Dimensions of scattered sets

Tae Sik Kim (Received October 14, 1996) (Revised May 8, 1998)

ABSTRACT. Hausdorff and packing dimensions are used to measure the complexity and irregularity of a set, though their calculations are in general not so easy. In this paper we define scattered sets which describe a typical form of explosions and then estimate their Hausdorff and packing dimensions.

1. Introduction

Let (X,d) be a complete metric space and $\mathcal{P}_n(X)$ denote the family of subsets of X having n elements. Then we call a set valued map $\phi: A \subset$ $X \to \mathcal{P}_n(X)$, n > 1, an *n-scattered map* on A.

For a sequence $\Phi = {\phi^k}$ of n_k -scattered maps, $\phi^k : A^{k-1} \to \mathscr{P}_{n_k}(X)$, in which $\mathbf{A} = \{A^k\}$ is defined inductively by

$$A^0 = \{x_1, x_2, \dots, x_{n_0}\}$$
 and $A^k = \bigcup_{y_{k-1} \in A^{k-1}} \phi^k(y_{k-1})$

for each $k \in \mathbb{N}$, we call (\mathbf{A}, Φ) a scattered system. Here the image of $y_{k-1} \in A^{k-1}$ may also be denoted by $\phi^k(y_{k-1}) = \{y_{k-1j} : j = 1, 2, \dots, n_k\}$. Moreover, when there exists a function $f: \bigcup_{k=0}^{\infty} A^k \to (0, \infty)$ and 0 < a < 1 such that

- (1) $d(y_k, y_{k+1}) \le f(y_k) f(y_{k+1}),$
- (2) $d(y_k, y_k') > (1+a)\{f(y_k) + f(y_k')\},$ (3) $a \le f(y_{kj})/f(y_k) = f(y_{kj}')/f(y_k') \text{ and } f(y_k) \setminus 0 \text{ as } k \to \infty$ for each $y_k, y_k' \in A^k$ and $y_{k+1}, y_{kj}, y_{kj}' \in A^{k+1}$, we call (\mathbf{A}, Φ) an f-bounded scattered system.

We recall the definition of Hasudorff and packing dimensions [2], [3]. Let F be a given set and |U| denote the diameter of a set U. Then $\{U_i\}_{i=1}^{\infty}$ is called a δ -covering of F if $F \subset \bigcup_i U_i$ and $|U_i| < \delta$, and is called δ -packing of F if $\{U_i\}$ is pairwise disjoint, $\overline{U_i} \cap \overline{F} \neq \emptyset$ and $|U_i| < \delta$. Then s-dimensional Hausdorff measure $H^s(F)$ and Hausdorff dimension $\dim_H(F)$ are defined by

²⁰⁰⁰ Mathematics Subject Classification. 28A78, 28A80

Key words and phrases. scattered set, Hausdorff dimension, packing dimension.

 $H^{s}(F) = \lim_{\delta \to 0} H^{s}_{\delta}(F)$ where $H^{s}_{\delta}(F) = \inf\{\sum_{i=1}^{\infty} |U_{i}|^{s} : \{U_{i}\} \text{ is a } \delta\text{-covering of } F\}$, and $\dim_{\mathbf{H}}(F) = \sup\{s \geq 0 : H^{s}(F) = \infty\}$ (or $\inf\{s \geq 0 : H^{s}(F) = 0\}$).

And let $\mathscr{P}(F) = \lim_{\delta \to 0} \mathscr{P}_{\delta}(F)$ where $\mathscr{P}_{\delta}(F) = \sup\{\sum_{i} |U_{i}|^{s} : \{U_{i}\}$ is a δ -packing of F. Then s-dimensional packing measure $P^{s}(F)$ and packing dimension $\dim_{P}(F)$ are defined by $P^{s}(F) = \inf\{\sum_{i} \mathscr{P}(F_{i}) : F \subset \bigcup_{i=1}^{\infty} F_{i}\}$ and $\dim_{P}(F) = \sup\{s \geq 0 : P^{s}(F) = \infty\}$ (or $\inf\{s \geq 0 : P^{s}(F) = 0\}$).

In this paper, we define a scattered set from the scattered system and estimate its Hausdorff and packing dimensions. From now on, $B(y_n)$ denotes the closed ball $B(y_n, f(y_n))$.

