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1. Introduction

In the previous paper [2] the first author studied the positive self-similar

radial solutions

concerning the system of parabolic differential equations

^ = V . (Vu - χuVv) in R2, t > 0,

(KS) ^
! ^ = 4i? + αi< in/? 2, ί > 0,

where α, / and ε are positive constants. This system is one of the mathe-

matical model by [1] describing chemotactic aggregation of cellular slime molds

which move preferentially towards relatively high concentrations of a chemical

substance secreted by the amoebae themselves. At place x and time t, w(x, t)

means the cell density of the cellular slime molds, and υ(x, t) the concentration

of the chemical substance. Substitute u = φ/t and v = φ in (KS) and note φ

and ψ are radially symmetric in x. Then (φ(r),ψ(r)) with r = \x\/y/ϊ satisfies

, . 1 . . r ,
\Ψ ~ XΨΨ ) H—\Ψ ~ XΨΨ ) H—r

(KSO)

[ φ'(0) = ψ'(p) = 0.

From the first equation in (KSO) we have

{2r(φf - χφψ') + r2φ}f = 0 for r > 0,
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which leads to

2r(φ'-χφψf) + r2φ =

Dividing this equation by 2rφ, we have

Hence

where λ = φ(O)e~χ^^ > 0. Substituting this into the second equation in
(KSO), we have

Transform as

xΨ-*Ψ

and put

μ = λotχ.

Then we have

Since v(x,t) = φ(\x\y/t) is the concentration of the chemical substance, we have

v(x, t) > 0 and υ(x, t) dx < oo,
J JR2

and so we may assume
, 0 0

r\j/(r)dr < oo.
Jo

Thus our problem is reduced to finding positive solutions ψ on [0, oo) of

(l.i)

with the condition

(1.2) Γrψ(r)dr< oo.
Jo
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Let us define με by με = μ, if ε — 1 and με = μ log ε/(ε - 1), if ε Φ 1. Let

^(0) = α. The theorem of the previous paper [2] can be rewritten with a

modification as

THEOREM 1 ([2]). Let 0 < με < l/e. Then there exists an 0 < α* < 1 such

that the equation (1.1) with ψ(0) = a* admits a positive solution with (1.2).

Furthermore there exists a μ* such that if μ> μ*, there are no positive solutions

o/(l.l).

We show an existence of another solution with a large initial value, that is,

THEOREM 2. Let 0 < με < l/e. Then there exists an I < a* such that the

equation (1.1) with ψ(0) = a* admits a positive solution with (1.2). Furthermore

ψ(0) tends to infinity as με —> 0.

Our objective of this paper is to prove Theorem 2 with the aid of

continuity of the solution with respect to the initial data and the variational

method of an elliptic equation with the Dirichlet boundary condition on

{|x| < R}. Furthermore in Appendix we shall prove Theorem 1. From

Theorems 1 and 2 we can guess an existence of the global branch of (ι^(0),με)

which starts from (0,0), turns at some point (ac,μc) and φ(0) tends to infinity

as με^>0. Here φ is a solution of (1.1) with (1.2). Furthermore we can

expect the positive solutions of (KS) with small data which depends on μc, tend

to the branch of solutions obtained by Theorem 1, as t —> oo, and the other

positive solutions blow up at finite time. But these problems are open for us.

2. Preliminaries

Put

/ ( β ) = Γ * e - * ' 4 \
Jo s Jo

Then we recall the following lemma in [2] of which proof is simplified

LEMMA 1. I(ε) is represented as

I(ε) =

PROOF. When ε = 1 it is easy that 7(1) = 1. Thus we prove only in the

case εφl. Since
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Let us calculate IQ.

IQ =Γl-ds \°i-{-e-tsll*}dt = lim \"S- ds Γ e ^ '
Jo s )ιdtι P - ° ° J 0 4 J,

= lim I'dt \"S-e~'sllAds= lim [ - (\ - e'1"1'A) dt
p-xfJi Jo 4 p^<χJι2t

= lim 1 [(log 0(1 - e~"2/4)]i - lim P- ['(log ήe-'

logs

Thus the proof is complete.
Let us denote the solution φ of (1.1) with ψ(0) = a by φ{r\a).

