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AsBstrRACT. Introducing determinantal varieties associated to rank two vector bundles
on complex projective n-spaces P" (n > 4), we obtain two main splitting theorems for
those bundles. By studying irreducible components of the Hilbert scheme of P”
containing those determinantal varieties it is shown that a rank two bundle E on
P" (n =4 or 5) splits if and only if the first cohomology of the sheaf of endomorphisms
of E vanishes. In addition, another cohomological criterion for the splitting of E is also
shown using specific divisors of a determinantal variety X associated to E.

0. Introduction

(0.1) As for the splitting problems for rank two vector bundles on complex
projective n-space P”, R. Hartshorne (cf. [14], [15], [33]) posed the following
famous conjectures:

Sn: Every rank two algebraic vector bundle on P" (n > 7) splits into line
bundles or the conjecture which is equivalent to S,:

C,: Every smooth closed subvariety of codimension 2 in P” (n >7) is a
complete intersection.

Later, H. Grauert and M. Schneider [11] tried to solve the following
important problem. However there was a gap in their proof unfortunately.

GS: Every rank two unstable algebraic vector bundle on P* is a direct sum
of line bundles.

Though many mathematicians have tried to solve the conjectures S,, C,
and the problem GS, e.g., W. Barth and A. Van de Ven [2], Z. Ran [31], Th.
Peternell, J. Le-Potier and M. Schneider [29],..., for almost thirty years, we
have not had obtained any complete answers yet.

If we could solve the above conjectures or problem affirmatively, then it
should bring us many useful results. For example:

1) It is well known that every algebraic vector bundle on the projective
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line P! is a direct sum of line bundles [10]. Needless to say, it plays important
roles in dealing with algebraic surfaces, algebraic threefolds,..., e.g., in the
classification of those algebraic varieties or in the minimal model theory of
algebraic threefolds (cf. [25]),.... Therefore any profound solution to the
splitting problems is likely to introduce important notions and useful tools in
the study of higher-dimensional algebraic manifolds because they provide us
with effective methods to deal with rational subvarieties P” in higher-
dimensional algebraic varieties.

2) Besides it is known that every topological vector bundle on P? or P3
admits an algebraic structure [1]. It can be proved that a rank two algebraic
vector bundle on P” with ¢? —4c, > 0 is always unstable. On the other hand,
there exist many indecomposable topological rank two vector bundles with

—4c;, >0 on P* (cf. [36], [40]). Consequently, if the GS were true, then
we could observe that there exist many topological rank two vector
bundles with no algebraic structures on P*, contrary to the 2- and 3-dimensional
cases.

Thus it seems to be one of the most important tasks in the field of
algebraic vector bundles that we manage to solve the above splitting problems.
For a nice introduction to the above, see Van de Ven [41].

(0.2) In this paper, we shall introduce determinantal varieties associated
to rank two vector bundles on projective varieties. It seems to be one of the
difficulties for our attempt to solve the conjectures S,, C, or the problem GS
that we have to handle higher-dimensional algebraic varieties. For instance, it
sometimes happens that there remain a few cohomology groups of sheaves
which we are not able to estimate because our objects are of high dimensions
and might have non-reduced algebraic structures. The following are the
reasons why we have introduced the determinantal varieties:

1) We would like to reduce our problems to the ones on lower-
dimensional algebraic varieties without changing the essence of the problems.

2) We would like to construct new algebraic varieties enjoying useful
algebro-geometric properties by using algebraic vector bundles.

This paper consists of the following six chapters.

Determinantal varieties associated to rank two bundles.

Topology of determinantal varieties.

Divisors on determinantal varieties.

Comparison theorems of cohomologies.

Vector bundles on determinantal varieties.

Geography of determinantal surfaces.

As a by-product of these investigations on determinantal varieties, we shall
establish two main splitting theorems for rank two vector bundles on P”

Sd W
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(n > 4) and we will continue to investigate the above splitting problems under
these foundations in the sequel.

(0.3) In Chapter 1, we shall introduce determinantal varieties associated
to rank two vector bundles on projective varieties and it will be shown that
smooth determinantal varieties X associated to a rank two bundle E on a
smooth projective variety S form a smooth family over an open subset of a
Grassmann variety (Theorem 1). By definition, we see that X is a closed
subvariety of S with dimX =dimS/2 if dimS is even (resp. dimX =
(dimS+1)/2 if dimS is odd). Moreover we find that X carries useful
algebro-geometric structures which are inherited from those of E. In the
following chapters, determinantal varieties associated to rank two vector
bundles on projective spaces S = P” (n > 4) are studied. Singular cohomology
groups and homotopy groups of determinantal varieties X are calculated
by means of the Lefschetz theorems in Chapter 2 (Propositions 1 and 2). In
particular, we observe that X is simply connected. In Chapter 3, several
distinguished divisors D, H,F,Z,Z* on determinantal varieties X are intro-
duced and their roles in algebro-geometric structures of X are shown. For
example, it is found that Pic(X) =ZD ® ZH, X is of general type in general
and there exists a morphism ¢: X — P™. In the sequel, we shall find that
Z,Z*, and ¢ will play important roles in our attempt to solve the splitting
problems. In Chapter 4, we shall show several comparison theorems between
cohomologies H'(P",S"(E)(s)) and H'(X,0Ox(rD + sD)) (r,s € Z) (Theorems
3, 4, 6 and 7). There exists a canonical restriction homomorphism

7 H(P",S"(E)(s)) ~ H'(P(E),O(rD + sH)) — H'(X,0x(rD + sH)).

Hence studying the conditions for y; to be an isomorphism (resp. a surjection
or an injection), we shall give the above comparison theorems. As applications
of these comparison theorems, several interesting relations between algebro-
geometric structures of X and those of E are revealed. For example, we find
an isomorphism between H'(P",&nd(E)) and H (Ox(2D — ¢ H)). Further we
obtain the following necessary and sufficient condition (Theorem 9) for E to be
a direct sum of line bundles in terms of the divisor Z* on X, which is one of
our splitting theorems:

The following are equivalent to each other.

1) E is a direct sum of line bundles.

2) Z* is an effective divisor and numerically effective, i.e., Z* - C > 0 for
every curve C in X.

3) Z* is an effective divisor and it satisfies the following asymptotic
conditions:
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a) dimH!(X,0x(-rZ*)) < O(r!) for sufficiently large integers r.

b) dim H (Ox(—rZ* — sH)) < Pi(s) for all positive integers r and s (1 < i
<dimX — 1), where P;(s) is a polynomial on s which is independent of r.
In this way, we can reduce the splitting problem of E on P” to the one on X of
lower dimension. In Chapter 5, the tangent bundle Ty and the normal bundle
Ny/pr of X are studied. We shall show that there exists the following exact
sequence (Theorem 10):

0— Ox(D—F) = @ 0x(D) = Ny pr — 0.

We can use this exact sequence and standard arguments to compute the
Chern classes ¢;(Tx) (0 < i < dim X) in terms of the Chern numbers {c;, ¢} of
E and divisors D and H (Theorem 11). Consequently, the middle Betti
number bgim xy = dimcH4™X(X,C) of X is determined in terms of {ci,c2}
(Theorem 12). Further, we can show effective estimates of dim H(X, Tx) and
dim H'(X, Ny/p») (0 <i < dim X) (Theorem 13) under certain conditions on E.
We shall establish with these preliminaries the following splitting theorem
(Theorem 15) which looks like the anologous one obtained by G. Kempf by
studying some geometric structures of the Hilbert scheme of P” at determi-
nantal subvarieties. Let E be a rank two vector bundle on P" (n > 4),P a 4-
or 5-dimensional projective linear subspace of P” and let E be the restriction of
E to P.

Then the following are equivalent to each other:

1) F splits into line bundles.

2) HY(P,&nd(E)) =0.
In the final Chapter 6, showing some examples of determinantal surfaces and
their geometric structures, we shall describe the geography of determinantal
surfaces and as a consequence, we shall give some new species in certain
botanical gardens.

(0.4) The author would like to express his sincere gratitude to Professor T.
Fujita for pointing out to him Theorem 1 and to Professor S. Mori for
informing him of a result due to B. G. Moishezon. In addition, he would also
like to thank Professor S. Usui and Professor K. Konno for their advices and
encouragement.

1. Determinantal varieties associated to 2-bundles

(1.1) First we shall introduce determinantal schemes associated to 2-
bundles. Let E be a rank 2 vector bundle on an n-dimensional projective
variety S defined over an algebraically closed field k& of arbitrary characteristic,
n: P(E) — S the projective bundle associated to E over S and let Lg be the
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tautological line bundle on P(E). We assume that E is very ample, i.e., Lg is
a very ample line bundle (cf. [37], [38]). Let n=2m (resp. n=2m +1). Then
we can take a set of global sections {s,s2,...,5m+1} of E satisfying the
following conditions where D; is the tautological divisor on P(E) defined by s;
and W(s;) is the scheme of zeros on S of s; (1 <i<m+1):

1) Y=DND;N---NDyy; is a closed subscheme of P(E)
(*) of pure codimension m + 1.

2) Ws)NW(s)N - O W (1) = 2.

Let X be a closed subscheme of S with the following defining equations:

sinsg=0 foralliand j(1<i<j<m+1).

Then Y and X are the closed subschemes defined locally as follows:
For an open subset U of S such that E|U ~ (—BZ(OU and s;|U = (s, Sn2)
where 51,57 € HO(U,Oy), X is defined on U by the equations

Si NS =SiSp2 — Sipsj1 =0 (I<i<j<m+1).
On the other hand, Y is defined on 7n~'(U) ~ U x P! by the equations:
s X1+ spXo =0 (1<i<m+1),

where {X;,X,} is a system of homogeneous coordinates of P'.
Then we have the following.

LemMMA 1. In the above notation, Y is isomorphic to X through n. Hence
X is a closed subscheme of S of pure codimension m.

ProoF. Since n: P(E) — S is a P!'-bundle and (), W(s;) = &, it is easily
seen that n induces a bijection between Y and X. Hence the problem is to
prove locally that z induces an isomorphism between Y and X. Let U be an
affine open subset of S such that

) UNX#.

2) E|U=~ @Z(OU and s;|U = (si1,52) (si,50€ HY(U,0p),1 <i<m+1).
Since ﬂiW(s,-) = (&, we may assume that sj3(x) # 0 for xe U. Then Y has
the following equations on n~!(U) ~ U x P!:

g,-:s,-1+s,-2x=0, x=X2/X1 (131$m+1)

and X has the following equations on U:

S1 A Si =81 — S1285i1 =0 2<i<m+1).
Since —s1 A 5 = 5129 — Sngr = 512(9: — g152/512), the ideal (gi,...,gm+1)
coincides with the ideal (s; A $2,...,81 A Smt1,91) in A[x], where 4 is the affine

coordinate ring of U. Hence it yields an A-isomorphism:
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AX)/ (g1, s Gme1) = AJ(S1 A 82,0381 A Smpt)s

which implies that Y is isomorphic to X through n. Since Y is a closed
subscheme of P(E) of pure dimension n —m, X is a closed subscheme of S of
pure codimension m.

(1.2) From now on we shall consider those closed subschemes X of S
constructed as in (1.1). Although X is dependent on the choice of global
sections of E subject to the conditions (x), we make the following definition.

DeriNITION 1. We call closed subschemes X of S constructed as in (1.1)
determinantal schemes associated to E.

(1.3) First we shall show that our determinantal schemes associated to F
form a flat projective family over a Zariski open subset of a Grassmann

variety.
For a set s = {s1,...,5x+41} of global sections of E which generates an
(m + 1)-dimensional linear subspace <si,...,sms1y of HY(S,E), we put Y, =

D;N --- NDyy aclosed subsheme of P(E), where D; is the tautological divisor
on P(E) associated to s; (1 <i<m+1).

(1.3.1) If another set ¢ = {#1,...,tms+1} spans the same linear subspace as s
does in H(S,E), then it is easily verified that Y, = Y, and ¢ satisfies the
conditions () in (1.1) if and only if s does. Hence Y, is determined by the
(m + 1)-dimensional linear subspace {s) generated by s and so we say for
simplicity that a linear subspace (s) satisfies the conditions (x) if a basis of {s)
does. Consider the following closed subsheme of P(E) x G where G is the
Grassmann variety which parametrizes (m + 1)-dimensional linear subspaces of
HC(S,E):

I ={(x,{s))|x e Y, {s) e G}
with projections p:I" — P(E) and ¢: I’ — G.

(1.3.2) For any {s) € G, we observe that Y; = ¢ !({s)) is mapped to a
closed subscheme of S isomorphically via z if and only if Y; does not contain
any fiber for . Hence if we denote by L; the restriction of L = n*(M) to Y;
where M is an ample line bundle on S, then # induces an isomorphism on Y if
and only if L; is ample.

Let V = {<{s) e G|Y,is of pure dimension n —m}. Then since g is a
proper morphism, V is a Zariski open subset of G and moreover ¢ : ¢~ (V) —
V is faithfully flat because the closed immersion: ¢~ !(V) — P(E) x V is a
regular immersion. Thus if we put U= {<{s)e V|(mop)*(L)|Ys= Lyis
ample}, then U is an open subset of G and it coincides with the set
{{s> € G| <s) satisfies the conditions () in (1.1)}.
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(1.3.3) We denote by X; = n(Y;) the determinantal scheme associated to a
point {s)e U and put E=nx1:P(E)xG— SxG. Then ¢ induces an
isomorphism of I'y = ¢~'(U) to a closed subscheme = of S x U such that

E={(x,{s)) e Sx U|xe X;}.

Hence if we denote also by g the second projection of £ = S x U — U for
simplicity, then ¢ is a faithfully flat projective morphism and we see X; =
g~ ({sy) for all point {s) e U.

(1.3.4) In addition to the conditions () in (1.1), we consider the following:

1) Y,=DNDyN---NDyy; is a smooth closed subscheme of P(E)
(*)" of pure codimension m + 1,

2) Ws)NW(s)N - N W(smer) = B,
and put U’ = {{(s) e G|{s) satisfies the above conditions (*)'}. Then by
an argument similar to the above, we see that there exists a closed subscheme
Z' of S x U’ such that the second projection g : £/ — U is a smooth projective
morphism. Hence smooth determinantal schemes associated to E form a
smooth family over an open subset U’ of G.

Summing up the above, we obtain the following.

THEOREM 1. Let the notation be as above.

1) U’ ={{s) e G|{s) satisfies the conditions (x)’ in (1.1)} is a Zariski
open subset of G.

2) There exists a closed subscheme E' of S x U’ such that the second
projection q:E' = Sx U' — U’ is faithfully flat and X; = q~'({s)) for any
sy e U'. Thus smooth determinantal schemes associated to E form a smooth
family over an open subset of G and hence they are diffeomorphic to each other.

2. Topology of determinantal varieties

(2.1) From now on we shall consider smooth determinantal varieties
associated to 2-bundles on projective spaces.

Let E be a very ample rank two bundle on an n-dimensional projective
space P” defined over the complex number field C and X a smooth deter-
minantal variety associated to E which is defined by (m + 1)-global sections
{51,852, ... ySmr1} of E (cf. (1.1) and (1.3.3)). First we shall study some to-
pological properties of determinantal varieties X. By Theorem 1, smooth
determinantal varieties are diffeomorphic to each other.

(2.2) By the weak Lefschetz theorem, we get the following on singular
cohomologies of X:
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H'(P(E),Z)~H(X,Z) fori<n—(m+1),

H'(P(E),Z) — H'(X,Z) is injective and the cokernel has
no torsion elements for i = n — m.

Since the cohomology ring H*(P(E),Z) coincides with H*(P",Z)[£]/
(€2 — ¢1(E)& + c2(E)) where ¢ is the cohomology class of Lg and ¢;(E) is the
i-th Chern number of E (i = 1,2), we have that H**!/(X,Z) =0 (1 <2i+1 <
n—(m+1)) and H¥(X,Z)=ZH' ® ZH"'D (0 <2i <n— (m+ 1)) where H
is the cohomology class of the restriction of hyperplanes of P” and D is the
cohomology class of the restriction of Lg to X through n. Combining the
above with the Hodge decomposition theorem and the Serre duality theorem,
we obtain the following, where H?? = dim H(X,Q%) is the Hodge (p,q)-
component of X.

PROPOSITION 1. Let the notation be as above.

1) For i<n—(m+1), we have H(X,Z) =0 (i : odd) and H'(X,Z) =
ZH? @ ZH/*7'D (i > 2 : even).

2) For p+q<n—(m+1), H?9=0 if p+q is odd or if p+q is even
and p #q.

3) For 2p<n-—(m+1), H»? = CH? ® CH?"'D.

4) For p+gq=n—(m—-1), H??=0 if p+q is odd or if p+q is even
and p #q.

5) For 2p>n—(m—1), H»? = CH? ® CH?"'D.

(2.3) CoroLLARY 1. 1) If n>3, then H'(X,Z) =0. Hence we have
HY = H%! =0, ie., the irregularity q(X) = 0.

2) Ifn>S5, then HX(X,Z) = ZH @ ZD. Hence we have H*® =0 and
H“! = CH @ CD.

We shall study the cohomology group H"™™(X,C) in (5.2.3) later.

(2.4) By the Lefschetz theorem again, we get the following on homotopy
groups of X:

n;(P(E)) ~ mi(X) fori<n—(m+1),

where 7;(X) is the i-th homotopy group of X.
On the other hand, there exists the following exact sequence of homotopy
groups:

- 7Z,'(Pl) — ﬂ,(P(E)) g ﬂi(Pn) — n[_l(Pl) - .

