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ABSTRACT. In 1970, Keller and Segel proposed a parabolic system describing the
chemotactic feature of cellular slime molds and recently, several mathematical works
have been devoted to it. In the present paper, we study its blowup mechamism and
prove the following. First, chemotactic collapse occurs at each isolated blowup
point. Next, any blowup point is isolated, provided that the Lyapunov function is
bounded from below. Finally, only the origin can be a blowup point of radially
symmetric solutions.

1. Introduction

A system of parabolic partial differential equations of mathematical bi-
ology is attracting interest. It was proposed by Nanjundiah [22] in 1973, as a
simplified model of the Keller and Segel system [16] describing a chemotactic
feature, the aggregation of some organisms (cellular slime molds) sensitive to
gradient of a chemical substance. Precisely, with u(x,?) and v(x,?) standing
for the density of the organism and the concentration of the chemical substance
at the position x € Q and the time ¢ € (0, T), respectively, it is given as

%=V~(Vu—xqu) in Qx(0,7)

r@—dv— v+ ou in 2x(0,7)
(KS) a7 ’

ou Ov

67_%_0 on 0Q x (0,T)

L u(-,0) = uy, v(-,0) = v on £,

where

(A1) 7, a, y and y are positive constants

(A2) @ is a bounded domain in R? with smooth boundary Q2
(A3) n denotes the unit outer normal vector
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(A4) up and vy are smooth, nonnegative, and nontrivial initial values on Q.
The first equation describes the conservation of mass. Flux of u is given by

F =—-Vu+ yuVv

so that the effect of diffusion V-Vu and that of chemotaxis V - yuVv are
competing for u to vary. The second equation is linear, and v is produced
proportionarily to u, diffuses, and is destroyed by a certain rate.

The phenomenon of the blowup in a finite time of the solution is im-
portant from both mathematical and biological points of view. There are
conjectures by Nanjundiah [22], Childress [5], and Childress and Percus [6];
¢ =c¢*=c=8n/(ay) is the threshold number in the following sense: if
ol 1) < ¢« then the solution exists globally in time and if ||upl| 1oy > c*
then u(x,?) can form a delta function singularity in a finite time. The latter
case is referred to as the chemotactic collapse. The arguments were heuristic,
making use of numerical computations for the stationary problem, while recent
studies are supporting their validity rigorously ([12], [14], [19], [20] and [21]).

First, the existence of such numbers ¢, and ¢* was proven by Jdger and
Luckhaus [14] for a simplified system. Later, Nagai [19] treated another
system, (KS) with 7 =0, referred to as N model in the present paper; as [6]
conjectured, 87/(ay) is actually the threshold number in the above sense for
radially symmetric solutions. Then, several works were devoted to the full
system, (KS) with 7 > 0. Particularly, Herrero and Velazquez [12] constructed
a radially symmetric solution with u collapsing at the origin in a finite time,
having the concentrated mass equal to 8z/(xy). Its counter part was shown by
Nagai, Senba, and Yoshida [21]; radial solutions exist globally in time with
uniformly bounded, provided that ||upl| 1 o) < 87/(ax). In this way, conjecture
[5] has been almost settled down in the affirmative for radially symmetric
solutions.

As for the general case, contrarily to the conjecture, [21] gave only

lluoll L1 (@) < 4m/(ax)

as a criterion for the existence of global solutions. (The same result is
obtained by Biler [3] and Gajewski and Zacharias [7] independently.) But this
number 47/(oy) is also realized to be best possible and the reason for the
discrepancy between radial and non-radial cases has been clarified by Nagai,
Senba and Suzuki [20] and Senba and Suzuki [23]. Namely, the former
studied N model and showed, among others, that if 4z/(x) < [uol|p1 (o) <
8n/(xy) and the solution blows up in a finite time then the concentration
toward 02 occurs to u. (This phenomenon is proven also for the full system
recently by Senba and Suzuki [25] and Harada, Nagai, Senba, and Suzuki
[10].) On the other hand the latter studied the stationary problem in details;
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the underlying variational structure and its effects to the dynamics. In par-

ticular, it asserts that many non-radial stationary solutions, missed by [6], exist

and take roles in non-stationary problems even in the case that £ is a disc.
Through those studies we are led to the following conjecture:

Component u forms a delta function singularity at each blowup point xy € Q
with the concentrated mass equal to 8m/(ay) and 4rn/(oy) according to xy € Q
and xy € 092, respectively.

Actually Senba and Suzuki [24] studied N model and proved the above
phenomenon with the mass greater than or equal to the expected values. The
present paper studies the full system and proves the following; if the solution
(u,v) blows-up in a finite time, then u forms a delta function singularity at each
isolated blowup point, and any blowup point is isolated, provided that the
Lyapunov function described below is bounded. Finally, only the origin can
be a blowup point of radially symmetric solutions.

2. Summary
Let us put that
T=0= )) = X = 1

for simplicity. The following facts are known.

1. ([27], [3]) Given smooth nonnegative initial data uy # 0 and vy, we have a
unique classical solution (u(-,t),v(-,t)) to (KS) defined on the maximal time
interval [0, Tyax). The solution is smooth and positive on Q x (0, Tyax). If
Tmax < +00, then it holds that

limsup [[u(-, )| (@) = +©.

11 T max

2. ([21], [3], [7]) Putting
W(t) = “Q{ulogu —uv 4»%(]‘7142 + vz)}dx,

we have

4 W)+ | v dx+J ulV - (logu — v)|%dx = 0.
dt o o

In particular, W(t) is a Lyapunov function. It is monotone decreasing, so
that either

inf W(t)> -0 (1)

0<t<Tmax
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or

o W0 =0

holds.
We prepare several notations and definitions.

Notation

(i) B(xo,R) = {x e R?||x — xo| < R}, where xo e R?> and R >0

(ii) A(xo,r, R) = B(xo, R)\B(xo,r)

(i) (&)= {Radon measures on &}, where & denotes a compact
Hausdorff space

(iv) w* —lim = weak star limit in .#(%)

(v) 6(-) =Dirac’s delta function concentrated at x=0 in R? and
0, () =0(- — x) for xo € R?

(vi) || = the Lebegue measure of 2 — R?

DEFINITION
(i) In the case of Ty < +00, we say that xo € Q is a blowup point of u if
there exist {fx};o; = [0, Tmax) and {xx}i=, = Q satisfying wu(xx, ) —
+00, tx — Tmax, and xx — xp as k — 00. The set of blowup points of u
is denoted by 4.
(i) We say that xo € # is isolated if there exists R > 0 such that
sup  u(-, )| L= (4o, r, RINQ) < T
0 <1< Tmax
for any r e (0,R). The set of isolated blowup points of u is denoted by
B;.
(1) System (KS) is called radially symmetric if Q = {xeR2||x| <1} and
uo = uo(|x]), vo = vo(|x]).
Our results are stated as follows.