LEMMA 2. Let με = μl(ε). Then for r > 0,

(i) Ψ'(r,a)<0,
(ii) ^ ' ( r ; a ) > - ^

(iii) φ(r ,a)>a-μεe
a.

PROOF. Proof of (i): Since φ satisfies (1.1), we have

(p(r)ψ')'+μp(r)e-r2/4e+=0,

where p(r) — reεr2/4. Integrating from 0 to r the above equation, we have

(2.1) p(r)ψ' = -μ [
Jo

which together with p{r) > 0 yields the assertion of (i).
Proof of (ii): Since we have a = ψ(0;ά) > ψ(r,a) by (i), it follows from

(2.1) that

p(r)φf > -μea f se{e"ι

Jo

> -μeaeεr2/4 f se'
Jo

> - •

which leads us to (ii).



Self-similar radial solutions to a parabolic system modelling chemotaxis

Proof of (iii): From (2.1) it follows that

(2.2) ψίr a) - ψ(0;a) = -μ [-e'^'Us [*τe^'^^e^dτ.
J o ^ Jo

149

Thus we have from (2.2)

φ(r;a) -a> -μea [-e^^ds Γ τe{ε~ι)τ

Jo s Jo

> -μe« f°°iβ-2/4ώ Γ τ

Jo s Jo

2/4dτ

which implies (iii). The proof is complete.

Since ψ{r;a) is monotone decreasing and bounded from below with
a - μεe

a, if a - μεe
a > 0, then we have lim ψ(r; a) > 0. The inequality

a - μεe
a > 0 is equivalent to the inequality 0 < με < ae~a. Since the maximum

of ae~a is l/e, if 0 < με < l/e, the line y = με and the curve y = ae~a intersect
at 0Lμε and βμ{μμε < βμ)- Then if

then

a - μεe
a > 0.

Thus we have
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LEMMA 3. Let 0 < με < l/e and put ι̂ (oo α) = lim ψ(r;a). If

a < βμε, then ψ(oo a) > 0 holds. r^°°

LEMMA 4. Let cμ,ε = max{μ,μ/ε} and κε = min{l,β}. Then

φ(r;a) < φ(oo a) + e % , ε e " ^ 2 / 4 (r > 0).

PROOF. From (2.1) we have

φ(r;a) = ψ(oo a) +μ Γ-e~εs2/4ds ['τe^^'
ir S Jo

< ψ(oo;a)+eaμ Γ ~e~εs2/4ds \'τe^ι)τ

ir S Jo

If ε ^ 1, then

ψ(r,a) < ψ(oo;a) + eaμ Γ-e'^V8'^^ {\dτ
ir S Jo

= ^(oo; a) + ^ Γ se'^ds = ψ(ao',a) + e'/JuT1*1*.
^ Jr

If 0 < ε < I, then

φ(r;a) < ψ(oo a) + eaμ ί -έΓ^ίfr f
Jr S Jθ

The proof is complete.

LEMMA 5. Put

and c =

Then
(i) S™h(r)dr = I(ε),
(ii) \ψ(r,a)-ψ(r,b)\ g |*
(iii) |^(oo;α)-^(oo;ft)| ^ |α - b\ exp(μεe

c).

PROOF. Proof of (i): Since
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Γ Λ(r) dr = Γ re^Wdr Γ -
Jo Jo Jr s

= [°° -e^'Us Γ re^ μ l*dr = /(e),
Jo •* Jo

we have (i).