Hence m(P(E)) =0,m(P(E)) =Z®Z, and 7;(P(E)) ~ m;(P') for 3<i<
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2n — 1 because m;(P") =0 for i <2n,i #2 and n,(P") ~Z. Thus we obtain
the following. ’

PROPOSITION 2. 1) Ifn >3, then m;(X) =0, ie, X is simply connected.
2) If n>=5, then ;y(X)~Z ® Z.
3) Ifn>17, then mi(X) ~m(P') for 3<i<n—(m+1).

3. Divisors on determinantal varieties

(3.1) In this section, we shall study several distinguished divisors on X
which will play important roles in studying several geometric structures of X.
From now on we assume n > 3.

As usual we denote

A'(X)(resp.4;(X)): the Chow group of codimension i cycles (resp. dimension i
cycles),
N(X)(resp.Ni(X)) = {4'(X)/Numerical equivalence} ® R
(resp. {A4;(X)/Numerical equivalence} ® R)

Pic(X) = A'(X): the Picard group of X,

N!(X) = {Pic(X)/Numerical equivalence} ® R,

p =dim N!(X): the Picard number of X,

NA(X): the Cone of ample divisors of X (= convex cone generated by classes
of ample divisors of X in N'(X)),

NA(X): the Cone of nef divisors of X (= closed convex cone generated by
classes of numerically effective divisors of X in N!(X)),

NE'(X): the Cone of effective divisors of X (= convex cone generated by
classes of effective divisors of X in N!(X)),

NE 1(X ): the Cone of pseudo-effective divisors of X (= closure of the cone of
effective divisors of X in N!(X)),

NE;(X): the Cone of effective curves of X (= convex cone generated by classes
of effective curves of X in N;(X)),

NE;(X): the Cone of pseudo-effective curves of X (= closure of the cone of
effective curves of X in N;(X)),

¢;: the i-th Chern number of E (i = 1,2).

(3.2) Divisors H and D on X.

(3.2.1) Let H be the restriction of a hyperplane of P" to X and D the
restriction of a tautological divisor of P(E) to X through the isomorphism 7.
Then as we have observed in (2.2), H and D are linearly independent elements
of Pic(X) and Pic(X) =ZH @ ZD for n > 5. Let Ky be the canonical divisor
of X. Then by the adjunction formula, we see

Ky=(m—-1)D+ {cyl —(n+1)}H.
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When n =4, our determinantal varieties are smooth projective surfaces with
H>" = HY(X,Ky) = H*(X,0x(D + (c; — 5)H)). Hence if ¢; > 5, then H*°
#0. In addition, H>°(D;ND;) =0 by the Lefschetz theorem where {D;}
(1 <i<3) is a set of tautological divisors which determines X and hence
Pic(X) =ZH @ ZH if ¢; > 5 by the following result due to B. G. Moishezon
[23].

LemMa (Moishezon). Let Y be a 3-dimensional non-singular variety
embedded in a projective space P™ and X a general hyperplane section of Y.
Then each linear equivalence class of divisors on X is cut out by some linear
equivalence class of divisors on Y, i.e., Pic(Y) ~ Pic(X) if and only if one of the
following two conditions is satisfied:

D) by(Y) = ba(X).

2) h20(X) > h2O(Y).

Moreover in the cases ¢; <4, we shall prove in Section 4 (4.4.9) that
(c1,¢2) coincides with one of the following pairs of natural numbers:
(2,1),(3,2),(4,3),(4,4) and that F is isomorphic to either one of the following
rank two bundles: O(1) @ 0(1),0(1) ® O(2),0(1) ® 0(3),0(2) ® O(2), respec-
tively. Hence we observe that H®(X,Ky) #0 except for the case E ~
@2(9( 1) by Theorem 3 in (4.1.1) and that X is isomorphic to a rational scroll
F, =P(0O0)®O(1)) in the case E 2@2(9(1) by (6.1.4) 3) (cf. [18]).
Therefore we find also in the case n =4 that Pic(X) = ZH @ ZD for a gen-
eral determinantal variety X.

Let L be a divisor of X which is numerically equivalent to 0. Then since
q(X) =0, rL is rationally equivalent to 0 for some positive integer r. On the
other hand, Pic(X) has no torsion elements and hence it follows that numerical
equivalence coincides with rational equivalence for divisors on X.

(3.2.2) Let us define the following polynomial functions {p; = p;(ci, c2),
qi = qi(c1,¢2)} (i=0,1,...) inductively as follows:

=1 q=0,
Piv1 =api+ 4, qi+1 = —C2p;.
Then it is easily calculated that for every integer i > 0,
Piy2 — 1Py T 2p; =0,
and

UL
pi= Y 04T,

k=0

s k(=1 =K\ i1 ok k1
qi = Z (_1) ( k )C{_ B 62+ )
k=0
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where [a] (resp. (Z)) stands for the largest integer which is less than or equal to
a real number a (resp. the binomial coefficient of integers a and b).

Using the relation D? — ¢;HD + c;H?> =0 in A%(X), where ¢; is the i-th
Chern number of E (i = 1,2), the intersection number H"™~'D' is calculated
as follows:

H"™ D' = pm-&—i(cl’ C2) (O <i<n- m)

In particular, we have deg X = H" ™™ = p,(c1, c2).
For example,

n=4. deg X = cf — ¢, HD = ¢} — 2cic3, D* = ¢} —3cicy + 3.
n=5 degX =c}—c;, H?D=c}—2cc;, HD*=c}—3cicr+c3,
D? = ¢} —4cicr + 3eicl.

Summing up the above, we obtain the following.

LeMMA 2. Let the notation be as above.

1) The numerical equivalence coincides with rational equivalence for
divisors on X and so we have Pic(X) ® R = N!(X). Moreover Pic(X) = ZH &
Z.D, provided n>5. If n=4, then Pic(X) =ZH ® ZD for a general deter-
minantal surfaces X.

2) The intersection number H"™~'D' is equal to p,,.(c1,c2) (0<i<
n—m).

3) Ky=(m—-1)D+(c; —n—1)H.

(3.3) Divisor F on X.

(3.3.1) We shall introduce a specific divisor F of determinantal varieties.
There exists a canonical exact sequence on P(E):

0 — Opg)(n*(c1(E))) ® Ly' — n*(E) — Lg — 0.

Hence if we denote by E|X the restriction of E to X, then we obtain the
following exact sequence:

0— Ox(F) - Elx 25 0x(D) — 0,

where F is a divisor on X which is rationally equivalent to ¢;H — D, i.e., F =
¢iH — D € Pic(X). The homomorphisms o, are described locally as follows.
Let U be an affine open subset of P” such that E|U ~ P20y and for [ <i <
m+1,5|U = (si1, 52) (s € H*(U,Op),k =1,2). Here we may assume s12(x)
#0 for xe U. Then f(a,b) =a— (s{,/s},)b for (a,b) e H*(U,E|X) and a(c)
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= ((s];/s1,)c, ¢) for ce H(U,Oy), where s’ stands for the restriction of a
regular function s on U to X.

Let ;X be the restriction of s; to X. Then fo(s;|X) is a zero map
and hence every s;|X factors through Ox(F), i.e., it defines a global section
of Ox(F) which we shall denote also by s;|X for simplicity. Then s;|X is
described on U as follows: Oy 31 — sj, € Oy(F). If 5;/X is a nonzero section,
then it defines an effective divisor F; of X that is linearly equivalent to F with
the following defining equations in P”:

Fi:s5i=0,5 Asc=0 for j#£i,k#i 1<jk<m+1).

(3.3.2) Let I = {i|s;|/X # 0}. Since every F; is a member of the complete linear
system |F| of F and ﬂl':lrl W (s;) = &, the set {F;} (ieI) generates a linear
subsystem % of |F| without base points:

& = (Fy, L), L= ZCf,- (a defining module of %),

where f; is a rational function of X satisfying F; = Fi, + (f;) foralliel. Letg
be the morphism associated to £.

We shall show that ¥ is an m-dimensional linear system and that ¢ is a
surjective morphism of X to P™. In particular, it follows that every s;|X is not
zero, ie., I ={1,... . m+1}.

1) Since F =c H — D, we have the relation F? — ¢HF + c;H?> =0 in
A%(X). Using the relation, the intersection numbers H""'F' are calculated
as follows:

a) n=2m. H™'F' = cip,._i(c1,¢) 0<i<m).
byn=2m+1.  H™'F' =cip .(c1,c2) (0<i<m),
Fm+1 =0.

2) Suppose that S is a surface contained in a fiber of ¢. Since Os(F) ~
Os, we have the exact sequence from (3.3.1):

0— Os — E|S — 0s(D) — 0.
Let o: S — S be the desingularization of S. Then we have
0 = c2(6*(E|S)) = 6*(c2(E|X)) = ca0* (H)?.

However since ¢, is positive and ¢*(H)* > 0, it yields a contradiction. Hence
every fiber of ¢ is of dimension <2.

3) dim¥ =m and ¢ : X — P” is surjective. Indeed, if n = 2m, then we
see dimX =m and F™ = ¢’ > 0 by 1), which imply that dim ¥ =m and ¢ is
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a surjective morphism. If n=2m+ 1, then dimX =m + 1. Since the dimen-
sion of every fiber of ¢ < 1 by 2), it follows that dim . = m and ¢ is surjective.

(3.3.3) Let U be an affine open subset of P” with E|U ~ @ZCOU. Assume
that s;|U = (si1,52) (1 <i<m+1) and s;5(x) #0 for all xe U. Since s/;51,
=shs;; and 5| X #0 (1 <i<m+1), we see sj, #0. Hence if we choose a
rational function f; =s,/s{, on X, then it is easily checked that f; does not
depend on the choice of an affine open subset satisfying the above conditions
and the trivialization of E and moreover it enjoys the following equality:

Fi=F+(f) (I<i<m+]1).

Let & = (Fj, L) be the m-dimensional linear system with the defining module
L=> Cf; and let ¢ : X — P™ be the morphism associated with ¥. If n=
2m, then ¢ is a generically finite morphism with fibers of dimension < 1. If
n=2m+ 1, then ¢ is a faithfully flat morphism with fibers of dimension = 1.
Thus in both cases, F is 1-ample in the sense of A. Sommese [35]. Hence we
get the following vanishing: For all positive integers r,

HYX,0x(rF)®@Q4)=0 forp+gq>n—m+2,
HI(X,0x(—rF))=0 for0<g<n-m-2.
Summing up the above, we obtain the following.

THEOREM 2. 1) There exists the following exact sequence:

where F(= c;H — D in Pic(X)) is an effective divisor on X.

2) The intersection number H™'F' is calculated as follows:

a) n=2m. H™'F'=clp,_ic1,¢2) (0<i<m).

b) n=2m+1. H™!-Fi=cip  .(c1,¢2) (0 <i<m),F™!=0.

3) There exists an m-dimensional sublinear system & = (F\,L) of the
complete linear system |F| which is free from base points. Let ¢ : X — P™ be
the morphism defined by . Then we have:

a) n=2m. ¢ is a generically finite morphism with fibers of dimension
<l

b) n=2m+1. ¢ is a faithfully flat morphism with fibers of dimension 1.
Hence F is 1-ample in the sense of A. Sommese and it turns out that for any
positive integer r,

HI(X,0x(rF)® Q%) =0  forp+q=>=n—m+2,
HYX,0x(-rF))=0  forq<n—m-—2.
(3.4) NE (X).
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(3.4.1) When n >4, we have Pic(X) =ZH ® ZD as we have shown in
(3.2.1). A divisor Z is called effective if H°(X,0(Z)) #0. From now on we
assume n > 4. Let us study the cone NE l(X ) of pseudo -effective divisors on
X Since it is a closed convex cone in N!(X) ~ (—B R, it has two boundarles

, half lines which we shall call the extremal rays of the cone NE' (X).

For every positive integer r, let us put

a(r) = max{s|rD — sH is effective},
b(r) = min{s | sH — rD is effective}.

Then a(r) and b(r) (r e N) satisfy the following:
D) a(r+s) > a(r) +a(s),
2) a(r)/r < D" /D" 'H = p,(c1,¢2)/ Pui (€1, €2),
3) E 5) < b(r) + b(s),

4) b(r))r=(c? —c)/c1 if n is even and b(r)/r > ¢ if n is odd.
DeFiNITION 2. 0 = sup{a(r)/r} and 6, = inf{b(r)/r}.

Then /1 R.o[D - 60,H] and ¢, = R, ([0, H — D] are the two extremal
rays of NE' (X ) where R>o = {reR|r >0} and [G] stands for the class of a
divisor G in N'(X).

If n is odd, then b(r) — rc; > 0 and hence b(r)H — rD = (b(r) — rc1)H +rF
is a linear combination of H and F with non-negative integers as coefficients.
Thus /2 = RZQ[F], i.e., 02 = (].

(3.4.2) We shall prove that every member of |F| is irreducible when n > 5
is odd. For that purpose, we shall prepare an elementary criterion for an
effective divisor to be irreducible.

Let V' be a closed convex cone in a Euclidean space R”. A half line ¢/ =
Rsov (ve V) is called an extremal ray of V if vy + v; € £ for vy, v; € V implies
that vy € and v, /.

LEMMA 3. Let F be an effective divisor on a smooth projective variety X.
Assume that N'(X) has a basis {D\,...,D,} (D; € Pic(X)) satisfying the fol-

lowing.
1) Every divisor D of X is expressed in N'(X) as follows:

D:Z}’l,’D,’ withnieZ (ISlSp)
2) F=3Y' mbD; with gcd(my,...,m,) = 1.

3) RauolF] is an extremal ray of NE (X).
Then every member of the complete linear system |F| is irreducible.



Determinantal varieties and splitting theorems 385

ProOF. Let F’e|F| and assuming that F’ is not irreducible, let F’ =
> i—; t%Fi where a) every Fj is a prime divisor of X and a € N and b) r > 2
or oy =2 if r=1. Then since Ry¢[F] is an extremal ray of WI(X), every
F, e R5o[F], ie., Fy=p,F (numerical equiv.) with B, eQ (1 <k <r).
Thus we get 1=D>, ,up, which implies 0< B, <1. Moreover let
Fi=37 n;D; (njeZ). Then we have my =pfm; (1<k<r1<j<p).
Since ged(my,...,m,) =1, there are integers {n;} (1 <j<p) satisfying
>/ mn; = 1, from which follows f, = 3>/ nyn; for all k. Thus we get a
contradiction.

(3.4.3) Accordingly we obtain the following.
PROPOSITION 3. If n>5 is odd, then every member of |F| is irreducible.

ProoF. By Lemma 2, we find that {H, D} is a basis of N!(X) enjoying
the conditions in Lemma 3 because F = ¢;H — D in Pic(X) and R[F] is an
extremal ray of NE 1(X ) for odd n > 5 by (3.4.1). Thus it follows that every
member of |F| is irreducible by Lemma 3.

(3.5) Divisors Z and Z* on X.

(3.5.1) For simplicity let us put a = a(1) and define the following effective
divisor:

Z=D-aH.

Then we see 0 < a < c¢; by definition. The effective divisor Z will play an
important role in the splitting problem of E in the sequel.

The intersection numbers Z'H" ™' (1 <i<n—m) are calculated as
follows:

i

o .
ZH"™ =3 (~a) Pryi
pary

=3 (DK — @) ke

LemMa 4. If dim |rZ| =0 for every positive integer r, then a(r) = ra for
all reN and so 0y =a. Hence ¢, =Rxo[Z] and every member of |Z| is
irreducible.

Proor. For every re N,rZ = (rD — a(r)H) + (a(r) —ra)H. 1If a(r) > ra
for some r, then we get dim |rZ| > 1, which contradicts our assumption. Hence
it follows that a(r) =ra for all reN and so 6, =a. Since R¢[Z] is an
extremal ray of NE 1(X ) and Z = D — aH, every member of |Z| is irreducible
by Lemma 3.
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(3.5.2) Moreover we define the following divisor which we call the dual
divisor of Z:

Z*=D—(ci—a)H=aH —F.

Then it satisfies the following properties.

1) Z+Z*=2D—-cH=D—F.

2) If 2a>cy, then Z* =Z + (2a — ¢;)H is effective.

3) Z-Z*=(D—-aH)(D - (c; —a)H) = —(a? — cya+ c;)H? as a cycle of
codimension 2 in X.

4) The intersection numbers for 0 <i<n—m,

i

ZX pnm—i Z(_l)kai—kcécpm_k
k=0

=3 (D e~ @) P

The divisor Z* will also play an important role in the splitting problem of
FE in the sequel (cf. Theorem 9).

4. Comparison theorems of cohomologies

In this chapter we shall show several comparison theorems between
cohomologies H'(X, Ox(rD + sH)) and H'(P",S"(E)(s)) and their applications.
Recall the following commutative diagram:

P(E) > Y =D NDyN - N Dy

] !
P* o X.

Since Y is a closed subscheme of P(E|X), there exists the following se-
quence of line bundles:

@P(E)(rD + SH) ad @p(Elx)(rD + SH) — (9y(rD + SH),
which gives rise to a sequence of cohomologies:
H'(Op(gy(rD + sH)) 25 H'(Op(gyx)(rD + sH)) 25 HI(0y(rD + sH)).

We shall study the maps y;, = f; o o; in order to compare H'(Op)(rD + sH))
with H (Oy(rD + sH)).