THEOREM 1. Given xg € #;, we have 0 < R« 1, m > m,, and
/ & L'(B(xo, R)N2) N C(Blxo, R N2\ {x0}),
satisfying f >0 and
w* — lim u(-, t)dx = mdy,(dx) + f dx (2)

11 Tmax

in M(B(x9,R)N2), where

x =

{ 8rn (x0 € Q)
4n (x0 € 092)
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THEOREM 2. If (1) occurs, then B = %;.
THEOREM 3. If (KS) is radially symmetric and Tyax < +00, then B = {0}.
In our notation, the delta function 6,,(dx) € .#(Q) acts as

<1,0x,(dx)> = n(xo)

for xo € Q and € C(Q). It is easy to see that L' norm of u(-,¢) is preserved
(see section 3). Therefore, Theorem 1 implies that the number of isolated
blowup points is finite. More precisely,

2 x H(Br N Q) + §(B;N02) < |luoll 1 q)/4.

Condition (1) actually holds for the blowup solution constructed by [12].
However, except for this example any criteria for (1) have not been known. In
this connection, it may be worth mentioning about the semilinear heat equation

u=Adu+uf'u  in Qx(0,T)  with ul,o=0 (3)

. " . n+2 . .

on a bounded domain 2 < R”. For the subcritical case 1 < p < P it is
known that blowup occurs if and only if lim,7,,, J(u(f)) = —oo, where

1 1

J(0) =5 IVlly =l
stands for the Lyapunov function ([8], [13], e.g.). To our knowledge, it has not
been clarified whether lim,;7,,, J(u(f)) > —o0 and Ty < +oo can occur for
the other cases of (3). But those relations between Lyapunov functions and
blowup mechanisms may suggest that (KS) with two space dimension obeys
some features of (3); in the former case the boundedness of the Lyapunov
function implies the finiteness of blowup points.

Our theorems are proven through localized energy estimates, particularly
the localized Lyapunov function. Concluding the section, we describe it in
short. ~-

The localized Lyapunov function is defined by

W,(t) = Jg{ulogu —uv +%(|Vv|2 + vz)}(pdx,

where ¢ is a nonnegative C* function. If ¢ =1, W,(z) is equal to W (t), but
usually ¢ is a cut-off function satisfying

0<p<1 inR?% Z—ZZO on 0Q. (4)

Actually it is taken in the following way.
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Given x¢ € 2, we have 0 < R’ < R with B(xp,2R) = Q. Then we take ¢

satisfying
1 (x € B(xo, R"))
o9={o  (reR bor) 2

Given xo € 0Q, we first prepare { € C°(R?) satisfying { ={(|y|), 0<{ <1 in
R?, and

_ 1 (yeB(0,1/2))
W={o  (eanaon

Next, we take a smooth conformal mapping X : B(xo,2R) — ¢ = R? satisfying
xo — 0 and
X(B(x9, R)N Q) = {(x1,x2)|x2 > 0}

X (B(x0, R)N3Q) = {(x1,x2)|x2 = 0}
X(B(xo,R')) = B(0,1/2)
X (R?\B(xo, R)) = R*\B(0,1)
for 0 < R" < R« 1. Then we set ¢(x) ={(X(x)). It holds that

0 oX
%Cox_%.(vgoX)_O on 02
because (0X)/(0n) is proportional to (0,—1) on 02, and such ¢ satisfies (4)

and (5).
We have the following.

LemMmA 2.1. It holds that

4 W,(t) +J v,zwdx—i—J ulV(logu — v)[*pdx = EJ updx + Ry (u,v,9), (6)
dt Q Q dt o
where
Ri(u,v,0) = J (1 —v)Vu— (ulogu — uv + v,)Vv] ~V(pdx+J (ulogu) Apdx.
Q Q

Proor. Multiplying (logu — v)gp by the first equation of (KS) and using
Green’s formula, we have

J u,(logu — v)pdx
Q
= J V. (Vu—uVv)(logu — v)pdx
Q

= —J ulV(logu — v)|*pdx — J (logu — v)(Vu — uVv) -Vedx.  (7)
Q Q



Chemotactic collapse in a parabolic system 469
Here, it holds that

J u,(logu—v)gpdx:ij (ulogu—uv)(pdx—ij u¢dx+J u,pdx  (8)

and
J (logu)Vu -Vodx = —J uV - (loguVe)dx +J (ulog u)%dx
Q Q 00 on
=— JQ{(u logu) Agp +Vu-Voldx. 9)
In use of the second equation of (KS), we have

J uv,wdxzj (v, — Av+v)vpdx
Q Q

10
:J {vf+§—t(|VU|2+v2)}¢dx+J vV Vodx,
e e

which, together with (7), (8) and (9), leads to

4 W, +J v,2¢dx+J ulV(logu — v)|*pdx
dt Q Q
d
= —J up dx +J (ulogu) Apdx
dt)o o
+J (1 =v)Vu— (ulogu — uv + v,)Vv] - Ve dx.
Q
The proof is complete. O

We sometimes write ¢ = ¢, g/ g

Now we describe the way of proof and some technical difficulties.
Theorem 1 is proven by the method of [20], localizing estimates of [21]. The
crucial point for the proof of Theorem 2 is showing finiteness of blowup
points. As is described in [24], it follows if local L! norms of u have bounded
variations in time, and this actually holds if the Lyapunov function is
bounded. (In N model, it can be shown that the local L! norms have always
bounded variation in time thanks to remarkable properties of the Green’s
function. See [24].) Finally, Theorem 3 is a consequence of those arguments.

3. Preliminaries

Regard —A +1 as a closed operator in L?(Q) (1 < p < o), denoted by
A[h by



470 Toshitaka NAGAI et al.

D(4,) = {ve WP (Q) ‘ %: 0 on 69}.

It is sectorial so that —4, generates an analytic semigroup denoted by {7,(7)}
(see [15]). The spectrum o(A,) is independent of p and satisfies o(A4,) =
{ze C|Re(z) > 1}. We have the following because 2 = R? is bounded and
022 is smooth (see [26]):

T,(t) is an operator of integration with the symmetric kernel G(x,y,t)
independent of p, satisfying

c =%\ -
B - _ ot
IDnyG(x»yv t)' < (A TIA) /2 CXp( Ct e (10)
Sor |a] <2, |B]| <2, and (x,y,t) € 2 x Q x (0,4+00), where C >0 is a constant
and 0 <9d < 1.

An immediate consequence is

” Tp(t) ”,Q’(LI'(_Q)’LP(Q)) < G,

where C, > 0 is a constant determined by p € (1, o).