2. Main results

LEMMA 1. Let $(\mathbf{A}, \boldsymbol{\Phi})$ be an f-bounded scattered system and let $\{y_k\}$ be any sequence such that $y_{k-1} \in A^{k-1}$ and $y_k \in \phi^k(y_{k-1})$ for each $k \in \mathbb{N}$. Then $\{y_k\}$ is a Cauchy sequence in X and so has a limit point.

PROOF. Since $f(y_n) \setminus 0$ as $n \to \infty$, for every $\varepsilon > 0$ there exists an $\mathcal{N} \in \mathbb{N}$ such that $f(y_k) < \varepsilon$ for $k \ge \mathcal{N}$ and $y_k \in A^k$. Then for any $n > m \ge \mathcal{N}$,

$$\begin{split} d(y_m, y_n) &\leq d(y_m, y_{m+1}) + d(y_{m+1}, y_{m+2}) + \dots + d(y_{n-1}, y_n) \\ &\leq \{f(y_m) - f(y_{m+1})\} + \{f(y_{m+1}) - f(y_{m+2})\} + \dots \\ &\quad + \{f(y_{n+1}) - f(y_n)\} < \varepsilon. \end{split}$$

Thus $\{y_n\}$ is a Cauchy sequence.

From the above Lemma, we can define the following set,

DEFINITION 2. For a given f-bounded scattered system $(\mathbf{A}, \boldsymbol{\Phi})$, its scattered set is defined by

$$\Lambda(\mathbf{A}, \Phi) = \{ y \in X : y \text{ is the limit of a sequence } \{y_n\} \text{ satisfying the condition of Lemma } 1 \}.$$

From the following Theorem, we can find some topological properties of the scattered set.

THEOREM 3. $\Lambda(\mathbf{A}, \Phi)$ is perfect, totally bounded and compact.

PROOF. Let $y \in \Lambda(\mathbf{A}, \Phi)$. Then there exists $\{y_n\}$ such that $y_n \to y$ as $n \to \infty$. Since $f(y_n) \setminus 0$ as $n \to 0$, for every $\varepsilon > 0$ there exists an $\mathcal{N} \in \mathbb{N}$ such that $f(y_n) < \varepsilon/2$ and $d(y_n, y) < \varepsilon/2$ for each $n \ge \mathcal{N}$. And for this \mathcal{N} any sequence $\{y_n'\}$ with $y_\ell' = y_\ell$ for $\ell < \mathcal{N}$ and $y_\mathcal{N} \ne y_\mathcal{N}'$ satisfying the condition of Lemma 1 has a limit point y' in $\Lambda(\mathbf{A}, \Phi)$. Since $d(y_k, y_k') > f(y_k) + f(y_k')$, $B(y_k) \cap B(y_k') = \emptyset$ and since $d(y_k, y_{k+1}) \le f(y_k) - f(y_{k+1})$ for

each $y_{k+1} \in \phi^{k+1}(y_k)$, $B(y_{k+1}) \subset B(y_k)$. Then $\bigcap_{n=0}^{\infty} B(y_n) = \{y\}$, $\bigcap_{n=0}^{\infty} B(y_n') = \{y'\}$ and $y' \in B(y, \varepsilon) \setminus \{y\}$. Hence $\Lambda(\mathbf{A}, \Phi)$ is a perfect set.

Now for any $\varepsilon > 0$, take an $\mathcal{N} \in \mathbb{N}$ such that $f(y_n) < \varepsilon$ for any $y_n \in A^n$ with $n > \mathcal{N}$. Then as above, every $y \in \Lambda(\mathbf{A}, \Phi)$ is contained in $B(y_n)$ for some $y_n \in A^n$ and so $\Lambda(\mathbf{A}, \Phi) \subset \bigcup_{y_n \in A^n} B(y_n, \varepsilon)$. Hence $\Lambda(\mathbf{A}, \Phi)$ is totally bounded.

The compactness follows from the above two properties.

We will estimate the Hausdorff and packing dimensions of the scattered set.

THEOREM 4. Let

$$\underline{D} = \sup \left\{ s \ge 0 : \liminf_{n \to \infty} \sum_{y_n \in A^n} f(y_n)^s = \infty \right\}$$
$$= \inf \left\{ s \ge 0 : \liminf_{n \to \infty} \sum_{y_n \in A^n} f(y_n)^s = 0 \right\}.$$

Then $\dim_{\mathbf{H}} \Lambda(\mathbf{A}, \boldsymbol{\Phi}) = \underline{D}$.