Ye:=DN--- NDg is a complete intersection in P(E) for every integer
k(l<k<m+1) and Y, :=P(E). Since Y coincides with Y,,,;, we have a
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tower of closed subschemes
P(E)Z Y()D Y1 D s D Ym+l = Y,

which we shall use to obtain our comparison theorems.
According to the values of r and s, we shall procced to study the map
¥i : H(Opg)(rD — sH)) — H'(Oy(rD — sH)) as follows:

Dr=1,5>20 2)2<r<m+1,5s>20 3)r>m+2,5s=>0 4)r<0,s5s>0
4.1) r=1,5>0.
(4.1.1) Consider the canonical exact sequence
(%), 0 — Opg)(—sH) — Opgy(D — sH) — Oy, (D — sH) — 0,
from which we obtain the following exact sequence:
— H'(Opg)(—sH)) — H'(Op)(D — sH)) — H'(Oy,(D — sH)) — .

Since H'(Opg)(—sH)) = H'(Opr(—s)) =0 for either 0 <i<n—-1,5>0 or
1<i<n, s=0, the map J/: H'(Opg)(D — sH)) — H'(Oy,(D — sH)) is an
isomorphism for either 0 <i<n—-2,s>0o0or 1 <i<n-—1,5=0.

Similarly, consider the exact sequences

(%), 0— Oy,(—sH) — Oy,(D - sH) — Oy,(D —sH) — 0,
0 — Opg)(—D — sH) — Opg)(—sH) — Oy,(—sH) — 0.
Taking cohomologies, they give rise to the exact sequences
— H'(Oy,(—sH)) — H'(Oy,(D — sH)) — H'(0y,(D — sH)) —,
— H'(Opg) (=D — sH)) — H'(Opg)(—sH)) — H'(0y,(—sH)) —,

from which we obtain H(Oy,(—sH)) =0 for either 0 <i<n—1,s>0 or
1<i<n, s=0 because H'(Opg)(—D—sH))=0 for 0<i<n+1. Hence
62 : H'(Oy,(D — sH)) — H'(Oy,(D — sH)) is isomorphic for either 0 <i <
n—-2,s>0o0r1<i<n-1,5=0.

Inductively, take the exact sequences

(*)k 0— Oy, ,(—sH) — (OYIFI(D —sH) — Oy, (D —sH) — 0,

0——>(9yk_l(—-D-—SH)—>(gyk_](—SH)—)(Oyk(—SH)—PO.
We prove H (Oy,(—sH)) =0 for either 0<i<n—k, s>0o0r 1 <i<n-k,

s =0 by induction on k. If k =1, then it is verified already. Since Y;_; is
a complete intersection of very ample divisors {Dj,...,Dy_1} in P(E) of
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dimension n — k + 2 and D + sH is ample, it follows that H(Oy,_,(—D — sH))
=0 for0<i<n—k+1. Thus we obtain H (Oy,(—sH)) ~ H'(Oy,_,(—sH))
=0 for either 0<i<n-—k,s>0 or 1<i<n—k, s=0 from the exact
sequence (x), and the induction hypothesis. Hence we see that the map
0% . H'(0y,_,(D — sH)) — H'(Oy (D — sH)) is isomorphic for either 0 <i <
n—k,s>0o0r 1<i<n—k, s=0.

Since y; =[I/4'0%, it turns out that y;: H(Opu)(D —sH)) —
H(Oy(D — sH)) is an isomorphism for either 0 <i<n—-m—1,s>0o0r 1<
i<n—m—1, s=0. The above arguments also state that y; is injective for
i=n—m and Jf : H'(Oy, (D)) — H°(Oy,(D)) is surjective with Kerdy = C
for every k, thereby y, : H(Op(g)(D)) — H°(Oy(D)) is surjective with Kery, =
@m+lC. Therefore we get the following comparison theorem.

THEOREM 3. The canonical restriction map y;: H' (Opgy(D — sH)) —
H'(Oy(D —sH)) is an isomorphism for either 0 <i<n—m—1,5>0 or
1<i<n-m-—1, s=0 and injective for i=n—m, s>0. Moreover ¥y,:
H®(Opg)(D)) — H°(Oy(D)) is surjective with Kery, = @MHC.

(4.1.2) We shall show some corollaries of Theorem 3. The vector bundle
E is unstable with respect to the line bundle Op~(1) if and only if H°(E(—s)) #
0 for s > ¢1/2 (c;: even) (resp. s = (¢; + 1)/2 (c1: odd)) (cf. [27]). Recall that
the integer a =a(l) is the maximal integer such that Z=D—aH is
effective. Since H°(Op(g)(D — sH) ~ H(P",E(—s)) and H°(Oy(D — sH)) ~
H(0x(D — sH)) for all positive integers s, E is unstable if and only if a > ¢, /2
(c1: even) (resp. a = (¢1 +1)/2 (¢;: odd)) by Theorem 3.

COROLLARY 2. E is unstable with respect to Opn(1) if and only if a > c¢;/2
(c1: even) (resp. a = (c1+1)/2 (c1: odd)).

We shall recall the following lemmas to show a further result. One is the
following vanishing theorem [39] that is generalized to ample vector bundles
with any rank on P” by L. Manivel [20].

LeMMA 5 (Sumihiro). Let E be a rank two bundle which is k-ample (resp.
generated by global sections) and L a line bundle which is generated by global
sections (resp. k-ample) on P". Then we have HI(P",S"(E) @ L® Q5.) =0
for p+g=n+2+kr>1

The other is the following lemma on higher direct images of tensor product
of tautological line bundles which is established easily using the duality theorem
for m (cf. [12]). Let n: P(E) — S be the projective bundle associated to a
vector bundle E of rank r on a smooth projective variety S and D a tau-
tological divisor of P(E).
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LemMma 6. For a positive integer p, we have

1) R'm.(Op)(—pD)) =0 for either 0<i<r—2ori=r—1, 1<p<
r—1.

2) If p>r, then R'n,(Opg(—pD))=SP"(E*)® Os(—c\(E)) for i=
r—1. ‘

With these preliminaries, we shall show the following.

COLLORARY 3. The restriction map H'(P" E) — H%(X,E|X) is surjective
and dim H(X,0x(F)) =m+ 1.

Proor. 1) First we prove that the restriction map is surjective. For
the purpose, we show by induction on k and i that for every k (1 <k <m+1)
and i ( 0<i<k-1),

H*(P(E),n"(E) ® Op,n..np,(~(k — )D)) = 0.

It is obvious in case k=1 by Lemma 6. Hence we assume that it holds for
k—1. Now we check the vanishing H*(P(E),n*(E) ® O(—kD)) =0. By
Lemma 6, it follows that

H*(P(E),n*(E) ® O(~kD)) ~ H*"'(P" E ® S*"*(E*) ® O(—c1))
— H*\(P" E* ® SFX(E*)) ~ H" "\ (P" E® S*2(E) ® Kpr).
Since there is an exact sequence
0— S**(E)® 0(c1) » E® S¥(E) — S*(E) — 0,
the vanishing follows from
H" (P Sk-3(E)(c;) ® Kpr) = 0, H" 1 (P" S*"(E) ® Kpr) = 0,

which hold by Lemma 5. Thus we assume that it holds for i — 1 in case k.
Consider the following exact sequence:

0—n*(E)®0p,n..np,_,(—Di — (k—i)D) - n*(E) ® Op,n..np,,(—(k — i)D)
—7n*(E)® Op,n..np,(—(k —i)D) — 0.
Then it gives rise to the exact sequence:
— H*(*(E) ® Op,n..np, ,(—(k — i) D))
— H*(n*(E) ® Op, n..np,(—(k — i) D))

— Hk_”‘](n*(E) ® @DlﬂmﬂDi_l(_(k - (l - 1))D)) -
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Since H*(z*(E)® Op,n..np,,(—(k—i)D))=0 and H* Dz E)®
Op,n..np,_,(—(k— (i —1))D)) =0 by the induction hypothesis, it follows that
H*(n*(E) ® Op,n..p,(~(k — i)D)) = 0.

In particular we have H!(P(E),n*(E) ® Op,n..np,_,(—Dx)) =0 (1 <k <
m+1). Thus the restriction map H°(n*(E) ® Op,n..np,.,) — H(n*(E) ®
Op,n.-np,) (1 <k <m+1) is surjective and it implies the surjectivity of
the restriction map H°(P(E),n*(E)) = H'(P",E) — H(Y,n« (E)) =
H(X,E|X).

2) Consider the following commutative diagram in which the middle
vertical map is surjective by 1):

0 — Kery, — HY(P(E),0(D)) 2> H(Y,0(D)) —>
| l
P"'c H°(P"E)

l |

0 — H°X,0x(F)) — H°(X,E|X) — HX,0(D)) —

Thus we find that dim H(X,Ox(F)) <m+1. Accordingly, since we have
shown dim H%(X,0x(F)) > m+ 1 in Theorem 2, we get dim H°(X,Ox(F)) =
m+1.

(4.1.3) REMARK 1. From Theorem 3, we have:

1) a is the maximal integer such that H°(P" E(—a)) # 0.

2) The trace of the complete linear system |D —aH| on P(E) to X is
complete.

Let te H°(E(—a)) be a nonzero section and D' the effective divisor on
P(E) associated to . Then D' is irreducible by virtue of 1). Since the trace is
complete, we find that every member of |Z| is a cut of some D’ to Y. Hence a
general member of |Z| is irreducible and every member of |Z| has the following
defining equations in P”:

tAsi=0, siASse=0 (1<ijk<m+1).

If U is an affine open subset of P” such that E|U ~ @2(0(/ and s1|U # 0, then
they coincide with the equations on U:

tAs =0, s1Asi=0 2<i<m+1).
42) 2<r<m+1,5s=>0.
(4.2.1) We shall show the following in this case.

THEOREM 4. Let j,1 (0 < j <) be integers such that for every p (1 < p <
r—1),
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HI(P" S?(E)(-s)) = forj<i<l-p+]1.

Then the restriction map H'(Opg)(rD — sH)) — H'(0 X(rD — sH)) is isomorphic
Jor j<i<min(l—r+1,n—m—1), surjective for i = j— 1 and injective for
i=min(/l—r+1l,n—-m-1)+1.

Proor. First we prove the following by induction on ¢ (1 <g<r—1)
and k(0 <k<m-—-r+q+1):

H'(Oy,(qD—sH))=0 forj<i<minl—q+1l,n—m+r—g—1).

As we have seen in (4.1.1), H (Opi)(D — sH)) ~ H'(Oy,(D — sH)) for either
0<i<n—k,s>0 or 1<i<n—k,s=0. (When s=0, our assumption
insures that j>1.) If g=1, then n—k>n—(m—r+2)=n—-m+r—-2.
Thus we observe H'(Oy, (D —sH)) =0 for j <i<min(/,n—m+r—2) from
the assumption, which is our claim for g =1. If k=0, then it is easily
deduced from our assumption for all g. Assuming ¢ > 2 and k > 1, consider
the exact sequence

— H'(0y,,((g = 1)D — sH)) — H'(Oy,_,(qD — sH)) — H'(Oy,(¢D — sH)) —

Since H'(Oy,_,((g—1)D—sH))=0 for j<i<min(/—q+2,n—m+r—q)
by the induction hypothesis, the restriction map:- H'(Oy,_(¢D — sH)) —
H'(Oy,(¢D — sH)) is isomorphic for j <i<min(/—gq+1l,n—m+r—q—1).
Hence we can prove H'(Oy, (gD —sH)) =0 for j <i<min(l —q+1,n—m+
r—q—1) by the induction hypothesis on %.

Taking ¢ =r — 1, we have the following vanishing:

H'(Oy,((r—1)D—sH))=0 for0 <k <m and j <i <min(l—r+2,n—m).

Consequently the canonical map: H'(Oy, ,(rD — sH)) — H'(Oy, (rD — sH)) is
isomorphic provided 1<k<m+1 and j<i<min(/—r+1,n—m-—1).
Hence the restriction map H'(Opg)(rD —sH)) — H'(Ox(rD —sH)) is an
isomorphism for j<i<min(/—r+1,n—m—1). The remaining assertions
are easily checked.

(4.2.2) Since there exists an exact sequence
0 — Opr» — &nd(E) — S*(E)(—c;) — 0,

we have canonical isomorphisms H'(&nd(E)) ~ H'(S*(E)(—cy)) for 1 <i<n
and dim H%(&nd(E)) = dim H°(S?(E)(—c1)) + 1. Thus as for the canonical
maps H'(énd(E)) — H'(Ox(2D — c;H)), we have the following.

COROLLARY 4. The canonical map H'(&nd(E)) — H'(Ox(2D — c1H))
is an isomorphism for 1<i<n-m-1 and dimH%&nd(E))=
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dim H%(Ox (2D — ¢;H)) + 1. Hence E is unstable with respect to Op»(1) if and
only if H*(Ox(2D — cH)) # 0.

Proor. Since H'(E(—c;)) ~ H" (E® Kp») =0 for 0 <i<n—2 by Le-
Potier vanishing theorem [30], the restriction map H'(Upg)(2D — c1H)) —
H'(Ox(2D — ¢;H)) is isomorphic for 0 <i<n—-m—1 by Theorem 4.
Therefore the canonical map H'(6nd(E)) — H'(Ox(2D — ¢ H)) is isomorphic
for 1<i<n—m—1 and dim H*(6nd(E)) = dim H°(0x (2D — ¢;H)) + 1. In
addition E is unstable with respect to Op~(1) if and only if E is not simple.
Hence E is unstable if and only if H(Ox(2D — ¢, H)) # 0.

(4.2.3) We shall show the following concerning the irreducibility of every
member of the complete linear system |Z|.

THEOREM 5. If n>5 is odd, then every member of |Z| is irreducible.

ProOOF. Assuming Z = Z; + Z, (Z; being an effective divisor), we shall
derive a contradiction. Let Z; = o,D + §;H (a;,f; € Z) in Pic(X). Since Z =
D — aH, we have relations

1 =0y + ay, —a=p,+p,.

We may assume «; < ap and so a; < 0.

1) Case oy =0. Since Z; is effective, we have f; >0. Thus Z—- H =
(By — )H + Z; is effective, which contradicts our choice that a is the maximal
integer such that D —aH is effective.

2) Case a; <0. Since F™*! =0 by Theorem 3, Z; is expressed as

Zy=uD+pH=(uc +p)H+ (—u)F with aj¢; + 8, = 0,

which  implies that Z—-F=2D—(c;+a)H is effective, ie.,
H°(Ox(2D — (c; +a)H) #0. In particular, E is unstable, ie., a>c /2
(c1 : even) (resp. > (c1 + 1)/2(cy : odd)) by Corollary 4.

Let se H(P",E) be a section such that W(s) (the scheme of zeros of s) is
a smooth closed subscheme of codimension 2 in P" which represents a second
Chern class ¢;(E) of E and consider the exact sequence:

0—>(9p"—>E—>f®(9p"(Cl)—>0,

where .# is the defining ideal of W(s). Tensoring it with E*(—a), we get
HY(S ® E(—a)) ~ H(E ® E*(—a)) ~ H°(S*(E)(—(c1 + a)) = H*(Ox(2D —
(c1 +a)H)) # 0 by Theorem 4 because H'(E*(—a)) ~ H"(E(a) ® Kp») =0
for 0 <i <n—2 by Le-Potier vanishing theorem. Let te€ H(# ® E(—a)) be
a nonzero section, i.e., a section of E(—a) vanishing on W(s). Then W()
does not contain any effective divisor of P” and so it represents c2(E(—a)) =
(ca — acy + a®)H?. Therefore it induces the inequality ¢; < ¢; — ac) + a® from
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the inclusion W(s) = W (). Since a is positive, we get a > ¢;, which con-
tradicts 0 < a < ¢.

43) r=m+2,5s=>0.

(4.3.1) We can prove the following by an argument similar to the one
above.

THEOREM 6. Let j, 1 (0 < j <) be integers such that for every integer
p(0<p<m),

H(P" S 1"™P(E)(—s)) =0 forj<i<I—p.

Then the restriction map H'(Op(gy(rD — sH)) — H'(Oy(rD — sH)) is isomorphic
for j<i<l—m—1, surjective for i = j— 1 and injective for i =1—m.

Proor. We prove the following by induction on ¢ (0 <g<m) and
k(0<k<gq):

H(Oy,((r—-1-m+qD—-sH)=0 forj<i<l—q.

If k = 0, then the above is nothing but our assumption and so it is verified for
q=0. Consider the exact sequence

— B Oy, ((r— 1= m+q—1)D — sH))
s Hi(Oy, ,((r = 1 = m+g)D — sH)) —
— H'(Oy,((r—1-m+q)D —sH)) —

Since H!(Oy,_ ,(r—-1-m+q—1)D—-sH))=0 for j<i<l—g+1 by the
induction hypothesis, the restriction map H'(Oy, ,((r—1 —m+ q)D — sH)) —
H(Oy,((r—1—m+gq)D—sH)) is isomorphic for j<i</—gq. Thus we
have H'(Oy,((r—-1-m+q)D—sH))=0 for j<i<l-gq because
H(0y,_,((r—1—m+4q)D —sH)) =0 by the induction hypothesis on k.

Hence taking ¢ =m, we have H'(Oy,((r—1)D—sH)) =0 for j<i<
I —mand 0 < k < m, which implies that the restriction map H'(Opg)(rD — sH))
— H(Ox(rD —sH)) is isomorphic for j<i<!—m—1, surjective for i=
j—1 and injective for i =/—m.