For B €10,1] the fractional powers A{f of A4, is defined, and the domain
Xp/’ = D(A.ﬁ) is a Banach space under the norm ||u||XPp = ||Afu|IU(Q). We have
the following ([11]):

X} =« whka(Q) and XP = CH(Q), provided that k — (%1 < 2B —12—), q>p and
2
O<pu<2p ~p respectively.

Making use of those estimates instead of the elliptic estimate for the
second equation, we get the following similarly to N model (see [20]). We
have v(#) € D(A4p) for 0 < tp < Tmax and henceforth suppose that vy € D(4,).

PrROPOSITION 3.1. The following relations hold for the solution (u,v) to
(KS), where Cy, >0 is a constant determined by q € (1,2) and ¢ (0,1/2):

(-, Dl L) = lluoll L) (11)
oG )l gy < Caell4)* 00l Loy + llHoll 1)) (12)

ProoF. Integrating the equations of (KS) over 2, we have

%J u(x, Hdt = 0 (13)
Q
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and

%JQ v(x, t)dt = — JQ o(x, t)dt + JQ u(x, f)dt.

Equality (13) implies (11) because # > 0. Then,
o, lli@) = € voll Loy + (1 = e lluoll L1 (0

follows from (14) and v > 0.
Poincaré-Wirtinger’s inequality assures the equivalence

ol ey 2 VOl Lago) + 10l L1 @)
so that (12) is reduced to
IVo(-, D)l o) < Cq,e(“A,;/ZHUO“Lq(Q) + luoll1(0))-
Rewrite the second equation of (KS) as
t
v(-, ) = Ty(t)vo + .[0 Ty(t — s)u(-,s)ds.

Inequality (15) will follow from

H T,(t — s)u(-, t)ds

< Cylluoll (@)
wha(Q)

and
” Tq(t)UOH wha(Q) < Cq,e‘”A;/ZHUO” wha(Q):

" In fact, we have
q
Li1(Q) - JQ

J 1) 11 (x, )dx
Q

q

t
J J ViG(x,y,t — s)u(y,s)dyds| dx
Q

e, -4

IA

with

t
I= J J (t— s)(6—5q)/(4q—4>u(y, s)eaq(s—z)/(zq_z) dyds

0Je
and

t
II = J J (t— s)(sq—6)/4|VxG(x,y, t—s)|"u(y, s)e‘s"(’_s)/2 dyds.
0Jo

471

(14)
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If ge(1,2) then (6 — 5q)/(49 —4) > —1, so that we have

1(1) < Cylluoll 11 ()

On the other hand, inequality (10) gives that

J (x,0)dx < C
Q

J

<C

J

Therefore, we get

Finally,

t

o8]
1 (a+2)/4 p—0q1/2 dt||uo)| .
0

C(t—ys)

2
_ qu yl )u(y, S)eéq(s—t)/Z dxdsdy
Q

@ = Cq||u0||u(g)-

q
v

t
L T,(t— s)u(-,s)ds < qu|uol|zl(9)~

La(Q)

ITa(Dvollwro) < Coclldg > Ty(t)voll g

and (15) follows.

We note that

for 1 <p < o0.

= q,e“Tq(’)A;/ZHUOHU(m = Cé,g“A;/ZHUO”Lq(Q)

Lemma 5.10 of Adams [1] reads;

for we WH1(Q), where K > 0 is a constant determined by Q.

The proof is complete. O
inequality (122) with 1 < g < 2 implies

(-, Dll, < G (16)

”WHEZ(Q) =< Kz(”w”i’({)) + ||VW“12J(Q)) (17)

Inequality (17)

implies some estimates on u.
Recall the cut-off function ¢, g g intoduced at the end of section 2.

Then, l// = ((DX(),R’,R

)¢ satisfies

1 (x € B(xo, R"))
Vo) = { 0 (xeR\B(xo,R))
0<y<li in R?, %’gzo on 0Q2
vyl <4y, |AY|<BY*?  in R?,

where 4 > 0 and

B > 0 are constants determined by 0 < R’ < R« 1.
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LemMMA 3.2 The following inequalities hold for any s > 1, where C > 0 is a
constant:

2
J uZdeSZKZJ udx-[ u-1|Vu|2l//dx+K2<A—+1>||u||§1(9) (18)
Q B(xo, R)NQ Q 2

4K?
J wtpdx < —J (ulogu+e‘1)dx~J u ' \Vul*y dx
Q logs B(x0, R)NQ Q
+ Cllull71 g + 35712 (19)
2
J Wiy dx < 2K J (ulogu+e_1)dx-J \Vu|*y dx
Q logs B(x0, R)NQ Q

3
+ Cllullz1(8(x, R0y + 1012157 (20)

1/2

Proor. Putting w=uy'/“, we have

{JQ|Vw|dx}2£2{ |Vu|t//1/2dx}2+2{ u|Vl/ll/2|dx}2

2 A2
<o{ [ w2 asf + 5l

IA

2J udx - J T\ l//dx+ H“”L'(Q
B(xo, R)NQ Q

Hence (18) follows from (17) and [[w|.iq) < llullL1q)-
We turn to (19). Take w= (u —s)+|p1/2 with a;, = max{a,0}. We have

Wil = j (u— ) dx
{u>s}

> J (luz—sz)lﬁdx
{u>s} 2

=J luzl//dx—J —uzt//dx J s2y dx
92 {u<s}2

1 2 3,
> 2L2u lpdx—is |2].

On the other hand we have ||W||il(g) < |[u||i,(9) and
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2
Vw71 < { J (Vuly' + (u —s>+1Vx//‘/2|)dx}

{u>s}

2 2
2{J WVuly' dx} +2{J u|V¢]/2|dx}
{u>s} Q

2
12 A%
2 Vuly "“dx o +—=-[|ull L1 o)
{u>s} 2

IA

IA

Here,

2
J \Vuly!'Zdxy < J udx~J u~ |V 2y dx
{u>s} B(xg, R)N{u>s} {u>s}

1
< —

ulogu+e”! dx’J u Y \Vul?y dx
IOgSJB(xo,R)ﬁ.Q( £ ) Q Vul'y

because slogs > —e~! for any s > 0. This implies (19).
Finally, take w = (u — s)i/lezl/z. We have

Wl =J (u— 5) ¥ dx

{u>s}

> J <1u3—s3>¢dx
{u>s} 4

1 3 53
> ZJQu wdx—4s |2

Because

3 I
Vwl < 5 (=52 Wuly'? + 5 A - 52

we have

2 2
9 A?
anHf,(Q) <5 {J (u — 5) 2 |Vuly '/ dx} +5 {J (u — 5)*/ 2y dx} .
{u>s} {u>s}