PROOF. Since $f(y_n) \setminus 0$ as $n \to \infty$, $\Phi(s,k) = \sum_{y_k \in A^k} f(y_k)^s$ is continuous and decreasing for s and for sufficiently large k. And since $\Phi(s,k) \to 0$ as $s \to \infty$ and $\Phi(0,k) = n_0 n_1 n_2 \cdots n_k \to \infty$ as $k \to \infty$, $0 < \liminf_{k \to \infty} \Phi(s,k) < \infty$ implies $\liminf_{k \to \infty} \Phi(s_1,k) = \infty$ and $\liminf_{k \to \infty} \Phi(s_2,k) = 0$ for $s_1 < s < s_2$, and so \underline{D} is well-defined. We may suppose $0 < \underline{D} < \infty$.

For $s > \underline{D}$ and for given $\delta > 0$, take an $n \in \mathbb{N}$ such that $f(y_n) < \delta/2$ for all $y_n \in A^n$. Then as in the proof of Theorem 3, we have $\Lambda(\mathbf{A}, \Phi) \subset \bigcup_{y_n \in A^n} B(y_n)$ and

$$H^s_\delta(\Lambda(\mathbf{A}, \Phi)) \leq \sum_{y_n \in A^n} |B(y_n)|^s = 2^s \sum_{y_n \in A^n} f(y_n)^s.$$

Hence $H^s(\Lambda(\mathbf{A}, \Phi)) \leq \liminf_{n \to \infty} 2^s \sum_{y_n \in A^n} f(y_n)^s < \infty$ for $s > \underline{D}$ or $\dim_H \Lambda(\mathbf{A}, \Phi) \leq \underline{D}$.

Now let $s < \underline{D}$. To define a mass distribution on X, let \mathscr{F}_n be the family of arbituary unions of $B(y_n)$'s and \mathscr{F} be the completion of the smallest σ -algebra generated by $\bigcup \mathscr{F}_n$. And define a set function μ on $\{B(y_n): y_n \in A^n, n \in \mathbb{N}\}$ by

$$\mu(B(y_n)) = f(y_n)^s / \sum_{y_n' \in A^n} f(y_n')^s.$$

Since $f(y'_{kj})/f(y'_k) = f(y_{kj})/f(y_k)$ for $j = 1, 2, ..., n_{k+1}$,

$$\sum_{y'_{k_j} \in \phi^{k+1}(y'_k)} \{ f(y'_{k_j}) / f(y'_k) \}^s = \sum_{y_{k_j} \in \phi^{k+1}(y_k)} \{ f(y_{k_j}) / f(y_k) \}^s.$$

Therefore we have

$$\mu(B(y_{nj}))$$

$$= f(y_{nj})^{s} / \sum_{y'_{n+1} \in A^{n+1}} f(y'_{n+1})^{s}$$

$$= f(y_{n})^{s} \cdot \left\{ f(y_{nj}) / f(y_{n}) \right\}^{s} \cdot \left[\sum_{y'_{n} \in A^{n}} f(y'_{n})^{s} \left\{ \sum_{y'_{nj} \in \phi^{n+1}(y'_{n})} (f(y'_{nj}) / f(y'_{n}))^{s} \right\} \right]^{-1}$$

$$= f(y_{n})^{s} \cdot \left\{ f(y_{nj} / f(y_{n}))^{s} \cdot \left[\sum_{y'_{n} \in A^{n}} f(y'_{n})^{s} \cdot \sum_{y''_{nj} \in \phi^{n+1}(y_{n})} (f(y''_{nj}) / f(y_{n}))^{s} \right]^{-1}$$

$$= \left\{ f(y_{n})^{s} / \sum_{y'_{n} \in A^{n}} f(y'_{n})^{s} \right\} \cdot \left\{ f(y_{nj})^{s} / \sum_{y''_{nj} \in \phi^{n+1}(y_{n})} f(y''_{nj})^{s} \right\}$$

$$= \mu(B(y_{n})) \cdot \left\{ f(y_{nj})^{s} / \sum_{y_{n+1} \in \phi^{n+1}(y_{n})} f(y_{n+1})^{s} \right\},$$

and so $\sum_{y_{nj} \in \phi^{n+1}(y_n)} \mu(B(y_{nj}) = \mu(B(y_n))$. Moreover

$$\sum_{y_n \in A^n} \mu(B(y_n))$$

$$= \sum_{y_{n-1} \in A^{n-1}} \sum_{y_{n-1}i \in \phi^{n}(y_{n-1})} \left[\mu(B(y_{n-1})) \cdot \left\{ f(y_{n-1}i)^{s} \middle/ \sum_{y_{n-1}i \in \phi^{n}(y_{n-1})} f(y_{n-1}i)^{s} \right\} \right]$$

$$= \sum_{y_{n-1} \in A^{n-1}} \mu(B(y_{n-1})) = \dots = \sum_{y_{0} \in A^{0}} \mu(B(y_{0})) = 1.$$

