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AsstracT. Hausdorff and packing dimensions are used to measure the complexity and
irregularity of a set, though their calculations are in general not so easy. In this paper
we define scattered sets which describe a typical form of explosions and then estimate
their Hausdorff and packing dimensions.

1. Introduction

Let (X,d) be a complete metric space and #,(X) denote the family
of subsets of X having n elements. Then we call a set valued map ¢: 4 =
X — 2,X), n>1, an n-scattered map on A.

For a sequence @ = {¢*} of m-scattered maps, ¢*: A¥"1 = 2, (X), in
which A = {4¥} is defined inductively by

A% = {x1,x2,. .., %} and Ak = Uyk_|eA“—' ¢ (viy)

for each ke N, we call (A, ®) a scattered system. Here the image of y,_; €
A%~ may also be denoted by ¢*(y, ) = {yi_;;:j=1,2,...,m}. Moreover,
when there exists a function f : U;ZOZOA" — (0,00) and 0 < a < 1 such that

(M) dyis yirr) < ) = D),

@) div) > 1+ ) + FP}

(3) a<fy)/f) =fig)/f(yi) and f(y) O as k — o
for each y,, y; € AX and y,y, vy, yi; € A, we call (A, @) an f-bounded
scattered system.

We recall the definition of Hasudorff and packing dimensions [2], [3].
Let F be a given set and |U| denote the diameter of a set U. Then {U;}2,
is called a d-covering of F if F < UiU,- and |U;| < J, and is called d-packing of
F if {U;} is pairwise disjoint, U;NF # & and |Uj| <J. Then s-dimensional
Hausdorff measure H*(F) and Hausdorff dimension dimy(F) are defined by
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HS(F) =lims_o H§(F) where Hj(F)=inf{} 2, |Ui|’: {U} is a d-covering
of F}, and dimy(F) =sup{s >0: H*(F) = oo} (or inf{s > 0: H*(F) = 0}).

And let P(F) = lims_o%#(F) where Z5(F)=sup{>;|Ui|°: {U;} is a
o-packing of F}. Then s-dimensional packing measure P°(F) and
packing dimension dimp(F) are defined by P*(F) = inf{}, Z(F;) : F = |-, Fi}
and dimp(F) = sup{s > 0: P*(F) = oo} (or inf{s > 0: P*(F) = 0}).

In this paper, we define a scattered set from the scattered system and
estimate its Hausdorff and packing dimensions. From now on, B(y,) denotes
the closed ball B(y,, f(¥,))-

2. Main results

LemMa 1. Let (A, @) be an f-bounded scattered system and let {y,} be any
sequence such that y,_, € A" and y, € 9" (y,_,) for each k e N. Then {y,} is
a Cauchy sequence in X and so has a limit point.

Proor. Since f(y,) \, 0 as n — oo, for every ¢ > 0 there exists an A" €
N such that f(y,) <e for k> .4 and y, e A*. Then for any n>m > A,

A Yn) <AV Yima1) + d(Vmi1s Yma2) + - +d(Vn1, ¥a)
<{FOm) = FOma)} +{f Dmit) = S Oma2)} + -
T Onr) = ()} <.
Thus {y,} is a Cauchy sequence. U
From the above Lemma, we can define the following set,

DerFiNITION 2. For a given f~bounded scattered system (A, @), its scattered
set is defined by

A(A,®) ={ye X : y is the limit of a sequence {y,} satisfying
the condition of Lemma 1}.

From the following Theorem, we can find some topological properties of
the scattered set.

THEOREM 3. A(A, D) is perfect, totally bounded and compact.

PrOOF. Let ye A(A,®). Then there exists {y,} such that y, — y as
n— oo. Since f(y,) \,0 as n— 0, for every ¢ > 0 there exists an 4/ eN
such that f(y,) <e&/2 and d(y,,y) <e&/2 for each n > 4. And for this A
any sequence {y,} with y, =y, for /<A and y, # y) satisfying the
condition of Lemma 1 has a limit point ' in A(A,®). Since d(y;, y;) >
Fi) + f(3i), Byk) N B(yy) = & and since d(yy, Yis1) < f(¥i) = f(Viq) for
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each yi1 €67 (9)), B(yir) = B(yi). Then (.2 B(3,) = {v}, N2y B(3y)
= {y'} and y’ € B(y,¢)\{y}. Hence A(A,®) is a perfect set.

Now for any ¢ > 0, take an A" € N such that f(y,) <e¢ for any y, e A"
with n > 4. Then as above, every y € A(A, @) is contained in B(y,) for some
Yo €A™ and so A(A, D) < Uy,,e 4n B(y,,€). Hence A(A,®) is totally bounded.