Here, it holds that
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2
{J (u—s)1/2|Vu|lpl/2dx} < {J ul/lequ/zdx}
{u>s} {u>s}

< J udx-J \Vuly dx
B(xp, R)N{u>s} {u>s}

1 J _ 2
< — ulo u+e'dx-J Vu|“y dx
logs B(xo R)ﬂQ( & ) .Q| v

2

and

2
{J (u— 5) V213 dx} { wp P2 dx}
{u>s} {u>s}

2/3
1/3
{ ul/,dx} el 21,y |21

IA

< £JQ Wy dx + Ce|Q|”u||13:1(B(xo,R)ﬂQ)’ (21)

where C; > 0 is a constant determined by ¢ > 0. Therefore,

9

Vw7 < _J
VWL 21og s ) g(xy, R)NQ

(ulogu + e ')dx - J \Vul>y dx
e

A2 3 d AZ Q 3
+78 Qu ¥ x+7C£| el 21 (8o, RINQ)-
Since /2 <!/, it follows from (21) that

2 3
w2 < sjg W dx + G2l s rna)-

2
(i - K? (A?"_ l)a) JQ u3lﬁdx

KZ
o J (ulogu+e_1)dx'J V| dx
X0 R)ﬂQ Q

We get

< —
logs ) g

A2
+K2C, |Ql( + l)llu“u(s(xo,k)m)+ sl

by (17). Taking ¢ >0 as
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1 (A 1

we obtain (20). 0

4. Finiteness of blowup points

This section is devoted to the proof of Therems 2 and 3. First, a
technical estimate is derived for local norms of the solution (u,v) to (KS).
Henceforth, we always asume Tp.x < +oo and a generic positive constant
(possibly changing from line to line) is denoted by C.

LemMmA 4.1. It holds that

EJ (ulogu)l//dxﬁ—lj u_lqulzl//dx+J uvy dx
dt)o 2] Q

+1J vfl//dx+lij (|Vv|2+vz)l//dx52J Wpdx+C. (22)
2)o 2dt]g °

ProorF. We show the following equality first:
d g2 1d 2, 2
— | (ulogu)ydx+ | v ' |\Vul"Ydx+ | wpdx+-—1| (|Vv|" + v )Y dx
:J uZ.//dx—J vidx —1—1I —IIT - 1V, (23)
Q Q

where

I=| v,Vv-Viydx
Jo

H:j (1 +logu)Vu -V dx
Q

I = [ o(l +logu)Vu -V dx
e

44 =J (uvlogu) Ay dx.
Q

This can be derived by (6), but here we prove it directly by (KS).
In fact, multiplying (logu)y by the first equation of (KS), we get that

d
Ejg(ulogu)t// dx = JQ u,(log u)y dx + JQ upy dx

- J (V- (Vu—uVo)}(1 + logu)y dx
Q
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= —J Vu-V{(1+ 10gu)1/1}dx+J uVo-V{(1+ logu)y}dx
Q Q

=-V+ VI
Here,

J (u "YVu+ (1 + logu)Vy)dx
j (Vv-Vu) lﬂdx+J u(l +logu)Vou-Vidx

J - (YVv)dx + J u(l +logu)Vo - Vi dx

Q Q

J ut//Avdx+J (ulogu)Vv - Vi dx

Q

J u(vy+v—u l/ldX+J (ulogu)Vu-Viydx

Q
= —J u(v,+v—u)ydx — J v(ulogu)Ay dx — J o(l +logu)Vu - Viydx

Q Q Q
by the second equation of (KS). On the other hand,
V= J Vu- {u""YyVu+ (1 + logu)Vi}dx
Q
= J u” \Vul Py dx + J (1 +logu)Vu -V dx.
Q Q
Therefore, it holds that
ij (ulog u)y dx + J u” \Vul*y dx + J uvy dx
dtJo Q Q
= J (u? — vu)p dx — J (1 +logu)Vu -Vidx+ J (ulogu)Vv -V dx
Q Q Q
= J (u? — vu)pdx —II — IIT — IV.
Q

On the other hand we have

lij (|VUIZ+UZ)'//dx= (Vv - Vo + o)y dx
2dt]g Jo

= | v(—dv+v)Ydx— J v,Vv-Vidx
Jo Q

= (v +vu)pdx—1I.
Q

Equality (23) has been proven.
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Now we proceed to the proof of (22). First, in use of (18), we get that

|| < CJ w6 u' P+ loguly' - w2V uly /% dx
Q

1/3 1/2
SC||u||z<?g){Jgu|l+logu|3l//dx} {Jgu_'|Vu|2¢dx} .

Recall the elementary inequality: Let 1 <o <2 and > 0. Then
u'(1+ logu))? < Cw?+1)  (u>0).

We obtain
1/3 1/2
|11|5C||u0||1/,j9){J u2.pdx+1} {J u_1|Vu|2|//dx}
Q Q
I o2 1
< —| v \Vul"Yydx+-| uydx+C

4], 4/,

by (11). Similarly, we have

| < CJ w P\uly! w21+ loguly!'? - vdx
o

IA

12 13
C{J u"|Vu|2npdx} {J u3/2|l+logu|3l/1dx} 1]l Lo ()
Q Q

< J u—1|\7u|2¢dx+1j u?Ydx + C
Q 4 Q

|-

and

|1Iv| < J |uvlog u|y/? dx
Q

2/3
s{jgmloguﬁ/zwdx} ol

< IJ utydx + C.
by (16). Finally,

7] < AJ oV ol dx
Q

<

J v,zt//dx+A2J o2y dx.
Q Q

=
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Here,

j WPy dx = — J o - (W2 V0)dx
Q Q

J {v 2/3 - %¢'1/3qu// . Vv}dx
o 3

v(—v, +u— v)t//2/3dx 3J Yy V3oV - Vodx
Q

0

<J RAR ulp'/zdx+“ v 1% o0 dx
Q Q

+2—AJ \Voly!/? . o6 dx
3 Jo

1 2 2012 1 2
< @Lu b dx +164%0] 21 q) +@J o2y dx

#3240l + [ o+ 25 ol
Therefore, it holds that

1 1
2,2/3 2 2
JQ VoY~  dx < 4_A2J Y dx +4A2J Yydx+ C,

which implies

1
|1 < —J vtzuﬁdx+lj utydx + C.
2o 4Jo

Inequality (22) has been proven. O

We show a key fact for the proof of Theorems.

PROPOSITION 4.2. Suppose Tmax < +00 and let xo€Q and 0 < R « 1.
Then, if a solution (u,v) to (KS) satisfies

sup ulogudx < +oo (24)

0< 1< Tax J B(xo, R)NQ
it holds that

sup  [u(-, )| L= (B(xy, @) < +©
0 <t<Tmax

for any re (0,R).