So μ can be extended to a mass distribution on \mathscr{F} with support in $\Lambda(\mathbf{A}, \Phi)$ [2]. Now consider $y \in \Lambda(\mathbf{A}, \Phi)$ and $\{y_n\}$ with $y_n \to y$ as $n \to \infty$. As in the proof of Theorem 2, $\{y\} = \bigcap B(y_n)$. For every small r > 0, take an n such that $f(y_{n+1}) \le r < f(y_n)$. For a > 0 in the definition of f-bounded scattered system, $ar < af(y_n) < d(y_n, y'_n) - \{f(y_n) + f(y'_n)\}$ and so $B(y, ar) \subset \{\bigcup_{y_n \neq y_{n'} \in A^n} B(y'_n)\}^c$ and $\mu(B(y, ar)) \le \mu(B(y_n))$. For 0 < t < s,

$$\begin{split} \mu(B(y,ar))/(ar)^t &\leq \mu(B(y_n))/\{a^t \cdot f(y_{n+1})^t\} \\ &\leq \mu(B(y_n))/\{a^{2t}f(y_n)^t\} \\ &= f(y_n)^{s-t} \left/ \left\{ a^{2t} \sum_{y_n' \in A^n} f(y_n')^s \right\}, \end{split}$$

so $\sup_{r\to 0} \mu(B(y,r)/r^t \le \limsup_{n\to\infty} f(y_n)^{s-t}/\{a^{2t} \cdot \sum_{y_n'\in A^n} f(y_n')^s\} = 0$. Hence $H^t(\Lambda(\mathbf{A}, \Phi)) = \infty$ by the density theorem [2], and $\dim_H \Lambda(\mathbf{A}, \Phi) \ge \underline{D}$.

THEOREM 5. Let

$$\begin{split} \overline{D} &= \sup \left\{ s \geq 0 : \limsup_{n \to \infty} \sum_{y_n \in A^n} f(y_n)^s = \infty \right\} \\ &= \inf \left\{ s \geq 0 : \limsup_{n \to \infty} \sum_{y_n \in A^n} f(y_n)^s = 0 \right\}. \end{split}$$

Then $\dim_{\mathbf{P}} \Lambda(\mathbf{A}, \boldsymbol{\Phi}) = \overline{D}$.

PROOF. As in Theorem 4, \bar{D} is well defined. Let $0 < s < \bar{D}$. Take an $\mathcal{N} \in \mathbb{N}$ such that $f(y_k) < \varepsilon/2$ for each $y_k \in A^k$ with $k \ge \mathcal{N}$. Then for each $y_n \in A^n$ with $n \ge \mathcal{N}$,

$$\begin{split} P_{\varepsilon}^{s}(B(y_n) \cap A(\mathbf{A}, \boldsymbol{\varPhi})) &\geq \sup_{k \geq n} \sum_{\substack{y_k \in A^k \\ B(y_k) \subset B(y_n)}} |B(y_k)|^s \\ &\geq 2^s \cdot f(y_n)^s \cdot \left\{ \limsup_{k \to \infty} \sum_{y_k \in A^k} f(y_k)^s \middle/ \sum_{y_n \in A^n} f(y_n)^s \right\} = \infty. \end{split}$$

Thus $P^s(B(y_n) \cap \Lambda(\mathbf{A}, \Phi)) = \infty$. Now consider any $\{\Lambda_n\}$ which satisfies $\bigcup_{n=1}^{\infty} \Lambda_n = \Lambda(\mathbf{A}, \Phi)$. Since $\Lambda(\mathbf{A}, \Phi)$ is compact, $\bigcup_{n=1}^{\infty} \overline{\Lambda_n} = \Lambda(\mathbf{A}, \Phi)$. By the Baire category theorem, there exists a $\overline{\Lambda_{n_0}}$ whose interior in $\Lambda(\mathbf{A}, \Phi)$ is not empty, so there exists a large n such that $B(y_n) \cap \Lambda(\mathbf{A}, \Phi) \subset \overline{\Lambda_{n_0}}$. Since $P^s(\Lambda_{n_0}) = P^s(\overline{\Lambda_{n_0}}) \geq P^s(B(y_n) \cap \Lambda(\mathbf{A}, \Phi)) = \infty$, we have $P^s(\Lambda(\mathbf{A}, \Phi)) = \inf\{\sum_{i=1}^{\infty} P^s(\Lambda_n) : \Lambda(\mathbf{A}, \Phi) = \bigcup \Lambda_n\} = \infty$. Hence $\dim_P \Lambda(\mathbf{A}, \Phi) \geq \overline{D}$.