Proof of (ii): Make use of (2.2). Then we have, by change of the order

of the integral,

na)=a-μ ί-e^^ds ΓteW
Jo ^ Jo

= a-μ Γe+MteW4dt [-
Jo h s

Thus it follows that

\ψ(r,a) - ψ(r;b)\ ^ \a - b\ + μ Γ \e^a) - eφ{tφ)\te{ε-ι)t2^dt I"~

Jo h s

Since

\eΦM _ eψ(tφ)\ ^ ec\ψ(t]a) - φ(t;b)\

with c = max{fl, b}, we have

from which together with the Gronwall inequality (ii) holds.

Proof of (iii): By letting r tend to infinity in the both sides of (ii), we have

(iii). The proof is complete.

3. The Dirichlet problem of an elliptic equation

In this section we consider the Dirichlet problem of finding the radial

solution of the

(DP) I V(eε/4lx]2vυ) + μe ( ε~1 ) / 4 | x | V = 0 in BR =f {xeR2\ \x\ < R}

I v = 0 on dBR

by the aid of the Mountain Path Theorem and the Principle of symmetric

criticality.

PROPOSITION 1. For small R there exists a radially symmetric positive

solution v(x) of the Dirichlet problem (DP).
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First we recall the Palais-Smale condition.

DEFINITION 1. Let X be a Banach space and J e Cι(X,R). Then we say

J satisfies the Palais-Smale condition, if any sequence {xn} c X such that

(3.1) |^(*«)l ^ c for some c,

(3.2) J\xn) -* 0 in X' as n^ oo,

has a strongly convergent subsequence.

THEOREM A (Mountain Path Theorem, e.g. see [6]). Let X be a Banach

space, JeCι(X,R), Up = {x e X\ \\x\\x < p} and eeX\Όp be such that
7(0) = 0 and

(3.3) inf J{x) ^ afar some a > 0,
\\χ\\=p

(3.4) J(e) < 0.

Let Γ={γe C([0, l],X)\γ(0) = 0,y(l) = e}. If J satisfies the Palais-Smale

condition, then

c — inf sup J{x)

is a critical value of J.

THEOREM B (Principle of symmetric criticality, Palais [5], e.g. see [7]). Let

G be a topological group on a Hubert space X which acts on X continuously, that

is,

GxX -+ X : [g,x] -> gx

is continuous map such that

1 x = JC,

(gh)x = g(hx),

x i—• gx is linear.

Furthermore assume \\gx\\ = \\x\\. Let J e Cι(X,R) satisfy J o g = J for every

g e G. If x is a critical point of J restricted to {x e X | gx = JC, V# e G}, then x

is a critical point of J.

Let H be a Hubert space defined by
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with the inner product

(u,v)H = eε^2/4Vu-Vvdx.
JBR

Put

(3.5) J{v) = l\\vfH-μl e^^2lΛ{eυ-\)dx, veH.
L JBR

Then J e Cι(H,R) and furthermore J satisfies the assumption in Theorem B

with the orthogonal transformation group 0(2) as G, where H = {VGW^2

(BR)\v(gx) = v(x), VgeO(2)}.
Let us recall here the Trudinger-Moser inequality in two dimensional case.

THEOREM C (The Trudinger-Moser Inequality [3]). Let Ω be a domain in

R2 such that

\Ω\ = f ,
JΩ

dx < oo.
Jf<

Let ue WQ'\Ω) and

JΩ =

Then if a ^ 8π, there exists a positive constant c such that

COROLLARY. Let Ω be the same as in Theorem C. Let ueW^2(Ω).

Then there exists a positive constant c such that

f e^dx ̂  c|β|exp(||Fκ||2/16π).
Jβ

As for the proof of the corollary, for example see [4].

PROOF OF PROPOSITION 1. We show an existence of the weak solution of

(DP) only in the case of ε ̂  1, because in the case 0 < ε < 1 it is shown in the

similar way. Since we make use of the Mountain Path Theorem, we show the

functional J(υ) in (3.5) satisfies (3.3) and (3.4) in addition to the Palais-Smale

condition.

Choose p > 0 arbitrarily and put
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Step 1. If R is small, then

P2

J{v)>^j forvedU.