480 Toshitaka NAGar et al.

Proor. We divide the argument in five steps. Take R’ e (0,R) and let

Y= (¢x0,R',R)6-
Step 1  We show that (24) with T < +oo implies

Tmax
v? dxdt < +o0.
Jo B(xo, R)NQ

Therefore, taking R > 0 smaller, we can assume that

Tnax

v} dxdt < +c0.
Jo  JB(x,R)NQ
In fact, inequality (19) with
M= sup (ulogu + e Vdx < +0
0< 1< Timax J B(xo, A)NQ
gives that
4K>*M
J Ul dx < j u” ' |VulPy dx + C + 35%|Q|.
Q logs Jo

Therefore, taking s > 1 as 8K?M/(logs) < 1/2, we have (26) by (22).
Step 2 Multiplying wy by the first equation of (KS), we have

1
—ij u2|//dx+J |Vu|2¢1dx+J uVu - Vi dx
2dt)g o o

= J wpVv-Vudx + J u*Vo - Vi dx.
Q Q

From the second equation of (KS) follows that

J ulqu-Vudxzéj YV - Viuldx
Q Q

:_1J uzl//Avdx—lJ u?Vu -V dx
2 Q 2 Q

:lj u3¢dx—1j uz(v,+v)l//dx—1j u*V - Vi dx
Q 2o 2

Q

1
< —J u3t//dx—lj uzv,l//dx—-lj u*Vo - Vi dx.
Q 2)a 2)o

N

Therefore, in use of

J quv'Vz//dx=—J vVu2~Vt//dx—J u?v A dx
Q fo) Q

(28)
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and
J uVu - -Vidx = —lJ u* A dx,
Q 2)q

we obtain

1d

J uzlpdx-i-J |Vu|2z//dx§l
Q Q 2

S—

1
la 3 L
i Qu Ydx ngu v dx

N —

+ JvVuz-thdx—i-lJ w (v + 1) Aydx. (30)
Q 2

Q
Here, last three terms of the right-hand side are dominated as follows.
First, inequality (16) gives that

% JQuZ(lH- D4y dx| < JQ(U+ 1)'M2!ﬂ2/3dx

| &

IA

B s 2/3
Sl + 100 [ v ax

IA
W -

J wydx+ C.
Q
Similarly,

! J wWu? -V dx
2])a

< 3AJ v w3 |Vl dx
Q

1/3 1/2
<3l { [ wwas) {[ wurv)

< 1J \Vu| 2y dx +1J wydx + C.
8Jla 3)a
Finally, Gagliardo-Nirenberg’s inequality

1/2 1/2
Il ey < KAV 1120 + el 2e))

to w=wuy'/? implies that

1 1/2 12
< —{J v,zdx} {J u4l//2dx}
2 | JB(xo, RN2 Q
1/2
< C{J v? dx}
B(Xo,R)nQ

2 212
(| (up"/ )||L2(Q)||u¢1/2||1,2(9) + [y z2@)

1
5“9 ulv dx
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< 6| WP avrc| s jut g,
B(xo, R)NQ

12
+ C{J v dx} ||“l//l/2||22(9)
B(xo, N2

1
_6J IV(unj/l/z)l dx + C(J v?dx+l)||uwl/2||iz(g)
B(x0, R)NQ

Here, we have
2 2 A2
j |V (uy /)| dng‘J |Vu| ¢dx+_J W22 dx
e Q 2 Jo

< ZJ [Vu{zwdx—l—EJ wdy dx + C,
Q 3Je
so that

1
5“@ w o dx

< lj [Vu|2.//dx+1j udy dx
8Jao 3)a

-{—C(J v,zdx—i—l)-J u?ydx + C.
B(xo, R)NQ Q

In this way, inequality (30) has been reduced to

1d

EEJ udx + = J (Vul*y dx

SZJ u3l//dx+C<J v,zdx+1)j uYdx+ C
Q B(xo, R)NQ Q

ssJ u3¢dx+c<J v,zdx~J u2l//dx+1). (31)
Q B(x0, R)NQ Q

We can make use of (20) for the first term of the right-hand side. It holds
that

T2K>M
logs

J Wy dx < J a2y dx + C + 10]Q]s°,
Q Q

where M > 0 is the constant defined in (28). Making s > 1 large, this term is
absorbed into the left-hand side of (31). We obtain
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ij uZde+J Vul*ydx < C J vtzdx-J wWipdx+1].
dt )o Q B(xo, R)NQ Q

In particular, g(f) = [, u*y dx solves

7‘; <hg+C  (0<1< T
with a continuous function A(¢) > 0 satisfying fOTma* h(t)dt < +oo. This implies
sup g¢(f) = sup J utY dx < +0. (32)
Q

0 <1<Tmax 0 <1< Tax

Setp 3 We take R” € (0, R’) and set ;, = (¢x0,R",R')6- Multiplying u?y,
by the first equation of (KS), we have

1d

-—J u3¢1dx+2j u|Vu|2tp1dx+J u?Vu - Vi, dx
3di)g Q Q

=2J uztﬁle-Vudx+J Vo - Vi, dx.
Q Q

This means that

1d( , 8 ) 2
§EJQW W, dx+§JQ|Vw| wldx—i—gJQwVw-Vl//,dx
4
:—J wn/lev-dex+J w2Vo - Vi, dx (33)
3 Q Q

for w=u3?. From (32) and
wlogw < 3w*/3 = 342

we have

sup (wlogw)dx < +c0.

0< 1< Trmax JB(xo,R’)ﬂQ

Relation (33) is similar to (29). Inequality (20) holds with u replaced by
w, and ||w]| .1 (p(x, rne) < C follows from (32). Finally, if we make use of the
second equation of (KS), we obtain

J wi,Vo-Vwdx < lJ
o 2

1 1
g dx §L whoihydx =3 [ w2vo- vy, dx

2)a

1
SJ w3|ﬁ1dx——J wzv,\//ldx—lj w2V -V dx + C
Q 2)o 2]
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similarly to (30). Under those circumstances we can repeat the arguments in
Step 2 and get

sup J wdx = sup J w? dx < +00. (34)
0 <1< Tmax J B(x0, R")NQ 0<1<Tmax J B(xo, R")NQ
If we repeat the arguments once more, we get
sup  [[u(-, )| L (B(xy, nng) < +O- (35)

0<t<Tmax

for any r e (0, R).
Step 4 Put uy = uypy, ), o =u—uy, and let v, v, be the solutions for

vy=Av—v+f in Q x (0, Tax),
ov
=
v(-,0)=0 in Q.