Now take an $s > \overline{D}$ and let μ be the mass distribution defined as in Theorem 3. Consider $y \in \Lambda(\mathbf{A}, \Phi)$ and $\langle y_n \rangle$ satisfying $y_n \to y$ as $n \to \infty$. For given r > 0, take an n such that $f(y_{n+1}) \le r/2 < f(y_n)$. For t > s,

Tae Sik Kim

$$\mu(B(y,r))/r^{t} \ge \mu(B(y_{n+1}))/(2f(y_{n}))^{t}$$

$$\ge (a/2)^{t} \cdot \mu(B(y_{n+1}))/f(y_{n+1})^{t}$$

$$= (a/2)^{t} \cdot f(y_{n+1})^{s-t} / \sum_{y' \in A^{n+1}} f(y'_{n+1})^{s},$$

and so

$$\liminf_{r\to 0} \mu(B(y,r))/r^{t} \ge \liminf_{n\to\infty} (a/2)^{t} \cdot f(y_{n+1})^{s-t} / \sum_{y' \in A^{n+1}} f(y'_{n+1})^{s} = \infty.$$

By the packing density theorem [3], $P^t(\Lambda(\mathbf{A}, \Phi)) = 0$ and $\dim_{\mathbf{P}} \Lambda(\mathbf{A}, \Phi) \leq \overline{D}$.

THEOREM 6. Let s_n be the number satisfying

$$\sum_{y_n \in \phi^n(y_{n-1})} (f(y_n)/f(y_{n-1}))^{s_n} = 1.$$

And put $\underline{s} = \liminf_{n \to \infty} s_n$ and $\bar{s} = \limsup_{n \to \infty} s_n$. Then

$$\underline{s} \leq \dim_{\mathbf{H}} \Lambda(\mathbf{A}, \Phi) \leq \dim_{\mathbf{P}} \Lambda(\mathbf{A}, \Phi) \leq \bar{s}.$$

PROOF. We may suppose $0 < \underline{s} \le \overline{s} < \infty$. Take an s with $0 < s < \underline{s}$, then there exists an $\mathcal{N} \in \mathbb{N}$ such that $s < s_k$ for all $k > \mathcal{N}$. Since

$$(1+a)f(y_{n+1}) < d(y_{n+1}, y'_{n+1})$$

$$\leq d(y_{n+1}, y_n) + d(y_n, y'_{n+1}) < 2f(y_n) - f(y_{n+1})$$

for each $y_{n+1}, y'_{n+1} \in \phi^{n+1}(y_n)$, we have $f(y_{n+1})/f(y_n) < 2/(2+a) < 1$ for each $y_{n+1} \in \phi^{n+1}(y_n)$. Then

$$\sum_{y_n \in A^n} f(y_n)^s = \sum_{y_0 \in A^0} f(y_0)^s \cdot \prod_{k=0}^n \sum_{y_{k+1} \in \phi^{k+1}(y_k)} \{f(y_{k+1})/f(y_k)\}^s$$

$$\geq c \cdot \prod_{k=N}^n \left[\sum_{y_k \in \phi^k(y_{k-1})} \{(f(y_k)/f(y_{k-1}))^{s_k} \cdot (2/2+a)^{s-s_k}\} \right]$$

$$\geq c \cdot (2/2+a)^{(s-s_k)(n-\mathcal{N}+1)},$$

where

$$c = \sum_{y_0 \in A^0} f(y_0)^s \cdot \prod_{k=0}^{N-1} \sum_{y_{k+1} \in \phi^{k+1}(y_k)} \{f(y_{k+1})/f(y_k)\}^s.$$

So $\liminf_{n\to\infty} \sum_{y_n \in A^n} f(y_n)^s = \infty$ and $\underline{s} \leq \underline{D}$.