In fact

J(v) ^ ^ \\v\\2

H - μ [ έ?(
β-1)M2/4(έ>l - 1) dx

2 JBR

2

y

Here we used the Trudinger-Moser inequality and the fact that \\Vv\\2 ^

\\v\\H. If we take R so small that

we have

Step 2. 7% r̂̂  exwte υ* e H\U such that J(υ*) < 0.

Let b be a positive constant which is determined later and put

Then v* e H and

t ; * ) = I [ e

εW2/4\Vv*\2dx-μ\ e(ε-™2l\ev* -\)dx
2JBR JBR

-pεR2/4h2
716 , b + μπR2

2
- 2πμeb i

Jo

= πeεR2/*b2

2

On the other hand
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Therefore if we choose b large enough, then

J(v*)<0 and \\υ*\\H>p,

which implies our claim.

Step 3. / satisfies the Palais-Smale condition.

Let {vn} c H satisfy

(i) J(vn) is bounded,

(ii) J'(vn) -> 0 in H' as Λ -+ oo.

Then we have only to show {vn} has a strongly convergent subset. We show

first {vn} is bounded. Note that

J'(v)h = f ^ M 2 / ^ -Vhdx-μl e{ε-ι)^2/4evhdx for Aei/.

Since

and

we have

' ( φ = \\v\\2

H - μ f
JB

— - e< + 1 ̂  - (e3/4 - 1) for all t e R,

J(v) - \j\v)v = I ||t>|β -f ̂  f ^-^W2^ (\vev _ ev + Λ

^ ^ | | t , | | ^ _ j u ( e 3 / 4 _ 1 } Γ e(e-m2/4dχ

and therefore

\\vnfH £ 4\J(υn)\ + \\J'(vn)\\H, • \\vn\\H + πμ(e3 -

From this inequality together with the assumptions (3.1) and (3.2) in the Palais-

Smale condition it follows that {vn} is bounded in W^2(BR). Since I ^ J ' 2 ^ )

is compactly embedded in L2(BR), {vn} has a subsequence {vn/c} convergent in

L2(BR). Then
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K-Vn,\\2

H= f e£

JBR

= f e^^4Vvnk(Vvnk-Vvnι)dx-μ\ e^^^e^Vn, - vnι) dx
JBR JBR

- [ e^2'AVvni{Vvnk - Vυnι) dx + μ\ ^ " ^ V V * , (vnk - υnι) dx
JBR JBR

+ μ f ^ - D W 2 / 4 ( ^ ^ _ e"*ι)(Ό - Ό ) dx
JBR

^ \J'(Vnk)(Vnk ~ Vnι)\ + \J'(vnι)(vnk - Vn,)\

BR

Note that from (ii) in the above assumption for any δ there exists an integer N

such that if n ̂  N, then

\J'{vn)h\ < δ\\h\\H g - \\h\\l + δ2 for all h € H.

Hence

K - vn,\\2
H g 11

2
f (

l/2

Since from the corollary of Theorem C

and {vn} is bounded in H, there exists a positive constant c such that

\\vnk - vnι\\2

H ^ 4δ2 + c\\vnk - vnι\\2,

from which we have

\Vnk ~ Vnι\\2

H = 0.

Thus since {vnk} is the Cauchy sequence in H, the sequence {fn} has a strongly

convergent sequence.

Step 4. 7/zere ex/sto α radially symmetric solution of (DP).
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From Step 1 through Step 3 we see / satisfies the assumption of the

Mountain Path Theorem. Consequently / has a critical point vc in H which is

also the critical point in W^2{BR) by Theorem B. Thus vc is a weak solution

of (DP). Since eVc eLp(BR) for any 1 g p < oo, by the standard regularity

theorem to an elliptic equation we see vc e C2(BR). The radial symmetry of vc

is evident, because vc e H. Finally the positivity of vc follows from the strong

maximum principle.

The proof of Proposition 1 is complete.

