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ABSTRACT. Let &~(E) be the tiling space on a /^-dimensional subspace E of R^ with a

fixed lattice L by the generalized projection method. By using the dual of the lattice L

we will construst explicitly a parameter family of the orbit closure decomposition of

&~{E) and characterize its dimension. As its application we obtain that the parameters

of the orbit closure decomposition of ^~{E) correspond to the periods of ^(E1),

provided that $~(E) and ^(E1) are given by the generalized projection method from an

integral lattice L.

1. Introduction

In 1981 de Bruijn introduced the multigrid and projection methods to

construct aperiodic tilings such as Penrose tilings. The multigrid method was

generalized by Kramer and Neri (1984). The projection method was gener-

alized to a higher dimensional lattice Zd by Duneau and Katz (1985). Gahler

and Rhyner (1986) extended the projection method to general lattices and

showed that these generalized multigrid and projection methods are equivalent.

First, we recall the definitions of tilings and tiling spaces by the

generalized projection method (cf. [3], [4]). Let L be a lattice in R^ with a

basis {bi\i= 1,2,..., d}. Let E be a /7-dimensional subspace of Rd, and EL be

its orthogonal complement with respect to the standard innner product. Let

π : Rd —• E and πL : R^ —> EL be the orthogonal projections. We put A =

{Σ,f=ιnbi\0<ri<\}. For any x e EL we put JC + πL(A) = {x+u\ueπ±(A)},

which is a compact set with a nonempty interior. For p vectors b^ e

{bi} such that { π ^ )} is linearly independent we put T(k\,k2, . ,kp) =

{Σί=i nbki\0<n< 1}. Taking such bki we define FP(L) = {v+T(kuk2,. . ,kp) |

veL,ki such that {π(6^.)} is linearly independent} and T(x) = {π(S)\S c

(x + πL(A)) xE,Se FP(L)}. Note that T(kx, k2,..., kp) is a ^-dimensional

parallelotope. T(x) is a tiling on a /7-dimensional subspace E of R^ by the
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generalized projection method. A tiling space 3~(E) = {u+T(x)\ueE,
is defined by a space of tilings consisting of all translates by E = Rp of the
tilings T(x) for all x e EL. In the case L = 7JP the tiling space &~(E) is defined
by any of three equivalent methods, the multigrid method, the projection
method, or the oblique tiling method of Oguey, Duneau, and Katz (1988).
Tiling spaces are topological dynamical systems with continuous Rp translation
action and with topology defined by a tiling metric on tilings of Rp (see for
example [12]).

In order to state theorems we remind of several definitions. The dual
lattice L* is defined by the set of vectors y eRd such that <>>, x} e Z for all
x E L, where < , > denotes standard inner product. A lattice L is called integral
if (x,y} e Z for all x,y e L. The standard lattice is both integral and self dual.

Let Orb(T{x)) denote the orbit of T(x) in 9~{E) by the R^ translation
action and span(y4) denote the R-linear span of a set A.

The purpose of this paper is to show the following theorem:

THEOREM 1. Let ^(E) be the tiling space on a p-dimensional subspace E of

Rd by the generalized projection method and p1 : EL —> span(L* ΓiEL) be the

orthogonal projection. Define p : L —> span(L* ΐλEL) by p = p' o (nL\L). We

take a basis x\,...,Xk of any direct summand K such that L = p~x ({0}) © K.

Then 3~(E) decomposes into a k parameter family of orbit closures

for tu . . . , tk e R.

In particular, we obtain that k is equal to rank(L*

Note that any two orbit closures are either coincident or disjoint. A. Hof
(1988) proved that E±Γ\L* = {0} if and only if 3Γ(E) = Orb(Γ(0)).

Assume that L is integral. Then we see that rank(L* PϊE^-) —
rank(LHis-1) because L a U and U/L is finite. In [7] we proved that
the number of independent periods of the tiling space έF(EL) is equal to
rank(LΠ£'-L). By Theorem 1 we immediately obtain the following theorem
in the case that L is integral:

THEOREM 2. Let ^{E) (resp. 3~{EL)) be the tiling space on a p-

dimensίonal subspace E {resp. (d — p)-dimensional subspace E1-) of Rd by the

generalized projection method and assume that L is an integral lattice. Then

^~(E) decomposes into a k parameter family of orbit closures, where k is equal to

the number of independent periods of the tiling space

According to the unpublished thesis of C. Hillman (1988) the tiling space
decomposes into a k parameter family of orbit closures, where k is equal

to the number of independent periods of the tiling space $~(EL) in the case that
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2. Proof of Theorem 1.