(4.3.2) Assume that E ~ O(a) ® O(B) (0 < « < f) is a direct sum of line
bundles. Then it is obvious that f =a and « =¢; —a. In this case we can
easily prove the following by Theorems 3, 4 and 6 because H'(P",S"(E)(-s))
=0for 1<i<n-1 and H(P",S"(E(-a))(—s)) =0 for s> 0.

COROLLARY 5. 1) 6y =a, ie., £} =Rs5¢[Z].
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2) H(X,0x(rD—sH))=0 for 1<i<n-m-1,1<r<m+1,5>0
and H'(X,Ox(rD —sH)) =0 for 1 <i<n-m-2, r>m+2, s>0.

(4.4) Next we shall deal with the cases —rD + sH with r >0 and s > 0.

(4.4.1) Let us adopt the following convention:
1) For a coherent sheaf G,H'(P",G) =0 for i < — 1.
2) For a vector bundle G,S?(G) is a zero sheaf for p < — 1.

THEOREM 7. Let j,l (0<j<I—m+1) be integers such that for every
integer p (0 < p <m),

H!P" S P(E*)(—c1 +5) =0 forj—1<i<l—p.

Then we get the vanishing H'(Oy,(—(r+1+m—gq)D+sH)) =0 for j<i<
l—q+1 and 0<q<m,0<k<gq. Hence the canonical restriction map:
H'(Opg)(—rD + sH)) — H(Oy(—rD + sH)) is isomorphic for j<i<Il—m,
surjective for i = j— 1 and injective for i =1—m+ 1.

ProOF. We prove the vanishing by induction on g and k. Ifr+1-+m—
q =2, then by Lemma 6 and our assumption, we have
H'(Opg)(—(r+1+m—q)D+sH)) ~ H='(P",S" " 4(E*)(—c; +5)) =0

for j<i<l—-q+1. Ifr+1+m—g=1, then H(Opg)(—D+sH)) =0 for
all . Hence if k = 0, then the vanishing holds for all g. Assuming ¢ > 1 and
k > 1, consider the exact sequence

— H'(Oy, ,(—(r+14+m—(qg—1))D+sH))
— H'(Oy,_,(—(r+1+m—q)D + sH))
— H'(Oy,(—(r+ 14+ m—q)D + sH))

— H* Oy, (—~(r+1+m— (g—1))D + sH)).

Then H'(Oy,_,(—(r+1+m—(qg—1))D+sH))=0 for j<i<lI—g+2 by
the induction hypothesis, from which it follows that the restriction map
H(Oy_ (—(r+14+m—-gq)D+sH)) » H(Oy(—(r+1+m—q))D+sH)) is
isomorphic for j <i<!—q+ 1. Hence we get H(Oy (—(r+1+m—q))D+
sH)) =0 for j <i</—g+1 by the induction hypothesis. Thus our claim is
proved by an argument similar to the one above.

(4.4.2) We shall show several corollaries of Theorem 7.
First consider the case r = 0.
1) For an integer p (0 < p <m), we have by Serre duality

H(P", S™ 1P(E*)(—c1 +5)) ~ H"'(P",S™ "P(E)(c) — 5) ® Kp).
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Hence if s < ¢ (resp. s=c;), then H'(P",S™ !"P(E*)(~c; +5)) =0 for 0 <
i<n—2 (resp. 1 <i<n-—2) by Lemma 5. Thus for s < ¢, the restriction
map: H'(Opig)(sH)) — H'(Oy(sH)) is isomorphic for 0 <i<n—m—2 by
Theorem 7, which implies that H'(Ox(sH)) =0 for 1 <i<n—-m—2 and
HO(Ox(sH)) = H'(P", Op~(s)), i.e., X is s-normal. Similarly for s=c;, we
have that the restriction map H'(Op(g)(s)) — H'(Ox(sH)) is isomorphic for
2<i<n-—m—2 and surjective for i = 1, which implies H!(Ox(sH)) =0 for
l<i<n-m-2.

2) If E is a direct sum of line bundles, then H(P", S™ 1"P(E*)(—c| + )
=0 for 1 <i<n-—1 and arbitrary s. Thus we get H (Ox(sH)) =0 for 1 <
i<n—m-—1 and arbitrary s.

Summing up the above, we obtain the following. For simplicity, we
denote the line bundle Ox(sH) by Ox(s).

COROLLARY 6. 1) The restriction map H°(Opr(s)) — H%(Ox(s)) is iso-
morphic, i.e., X is s-normal for s < ¢; and H'(Ox(s)) =0 for 1 <i<n—m -2,
0<s<oaq.

2) If E is a direct sum of line bundles, then H'(Ox(s)) =0 for 1 <i <
n—m— 1 and arbitrary s.

(4.4.3) r>1.

Since ~ H!(P",S™ MM P(E*)(—c; +5) ~ H™ (P",S" 4" P(E)(c; —5) ®
Kpr), we have from Lemma 5 for every integer p (0 < p < m):

1) r=1. H'P",S" " P(E*)(—c;+5) =0 for 1<i<n-2 and
s<c (resp. for 0<i<n-2if s<c¢).

2) r>2. H'P", S " P(E*)(—c1+5)=0 for 0<i<n-2 and
s<c.

Thus we get

1)’ The restriction map H(Opg)(—D +sH)) — H'(Ox(—D + sH)) is
isomorphic for 2 <i<n—m—2 and surjective for i =1 if s <¢; (resp. for
0<i<n-m-2if s<c). Hence we have H(Ox(—D +sH)) =0 for 1 <
i<n—m-—2and s<c; (resp. for 0<i<n—-m-2 if s<¢).

2)" The restriction map H'(Opg)(—rD + sH)) — H(Ox(~rD + sH)) is
isomorphic for 0 <i<n-m—-2 and r>2, s<c¢;. In addition Hi((OP(E)
(—=rD+sH)) ~ H=1(P", S™2(E*)(—c1+5)) =~ H"*+1(P" S"-2(E)(c; —5) ® Kpr)
=0 in the following cases: r>3,0<i<n-—-1,s5<c¢ or r=2,
s<c,0<i<n or r=2,5s=c¢,0<i<n-1,i#1 and meanwhile,
H'(Opig)(—2D + c1H)) =C. Hence we obtain that H(Ox(—rD+sH)) =0
for either r >3, 0<i<n-m-1,s<ciorr=2,5s=¢,0<i<n-m-1,
i#1and H'(Ox(—2D + c;H)) = C. In particular since —2D + ¢;H = F — D,
it follows that the exact sequence 0 — Ox(F) — E|X — Ox(D) — 0 is the
unique non-trivial extension of Ox(D) by Ox(F). To this end, it is enough to
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prove that the above exact sequence does not split. When » is odd, it is easily
seen as follows. If E|X ~ Ox(F)® Ox(D), the Ox(F) is ample. How-
ever this contradicts F”*! =0. In the general case, it is verified in the
following way. Since the above exact sequence does not split if and only
if HY(E|X® Ox(—D))=0 because H°(Ox(F— D)) =0, it suffices to
show that H'(E|X ® Ox(—D)) =0. For the purpose, we prove the vanish-
ing H'(P(E),n*(E) ® Opg)(—rD)) =0 for 0<i<n-—1 and r>2. Indeed
by considering the tower of closed subschemes {Y;} (1<k<m+1), we
can deduce Hi(n*(E) ® O(-rD)|Y;)=0for 0<k<m+1,0<i<n—k-1
and r>1 from the vanishing and H'(P(E),n*(E)® Opg)(—D)) =0
for all i. By Lemma 6, it follows that H'(P(E),n*(E) ® Opg)(—rD)) ~
H=Y(P" E® S 2(E*)(—c1)) ~ H" (P E® S 2(E)® Kp»). Since E is
of rank two, there exists an exact sequence for every integer r

0— S YE)® Opr(c;) » E® S'(E) — S™(E) — 0.

Accordingly we get that H'(P(E),n*(E) ® Opg)(—rD)) =0 for 0 <i<n-—1
and r > 2 by Lemma 5.

We shall consider the case where E splits into line bundles.

3) If E is a direct sum of line bundles, then we have
H(P" S 14"P(E*)(—c; +5)) =0 for 1 <i<n—1 and for all r and s.
Thus we get:

3)" The restriction map H'(Opg)(—rD+ sH)) — H'(Ox(—rD + sH))
is isomorphic for 2<i<n—m-—1 and surjective for i=1. Since
H'(Opg)(—rD + sH)) ~ H=Y(P",S"2(E*)(—c1 +5)) =0 for 2 <i <n, we see
H(Ox(-rD+sH))=0for2<i<n-—m—1 and for all r and s. Moreover
HY(Opg)(—rD+sH)) ~ H'(P",S"2(E*)(—c1 +5)) =0 if s<a+(r—1)-
(c1 —a). Thus H'(Ox(—rD +sH)) =0 for all r and s <a+ (r — 1)(c; — a).

3)" Recall that an effective divisor Z* = D — (¢; —a)H in (3.5.2) is the
dual divisor of Z. Then we obtain the following from the above:

HY(Ox(-rZ*) =0 forallr >1 if 2a> ¢,
dimH'(Ox(-rZ*))=r—1 forallr>1 if 2a=c.
H'(Ox(—rZ*—sH))=0 for all positive integers r and s (1 < i < n—m—1).

Indeed since r(c; —a) < a+ (r — 1)(c; — a) if 2a > ¢y, it follows that H'(—rZ*)
=0 for all r > 1 from 3)’. In addition if 2a = ¢|, then we find that Z* = Z
and 0z(Z) ~ Oz by Remark (4.1.3) 2). Moreover it follows that H'(0z) =0
from 3)’ provided n > 5 and the restriction map H°(Ox(Kyx)) — H°(Oz(Kyx))
is surjective from Corollary 6, 2) provided »n = 4. Hence it is easily shown that
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dimH'(-rZ*)=r—1 for all r > 1 by using the exact sequence
00— Ox(—(r+1)Z) — Ox(—1rZ) — Oz — 0.

The third claim is checked similarly.
Summing up the above, we get the following.

CorROLLARY 7. 1) HY(Ox(—D+sH)=0 for 0<i<n-m-—2 and 5 <
c (resp. for 1 <i<n—m-2 and s < cy).

2) H(Ox(—rD+sH)) =0 for either r>3,0<i<n-m-1,s<c| or
r=2s=c,0<i<n-m-1,i#1 and HY(Ox(-2D+cH))=C. In
particular, we see that the exact sequence 0 — Ox(F) — E|X — Ox(D) — 0 is
the unique non-trivial extension of Ox(D) by Ox(F).

3) If E is a direct sum of line bundles, then the following hold for the
effective divisor Z* = D — (¢; — a)H,

HY Ox(-rZ*) =0  forallr>1 if 2a> ¢,
dim HY (Ox(-rZ*) =r—1  forallr>1 if 2a=c.

H'(Ox(—rZ*—sH)) =0 for all positive integers r and s (1 <i <n—m—1).

(4.4.4) As an application of the vanishing H'(Ox(—D + sH)) =0 (s < c1), we
shall derive a criterion for the irreducibility of every member of |F| in the case
n=2m is even (cf. (3.4.3) Proposition 3).

COROLLARY 8. When dim|rZ| =0 for every positive integer r, the fol-
lowing are equivalent.

) |F-Z|=g.

2) Every member of |F| is irreducible.

Proor. Since the implication 2) = 1) is obvious, it suffices to show
the implication 1) = 2). Let F; = oD+ g;H (¢;, ;€ Z,i =1,2) be effective
divisors such that F; + F, € |F|. Then we have oy +o; = —1, f; + S, = c1.
We may suppose a; <0 <ay. We derive a contradiction in the following
cases.

(1) oy=-1. Since ap =0 and B, >0, it follows that Fy = —D + §{H
with B, = ¢; — B, < c1, which contradicts H*(Ox(—D + sH) =0 (s < ¢1).

(2) ay< —2. In this case, ap = —1 —a; > 1. From our assumption
dim [rZ| = 0 for every positive integer r, it turns out by Lemma 4 that 8, >
—apa and so f; =c1—f, <c1 +aa. On the other hand, we have F; =
(-1-—o0)D+pH=(—D+ciH)—ox(D—aH)— (¢ +ma—p)H=F —0zZ
— (e1 + opa — By)H, which contradicts |F — Z| = &.

(4.4.5) As for a cohomological criterion for numerically effective divisors,
we shall show the following which might be well known (cf. A. Moriwaki [26]
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for a cohomological criterion for big and numerically effective divisors and also
[45]).

THEOREM 8. Let X be a d-dimensional (d > 2) smooth projective variety
defined over an algebraically closed field k of characteristc 0, D an effective
divisor on X and let H be an ample divisor on X. Then the following are
equivalent to each other.

1) D is a numerically effective divisor.

2) a) dimH'(Ox(—rD)) < O(r') for sufficiently large integers r.

b) dim H(Ox(—rD — sH)) < P;(s) for all positive integers r,s (1 <i <
d — 1), where P;(s) is a polynomial with respect to s which is indepen-
dent of r.

Here we shall give a proof of Theorem 8 for the sake of completeness.

ProoF. Since the implication: 1) = 2) is obvious by considering a tower
of closed subschemes consisting of complete intersections by very ample divisors
€ [mH| and by the Kodaira vanishing theorem, it is enough to prove the
converse. We prove that D-C >0 for every irreducible curve C in X.

(1) First we assume that C is a smooth curve. Consider the exact
sequences

0 — H(Ic ® Ox(mH)) — H*(Ox(mH)) — H*(Oc ® Ox(mH)) —,
— H(Ic ® Ox(mH)) — H(Ic/I2 ® Ox(mH)) — H' (I3 ® Ox(mH)) —,

where I is the defining ideal sheaf of C and take a sufficiently large integer
m so that Ic/I12® Ox(mH) is generated by global sections and H!(IZ ®
Ox(mH)) =0. Then it follows from the above exact sequences that there
exists a smooth member Y of the complete linear system |mH| which contains
C. If we denote by D’ (resp. H') the restriction of D to Y (resp. H to Y), then
we observe also that D’ satisfies the condition a) and condition b) in 2) with
respect to H’'. Hence iterating this process, we may assume that X is a smooth
surface which contains C and that D is an effective divisor satisfying the
condition dim H!(Ox(~rD)) < O(r') for sufficiently large integers r.

(2) Let D=N+E,E=) mE; (nieQsy, E; being an irreducible curve)
be the Zariski decomposition of D, where N is a numerically effective divisor,
the intersection number N - E; = 0 for all i and the intersection matrix (E; - E;)
is negative definite (cf. [45]). After multiplying a suitable positive integer, we
may assume that E is an integral divisor. We prove that if E # 0, then

dim H'(0x(~rD)) = 1 (—E?)r? + (a linear form on r) for
sufficiently large integers r.
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Hence if D satisfies the above cohomological condition, then E must be 0, i.e.,
D = N is a numerically effective divisor. In particular, we obtain D - C > 0.
Consider the exact sequence

0— 0x(—rN et rE) g (OX(—I‘N) — (9,5(—rN) — 0.
Then it induces the following exact sequence:
—H%0Ox(~rN)) = H(O,g(-rN)) — H (Ox(—rN —rE)) — H'(Ox(-rN)) — .

Since dim H°(Ox(—rN)) <1 and dim H'(Ox(—rN)) < O(r') for r>»0, we
have only to establish

dim H°(0,g(-rN)) = 1(—E*)r? + (a linear form on r) for r » 0.

(3) We prove this by induction on the number of irreducible components
of E. First assume that E = pFE; for some positive integer p.
For every positive integer i, consider the exact sequence

0 — Of,(—rN — (rp — )E1) = Ogpit1yg,(=7N) = O(p_jyg,(—=rN) — 0,
which gives rise to the exact sequence
0— HO(@EI (=(rp—i)Ey —rN) — HO(@(rp—m)E, (=rN))
= H®(Op-y5, (~7N)) = H'(Op,(~(rp — ) E1 — N)) — .
By Serre duality, we have
H'(Og,(=(rp — i))Ey — rN)) ~ H*(O,((rp — i + 1)E1 + N + Ky)).

Hence if (rp — i+ 1)E? + rNE, + KxE\ = (rp — i+ 1)E? + KxE; <0, ie., 1 <
i<rp— A, where 1 is the smallest integer that is greater than or equal to
KxE,/(—E?), then H'(Og (—(rp—i)E; —rN))=0 and so we get by the
Riemann-Roch theorem,

H(Og,(—(rp — i))Ey — rN)) = —(rp = DE} — g(E1) + 1,
g(E1) =1+ 3 (E} + E\Ky).
Thus it follows from the above exact sequence that
dim H*(Op—i11)5, (—rN)) = dim H*(Op_iy, (—N)) — (rp — ) E{ — g(Er) + 1.

Therefore we obtain
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rp—A
dim H°(0,,g, (—rN)) = dim H®(Og, (-rN)) + pZ(—(rp —i)E? —g(E)) +1)

i=1
=3 (=ED)r*p* + GE} — g(E) + Drp + {54(A — DE} — A(—g(E1) + 1)}
+ dim H%(0,(~rN))
> L(—E?)r? + (a linear form).

(4) E=mE| +E' where E' does not contain E; as an irreducible
component. Considering the usual exact sequence

0— Og(—rN) = Opp g, (—rN) @ Org'(—rN) — Opp g nre'(—rN) — 0,
we get the exact sequence
0 — H°(O,(~rN)) = H*(Opn,g,(—rN)) ® H* (O, (~rN))
- HO((OrnIEI nre'(=rN)) — .
Hence the following inequality holds:
dim H%(Opn g, (—rN)) + dim H°O,5/(—rN) — dim H® (O, £, 0 v/ (—7N))
< dim H°(0,g(-rN).