4. Proof of Theorem 2

Let υc be the classical solution of (DP) found in Proposition 1. Then

since υc is radially symmetric, it follows that

{reεr2/4v'cY + r//e(ε-1)r2/V< = 0, i^(0) = 0,

and vc(R) = 0.

LEMMA 6. If we choose R small enough, then vc(0) > βμi where βμ^ is the

largest point of intersection y = aea and y = με. (see Fig 1)

PROOF. Suppose 0 < ϋc(0) ^ βμ. Since

Λ-\ e^2i4\Vυc\
2dx

Jo

by (ii) of Lemma 2 we have

^ecR2/4 t
4 J

ΪR , πμ2e2β«*R4eεR2/Λ

,o i r = 16 •

If we take R small, we have

Vc)<£,

which contradicts the result J(vc) > p2/4 in Step 1 of the proof of Proposition

1. Thus we have

The proof is complete.
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LEMMA 7. Put

Then Y+ and Y_ are open sets.

PROOF. It follows from (iii) of Lemma 5 that Y+ is open. On the other

hand we see Y_ is open, since the solution of the initial value problem of (1.1)

is continuous with respect to the initial data by (ii) of Lemma 5. The proof is

complete.

PROOF OF THEOREM 2. Since vc(r) is monotone decreasing and vc(R) = 0,

we have vc(r) < 0 for r > R, that is, D c ( 0 ) e L On the other hand if

aμε < a < βMε, then by Lemma 3 we have ae Y+. Thus Y+ φ 0 and

γl Φ 0. Put
0* = inf r_.

Then

a*e[βμ,co).

From Lemma 7 it follows

a* φ Y+ and a* φ Y_.

Consequently, we see

iKoo;α ) = 0.

From Lemma 4 we have

[ rψ(r;a*) dr ^ ea'cμ ε Γ re~κ^^dr = 2cμ εe
a*/κε.

Jo Jo

Since a* ^ βμ and βμ —»• oo as με -• 0, we have φ(0) -> oo as //e -> 0. Thus the

proof is complete.

5. Appendix

Let us here prove Theorem 1. First we show the following

PROPOSITION 2 ([2]). Let ψ(r) be a solution 0/ (1.1). If με ^ 1, then

φ(oo) < 0. Hence there exists no positive solution 0/(1.1).

PROOF. Since φ(r) is monotone decreasing, from (2.1) it follows

r Jo
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from which it follows that

() [
r Jo

Integrating this from 0 to oo, we have

e-H0) _ g-<K») < _μj

Thus we have

which together with με ^ 1 implies (/'(oo) < 0. The proof is complete.

LEMMA 8. The inequality

φ(ao;a)<a-μεe'l'{co'a)

holds.

PROOF. From (2.2) it follows that

f°° 1 HA Γ ( n 2,A ,
ψ(cc a) = a - μ\ -e~εs /4ds τe{ε~ί)τ /4eψd

Jo s Jo

ί °° 1 2 fJ

o ^ Jo

< a — μes

The proof is complete.

LEMMA 9. Pwί

Then Z+ and Z_ are open sets.

PROOF. The proof is the same as Lemma 7.

PROOF OF THEOREM 1. If aμε < a < 1, then it follows from Lemma 3 that
aeZ+. On the other hand since from Lemma 8

ιKoo;0)<-μ ε ^
( o o ; 0 ) < 0,

there exists an 0 < a < <xμ such that ψ(oo a) < 0. Thus Z+ φ 0 and
Z_ Φ 0. Put

#* = sup Z_ < 1.
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Then from the same reasoning as in the proof of Theorem 1 we see

α* φZ- and a* φ Z+.

Thus

^(oo α*) = 0.

From Lemma 4 it follows

Γ rψ(r, a,) dr ^ ea*cμ,ε f°° re^^Ur = 2cμ,εe
a*/κe.

Jo Jo

which together with Proposition 2 completes the proof of Theorem 1.
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