0 on 02 X (0, Trax),

with f = u;, u,, respectively. It holds that

t
by = j j G(x, y, 1 — S)u(y, s)dyds,
0 JQ\B(xo,r)

so that

sup  [[o2(-, )|l w2« (B(xg, rng) < +0
0<t<Thmax

for ' € (0,r) by (10) and (11).
To handle with v;(x,7), we recall the operator 4, in Section 3. Let
5/6 <f <1 and p=3. Then we have

sup llvl(wt)llxpﬂ:()sup 4501 (-, )l Loy
<

0 <1< Tmax t<Tax

t
< sup j 1APT, (¢ = $)ur (-, )] 1 s

0<1<Tmax JO

t
<C sup J (1 =) 7P|y (- 1) Lo ds < +o0

0<t<Tmax JO

by (34). Inclusion X/ = C'(2) holds and hence
sup (-, D)l 1 (Bxy, ) < +0 (36)
0 <1< Thax
for any re (0, R).
Step 5 Take r' € (0,r) and put y, = ((px()v,,,,)(’. We multiply u"z//f+1 by
the first equation of (KS) and get '
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dtp+1
Here,
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J (ul/,,)“‘dx:—J V(u"lﬁf+])-Vudx+J uV WPyt Vodx
Q Q Q

=141l

I= J (PP WP WV + PV Vudx
Q

_ 4P J IV P+l)/2‘ lpp-Hd _’_;J V!ﬂpﬂ ~Vu"+1 dx
C(p+ 1)? +1 !
_( 4P1) J VP2 2y g
p+
I%L w(lp+1)/2Vu(p+l)/2 ) u(p+1)/2‘7¢2p+1)/2 dc
= ap ___%__ J |Vu(p+1)/2|2lpf+1 dx
(p+1)?* p+1]la

+
+

|
hS
‘l\) -I—Il\) S

v

S|
+

oS
+‘N

Lo

[ 1V (up) P72 P
JQ

J ) P2 |t
Q

e e I AR

A*(p+1)

a J ()P 13
Q

A*(p+1 2/3
. IV () P2 P — —(—pi—) “”(’“i/lig) {Jg(ullfl)l+(3/2)pdx}

Furthermore, (36) implies

I < CJ |V (uP )| dx
Q

p

<cf-L;

+1

2p
C

[, Wi+ o 1) | u”“MIVthldx}

1] (wp,) p+1)/2|V( ) (p+1) /2|dx+ CA(p + I)J (ul//l)p+(5/6)ul/6dx
Q

7| ) ot 1) | (e
Q

5/6
+ CA(p + l)||u0||z/1?9) {Jg(ulpl)u(s/s)p}
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It holds that

d

—J udx < —J VP22 0x 4 C(p+l)2‘[ ul ™t dx
dt o Q o

2/3 5/6
+C(p+ 1)2 <{J ull+(3/2)p dx} +{J u11+(6/5)17 dx} >’ (37)
Q Q

where u; = wy;. Here, C >0 is independent of p > 1 and we can apply an
iteration scheme of Moser’s type (see Alikakos [2]). To this end we make use
of Gagliardo-Nirenberg’s inequality in the form of

Wl a@) < KUIVWIZ20) + [l 72092 ]l 140, (38)
where K > 0 independent of g € [1, o] for given ¢o > 1.
_3p+2 [5

€ [=,3). We have
p+1

First, apply (38) for w = u§p+1)/2 and ¢ 5

2/3
Clp+ 1)2“ u, TGP dx}
Q

/2 (2p+1)/(3p+3) 2/3
< C(p+1)2{J \Valp 1/ |2dx+J uf“dx} {J u(1p+l)/2dx}
Q Q Q

2p+1<2
3p+3 3

2/3 2/3
C(p+1)2{J (|Vu§”“>/2|2+uf+1)dx+1} {J ugf’*”/zdx}
Q Q

Because , the right-hand side is dominated by

1 2
< E{J (|Vu§"+”/2|2+u{’+‘)dx+l} +C(p+l)6{J u§P+1)/2dx+1} .
Q Q

(p+1)/2

Second, apply (38) for w = u, :w [22 12

St € m,?> We have

and ¢

5/6
C(p+ l)Z{J u:+(6/5)pdx}
ey

(p+5)/(12p+12) 5/6
sC(p+1)2{J |Vu<l"+‘)/2|2dx+J ! dx} {J u=p+l)/2dx}
Q Q 0

7/12 5/6
<C(p+ 1)2“ (|Vu§”+"/2|2+u{’+‘)dx+1} {J u(1p+1)/2dx}
Q Q
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IA

1 2
E{J (|Vu§p+1)/2|2+u{’+l)dx+ 1} +C(p+ 1)24/5{J u(1p+l)/2dx}
@ Q

2

< %{J (VPP x4+ 1} +C(p+ 1)“{] P dx + 1}
o Q

Finally, apply (38) for w = uﬁ”“)/z and ¢ =2. We have

C(p+1)2J ul*dx
Q
1/2
SC(PH)Z{J (IVu‘l”“’/2|2+u{’“)dx} {j u5P+‘>/2dx}
2 Q

2
s s
o Q

Inequality (37) has been reduced to

d p+1 1 (p+1)/2,2
7 JQ ul” dx + ZL |Vu, |“dx

1 2

< —J 't dx + C(p+1)6{J u(lpH)/zdx—i-l} .
2] Q

However, again (38) for ¢ =2 implies

2 2 2 1/2
Iwllz2g) < K2(||VW||L2(Q) + Iwllz2(0)) / Wl

1 2 2 2
< §(|IVW||L2(Q) +Iwllz2 @) + Cliwllzi o)

and hence
/2,2 1)/2,2 /2,2
16721220y < VP2 e + Cllut? V2 )
We obtain
d prl 1 p+1 6 (p+1)/2 ’
—| Wdx+-| BT dx<C(p+1) u; dx +1
dt Q 4 Q Q
and hence

sup {J uf+'dx+1}
0<t<Tma L0

2
SCmax{(anl)6 sup {J u(l”+l)/2dx+l} a||“0||i:29)|9|+1}-
Q

0 <1< Tmax
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Therefore,
2k
@ = sup up dx+1
0<1<Tmax JQ
satisfies
Dppr < Cmax{20 D2 (1Q] + 1) (fluo | (o) + 1>}
< C29H) max{@F, (|Juo | =) + 1>} (39)

for k=1,2,....