The compactness follows from the above two properties. O

We will estimate the Hausdorff and packing dimensions of the scattered
set.

THEOREM 4. Let

Q:sup{sZO:hrrlr_l)g}f Z Sy =oo}

yneA"

h—oo
yneA"

- inf{s >0:liminf Y f(y,)° = o}.

Then dimy A(A, @) = D.

PrOOF. Since f(y,) \ 0 as n— oo, &(s,k) =Y, . f(y)" is contin-
uous and decreasing for s and for sufficiently large k. And since &(s, k) — 0
as s — oo and @(0,k) = noniny---n — 0 as k — 00, 0 < liminfy_,o, D(s,k) <
oo implies liminfy_,o, @(s1,k) = 0o and liminfyx_,oc P(s2,k) =0 for 51 < 5 < 53,
and so D is well-defined. We may suppose 0 < D < oo.

For s > D and for given é > 0, take an n € N such that f(y,) < /2 for all
v, € A". Then as in the proof of Theorem 3, we have A(A, ®) = Uy"EA,, B(y,)
and

Hy(AA, @) < Y [Bo)I'=2" ) f(n)"

yn€A" Yn€A"

Hence H*(A(A,®)) <liminf,,2°3", . 4w f(¥,)’ <0 for s>D or
dimHA(A, ¢) <D.

Now let s<D. To define a mass distribution on X, let &, be the
family of arbituary unions of B(y,)’s and & be the completion of the
smallest o-algebra generated by |)%,. And define a set function u on
{B(yn): yn€ A", neN} by

wB) =Fn) [ Y fn)"

yaed"

Since [ (yi;)/f (i) = f(yig)/f (i) for j=1,2,... meqn,
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o Oy = > /Y

y,’v.eqz)k“(y,’() yiged ! (y)

Therefore we have

ynj Z f yn+l

y EA“

-1
= 1) SO )} [nyn{ 3 (f(y,i,-)/f(y,i))SH
Y ()

re AN y;je¢n+l ’

-1
S Syl f ()Y [Z CAEEDY (f(y,’,})/f(yn))x}

edr v (v)

:{f(yn)‘ Zf(y,’,)“}-{ (V) Z f(yn,)}
ynedn v €d" ! (v

(B(yn) { ynj Z f(yn-H) }7

yus1€6" (3,)
and s0 3°, () H(B(yy) = u(B(y,)). Moreover
> u(B(y)

yn€eA"

-y ¥ {u(B(yn_l)%{f(yMiV/ > f(yn_uVH
1) Y

Ynt €A™ Yu_1i €™ (Vo n-1j €4" (Vuet)
= Y wB(y)=-= Y ulB(y)) =1
Yn-1€A! yoe A°

So u can be extended to a mass distribution on # with support in A(A, @)
[2]. Now consider ye A(A,®) and {y,} with y, —»y as n— o0. As in
the proof of Theorem 2, {y} = () B(y,). For every small r >0, take an n
such that f(y,,;) <r< f(»,). For a>0 in the definition of f-bounded
scattered system ar < af(y,) <d(y,, y,)—{f(y,) + f(y,)} and so B(y,ar) c
{U,, 4, canB)} and u(B(y,ar)) < u(B(y,)). For 0<t<s,
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u(B(y,ar))/(ar)" < u(B(y,))/{a" - f(ypi1)'}
< u(B(y,))/{a* f(ya)'}

— () / {az' 3 f(y,’,)““},
Yn€ A"

50 sup, o u(B(y,r)/r' <limsup,_,, £ ()" /{a* -3, cn F(11)°}
H'(A(A,®)) = oo by the density theorem [2], and dimy A(A, D)

THEOREM 5. Let

l_):sup{szo : lim sup Z f(y,)’ = oo}

n—00 e

n—00

=inf{s20 : lim sup Z Sy’ =O}.

Then dimp A(A, ®) = D.
PrOOF. As in Theorem 4, D is well defined. Let 0 < s < D. Take an

A €N such that f(y,) < e/2 for each y, € A¥ with k > .#". Then for each
y, € A" with n > N,

P (B(y,) NA4(A, @) = sup > BOWI
>n
- yeed

B(yi)=B(yn)

>2% f(3,)° {limsup WA f(yn)s} = .

k—»OO y/(EAk yneA"

Thus P*(B(y,)NA(A,®)) = 0. Now consider any {4,} which satisfies
U, 4n = A(A,®). Since A(A,®) is compact, | ).~ 4, = A(A,®). By the
Baire category theorem, there exists a A4, whose interior in A(A,®) is not
empty, so there exists a large n such that B(y,)NA(A,®) < A,. Since
P¥(Ayy) = P5(Ay,) = P*(B(y,) NA(A,®P)) = 00, we have P*(A(A, D))=
inf{>°72, P*(A4,) : A(A,®) =) A4,} = co. Hence dimp A(A, ®) > D.

