ ;e"8s2/4dsj TN /4b gy
0 0

a1 g :
< a— pet= L ;e‘”z/“ds L 1ele VP Ay = g — p (@9,

The proof is complete.
LemMMA 9. Put
Z, ={ae(0,1)|y(o0;a) > 0},
Z_={ae(0,1)|y(o0;a) < 0}.
Then Z, and Z_ are open sets.
ProoF. The proof is the same as Lemma 7.

ProoF oF THEOREM 1. If ¢, < a <1, then it follows from Lemma 3 that
aeZ,.. On the other hand since from Lemma 8

¥(00;0) < —p,e? ™ <,

there exists an 0<a<a, such that yY(oo;a) <0. Thus Z, #J and
Z_# . Put

a,=supZ_<1.
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Then from the same reasoning as in the proof of Theorem 1 we see
a.¢Z_ and a.¢Z,.
Thus
Y(o0;5a.) = 0.
From Lemma 4 it follows
o0 [ee] 2
J ry(r;a,)dr £ e“*cﬂ‘ej re " Ady = 2cy, 6™ [Ks.
0 0

which together with Proposition 2 completes the proof of Theorem 1.
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