Let d = ||upl| () + 1. Then, (39) is reduced to

k
Dy < CH3 22 B2 -maX{¢§k_|7d2k*l}

for k=2,3,.... We have
k+1 1/2k+l 1/2k+1
sup {J u? dx} < d>kfrl
0<t<Tmax LJQ

< Ck=3/2x 6377 27 -max{®./* d},

and letting kK — +o0,

1/4
sup [y (-, D)l e (o) < Cmax{( sup ||u1(',t)||24(g) + 1) ,d

0 <1< Tiax 0 <1< Tiax

follows. In use of (35), we obtain

sup  lur (-, Ol ey = sup  |Ju(-, ¥yl ) < +o0.
0<t<Tmax 0<1<Tmax
Since ' € (0,r) and r e (0,R) are arbitrary, we have (25).
The proof is complete. O

Theorems 2 and 3 are immediate consequences of the following.

PROPOSITION 4.3.  Let (u,v) be a solution to (KS) and Tmax < +00. Then,
any xo€ B and 0 < R« 1 admit

1

Tk (40)

lim sup u(x, t)dx >

11 Trmax JB(X(), R)NQ

Proor. Take re (0,R) and ¢ = (¢XO7,YR)6. If (40) does not hold, then
(18) implies
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J Wy dx < 2K2J uds j W Wl dx + Cllul 2 g
Q B(xo, R)NQ Q

< lJ u ' \Vul’ydx + C
8la

for 0 < Thmax —t « 1. Then (22) gives
limsupj (ulogu)ydx < +o0,
tTTmax Q

and hence

liIPTSUP (s Dl Lo (Bx, ryn) < +90
t max

follows from Lemma 4.2, where r’' € (0,r). We get xo ¢ # and the proof is
complete. O

Proor of THEOREM 3. In this case it holds that
u=u(|x|,1). (41)

If xo € #\{0}, we have & = {x||x| = |xo|} = &.

Given a positive integer m, we take 0 < R« 1 and xi,...,x, € & sat-
isfying B(x;, R)N B(x;,R) = & for i+#j. Relation (40) admits a sequence
te T Tmax satisfying

1
u(x, ty)dx > ——
JB(X,,R)OQ (x: 86) 18K2

for j =1 and hence for j=2,...,m by (41). Therefore,

-, @l = Zj e, 1) > 0

B(x;, A)NQ

follows, which contradicts (11) if m > 18K?||uy|| Li(@)- The proof is complete.
O

PrOOF of THEOREM 2. If the solution satisfies (1), then

Tmax
J J (v? + ulV(logu — v)|*)dxdt < +o0
o Ja

follows.
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Take xoe #, 0 <R« 1 and let 9 = ¢, g g. We have

J up dx
Q

< CJ ulV(logu — v)|dx
A(x0,R/2,R)

J (Vu—uvv) -Vodx
Q

d
EL up dx

< C{||u||L1(Q) +j ulV(logu — v)|2dx} (42)
Q
and hence

d

Tmax
— | updx
Jo dfjg v

This assures the existence of lim,r,, [,updx. In use of (40) we have

dt < +0.

lim inf J u> lim J up dx
11 Trmax B(xo‘R)ﬂQ 11 Trmax Q

udx

1\

lim sup J
1TTmax B(Xo,R/Z)ﬂQ

1
= 16K2°

Since xp € # and 0 < R« 1 is arbitrary, this implies that
#B < 16K |lug|l 1) < +o0

by (11), and in particular, any blow-up point is isolated. O

5. Isolated blowup points

In this section we study the behavior of u around the isolated blowup
points more precisely and prove Theorem 1.
We first note the following.

LemMa 5.1.  Let (u,v) be a solution to (KS) and xo € B;. Then there exist
O0< R« and 0€(0,1/2) such that

llull c2ea.10(( 4 (xo, r, RIND) [0, Tonar)) T 1Pl 220140t (30, . RINQ)Yx [0, Ty < TOO (43)
for any re (0,R).

ProoF. Because x( € 4, there exists Ry > 0 such that

0<Sl‘<11; (el s Ol L (agxo, ro, RYNR) F 110G Ol e (a0, 10, RO)NR)) < 00
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for any ry € (0, Ry). Then the parabolic estimate for the second equation of
(KS) (see [26]) gives that

sup  [|Vo(-, )l Lo (4o, r, R)N2) < T
0<1<Tmax

for R and r in rp <r < R < Ry and the standard theory for the first equation
(see Theorem 10.1 of Chapter IV of [17]) applies; R’ and ' in r <r' < R’ < R
admit 0 € (0,1/2) such that
l14ll c20.0( (a0, RNNR) 0, Tar)) < -

Now Theorem 10.1 in Section IV of [17] is available for the second and the
first equation in turn, and, given R” and r” in r' <r” < R” < R’ we have
0" € (0,1/2) such that

HU“C“Z‘)/-'+5'((A(x0,r”,R”)ﬂQ)x[O, Tow) < T
and

”u”C“Zﬁlv'+9/((A(xo,r",R”)ﬂQ)x[O, Tmax)) < +o00.
Since r” is arbitrary, proof is complete. O

An immediate consequence is the following.

LeMMA 5.2. Let xo€ B; and ¢ = ¢, g g for 0 < R' < R« 1. Then we
have

sup  W,(1) <+ (44)
0 <1<Tmax
and
lim supJ Vol2pdx = + 0. (45)
tTTmax Q

Proor. Recall (6) and put
t
F(t) = W,(2) —J Ry (u,v, ga)ds—J up dx.
0 Q
Relations (11) and (43) imply

< HMOHLI(Q) and 0<S,I<II; IR](M, v, (P)l < +0o0,

“ up dx
Q

respectively. By Lemma 2.1, F is monotone decreasing in [0, Tmax) and (44)
follows. Then we have
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J (ulogu)pdx < C +J uvp dx,
Q Q

and

lim supJ uvp dx = +00
’TTmax Q

follows from Proposition 4.2. In use of Young’s inequality we have
1
aj uvpdx < J (ulogu)q;dx—l——J e“pdx
Q Q elo

1
<W,+ JQ uvp dx + ;L e“odx

SC+J

1
uv(pa’x+—J epdx,
Q €la

and hence
1
(a— I)J updx < —J e”pdx+ C.
Q €Jo

If a > 1, we have

lim supJ e“pdx = 400,

NTmax JQ
which implies (45) by the following Lemma. O

LeMMA 5.3. Let a>0, xo€ %B;, and ¢ =¢, p g for 0 <R <R«
Then, the inequality

a2
J Podx < Cexp( J |Vl (pdx) (46)
Q
holds on [0, Trax). If xo € 2, then
2
J Podx < Cexp(1 J Vol (odx> (47)
Q

ProOF. We recall the following inequalities due to Moser [18] and Chang
and Yang [4]: There exists a constant K determined by Q such that

lo eVdx | < 1% +— J wdx + K
g(L ) “ W”LZ(Q) Il

for we X, where
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n*_{47z if X=H'(Q)
8 if X = H(Q).