Now take an s> D and let u be the mass distribution defined as in
Theorem 3. Consider y e A(A,®) and (y,) satisfying y, -y as n— 0.

For given r > 0, take an n such that f(y,,,) <r/2< f(y,). For t>s,
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W(B(y,N)/r" = u(B(y1))/ 2f (3a)'
> (a/2)" - By f (Inir)"

=(a/2) f(yn+l Z fyn+] )

IeA"“
and so
lim inf w(B(y,r))/r' = liminf(a/2)' - f(3pe)™ [ D S(pa)’ = 0.
r— y” ‘EA"'*‘I
By the packing density theorem [3], P/(A(A,®)) =0 and dimpA(A,P) <
D. O

THEOREM 6. Let s, be the number satisfying

S VO ) = 1.

Yn€4"(¥ai)

And put s =liminf, s, and §=limsup,_,, s,. Then
s < dimy A(A, ®) < dimp A(A, ¢) <S§S.

Proor. We may suppose 0 <s<§<oo. Take an s with 0 <s<s,
then there exists an A" e N such that s < sx for all £k > A4". Since

(1 +a)f(yn+l) < d(yn+l’ yr/H—l)
< d(Vpp1, Vn) + Ay Y1) < 20 (¥n) = f (ni1)

for each y,,1, y.,1 € 8" (¥,), we have f(¥,1)/f(¥,) < 2/(2+a) < 1 for each
Ynt1 € ¢n+l(yn)' Then

SNore =Y ) Il Y. e/ f}
Yn€A" yoeA° k=01 € (1)

n

s JI| X (O Ge)” @2+ 0

k=N | y e¢* ()

>c-(2/2+ a)(s—sk)(n—/‘“rl),

where
H—1
c= Z f(»)® H {f D)/ f ()}
yoeA° k=0 yii1 e "' (30)

So liminfy—co 32, ¢ 4n f f(y,)’ =00 and s < D.



Dimensions of scattered sets 7

In a similar way, we have limsup}_, . s f(»,)* =0 for s > 5 and D <.
Therefore from the above two theorems, s < dimy 4(A, @) <dimp A(A, D) <

5. O
COROLLARY 7. If the sequence {s,} in A(A,®) satisfying
> (FOfOn) =
Yn€4"(¥a-1)
has a limit s, then

dimy A(A, @) = dimp A(A, (D) =3s.

3. Examples
Now we will give two examples.

ExampLE 1. Let X =1[0,1), 4°={x/34+1/6:x=0,2} and let 4*
be a fixed positive integer. For each positive integer k represented by k =
mA"* + 1 for non-negative integers m and / with 0 </ < A", put a; = 1/2-
{mA*(N*+1)+ (+ 1) +2)}. Define ¢*: 4¥1 = 2,1 (X) by

3
¢ (V1) = {yk—l + Z xi/3'+1/2- (1/3% —1/3%) . x; = 0,2}
i=ak—1
where 4K = ¢¥(4%!). and define f:|J,4¥ = (0,00) by f(y)=
1/(2-3%). Then A(A,®) is an fbounded scattered system. Since
Zyke¢k(yk‘l){f(yk)/f(yk—l)}Xk =1 for each s =log2/log3,
dimy 4(A, @) = dimp A(A, @) = log2/log 3.

ExAMPLE 2. For the same X and 4° as in above, we define another f-
bounded scattered system by

¢k(yk—1)
B { {yk_l—’_zgg?,n_l Xl/3l_4/27n L X3p-1 = 07 27 X3n = 2}7 (k = 2n_1)
(Vo1 + X3n1/37H = 1/(3-277) : X301 = 0,2}, (k = 2n),
@221, (k=2n-1),
) = { 1/(6-27"),  (k =2n),
for y,_; € A¥"! and for y, € A*. Then for this f-bounded scattered system

A(A, D), sp =log2/(2log3) for k=2n—1 and s, =log2/log3 for k = 2n.
Hence

log2/(2log3) < dimy A(A, @) < dimp 4(A, D) < log2/log3.
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