So far, we have the following for sufficiently large integers r:

(@) dim H(OpmE, (—rN)) = L (—(mE1)*)r? + (a linear form) as we have
shown in 1).

(b) dim H°O,p/(—rN) > L(~(E")*)r? + (a linear form) by the induction
hypothesis.

(¢) dim HY(Opn g, nre(—rN)) = m E1E'r? since rmENrE' is a O0-
dimensional closed subscheme.

Therefore we can establish the desired inequality

dim H°(0,£(—rN) > 1 (—E?)r? + (a linear form).

(5) Now we deal with the case where C is a singular curve. Let p be a
singular point of C, f: X' — X the blowing-up of X with center p and let
E ~ P%! be the exceptinal divisor of . Then there exists a positive integer m
such that H' = mf*(H) — E is ample. Here we show that f*(D) satisfies the
condition a) and the condition b) in 2) with respect to the ample divisor H'. It
is easily seen that the condition a) is fulfilled because H'(Ox/(f*(—rD)) ~
H'(Ox(—rD)) for all integers r because f,(0Ox/)= Ox and RIf,(Ox/) =0
(g = 1). Further it is observed by the fundamental theorem for the proper
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morphism f that for every positive integer s,
f*((OXr(SE))=(9x, Rqﬁ(@X/(SE))=O (1 Squ—2)

and R If,(Ox/(sE)) is a skyscraper sheaf supported at p with
dim R4! f(Ox/(sE)), = P(s), where P(s) is a polynomial function with re-
spect to s. Consider the spectral sequence E}'! = HP(Ox(—rD—msH)®
Rif (Ox: (sE)) for f. Then we have

- d-1,0 ,d— 0,d—1
EPi=0 (1<qg<d-2), ESL0 = gIL0) E%-1 c Bl

Hence H'(Ox/(f*(—rD —msH) + sE)) is isomorphic to H(Ox(—rD — msH))
for 1<i<d-2 and HY Oy (f*(—rD — msH) + sE)) = H™!
(Ox(—rD — msH)) @ H°(R4 f,(0x:(sE)). Therefore we can show that
the condition b) is also fulfilled, i.e., there exists a set of polynomials
{P{(s) 1<i<d-1)} which are independent of r such that
dimH (Ox/(—rf*(D) —sH')) < P/(s) (1 <i<d—1) for all positive integers r
and s.

(6) Let f:X' — X be a succession of blowing-ups of X with points as
centers such that the proper transform C’ of C by fis a smooth curve and let
{E;} (1 <i<n) be the exceptional divisors of f. Then we observe from (5)
that there is a set of positive integers {m,m,,...,m,} such that H' = mf*(H)
— /= m;E; is an ample divisor on X’ and f*(D) satisfies the condition a) and
the condition b) in 2) with respect to H’. Therefore it follows from (1) that
D.-C=f*D)-C'=0.

(4.4.6) Combining Corollary 7 with Theorem 8, we obtain the following
criterion for a rank two bundle E to be a direct sum of line bundles.

THEOREM 9. Let E be a very ample rank two bundle on P" (n > 4) and let
Z* =D — (c; —a)H which is the dual divisor of Z. Then the following are
equivalent to each other.
1) E splits into line bundles.
2) Z* is effective and numerically effective, i.e., Z* € NA(X).
3) Z* is effective and it satisfies the following conditions:
a) dim H'(-rZ*) < O(r') for sufficiently large integers r.
b) dim H (Ox(—rZ* — sH)) < Pi(s) for all positive integers r and s
(1<i<n-—m-—1), where Pi(s) is a polynomial with respect to s
which is independent of r.

Proor. By Corollary 7 and Theorem 8, we have only to prove the
implication: 2) = 1). Assume that Z* is numerically effective. Then we have
a* —cia+cy; =0 because Z-Z* = —(a® — cja+ ¢;)H? as a cycle of codimen-
sion 2 in X by (3.5.2) 3). On the other hand, let s be a nonzero global section
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of E(—a). Then there exists an exact sequence
0— Opn — E(—a) — J ® Opr(—(2a —¢;)) — 0,

where ¢ is the defining ideal of the zero locus W (s) of s. Since deg W (s) =
a’? —cija+c; = 0, we have W (s) = (J, from which it follows that E is a direct
sum of line bundles.

(4.4.7) When n=4 or 5, let Iy be the defining ideal of a determinantal
subvariety X in P”. Then Iy has the following resolution by vector bundles.

LEMMA 7. In the above notation, there exists an exact sequence
0— E*(—c) — (—93@pn(—c1) — Iy — 0.

PrOOF. Let {s1,52,53} be a set of global sections of E which defines a
determinantal subvariety X. Then we can define homomorphisms

2
a:@3@pn3€iAej—>SiASjE/\E (1<i<j<3),

B:E*>f — f(s3)e1 A ex— f(s2)er A es+ f(s1)ex A e3 €®3(0p",

where {e; A e;} is a basis of 6—)3(91»-. Then o : @3(91’" — Iy ® O(cy) is sur-
jective and f is injective. Hence in order to prove our assertion, it suffices to
show that the following sequence is exact:

0—E L Dop 5 Iy ® 0(c1) — 0.

The problem is local. Let U = Spec(4) be an affine open subset of P” such
that E|U ~ @ ,0ud; and s;|U = sudi + spdy (sy € 4,1 <i<3,1</<2).
a) For any feI'(U,E*), we have f(s;) =suf(d1) + sif(d2). Hence it
follows that
(a0 B)(f) = f(s3)s51 A 52— f(s2)51 A s3+ f(s1)52 A 53
s sz f(s1)
=det| sy s2 f(s2) | =0,
s31 832 f(s3)

which implies a0 f = 0.
b) We assume that s;; #0 on U. Let #; = s — (s12/511)s21 and £, =
§3 — (S[z/Su)S31. Then it follows that

1 A S22 =S, S1 A 83 =Sy, $2 A §3 =821l — $311.

Suppose that xe; A e; + ye; A e3 +zex A 53 (x,y,z€ A) is an element of Kera.
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Since 0 = t;(xs11 — z531) + t2(ys11 + zs21), there is an element w € 4 such that
xs11 — zs31 = wty and ysy; + zs; = —wt; because {1, %} is a regular system of
parameters of X on U. Thus it is observed that Kera is a vector bundle of
rank two. Since E* < Kera and ¢ (Kera) = —¢;, E* is isomorphic to Kera.

(4.4.8) As an application of Lemma 7, we obtain the following results on
the first cohomology groups H'(X, Ox(s)) (s€ Z) for n =4 or 5 (cf. Corollary
6). Moreover we shall find that Lemma 7 will play an important role in the
proof of another splitting theorem (cf. Theorem 15).

COROLLARY 9. When n=4 or 5, we have

1) HYX,0x(s)) =0 for s >2c; — 5.

2) If HY(P",E(k)) =0 for an integer k € Z, then H (X, 0x(c; —k — 5))
=0.

3) E is a direct sum of line bundles if and only if H'(X,0x(s)) = 0 for all
seZ.

Since the verification consists of arguments similar to that above, we leave
it to the reader.

(4.4.9) As was announced in (3.2.1), we shall prove here that if E is a very
ample rank two bundle with ¢; < 4 on P*, then it is isomorphic to a direct sum
of line bundles.

1) To this end, we shall recall the following:

First it follows from (3.2.2) that

a) ¢>0(i=1,2), DH =ci(c} —2¢;) >0, D> = ¢} —3c}c; + ¢ > 0.
Secondly, we have:

b) Schwartzenberger conditions.

§2:c1c2 =0 (mod2), S?:cy(ca+1—3¢; —2¢?) =0 (mod12).

Hence the following (cj,c;) are the only possible pairs of positive integers
subject to the above conditions provided ¢; < 4:

(Clac2) = (2’1)’ (372)’ (4’ 3)7 (4a4)

In all cases, since cl2 —4¢, > 0, we find that E is unstable. Thus it follows that
(c1 +4/c} —4c2)/2 < a < ¢ because a>c/2 and a®> —cja+cy > 0.

2) Consequently we observe that a =1 (resp. 2 or 3) if (¢1,¢2) = (2,1)
(resp. (3,2) or (4,3)). In these cases, it is calculated directly that a> — cja + ¢;
=0. Hence we see that F is a direct sum of line bundles. Moreover when
(c1,¢2) = (4,4), we see that a is equal to either 2 or 3. When a =2, E splits
into line bundles for the same reason. Hence suppose a =3. Consider an
exact sequence
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0— Ops = E(—a) > F @ Ops(-2) — 0,

where .# is the defining ideal sheaf of the zero locus W (s) of a nonzero global
section s of E(—a). Since deg W(s)=a?>—cia+c; =1, W(s) is a linear
plane of P*, from which we obtain H!(.# ® 0(n)) = H*(# ® O(n)) = 0 for all
integers n because the canonical homomorphism H%(O(n)) — H®(Owy(n)) is
surjective and H'(Ow;(n)) = 0 for all integers n. Hence it follows from the
above exact sequence that H!(E(n)) = H?(E(n)) = 0 for all integers n. Thus
we find that E splits into line bundles and that this case does not occur.
(cf. [27])

CorOLLARY 10. If E is a very ample rank two bundle with ¢; < 4 on P*,
then E splits into line bundles.

5. Vector bundles on determinantal varieties

In this section, we shall investigate several properties of some vector
bundles on determinantal varieties, say the normal bundle of X in P” or the
tangent bundle of X which will play important roles in the study of Hilbert
schemes, the deformation spaces of X, the number of moduli of X and the
geography of X. From the point of view of our splitting problems, we will
concern ourselves later with the study of Hilbert schemes and the geography of
determinantal varieties.

(5.1) Normal bundle Ny~ of X in P".
(5.1.1) Recall that our determinantal variety X is located in the diagram.

P(E) > Y=D;N---NDpyy

] !
P* o X.

Restricting the exact sequence
0 — n*(Qpn) — .QII,(E) — Q})(E)/Pn -0
to Y, we get an exact sequence
0— 7*(2ps)| Y = Qpgy| Y = Oy(ciH — 2D) — 0.
On the other hand, there exist usual exact sequences
0— F(Y)/F(Y)? = Qb | ¥ — Q) =0,

0— F(X)/F(X)* - Qh|X - QL —0.
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where #(Y) (resp. #(X)) is the defining ideal of Y in P(E) (resp. the defining
ideal of X in P"). Since Y is isomorphic to X via the morphism n, we may
identify n*(22p»)| Y with Qp.|X. Thus combining the above, we obtain the
following diagram of exact sequences:

0 0
l |
0 - JSX)IFX)? - QL. | x - QF - 0
! o !
(0 - SX)/FY)} -  QplY - 2y - 0
1# !
(9y(c1H—2D) ~ (9y(clH—2D)
! !
0 0

where o is the composite of the isomorphism Qp. | X ~ n*(2p.) | ¥ with the
injection 7*(24.)|Y — Q},(E) | Y. Since o maps J(X)/F(X)* to S(Y)/
#(Y)?, it induces a surjection 8: #(Y)/#(Y)? - Oy(c;H — 2D) by the snake
lemma.

(5.1.2) As for the surjection f:.9(Y)/#(Y)*= @”’“@y(—D) —
Oy(caiH — 2D) = Ox(F — D), we show that f coincides with the homomor-
phism B’ ® Ox(—D) where B': @ ™10y — Ox(F) is the homomorphism
defined by the global sections {s;| X} (1 <i<m+ 1) of O(F) to which we have
associated the morphism ¢ : X — P™ in (3.3.1), (3.3.2). Since the problem is
local, we may assume that Y and X are defined as follows (cf. (1.1)):

UxA'sY:y=s14s0y=0 (1<i<m+1),
UoX:sins1=0 2<i<m+1),

where U is an affine open subset of P” such that s;, #0 on U and A! =
Spec(C[y]). Let p be a point of U,q = (p, —s11(p)/s12(p)) a point of Y lying

over p,{xi,...,x,} a regular system of parameters of P" at p and let
"~ (Osn | Osip .
wi =dy; = d(si + siy) = ; a_xj+6—xjy dx; + sip dy (1<i<m+1).

Then we see that
F(X)[F(Y) = DI HY, 0n)wi, S(Y)/5(Y)’(\2hs | X = 5(X)/.5(X)?
on an affine open neighborhood of ¢q. Hence

Bwi) =shdy (1<i<m+1),



406 Hideyasu SuMIHIRO

where s/, (1 <i<m+1) is the restriction of 5;; to X. Since the section s;|X
of Ox(F) on U coincides with s;,, we can check our claim.

(5.1.3) Taking the dual of (x), we get the following commutative diagram
of exact sequences:

0

— O

0){(21)— C1H) >~ (QX(D—F)

l 1#
' 0= Tr— Tpe)| Y - Nypwy =~ @"ox(D) -0
!
0> Ty — Tpr | X —  Nyspr — 0.
l !
0 0

The injection B*: Ox(D — F) — (—Bm“(ﬂx(D) in ()" is nothing but the
multiplication by the rational functions {f}, ..., f,,.1}, where f; (1 <i<m+1)
is the rational function on X defined in (3.3.3). Consequently we can prove
the following.

THEOREM 10. There exists an exact sequence

0— Ox(D—F) L5 @™ 0x(D) — Nyjpr — 0
with the injection B* : Ox(D —F) 3y — (y(fi,--- Y fms1) € @m+1(9X(D), where
fi A <i<m+1) is the rational function on X defined in (3.3.3).

(5.1.4) For simplicity let us denote the normal bundle Nyx/pr by N and
N ® Ox(—D) by N(—D). Then Theorem 10 yields the following.

CoROLLARY 11. 1) N(—D) is generated by global sections and c;(N(—D))
=F (0<i<m).

2) a(N) =¥l (1/)DIF 0 <i<m).

3) N(=D)=g" (Tp~(-1)).

In particular, we have

ci(N)=mD +F,

c(N) = "—1—('"7_i)p2 + (m—1)DF + F?,
e5(V) = = 16)('" “Dp3 =D gy - 2) DF? + P,

cn(N) = " D" IF/.
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(5.1.5) As for the infinitesimal neighborhoods of X in P”, we obtain the
following where N* denotes the dual bundle of M.

COROLLARY 12. 1) If n> 3, then H'(S"(N*)) = O for every integer v > 1.

2) Ifn>5, then dim H*(N*) =1 and H*(S*(N*)) =0 for every integer
v>2. Hence we see that the first infinitesimal neighborhood is exceptional
among the infinitesimal neighborhoods of X in P".

Proor. 1). For every integer v > 1, there exists the following exact
sequence by Theorem 10:

0= Ox(D—F)®S"! (@"’“(ox(p)) ® Ky

- SV(@"’“@X(D)) ® Ky — S*(N) ® Ky — 0.

Since H!'(S'(N*) ~H" ™ 1(S*(N)® Kx) by Serre duality and
H" ™ 1(0y(vD) ® Kx) = 0 by the Kodaira vanishing theorem and in addition
H"™(Ox(vD — F) ® Kx) ~ H*(Ox(F—vD)) = H*(Ox(—(v+1)D + c1H)) =0
by (3.4.1) 4) and (3.2.2), we obtain H'(S"(N*)) =0 from the above exact
sequence. 2). Similarly we have H" ™ /(0Ox(vD) ® Kx) =0 for 1 <i <2 and
H" " Y Ox(vD - F) ® Kx) ~ H (Ox(—(v+ 1)D + ¢;H)) =0 for v>2 (resp.
~ C for v=1) by Corollary 7. Hence it follows that H?(S*(N*)) =0 for
v>2 and dim H*(N*) =1 by an argument similar to that above.

(5.2) Tangent bundle Ty of X.
(5.2.1) Since there exist the usual exact sequence
0— Ty - Tpr|X — Nyspr =0
and the exact sequence in Theorem 10
0 — Ox(D—F) —» @™ 0x(D) — Nyspr — 0,
the following equalities on the Chern polynomials hold:
(1+ H)™" = c(Tx)e(Nyjpo),
(1+ D)™ = (1 + (D — F)t)ci(Nx pn).

Hence we get the following equalities on the Chern classes: for every i (0 <i <
n—m),

Z(n.1+'l)cj(TX)D,~_j={<n%.-l) —c1<’?+l)}Hi+2(’?+l>Hi_lD-
AN A i i—1 i—1
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We need the following to express the Chern classes ¢;(Tx) in terms of D and H
by using the above.
LemMa 8. We have

1
Z( 1) <m+ )(m+k)=0 for every integer i (1 <i<m+1),

k=0 k

i 1 _
Z(—l)k(rf”_ )(m 1+k) =0  for every integeri (2 <i<m+1).
e i—k k

Proor. It is obvious for i =1 and so we assume i > 2. Since

(Tj;)(m:k)=On+u0"+m~éfg£;0—2»,

it suffices to verify

d m+k)..(m+k— (-2

i=0

For every j (0 < j<i-2), let us put

() = 23() k) (k=)

s (i k)k!

We show that every A;(x) must be identically zero (0 < j < i — 2) by induction
on j. First it is easily seen that hy(x) = 0. Take the difference of A;(x):

@W+J)—@@)=U+J)Z}_Dk@+ky££fgazﬁ—1».

k=0

Accordingly we see h;j(x + 1) = h;j(x) by the induction hypothesis. In addition,

k.. d k--(k—j
(0 = Z( D = 2 0

k=j+1

1

- 3 g

k=j+1

Thus A;j(x) must be identically zero, from which the desired equality is
obtained:

< (m+k)..(m+k—(i-2)
‘E;PJf (i—k)k! =0
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Therefore we can prove the first assertion and the second one is verified
similarly.