In a similar way, we have $\limsup \sum_{y_n \in A^n} f(y_n)^s = 0$ for $s > \bar{s}$ and $\bar{D} \le \bar{s}$. Therefore from the above two theorems, $\underline{s} \le \dim_H \Lambda(\mathbf{A}, \Phi) \le \dim_P \Lambda(\mathbf{A}, \Phi) \le \bar{s}$.

COROLLARY 7. If the sequence $\{s_n\}$ in $\Lambda(\mathbf{A}, \Phi)$ satisfying

$$\sum_{y_n \in \phi^n(y_{n-1})} (f(y_n)/f(y_{n-1}))^{s_n} = 1$$

has a limit s, then

$$\dim_{\mathbf{H}} \Lambda(\mathbf{A}, \boldsymbol{\Phi}) = \dim_{\mathbf{P}} \Lambda(\mathbf{A}, \boldsymbol{\Phi}) = s.$$

3. Examples

Now we will give two examples.

EXAMPLE 1. Let X = [0,1], $A^0 = \{x/3 + 1/6 : x = 0,2\}$ and let \mathcal{N}^* be a fixed positive integer. For each positive integer k represented by $k = m\mathcal{N}^* + l$ for non-negative integers m and l with $0 \le l < \mathcal{N}^*$, put $a_k = 1/2 \cdot \{m\mathcal{N}^*(\mathcal{N}^* + 1) + (l+1)(l+2)\}$. Define $\phi^k : A^{k-1} \to \mathcal{P}_{2^{l+1}}(X)$ by

$$\phi^{k}(y_{k-1}) = \left\{ y_{k-1} + \sum_{i=a_{k}-l}^{a_{k}} x_{i}/3^{i} + 1/2 \cdot (1/3^{a_{k}} - 1/3^{a_{k-1}}) : x_{i} = 0, 2 \right\}$$

where $A^k = \phi^k(A^{k-1})$. and define $f: \bigcup_{k=0}^\infty A^k \to (0,\infty)$ by $f(y_k) = 1/(2\cdot 3^{a_k})$. Then $\Lambda(\mathbf{A}, \boldsymbol{\Phi})$ is an f-bounded scattered system. Since $\sum_{y_k\in\phi^k(y_{k-1})}\{f(y_k)/f(y_{k-1})\}^{s_k}=1$ for each $s_k=\log 2/\log 3$,

$$\dim_{\mathbf{H}} \Lambda(\mathbf{A}, \mathbf{\Phi}) = \dim_{\mathbf{P}} \Lambda(\mathbf{A}, \mathbf{\Phi}) = \log 2/\log 3.$$

EXAMPLE 2. For the same X and A^0 as in above, we define another f-bounded scattered system by

$$\phi^k(y_{k-1})$$

$$= \begin{cases} \{y_{k-1} + \sum_{i=3n-1}^{3n} x_i/3^i - 4/27^n : x_{3n-1} = 0, 2, \ x_{3n} = 2\}, & (k = 2n-1) \\ \{y_{k-1} + x_{3n+1}/3^{3n+1} - 1/(3 \cdot 27^n) : x_{3n+1} = 0, 2\}, & (k = 2n), \end{cases}$$

$$f(y_k) = \begin{cases} 1/(2 \cdot 27^n), & (k = 2n-1), \\ 1/(6 \cdot 27^n), & (k = 2n), \end{cases}$$

for $y_{k-1} \in A^{k-1}$ and for $y_k \in A^k$. Then for this f-bounded scattered system $\Lambda(\mathbf{A}, \boldsymbol{\Phi})$, $s_k = \log 2/(2\log 3)$ for k = 2n - 1 and $s_k = \log 2/\log 3$ for k = 2n. Hence

$$\log 2/(2\log 3) \le \dim_{\mathbf{H}} \Lambda(\mathbf{A}, \Phi) \le \dim_{\mathbf{P}} \Lambda(\mathbf{A}, \Phi) \le \log 2/\log 3.$$

8

Acknowledgement

I would to thank support from the KOSEF through the Global Analysis Research Center at Seoul National University.

References

- [1] I. S. Baek, Dimensions of the perturbed Cantor set, Real Analysis Exchange 19 (1993–1994), 269-273.
- [2] K. J. Falconer, Fractal Geometry, John Wiley & Sons. (1990).
- [3] S. J. Taylor and C. Tricot, The packing measure and its evaluation for a Brownian path, Trans. Amer. Math. Soc. 288 (1985), 679-699.

Department of Mathematics,
Pohang University of Science and Technology,
Pohang 790-784, Korea
e-mail: tskim@euclid.postech.ac.kr