We define F : Rd/L -> F{E) by F{[x}) = T(x) for x e Rd. Note that F is
well-defined by the construction of T(x). Since T{x + u) = u+ T(x), we have
F([x + u}) = u + Γ(x) for any xeRd undue E = Rp, where the tiling u + Γ(x)
is translation of the tiling T{x) by u e E — Rp. F is called a factor mapping
(see for example [12]). Tiling spaces are compact due to [11, p. 357, Lemma
2]. So F satisfies that F(A) = F(A) for any subset A <z Rd/L. Thus a
parameter family of the orbit closure decomposition of ^{E) is obtained from
a parameter family of the orbit closure decomposition of Rd/L by F.

By a similar argument to [13, p. 52, Theorem 2.3] we can construct
linear subspaces V,W aEL such that EL = V® W, π±(L) Π V is dense in F,
πx(L) ΠW is a lattice in W and π±(L) = TT^L) Π V + πx(L) Π W. In par-
ticular, F is given by V = P)r>ospan(£/r(O) Ππ-L(L)), where span(^) denotes
the R-linear span of a set A and ί/r(ι;) denotes the open ball of radius r and
center v. Let Orb([x]) denote the orbit of [x] in Rd/L by the R^ translation
action. We take a basis x\,...,xk of ^ ( L ) i l ^ . We have that the orbit
closures of Rd/L are the cosets of the closed connected subgroup Orb([0]).
By the properties of V and W we get that Rd/L decomposes into a k

parameter family of the orbit closures Orb([t\Xι -\ h ***:*]) for t\,..., tk e R>
Therefore ^{E) also decomposes into a k parameter family of orbit closures
Ovb{T(txxλ +- + tkxk)) for t u . . . , t k e R .

We can easily see that k = rank(L* ΠE^. In fact, we take a basis c\,...,
ckeπL{L)Γ\W and a basis Cjt+i,... ,Q_^ e F. By the definition of U we
get that ( i j ) e Z for any i e ^ ( L ) if and only if yeL*Γ\E±=L*Γ\
(VLΓ\EL) ϊoτ yeEL. Since π x (L)n V is dense in F, we obtain that U Π
J511 is orthogonal to F. Hence, rank(L* Π (F-1 Π ^ ) ) < dim VL = k. For
any / with 1 < / < k we can take at e EL such that at is orthogonal to {CJ \

1 <y < d — p, j φ i}. Since (x,-z rfl, y e Z for any x e ^^(L), we see that
'<α, ,c, >

-ate EL Γ\L*. Now the -at are linearly independent in

Therefore we get k = rank(L* flir1).
We will construct explicitly the linear subspaces F, W a E1 mentioned

above from the dual of the lattice L. Let p' : EL —• span(L*ΠJE
±) be the

orthogonal projection and define p : L —> span(L* Π^-1) by /? =/7r o (π^lL).
We take a direct summand K such that L = p~ι({0}) ® K. By the defini-
tion of p we have that span(π±(/?~1({0}))) is orthogonal to span(L* ΠE1).
Because F c span(π-L(/?~1({0}))) and k = rank(L* ΠE1), we see that
span(π-L(^~1({0}))) is equal to F given above. Then π±(L)Π V is dense in
F. We put W = span(π±(A:)).
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First, we will show that p(K) is discrete in span(L* ΓϊE1), which is
enough to prove that π-^LJίΊ W is a lattice in W. Suppose that {wz } is a
sequence of elements of K such that {p{ui)} converges in U ΠE1. We may
assume that {/?(wz)} converges to 0. Write π-L(w/) — vt + w, with Vj e V, w; e W
for each /. By the hypothesis we see that {w,} converges to 0. Since πL(K)
is dense in V we can choose yι e K such that \wi — π±(yi)\ < 1/(2/). Then

| π > , - Λ ) l = l«x(«/) - ^ W l = k + w, - πHyι)\ ̂  N + K - ^OΌI SO
πL(ui — yt) converges to 0. Thus for sufficiently large /, we have πL(ui — yi) e
V and Ui-yiep-l({0}). Then ut ep~l({0}) OK = 0 and p{ui) = 0. This
implies that /?(ϋΓ) is discrete in span(L* Γ\EL).

The rest of the proof is devoted to show that the two subspaces F,
WczE± satisfy the following properties: E± = V®W, nL{L) Π JF is a lattice
in JF and πx(L) - π^(L) (λV + πL{L)ΐ\ W. Since p(A ) spans span(L* Π EL)
and /?(AΓ) is discrete, p(K) is a lattice of rank p{K) = dim E1 - dim K.
Because the restriction /7|AΓ is injective, we obtain k = rankA^ = rank p(K) =
(d-p)- dim V. Since dim JF < k = (d - p) - dim V and E± = W-\-V we
have dim ^ = (d - p) - dim F and EL = W 0 V. Since /?(A:) is discrete and
p' is continuous, πJ-(AΓ) is discrete. Because πL(K) has the same rank as K,
we can see that K is isomorphic to nL(K) and π±(K) is a lattice in W.
Since π x(L) = πx(A:)+π-L(/r1({0})), we obtain πL(K) = πL{L)ϊλW and
π±(/?-1({0})) = π x(L) Π V. q.e.d.
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