(5.2.2) As for the Chern classes ¢;(Tx) (1 <i<n—m), the following
formula shall be established where the binomial coefficients (7) = 0 for negative
integers s.

THEOREM 11. For every i (1 <i<n—m),

" n+1 m+i—k—1 m+i—k—1
S (D e N )
n+1 m+i—k
_C‘<k—1>( i~k )

Proor. We prove our formula by induction on i. Since ¢;(Tx) =
—(m—-1)D+ (n+1—c;)H, it holds for i=1. From (5.2.1), we obtain

n+1 n+1 . n+1 -
C,'(Tx)= ; —C i 1 H +2 i1 H'™D

- i (m ' .1 )CJ(TX)Di_j~

j=0 i =J

Hence by the induction hypothesis, it turns out that

n+1 n+1 _ n+1 1
Ci(Tx)Z ; —Cl<i_1>}H'+2<i_1>H' D

+ f;;<—1>"“(’”“)x2£=0<—1>k

() ()
) e

On the right hand side in the above, we see that the coefficient of H' is

1 1 | :
(n:-L >_Cl<’;jl) and the coefficient of H"'D is —(m‘l)(’:jl>+

cl(m+1)<’?+l).

1 —

D' *Hk,
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Moreover the coefficient of D'"¥H* (0 < k <i—2) coincides with

k+1 i-1 i[m+1 m+j—k—1 B m+j—k—-1
oY [Z"=(_])(i—j>{( j—k ) (j—k—l )}

s () (N
()

by Lemma 7. Hence we can complete our proof of Theorem 11.
For example, we observe that
c(Tx)=—-(m—-1)D+(n+1—-c¢))H,
e2(Tx) =i(m+1)(m —2)D* — (m+1)(m — ¢; — 1)DH + 4 (n+ 1)(n — 2¢c;)H?,
e3(Ty) = —1(m+2)(m+1)(m—3)D? + L (m+1){(n+1)(m-2) — (m+2)c1 }D*H

L+ 1){n(m—1)—2(m+1)c1}DH? + L(n+ 1)n(n — 1 — 3¢ )H>.

(5.2.3) Let b; := dimcH'(X,C) (0 < i < 2(n — m)) be the i-th Betti number
of X. Then we find by Proposition 1 that

by = bypmy =2 forl<is [%—_—l]

bl

-m-=2
by = b2(n—m—i)—1 =0 for0<i< [’l:l

where [a] stands for the largest integer less than or equal to a real number a.
Since cpm(Tx) = Zizf(')_'")(—l)'b,-, it turns out from Theorem 11 and
Lemma 2 that the middle Betti number b,_,, is explicitly calculated in terms of

the Chern numbers {cj,c,} of E as follows.

THEOREM 12. 1) When n— m is even,
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bn-m = cn-m(Tx) —2(n—m) +2
nem el (n+1 n—k-1 n—k-1
S (O { iy B P |

ne1\ [ n—k
_Q<k—1)<"—m~k)]m*@“q)+ﬂn—my+z

2) When n—m is odd,

brm = —Cn-m(Tx) +2(n — m)
n—m k n+1 n—k-—1 m—k—1
tea 1 [( k ){("~m—k)_(n—m—k—1>}
ny1\ [ n—k
_Cl<k_l (n—m—k>]pn_k(cl’62)+2(n—m).

For example, b,_,, is written down explicitly for small integers n as follows.
(1) n=4.
by = 3¢} — 6¢tcy — 10¢; + 15¢1¢5 + 10¢Z — 10¢c; — 2
(2) n=S5.

b3y = 4cj — 10cjc, — 18¢] + 36¢Zc + 30c; — 45¢)¢a — 20¢? + 20c; + 6.

(5.3) dim H'(Tx) and dim H'(Nyp~)

In this subsection, we assume that Ky is ample and moreover H!(P",E) =
0for l<i<n—m—1 and H'(P* E(c; — 6)) =0 in case n =4.

Consider the following exact sequences with N = Ny /pn:

(1) — H'(Tx) — H'(Tp~ | X) - H(N) —,
(2) — H'(0x) — H'(@""' 0x(1)) » H'(Tpr | X) -,
(3) — H'(0x(D - F)) » H'(@""' 0x(D)) - H'(N) - .

We have by Proposition 1 and Corollary 6 that H'(Ox) =0 for 1 <i<n—
m—1 and H'(0x(1)) =0 for 1 <i<n-m—2. When n=4, we have also
H'(0x(1)) = 0 by Corollary 9 and our assumption. Hence it follows from (2)
that
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a) dim H(Tpr | X) = n? + 2n,
b) H{(Tpr|X)=0for1<i<n—m-2,
dim H'(Tp« | X) < dim H?(Oy).

In addition since Ky is ample, we have

C) HO(Tx) =0.
by the Nakano-Akizuki-Kodaira vanishing theorem. Therefore we find the
following from (1) and a), b), c):
1) n>7.

dim H!(Tx) = dim H(N) — (n? + 2n),

dim H(Ty) =dimH"'(N) 2 <i<n—-m-2).
2) 5<n<eé.

dim H'(Ty) = dim H*(N) — (n? + 2n),

dim H?(Ty) > dim H!(N).
3) n=4.

dim H'(Ty) < dim H°(N) + x(X) — 25,
where y(X) is the Euler-Poincaré characteristic of Oy.

Moreover since H'(Ox(D)) =0 (1 <i <n—m— 1) by Theorem 3 and our
assumption, we have
4) dim H'(N) = (m +1)dim H*(P", E) + dim H' (0x (D — F))

—dim H(0x(D — F)) — (m+ 1)?,

dim H/(N) ~ H* (Ox(D-F)) (1 <i<n—-m-2),

dim H'(N) < dim H?(Ox(D — F)) in case n = 4.

Summing up the above, we obtain the following because
dim H%(Ox(D — F)) = dim H(&nd(E)) — 1 and H'(Ox(D - F)) ~
H(énd(E)) (1 <i<n—m~—1) by Corollary 4.

THEOREM 13. Assume that Ky is ample and moreover, H'(P" E) =0
for 1<i<n—-m-—1 and H'(P* E(c; —6)) =0 in case n=4. Then we
have

1) dim H(Nypr) = (m+ 1)dim H*(P", E) + dim H'(P", &nd(E))
— dim H°(P", &nd(E)) — (m? + 2m),
H(Nypr) ~ H*'(P",6nd(E)) 1 <i<n—m-2),
dim H'(N) < dim H?(Ox(D — F)) in case n = 4.
2) n>T.
dim HY(Ty) = (m + 1) dim H°(P", E) + dim H'(&nd(E))
— dim H(P", &nd(E)) — (m* + 2m) — (n* + 2n),
dim H'(Ty) = dim H"'(Ny/p») = dim H'(P",&nd(E)) 2 <i<n—m—2).
3) 5<n<eé.
dim H'(Ty) = dim H'(N) — (n? + 2n),
dim H*(Ty) = dim H'(N)
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4) n=4.
dim H'(Ty) < 3dim H*(P*, E) + dim H!(P*, &nd(E))
— dim H(P*, &nd(E)) + x(X) — 33,

where y(X) is the Euler-Poincaré characteristic of Ox.

(5.4) Hilbert schemes

Let s#ilb be the Hilbert scheme of P”. In this subsection, we shall study
some geometric structures of #ilb at determinantal subvarieties using Lemma
7, Theorem 10 and Theorem 13 and as a by-product, we shall give a splitting
theorem which states that the geometry of #ilb is related to the splitting of
rank two bundles on P" (n > 4).

(5.4.1) Let X be a determinantal subvariety associated to E. Then the
following are well-known:

(a) The Zariski tangent space of J#ilb at X is isomorphic to H'(N x/p")-

(b) The dimension of every irreducible component of #ilb at X is at least
dim HO(Nx/pn) - dimHl(Nx/pn).

In this subsection, we assume that Ky is ample and moreover, H'(P" E)
=0for 1<i<n-—m-—1 and H'(P* E(c; —6)) =0 in case n=4.

By Theorem 13, we observe that

dim HO(N) = (m+1)dim H*(E) — (m+ 1)? + dim H'(6nd (E))
— dim H%(&nd(E)) + 1
= dim U’ + dim H'(&nd(E)) — dim H%(&nd(E)) + 1,

where U’ is the open subscheme of G = Grass(H°(E),m + 1) in Theorem 1
which parametrizes the determinantal subvarieties associated to E and

H'(Nypr) ~ H*'(6nd(E)) forl<i<n—m-2,
dimHl(NX/p") < dim H*(0x(D - F)) in case n = 4.

(5.4.2) Let Aut(E) be the automorphism group of E. Then Aut(E) is a
connected linear algebraic group of dimension dim H°(&nd(E)) and is
considered as a closed subgroup of GL(H°(P",E)) canonically because E is
generated by global sections. For example, if E is a simple vector bundle
(resp. E~@P°0(a) or E ~ O(a) ® O(b) (a > b)), then Aut(E) is the multi-
plicative group C* (resp. GL(2,C) for E ~ @2(9(a) or a semi-direct product of
a vector group H°(P", 0(a — b)) and a two-dimensional torus group (C*)* for
E ~ 0(a) ® O(b)).
For every element g € Aut(E) and s = <{s1,...,Sms1y € G, we define

g-s= <g(sl)7 e vg(sm+l)>7
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where g(s;) is the composite of s; with g. Then it defines an action of Aut(E)
on G and we have

g-sing-si=detg-si As; (I<i,j<m+1),
where det: Aut(E) 5 g — det(g) € C* is the determinant character. Hence if

we denote by X, the determinantal subvariety defined by se U’ as in (1.3.3),
then we find that X, coincides with X . Therefore Aut(E) acts on U’.

(5.4.3) As for the stabilizer Stab(s) of se U’, we have the following.
LeMMA 9. Stab(s) is equal to the multiplicative group C*.

Proor. First we check that {s; A5} (1 <i<j<m+1) consists of
linearly independent elements of H°(P”,0(c;)). Suppose that there is a non-
trivial relation

(*) SLA S = Z apSi A S (ar € C)

k<l, (k1) #(1,2)
and let U be an affine open subset of P” such that UN (., W(s;) # & and
s12 #0 on U, where E|U ~ @2(90 and s; | U = (si1,5i2) (s,-l_, s e HY(U, 0y),
l<i<m+1). As we have shown in (1.1), X; is defined by the equations
siAnsi=0(2<i<m+1)on U Let T be the closed subscheme defined by
the equations 51 A s5; =0 (3<i<m+1) on U. Then we obtain the following

equality on T:
@iSi2
S1 /\S2=Z —— |51 A5
i>3 12

by restricting the relation (%) to 7 because s; = (s11/512)8i2 3 <i<m+1).
Since T is unmixed and s; A s; is a prime element of height 1 in the affine
coordinate ring A(T') of T, it yields that 1+ ). 3(a2/s12)si2 is a nilpotent
element of A(T), which is a contradiction.

Next we show that Stab(s) is equal to the multiplicative group C*.
Assuming that g is contained is Stab(s), let us put

m+1
g-si=Y ausk (aeC, 1<i<m+1).
k=1

Then it follows that for any i and j (1 <i<j<m+1),

g-Sing-sj= E Ariayse N S| = E (ariay — anaw;)sk A si,
PN k<l

from which are derived

Qay = aay; for (k, j) # (i, ), a;a; — aja; = detg.
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Hence the matrix (a;) € GL(m+1,C) is a scalar matrix, i.e., g-s = as; for
some nonzero element a € C (1 <i<m+1). Let U be an affine open subset
of P” such that E|U ~ @2(90, si|U = (si,82) (1 <i<m+1) and let

g|U = (: Z) € GL(2, H'(U, 0y)).

Then we see that for 1 <i<m+1,
(a — a)siy + bsin =0, csip + (d — a)sip = 0.

Hence a =d =a and b =c=0. Since this holds on every affine open subset
of P" where E is trivial, we find that g is the multiplication by a e C.
As a trivial corollary of Lemma 9, we get the following.

COROLLARY 13. Every orbit is isomorphic to the quotient group Aut(E)/
C*. Hence the action of Aut(E) on U’ is closed, i.e., every orbit is closed
in U,

(5.4.4) let q: U' 55 — X, € #ilb be the induced morphism (cf. Theorem
1). Then we see that ¢ is an orbit morphism, i.e., ¢ is constant on any orbit
O(s) = {g - s| g € Aut(E)}.

(5.4.4.1) First we begin with proving that ¢~!(g(s)) (s€ U’) consists of
finitely many orbits.

1) Let (dg),: Tsur — Tx, »i» be the differential of g at s= (sy,...,
Sm+1), where Ty (resp. Ty, wup) is the Zariski tangent space of U’ at s (resp.
the one of J#ilb at X;). Then it is known that

a) Ts,U’ fad HOHI((S], Ce ,Sm+1>, HO(E)/<S1, ces ,Sm+1>)

~ H(@""' 0x,(D)) ~ H*(Ny,/p(x)) by Theorem 3

= {embedded deformations of Y;in P(E)},
where Y is the smooth complete intersection subvariey of P(E) defined by s in
(1.3).

b) T, win ~ H°(Ny,/p») = {embedded deformations of X, in P"}.

Let HY(E) = {s1,...,5m41) @ V be a direct sum decomposition of H°(E)
by vector subspaces. Let t={t|,...,tm+1|ti€ V} be a set of m+ 1 elements
of ¥V and consider the following embedded deformation % = P(E) x Spec(Cle])
(Cle] being the ring of dual numbers) of Y; in P(E): Locally on n~!(U) x
Spec(Cle]), # is defined by the equations

@/:(S,'1X1+S,'2X2)+£(ti1X1+ti2X2)=0 (1 <i<m+1),

where U is an affine open subset such that E| U ~ @2(90, si| U = (si,si2) and
4| U = (ta, t2) (sy, ti € H'(U, Op)).
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On the other hand, let us denote by % the closed subscheme of P” x
Spec(Cle]) defined by the equations

sinsitelsinti—sint)=0 (1<i<j<m+]1).

Then we find by the same argument as in Lemma 1 that if we restrict the
morphism 7z x id : P(E) x Spec(C[e]) — P" x Spec(Cle]) to %, then it gives an
isomorphism between % and #. Consequently % is the embedded defor-
mation of X; in P” which corresponds to % under =z x id.

2) Here we recall the exact sequence in Theorem 10

0 — Ox,(D - F) - @""' 0x,(D) ~ Ny, /p(5y — Nx,pp» — 0,
which gives rise to the exact sequence
0 — H(Ox,(D ~ F)) = @"" H(0x,(D)) — H'(Nx,pv) — -

Then by the results in 1), the homomorphism ™" H®(0x,(D)) — H°(Ny,/p+)
coinsides with (dg),. Hence we find that Ker(dg), ~ H(Ox,(D - F)).
Meanwhile, since ¢ is an orbit morphism, it is obvious that the Zariski
tangent space T () of O(s) at s is contained in Ker(dg),. In addition, we
find that Ker(dg), = Ty 0 because dim Ty o = dim H(6nd(E)) — 1=
dim H°(Ox,(D — F)) by Corollary 4 and Corollary 12.

3) Let ¢7'(q(s))yeqg = 01U --UQ, be the irreducible decomposition.
Then every Q; is an Aut(E)-invariant and irreducible closed subvariety of U’.
Suppose that Q; is not a single orbit. Let x be a smooth point of Q; and
consider an irreducible curve I' of Q; which is smooth at x and 7 r is not
contained in 7y o). Then it follows from 2) that (dg),(Txr) #0. On the
other hand, we have (dq).(Txr) =0, which is a contradiction. Hence every
Q; is a single orbit.

(5.4.4.2) Secondly we shall prove that ¢=!(g(s)),q (s€ U’) consists of a
single orbit when n =4 or 5. Indeed, assume X; = X for s,s' € U'. Then
there exists a non-singular matrix 4 = (ajw) € GL(3,C) such that

SiNSj= Z ApiijSy, A 87,
1<k<I<3
because {s; A 5;} (resp. {s{ A s;}) is a set of linearly independent elements of
HO(Pna {9(61))

Consider the following exact sequences corresponding to s and s’ re-

spectively in Lemma 7:

0 — E* L @Pop 5 Iy, ® 0(c)) — 0,
(%) l I
0 — E* i-> @3@P" L, IXS/®(9(CI) — O,



Determinantal varieties and splitting theorems 417

and let f:@P’0p» — @’Op» be the induced automorphism defined by A.
Then since a =a'o f, it turns out from the diagram (x) that there is an
automorphism g € Aut(E) such that fof =" og*, where g* is the dual
automorphism of g. We prove that {si,s,53) = <{g(s1),9(s5),9(s3)>. Let U
be an affine open subset of P” with a trivialization E | U ~ @2(0(/ and let £ be
an element of HO(U,E*). Then since we have

(foB)(£) = f(£(s3)er A e2 —£(s2)er A e3+£(s1)ex A e3)
={(s3))f(e1 A €2) —£(s2)f(e1 A e3) +£(s1)f(e2 A €3)

and
(B og™) () =B(g"(£)) =g"(£)(s3)er A e2— g™ (£)(s3)er A e2+g"(£)(s])ez2 A e3
=2(g(s3))er A e2 —£(g(s3))er A e3+£(g(s]))ez A e3,

it follows that there is a non-singular matrix B = (b;) € GL(3,C) such that

3
tg(s)) =D bitls)  (1<i<3),
j=1
from which we obtain the desired equality <{si,s2,s3) = <{g(s7),9(s3),9(s3)).
Let P(n) = x(Ox,(n)) (ne€Z) be the Hilbert polynomial of X, #ilbp =
{closed subschemes X of P” with y(Ox(n)) = P(n)} the Hilbert scheme with
respect to P = P(n) and let #ilb} be an irreducible component of #ilbp
containing the determinantal subvarieties associated to E, i.e., that of #ilbp
which contains q(U’) where q(U’) is the closure of g(U’) in #ilbp. Then
summing up the above, we obtain the following:

THEOREM 14. For any point se€ U', q7'(q(s)),eq consists of finitely many
orbits. Moreover, if n=4 or 5, then q='(q(s)),q is a single orbit. Hence we
have dim #ilb) > dimg(U’) = dim U’ — dim Aut(E)/C*.

(5.4.4.3) Let PGL(n+1,C) be the automorphism group of P” and let
T, :P"a3x —>oxeP"” be the transformation of P" defined by o€
PGL(n+1,C). Then we have:

1) PGL(n+1,C) acts on silbp. Moreover since PGL(n+ 1,C) is
connected, it acts on #ilbY.

2) The pull back T}(E) of E by T, is a very ample vector bundle on P”.

3) Fir every point s ={sy,...,5m+1) € U’, we find that o(X) = Xy,
where X, () is the determinantal subvariety associated to 7, (E) which is defined
by o(s) =<T(s1), - Ty (Smt1))-

Hence if we denote by U! the open subscheme of Grass(H(T}(E)),
m + 1) in Theorem 1 and by ¢, the morphism from U! to #ilb} for T}(E), we
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get the following commutative diagram:

U s s -5 X,e#ilb)
l l

U s o(s) 2 o(s) € HilbY.

(5.4.5) If H'(&nd(E)) =0, say E is a direct sum of line bundles, then we
observe from (5.4.1)

dimTy, wip, = dim U’ — dim Aut(E)/C* = dim¢(U’).
Hence Theorem 14 implies that #ilb) = q(U’) and #ilb) is smooth at the
determinantal subvarieties. Therefore, the following is obtained.

COROLLARY 14. If H'(P" &nd(E)) =0, then

1) H#ilb) coincides with q(U"). In particular, #ilb% is unirational and the
set of the determinantal subvarieties associated to E is Zariski dense in #ilb%.

2) HilbY is smooth at the determinantal subvarieties associated to E.

(5.4.6) G. Kempf [34] gave the following splitting theorem.
Theorem (G. Kempf) Let E be a holomorphic vector bundle on P"(n > 3)
and let P be a projective hyperplane in P". Then E splits if and only if

H'(P,énd(E)(-1)) =0  forany !> 0.

As an application of our previous observations, we shall establish another
similar splitting theorem for rank two vector bundles on P" (n > 4). Let P be
a 4- or 5-dimensional projective linear subspace of P” and let E = E|P be the
restriction of E to P.

THEOREM 15. E splits into line bundles if and only if H'(P,&nd(E)) = 0.

Proor. Since it is well-known that E splits if and only if E splits, we may
assume that E is a rank two vector bundle on P” (n being either 4 or 5). In
addition after multiplying E by a suitable line bundle, we may assume that E is
a very ample vector bundle enjoying the assumptions in Theorem 13. Suppose
that H'(&nd(E)) =0. Then Corollary 13 states that #ilb) = q(U’) and
HilbY is smooth at the determinantal subvarieties associated to E. On the
other hand, we see by (5.4.4.3) that #ilb} is invariant under the action of
PGL(n+1,C). Hence it follows that ¢(U’) = og(U’) for every element o €
PGL(n+1,C). Since q(U’) is a constructible set, there exist two elements
s,s" € U’ satisfying X; = o(X;) = X,(;). Consider the following exact sequences
in Lemma 7 corresponding to s’ and o(s), respectively:
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0— E*® 0(—c;) — @3(9(—c1) — Iy, — 0.
0— THE") ® O(—c1) — D’ 0(~¢1) — Ix,, — 0.

Then we observe by an argument similar to that in (5.4.4.2) that T)(E) is
isomorphic to E, which implies that E is a homogeneous bundle. Since every
homogeneous bundle on P” of rank r < n is a direct sum of line bundles (cf.
[27]), we can complete our proof.

(5.4.7) Remark 2. The proof of Theorem 15 tells us that the following
inverse problem is a key to solving the splitting problem for a rank two vector
bundle on P* or P°.

The inverse problem. Let E be a rank two vector bundle on P* (resp.
P°), P the Hilbert polynomial of a determinantal surface (resp. a determinantal
threefold) associated to E and let X be a general point of #ilb%. Then is X a
determinantal surface (resp. determinantal threefold) associated to E?

Indeed, suppose that the answer to the above inverse problem is affirmative
for E. Then #ilb} coincides with g(U’) and so our proof of Theorem 15
insures that E is a direct sum of line bundles.

See (6.1) for examples and their geometric structures of determinantal
surfaces associated to rank two bundles on P*.

6. Geography of determinantal surfaces

The geography of algebraic surfaces and threefolds of general type has
been extensively studied by many mathematicians (e.g., F. Catanese [5], [6], [7],
B. Hunt [17], U. Persson (28], G. Xiao [42],[43],...). As was shown in the
previous sections, our determinantal surfaces and threefolds are simply con-
nected and of general type in the general cases where they are not complete
intersections. In this section, we shall describe how the geography of those
surfaces look like and consequently we shall single out some new species in
certain botanical gardens. Unfortunately we do not know any indecomposable
rank two vector bundles on P” (n > 5). Hence we shall postpone describing
the geography of determinantal threefolds to the future, although we can
calculate the important invariants c13(TX), c1(Tx)e2(Tx), c3(Tx) for the geo-
graphy of determinantal threefolds in terms of the Chern numbers {cy,c;} of E.

(6.1) Determinantal surfaces.

Before describing the geography of determinantal surfaces, we shall explain
algebro-geometric structures of determinantal surfaces by using the results in
the previous sections.
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(6.1.1) Ampleness of the divisor F on X (cf. (3.3)). Assume that X is a
determinantal surface with p(X) =2 (cf. Lemma 2). Suppose that F is not
ample, ie., ¢: X — P? is not a finite morphism.

(1). Let X={yeP?|dimg!(y)=1}. Then the cardinality of X is
equal to 1. Indeed, let W;, W, be irreducible curves such that y; = ¢(W;)
(i=1,2) and y; # y,. Since F- W; =0, it follows that W? < 0 by the Hodge
index theorem and so the intersection matrix

F2. 0 0
0o wW: o0
0 0 w}

is non-singular. Thus {F, W), W>} are linearly independent in Pic(X) ® R.
This contradicts p(X) = 2.

(2) Let y be the unique point of 2 and W an irreducible curve contained
in p~!(p). Then by an argument similar to that in (1), W is a unique ir-
reducible curve in ¢~!(y). Hence W is determined uniquely.

(3) Since {F,H} is a basis of Pic(X), let us put W =xF+ yH
(x,y€Z). Then we have 0 = FW = xF? + yFH = xc? + ycic, and hence y =
—(ea/c1)x. On the other hand, we see that 0 < WH = x(FH — (cz/c;)H?) =
x(c1c2 — c2(¢? — 2)/e1) = (¢2/c1)x and so W = g(ciF — coH) for a positive
rational number q.

(4) Conversely if there exists an effective member of the complete linear
system |n(c; F — c,H)| for some positive integer n, then it is easily seen that F is
not ample. Therefore we obtain the following.

PROPOSITION 4. Under the above assumption, F is ample if and only if the
complete linear system |n(ci\F — c,H)| is empty for all positive integers n.

(6.1.2) Remark 3. Let us put W=cF —cH=—cD+(c}—c)H
which may not be an effective curve in general. If F is not ample, then it
follows from Proposition 4 that |nW| # & for a positive integer n and so the
extremal ray ¢; = Rso[W] (cf. (3.4.1)) is realized by an effective curve and

02 = (C‘i2 - Cz)/Cl.

(6.1.3) Let E be a very ample rank two bundle on P* and X a
determinantal surface associated to E. The Horrocks-Mumford bundle Eym
[16] is essentialy the only known indecomposable rank two bundle on
P*. Hence according to the following cases, we shall show algebro-geometric
structures of the determinatal surfaces X.

1) E=0(a)®0(a) (a=1),

2) E=00b)®0() (1 <b<a),

3) E= EHM(G) (a > 2)
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In each case, it is easily seen that a is the largest integer such that
H°(P* E(-a)) #0.

(6.14) E=0(a)®0(a) (a=1).

1) In this case, P(E) is isomorphic to P* x Pl. Let {si = (si1,82) | Six €
H°(P* 0(a)), 1 <i<3,1<k<2} be a set of sufficiently general three sec-
tions of E which satisfies the condition (x) in (1.1). Then Y is defined by the
following equations:

Y:snXi+s0pX2=0 (1 <i<3),

where {X},X,} is a system of parameters of homogeneous coordinates of P!.
Since ¢; =2a and E(—a) ~ (—BZ(QP4, we observe that the second projection
P(E) — P! coincides with the morphism defined by the complete linear system
|D — an*(H)| = |D - (c1 — a)n*(H))|.

2) Since Z (resp. Z*) is the restriction of D — an*(H) (resp. D—
(c1 —a)n*(H)) to X, the complete linear system |Z| = |Z*| satisfies the fol-
lowing.

a) |Z| is base points free, Z> =0 and dim|Z| = 1.

If we denote by ¥ : X — P! the morphism defined by |Z|, then ¥ is the
restriction of the above second projection to X. Hence every member of |Z| is
a fiber of Y and so it has the following equations:

s +son, =0 (1 <i<3),

where (#7,,7,) is a point of P!,

b) Since Ky = D + (2a — 5)H, general members of |Z| are smooth curves
with genus g(Z) =1+ (3a — 5)a®/2.

c) Every member of |Z| is irreducible because #; =a by Corollary 5.
Thus y : X — P! determines an irreducible fiber space structure of X over P!.

x Lp
lvf
PZ

3) If a=1, then y: X — P! is a P!-bundle over P! and moreover X
is isomorphic to the rational ruled surface F; = P(0 @ ¢(1)). In addition it
follows that the (—1)-curve W coincides with —2D + 3H =2F — H and the
birational morphism ¢ : X — P? is the blowing-up of P? with one point as the
center. Hence F is not ample and NE)(X) = NE;(X) has the following
extremal rays:

1 =Ryo[Z], £2 =Ry o[W].

4) Ifa>2, then Ky = D+ (2a — 5)H is very ample. Hence y : X — P!
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is an irreducible fiber space with smooth non-hyperelliptic curves Z of genus
g9(Z) =1+ (3a—5)a’/2 as general fibers. In this case, we prove that F is
ample. Assuming that there exists a unique irreducible curve W that is
mapped to the point y in P? we derive a contradiction. Since ¢, F — c;H =
a(—2D + 3aH), we find W = q(—2D + 3aH) with a positive integer g when a is
odd (resp. a half integer ¢ when a is even). Hence we consider the following
cases.

(1) ais odd. Take a line ¢ passing through the point y. Then ¢*(¢) =
Z' +aW (aeN) where Z’ is an effective curve, which implies that F — oW =
(20g — 1)D — (30g — 2)aH is effective. Hence we get a=g¢g =1 because
(3ag —2/(2ag — 1) < 1 by Corollary 5 and so we obtain W = —2D + 3aH =
F—-2Z, ie, Z+ W e |F|. Since every member of |F| is a pull-back of a line
under ¢ by Corollary 3, ¢(Z) is a line for every fiber Z of y. On the other
hand, the morphism ¢ : X — P? is defined as follows:

@: X 2x— (s11() : 521(x) : 531(x)) = (512(x) = $22(%) : $32()) € P2

Therefore it follows from the Hilbert Nullstellensatz that the six sec-
tions {s; € H°(P*,0(a))|1 <i<3,1 <j<2} are linearly dependent over k.
However when a > 2, they are linearly independent by the choice of those
sections because of dim H°(P* 0(a)) > 15, which is a contradiction.

(2) a is even. Let a=2d (deN). Then we find W = q(—D + 3dH)
(9 € N). By an argument similar to that in (1), it follows that ¢ = 1 or 2 and
that we have either F — W =dH or F-2W =Z for ¢g=1and F-W =2
for g=2. 1In (1), it was proved that F — Z is not effective. If F=dH + W,
then we have dim H°(0x(F)) > dim H°(Ox(H)), which is a contradiction
because of 3 =dim H%(Ox(F)) by Corollary 3 and dim H%(Ox(H)) =5 by
Corollary 6.

(6.1.5) E=0(b)® 0(a) (1 <b < a).

1) Since E(—a)=0(b—a)® 0, it follows that dim|D —an*(H)| =0
and the unique effective member of |D — an*(H)| which we denote by I is
the section of 7 : P(E) — P* corresponding to the quotient line bundle ¢(b).
In addition since E(—b) =0 @® O(a —b) is generated by global sections and
H°(E(-b)) has a basis {(1,0),(0,X---X*)| g = a —b,0; > 0} where
{Xo, X1,..., X4} is a system of homogeneous coordinates of P4, |D — bn*(H)|
determines a morphism y : P(E) — PV such that:

a—b+4
(1) N=< s )

(2) Let Up={Xp # 0} be an affine open subset of P* and {&;,&,) a
system of homogeneous coordinates of P'. Then ¥ is expressed on n~!(Up)
~ Uy x P! as follows:
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X X X Xgb
Up x P'5 ((7;7;)“1 ;52)> . <¢1 :ézz—ﬁfz:...;X}_béz) cPV

and I is defined by & = 0. Hence it follows that y(I') = (1:0:---:0) and ¢
is an immersion outside of I'. Let = be the divisor corresponding to the
quotient line bundle O(a) of E. Then £ is a member of |D — bn*(H)| and =
is defined by & =0 on n~!(Up) and hence ¥ : & — PV~ is nothing but the
Veronese embedding of P* of degree (a—b)*. Thus y(P(E)) is the cone
having O=(1:0:---:0) as the vertex and Y(P(E)) as the base variety.
Moreover since Op(D) ~Or(bH), it is easily seen that R'Y,(Opg))o =0
(i>1), ie., O is a rational singular point with multiplicity (a — b)*.

2) We have H°(O(p)) (D — bn*(H)) ~ H*(Ox(D — bH)) by Theorem 3
and Z* is the intersection of & with X. Thus:

a) |Z*| is free from base points, (Z*)> =a3(a —b) and the morphism
defined by |Z*| is the restriction of ¥ to X which we denote also by .

b) Since Z is the intersection of I” with three generic very ample divisors,
Z is a smooth curve with Z-Z* =0, Z> = —(a— b)b> and genus ¢g(Z) = 1 +
(3b — 5)b*/2. Z is mapped to the point O under  and y is an isomorphism
outside of Z. Hence y is a contraction morphism of X along Z to a normal
surface y(X).

c) We have R, (Ox), =lim H 1(0,z). Consider the exact sequence

0— (OZ(——nZ) - @(n+l)Z — (an — 0.
This gives rise to an exact sequence
— H(Opuy1)z) = H*(Onz) = H' (02(-nZ)) — H (Ons1)z) = H' (Onz) — 0.

Hence it follows that dim R'y,(Ox), = g(Z) if and only if H'(0z(-Z)) = 0.
Since 0z(D) ~ Oz(bH), we get that H!'(0z(—2Z)) ~ H*(0z(2Z + Kx)) =
H°(0z((4b —a—5H)) =0 is equivalent to b < (a+5)/4. Summing up the
above, we see that O is a rational singular point if and only if 5=1. In
addition when a=2 and b =1, Z is a (—1)-curve and ¢ is the blowing-up of a
smooth K3 surface y(X) with center O that is a complete intersection of three
quadrics in P°. Since Ky = D + (a+b — 5)H, X is of general type except for
the case a =2, b= 1.

3) We prove that F is also ample in these cases. As in the proof in
(6.1.5) 4), let W be the irreducible curve satisfying ¢(W) = y. Let a = ea’ and
b = eb’ where e is the greatest common divisor of a and b. Then we see
W = g{—(a’ +b")D +e(a + a'b’ + b'*)H} with a positive integer g, provided
a’ + b’ and e are relatively prime. By an argument similar to that in (6.1.4) 4),
it follows that g=5b'=1 and a’Z+ W €|F|. Since there exists an exact
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sequence
0 — H*(0x(a'Z)) —» H*(0x(F)) - H(Ow) —,

we get 3 =dim H(Ox(F)) < dim H(0(a’Z)) + 1, which is a contradiction
because of dim H%(Ox(rZ)) =1 for all positive integers . In the remaining
case, we can also derive a contradiction similarly.

(6.1.6) E = Eym(a) (a > 2).

(6.1.6.1) 1) Let E = Eym(a) (a€Z) where E = Eyy is the Horrocks-
Mumford bundle [16] that is a stable rank two vector bundle of P* with
c1(Eam) =5, c2(Egm) = 10.  First we shall show that E is very ample if and
only if a > 2. To this end, we shall recall the following on the Horrocks-
Mumford bundle (cf. [3], [4], [38]).

(1) We can construct Eyy geometrically by elementary transformations
of algebraic vector bundles as follows. Consider the following quintic
hypersurface X in P*:

4 4
X:Z,ﬁ—sHX,-:o,
i=0 i=0

where {Xp,..., X4} is a system of homogeneous coordinates of P*. Then we
observe that

Sing(X) = {(é“" s E%) ep?

24:“" =0 (modS)},

i=0

where Sing(X) is the singular locus of X and & = exp(2xi/5) is a primitive fifth
root of unit and |Sing(X)| = 125.

Consider the diagonal subgroup B = {(&%,..., &%) | Z?:o a; =0 (mod5)}
of PGL(5,C). Then B is isomorphic to @3Z/ (5) and is normalized by the
symmetric group Ss of degree 5. If we define G = B - S5 (semi-direct product)
(|G| = 15,000), then we see that G leaves X invariant and it acts on Sing(X)
transitively. We represent elements a,7,4 of SL(5,C) by matrices:

0 0 0 01 1 0 0 0 O 1 00 00O
1 0 00O 0 & 0 0 O 00010
e=|l0 1 00 0|, z=|0 0 ¢ 0 0|, u=|/0 1 0 0 O
00100 00 0 & o 000 01
00010 00 0 o ¢& 00100
Then one can easily verify the following relations:
o 10 = &1, wltu =12, 1ot = &, wlop=d.
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Let o; be the i-th elementary symmetric function with respect to {Xo,..., X4}
(0 <i<4). Since the defining equation of X is expressed as

4 4
ZX}S—SHX}=612A§4—622Xi3+G3ZX,-2—U4ZX,',
i=0 i=0
X contains a smooth quadric surface S: o) =g, =0.

W .= Z?:o 7/(S) is an effective Weil divisor of X of degree 10. Then the
complete linear system || of W satisfies the following properties:

(a) dim|W|=1.

(b) The base locus Bs(|W]) is contained in Sing(X) (|Bs(|W])| = 100).

(c) General members of |W| are abelian surfaces.
Hence the above observations insure that the triple (P4 X,|W|) satisfies the
conditions for the elementary transformatios of algebraic vector bundles [39]
and so there exist a rank two stable bundle which is isomorphic to the
Horrocks-Mumford bundle Eyym with G as symmetries and two sections
{s1, 52} (sieHO(P4,EHM), i=1,2) such that

X =Z(s1 A 8) : the zero locus of 51 A sy,

W = Z(s1) : the zero locus of sy.

Accordingly we obtain an exact sequence

2, Eam =5 I(W) ® 0(5) — 0,

0 — Ops

where I(W) is the defining ideal sheaf of W. In addition, Z(s) € |W| is an
abelian surface for a general section seHO(P4,EHM).

(2) Let {Y;} (0<i<4) be the following new system of homogeneous
coordinates of P*:

4
=Y &X;,  (0<i<4).
j=0

Then it follows that each S; = 7/(S) is defined by equations
Yi=YnYi1+ Y0¥ 2=0
and H°(I(W)(5)) is a 3-dimensional vector space with a basis {fy, f1, f»},

where

4
fi=YNhYsYs,  fi=) (Y (NiYs+ 12 T3),
pry

£

=) T (MY} (N Ya+ Yo Y3)).
i=0



426 Hideyasu SUMIHIRO
If we put Y to be the closed subscheme of P* defined by

fo=fi=1£=0,

then we observe that Y has the following 30 irreducible components:
(a) S;i(0<i<4),
(b) ¢5:17/(Yo) =0, /(Y1) =¢1/(Ya), ©/(Y2)=¢e(Y3) (0<i<j<4),
where & = —1 (0 <i<4).
The last 25 lines are called the HM—I/ines (Horrocks-Mumford lines).
Consider the following commutative diagram of exact sequences:

0
1
Ops
1
(*) 0 — F — EHM — EHM/F — 0,
1 1 l
0 — J(W)(O5) — I(W)(5) — I(W)/J(W)(5) — O

!
0

where F is the subsheaf of Eym generated by global sections of Eym (resp.
J(W)(5) is the subsheaf of I(W)(5) generated by global sections of I(W)(5)).
Then since the diagram () yields an isomorphism Eym/F ~ I(W)/J(W)(5), it
turns out that Supp(Eym/F) consists of the above HM-lines. Consequently
we find that Eyy is generated by global sections outside of those 25 HM-lines
(cf. [16]).

(3) There exists the following commutative diagram of exact sequences:

0 0 0
1 1 1
00— 0) — G — J(W)(6) — 0
1 ! !
o(1) -  Eum(l) - 1(w)(6) -0,
1 1 !
0 Eam(1)/G =~ I(W)(6)/J(W)(6)
1 1
0 0

where G is the subsheaf of Eym(1) generated by global sections of Epm(1)
(resp. J(W)(6) is the subsheaf of I(W)(6) generated by global sections). Hence
Supp (Eum(1)/G) = Supp(I(W)(6)/J(W)(6)). Since Egm(l) is generated by
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global sections outside of the 25 HM-lines, Supp(I(W)(6)/J(W)(6)), which is
invariant under the action of 7, is contained in U/,j

It is known that H°(I(W)(6)) is a 30-dimensional vector space with a
basis {t'(g;)} (0<i<4, 0<j<5), where

gi=Yofp (0</<2),
g3 = Yo Y (YoV1 Ya+ Y7 Y3+ Yo 1),

YoYaY3(YoYaYs+ Y1 Y5 + Y7 Ya),

g4
gs = Y1 Y2Y3Y4(Y1Y4+ Y2 Y3).

Hence by an argument similar to that in (1), Supp(I(W)(6)/J(W)(6)) = &,
i.e.,, Egm(l) is generated by global sections.
(4) For a line # in P*  let us put

Eumlt = 02— k) ® 03 +k) (k> 0).

Then it is known that k=0 for a generic line / by the Grauert-Miihlich
theorem and that & > 3, i.e., / is a triple jumping line if and only if / is one of
the HM-lines by [3]. Hence we observe that 0 < k < 3 for every line / and
k =3 if and only if ¢ is an HM-line because Eyym(l) is generated by global
sections. In addition, we see that Eppm(l) is l-ample in the sense of A.
Sommese and E = Eym(a) is very ample if and only if a > 2.

Summing up the above, we obtain the following.

ProPOSITION 5. Epm(l) is generated by global sections and it is 1-ample
in the sense of A. Sommese. Hence E = Eum(a) is very ample if and only if
a=2.

(6.1.6.2) We shall investigate the geometric structures of the determinantal
surfaces associated to E = Epm(a) (a > 2).

1) The following are known (cf. [16]):

a) dim H°(P* Egm) = 4, dim H(P*, Euym(—1)) =0 and the zero locus
W(s) is an abelian surface for a general section s € H(P*, Eyym).

b) Eum is generated by global sections outside of 25 HM-lines {#;} and
EHM |/,j fadg (9(—1) @ (9(6)

Let 7 : P(Egm) — P* be the structure morphism, Dyy the tautological
divisor of P(Eum) and let #; be the section of 7; : P(Eum|¢;) — £; corre-
sponding to the quotient line bundle: Eum|¢; — O(—1). Then we find that
generic members of the complete linear system |Dym| are irreducible and
smooth and the base point locus Bs(|Dym|) of |Dum| coincides with U/l’j
Hence if we denote by  the dominant rational map P(E) — P? associated to
|Dum|, then y is regular on P(Eum)\\JZ}-
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2) Let us put D = Dym + an*(H) (a = 2) which is a very ample divisor
by Proposition 5. If we denote by X a determinantal surface associated to
E = Eym(a), then:

(1) Kx = D+ 2aH is very ample.

(2) dim|Z| =3, Z? = 5(a® +9a® + 15a — 5) > 0 and a generic member of
|Z| is an irreducible smooth curve of genus 1+ (3a* + 55a® + 225a% + 225a —
50)/2 because Z is the restriction of Dyy to X and ¢; =2a+5 and ¢; =
a? + 5a + 10.

(3) The base point locus Bs(|Z|) of |Z| consists of at most finitely many
points. Hence |Z| defines a rational map:

l//,Zl X — P3,

which is the restriction of {y to X. Indeed, suppose that some /{j is contained
in X. Then we find that Z - /{j = —1, which contradicts Z%2 > 0. Hence it
follows from 1) that Bg(|Z|) is at most a finite set. If we take a sufficiently
general X, then Yz is a regular morphism because Bs(|Z]) = .

(6.1.6.3) We shall describe the geometric structure of #ilb} for E =
Eym(a) (a>=2). It is known (cf. [8]) that

dim H'(6nd(E)) =24,  dim H*(énd(E)) = 2.
Hence we have

dim H(N) = dimq(U’) +24, dimH'(N) <2.
Consider the canonical morphism

&: PGL(5,C) x q(U") 3 (0, X;) — a(X;) € HilbY.

Then &£ is a quasi-finite morphism and so dimé&(PGL(S5,C) x q(U’)) =
dimg(U’) + 24 because {o € PGL(5,C)|T;(Eum) ~ Eum} is a finite group.
Thus we find that #ilb% coincides with £(PGL(5,C) x q(U’) and it is smooth
at all determinantal surfaces associated to T(E) for any ¢ € PGL(5,C).

(6.2) The geography of determinantal surfaces.

Let ¢1(X) = ¢1(Tx) be the anti-canonical divisor and c¢,(X) = ¢2(7Tx) the
Euler-characteristic of a smooth projective surface X. Then c¢(X) and x(X) =
(c3(X) + c2(X)/12 are two fundamental invariants for the geography of sur-
faces of general type.

(6.2.1) We have shown in Theorem 11 that

c(X)=—-D—(c; —5H, c3(X)=—(5-73c;)DH + (10 — 5¢,)H>.
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Hence c¢?(X), ca(X) and y(X) are described in terms of the Chern numbers {c;}
(i=1,2) of E as follows.

LemMa 10. 1) c(X) = 4cf —20c} — 8c?cy + 25¢2 + 30cic; + ¢ — 25¢;.

2) (X)) =3c} — 10c} — 6¢?cy + 10c? + 15¢1¢, — 10c;.

3) x(X) = (T¢} —30c; — 14c2c; + 35¢% + 45¢c1c2 + 5 — 35¢2)/12.

In particular we observe that c¢3(X), c2(X) and y(X) depend only on the
Chern numbers of E.

(6.2.2) REMARK 4. According to the cases 1) E = O(a) ® O(b) (a,b eN)
and 2) E = Eym(a) (a > 2), the above invariants in Lemma 9 can be calculated
explicitly as the following.

1) E=0(a) ® O(b).

c(X) = 4a* + 8a%b + 9a*b* + 8ab® + 4b* — 204> — 30a%b — 30ab?
— 206> + 25a* 4 25ab + 25b?,
e2(X) = 3a* + 6a°b + 6a%b? + 6ab’ + 3b* — 10a® — 15a°b — 15ab?
— 1053 + 10a* + 10ab + 10b?,
x(X) = (7a* + 14a>b + 15a*b* + 14ab> + 7b* — 30a® — 45a*b — 45ab* — 30b°
+ 3542 + 35ab + 35b%)/12.
2) E = Eum(a).
c}(X) = 33a* + 230a® 4 4502 + 225a — 25,
c2(X) = 24a* + 190a® + 465a% + 375a + 25,

x(X) = (57a* + 420> + 9154 + 600a) /12.

(6.2.3) Let R? be the Euclidean plane with the coordinates (y(X),c?(X)).
Then it is known that surfaces of general type enjoy the following inequalities:

a) c2(X)>0, a(X) >0, x(X) >0,

b) c?(X)=2x(X)—6. The line ¢? =2y(X) —6 is called the Noether
line.

c) c}(X)<9x(X). The line c}(X)=9x(X) is called the Yau-Miyaoka
line.

d) If X is a complete intersection, then c?(X) < 8y(X).

e) If X admits a genus two fibration, then ¢f(X) < 8x(X).
We shall study the geography of invariants of determinantal surfaces of general
type according to whether 1) ¢Z —4c¢; >0 or 2) ¢ — 4¢c; < 0, where ¢; (i = 1,2)
is the i-th Chern number of E.
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1) Cf‘ —4cy > 0.

a) By Lemma 10, we find that

19¢2(X) — 132x(X) = 8¢3 + (2¢} + 75¢1 — 90)cz — (cf + 50¢; — 90c?).
Hence let us put

f(c2) = 8c3 + (2¢2 + 75¢1 — 90)c; — (cf + 50¢; — 90c3)
= 8{cy + (2¢ + 75¢; — 90)/16}>

— (36¢? + 1900c? + 2385¢2 — 13500¢; + 8100),/32.

Then we observe

2 12 4
f(czl_) = —‘74—5‘6‘12<Cl —%) <0 for ¢; > 3.

Hence it follows that f(c;) <0 for ¢; > 3, which implies that

132

(X)) < —lg—x(X) when ¢; > 3.

b) In addition for a natural number n, consider the determinantal
surfaces X' associated to E' = E(n). Then since we have

¢; = ¢+ 2n, ¢ =cy+cn+n?,
where ¢/ (i =1,2) is the i-th Chern number of E’, they yield that

c}(X') = 33n* + (lower order term), c2(X') = 24n* + (lower order term),

x(X') = %n“ + (lower order term),

which tell us that lim,_,,c}(X')/x(X’) = 132/19. Therefore we find that the
line c?(X) = 132/19x(X) is an asymptote of the geography of determinantal

surfaces.
c) It is easily checked that

(X)) = 4x(X) = 1{2c2 — (10c? — 45¢; + 40)c; + (5cf — 30c] + 40c?)}.
Hence if we put
g(c2) = 2¢2 — (10¢? — 45¢; + 40)c; + (5¢f — 303 + 40¢?),
then

2
g(%‘) = §c$(7c12 —50c; +80) >0  for ¢ =5,
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which implies that
4 < ct(X)/x(X) forc; = 5.

In the cases 3 < ¢; <4, it follows from Corollary 10 that ¢(X)/x(X) = 54/17
=3.1764 ... when E = 0(1) ® 0(3) and c¢}(X)/x(X) = 28/11 = 2.5454 ... when
E=0Q2)® 0(2).

Summing up the above, we obtain the following.

THEOREM 16. If ¢ — 4cy > 0, then we have 4y(X) < c?(X) < (132/19)x(X)
except for the cases E = 0(1) @ 0(3) and E = 0(2) ® 0(2). The line c¢}(X) =
(132/19)x(X) is an asymptote of the geography of determinantal surfaces.

2) ¢t-4e<0.
a) Let us put
& = {E|E is a rank two very ample bundle on P* with ¢} — 4c; < 0} /isom.

and define a real number 6; as follows:

12(4ct — 8cicy + c?
03=Sup{ (41 21 2 22)}
Ece | Tcf — l4cicr + 5

First we prove the inequality 132/19 < 65 < 8. To prove 03 < 8, it is enough
to check that for every member E € &, the following inequality holds
12(4ct — 8c2cy + ¢3) <3
Tet —14ckc; + c2

)

which is equivalent to 2¢f — 4cic; — ¢ > 0. Since ¢; >0 (i=1,2), ¢} —2¢; >
0 and ¢} —3c?c; +¢3 >0 by (3.2.2), we observe that
2t —4ciey — ¢ = 2(ct —3cier + 3) + 2¢x(c} — 2¢2) + ¢ > 0.
Moreover since ¢ —4c; <0, it is easily seen that 8c?+2cic; —cf =
—(c? + 2¢3)(c? — 4c3) > 0, which is equivalent to
12(4c} — 8cZcr +¢2) _ 132
Tef — 14ctc;, + c2 19

and hence we can obtain the inequality ¢3 > 132/19.
b) Next we prove that ¢?(X)/x(X) < 65 holds. To this end, it suffices to
verify that

(X) - 12(4cf — 8c%cy + ¢3)
x(X) ~ Tef —14cie, + 2
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that is equivalent to
20¢] — 70c;ics + 50cic? — 35¢8 + 105¢}cr — 60c?c2 + 15¢i1¢3 — 103 > 0.

As mentioned in a), we find that ¢}/4 < ¢; < &c?, where & = (3 —1/5)/2. Let
us put

F(x) = Ber = 2)x* +2¢3(5¢1 — 6)x? — T} (2¢1 — 3)x 4 ¢ (4e; — 7).
Then we find that

S(&e}) =509 - 4v5)e _w 0

from which we obtain by a standard argument that f(c;) >0 for c}/4 <
¢ < &c?. Hence we can establish the desired positivity.

c) Let f:P*— P* be a finite morphism of degree n* and E' = f*(E) the
pull-back of E by /. Then we see that ¢| = ncy, ¢; = n’c, where {c/} (i=1,2)
is the i-th Chern number of E’. If X’ denotes a determinantal surface
associated to E’, then

cH(X') = (4c] — 8ctcy + cF)n* —10(2¢; — 3cica)n® +25(c? — ea)n?,

n_ (Tt —14cier + c)n* — 15(2¢3 — 3eye)n® + 35(ci — ca)n?

lim cH(X')  12(4c} — 8cte, + c3)
n—oo X(X/) - 76‘;1 - 14C12€2 + C%

Therefore the line ¢?(X) = 603x(X) is an asymptote of the geography of
determinantal surfaces. Thus we obtain the following.

THEOREM 17. If ¢} —4c; < 0, then it follows that c(X) < O3x(X), where
03 = supgg{12(4ct — 8cicy + ¢2)/(Tc} — 14ctc, + ¢3)} and & = {E|E is a rank
two very ample bundle on P* with ¢} — 4c, < 0} /isomorphism. Then line c¢}(X)
= O3x(X) is another asymptote of the geography of determinantal surfaces.
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