Because xy € 4;, we have

sup ”v('»t)”Lw(A(xo,R’,R)ﬂQ) < +oo0.
0<1<Tmax

Therefore, we get

J e“pdx < J e“dx + J e“pdx
Q B(x0, R)NQ A(xo, R", R)NQ

2
a 2
< Cexp (% IVOll Z2(Bxo, RN2) T C) +C

2
< Cexp (g_nj Vol? dx)
Q

by (43). This shows (46). A similar calculation gives (47) if xo € Q. The
proof is complete. |

The following lemma is a modification of [21].

LeMMA 5.4. We have
J uvp dx < J (ulogu)pdx + M, log(] e”¢dx) — M,logM,, (48)
Q Q Q

where M, = [, updx.

Proor. Since —logs is convex, Jensen’s inequality applies as

1 e’ u
—lo —J e’ dx) =—lo (J e dx)
g<M¢, o [ g o u M,,,(o
I )\ u
= J,{eee ) e
ARG
=—— ulog| — dx.
M(p Q g u 4

This means (48). O
This implies the following.

LEMMA 5.5. Suppose Tpax < +00 and take xo € #B;, and 0 < R’ < R« 1.
Then the relation
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lim J up dx > m,
11 Tinax 0
follows, where m, is the constant in Theorem 1 and ¢ = ¢, g g

Proor. In use of (43), we have

d
7 L up dx

similarly to (42), so that limyr,, |[up|/;1q) exists. Suppose

<C

i 0= fn ol <. @

In the case that xo € 2 we have (47). Inequality (48) implies
1

J (IVv|2+v2)(pdx= W¢—J (ulogu — uv)p dx
2)ao Q

<W,+ M, log(J e"wa’x) — M,logM,
Q

M, C

<C+——¢J |Vv|2¢dx+M¢log—

Q M

- l6m A
by (44). It follows that

1/, M, ) C
—1-== dx < —.
(l 87t>JQ|VU| 17 x_C+M¢long

Therefore, (49) with m, = 8z gives

lim supJ |Vo|%dx < lim supj [Vo]*pdx < + 0.
1T Timax B(xo,R/2)NQ2 11 Tax Q

This contradicts (45) with R replaced by R/2.
The case xp € 02 can be treated similarly and the proof is complete. (]

We are able to give the following.

ProOF of THEOREM 1. Let xoe#; and ¢ =g, g, g From above
lemma, the value

m(xg, R) = liTm J u(x, t)pg(x)dx = m,
Q

1T Tmax

exists for any xp € 4; and 0 < R« 1. Moreover,

(o, R) = m(xo, R/2) = lim | u(x,0)(pa(x) = paya(0)dx = 0
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and there exists
m@@zﬁnwmﬂﬂﬂZm.
—00
Inequality (43) implies

sup lu,] < 400
A(xg,r, R)N2X[0, Trnax)

for 0 <r < R. Therefore,

= 'ThTr'rnlax u(x,t) =0 (50)

exists for x € B(xo, R) N Q\{xo}. In use of (43) again, convergence (50) holds
in the sense C(A(xop,r,R)NQ), where r € (0,R). Also f € L'(Q) follows from
(11).

For simplicity we set E = B(xo, R)N Q. Given ¢ € C(E), we have

J@ﬁ-Mmmm-Jﬁa
E E
— &(x) ( [ g - m(xo)> + [ (6 gy

- | efompdvt | ew-1)1 - pppax
E E

for k=1,2,3,.... It follows that

J u& dx — m(x9)&(xo) —J fé&dx
E E

< el =) L upg/ax dx — m(xo)| + lluoll 1) 1€ = E(x0)ll L= (B(xo, R2)02)

+ 1<l L= k) <JEf(0R/2k dx + [lu "f||Lac(A(xo,R/2k+',R/2k)ng))

and hence

lim sup
11 Trmax

< IEll = gy I (x0, R/2) — m(xo)|

J uE dx — m(x0)é(xo) — J fedx
E E

+ ||“0||Ll(g)||f - f(x0)||Lm(B(x0,R/2k)nQ) + ||f||Loc(E) Lf‘/’R/zk dx.
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Making k — +o0, we get

lim L ué dx = m(x9)&(x0) + JEfé dx

11 Tinax

by fe L'(E). This means (2) and proof is complete. O

(1]
(2]

(3]
(4]

[5]
(6]

[7]
8]
9]
[10]
[11]
[12]
[13]
[14]

(15]
(16]

(17)

(18]
(19]

20]

References

R. D. Adams, Sobolev Spaces, Academic Press, New York, 1975.

N. D. Alikakos, L? bounds of solutions of reaction-diffusion equations, Comm. Partial
Differential Equations 4 (1979), 827-868.

P. Biler, Local and global solvability of some parabolic systems modeling chemotaxis,
Adv. Math. Sci. Appl. 8 (1998), 715-743.

S. Y. A. Chang and P. C. Yang, Conformal deformation of metrics on S2, J. Differential
Geom. 27 (1988), 259-296.

S. Childress, Nonlinear aspects of chemotaxis, Math. Biosci. 56 (1981), 217-237.

S. Childress and J. K. Percus, Chemotactic collapse in two dimensions, Lecture Notes in
Biomath. 55, Springer, Berlin, 1984, pp. 61-66.

H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modelling
chemotaxis, Math. Nachr. 195 (1998), 77-114.

Y. Giga, A local characterization of blowup points of semilinear heat equations, Comm.
Math. Phys. 103 (1986), 415-421.

D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order,
Second edition, Springer, Berlin, 1983.

G. Harada, T. Nagai, T. Senba and T. Suzuki, Concentration lemma, Brezis-Merle type
inequality, and a parabolic system of chemotaxis, to appear in Adv. Differential Equations.
D. Henry, Geometric Theory of Semilinear Parabolic Equations, Lecture Notes in Math.
840, Springer, Berlin, 1981.

M. A. Herrero and J. J. L. Velazquez, A blow-up mechanism for a chemotaxis model,
Ann. Scuola Norm. Sup. Pisa IV 35 (1997), 633-683.

R. Ikehata and T. Suzuki, Stable and unstable sets for evolution equations of parabolic and
hyperbolic type, Hiroshima Math. J. 26 (1996), 475-491.

W. Jdger and S. Luckhaus, On explosions of solutions to a system of partial differential
equations modelling chemotaxis, Trans. Amer. Math. Soc. 329 (1992), 819-824.

T. Kato, Perturbation Theory for Linear Operators, Springer, Berlin, 1966.

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,
J. Theor. Biol. 26 (1970), 399-415.

O. A. Ladyzhenskaya, V. A. Solonnikov and N. N. Uralt’seva, Linear and Quasi-linear
Equations of Parabolic Type, Nauka, Moscow, 1967: English translation: Amer. Math. Soc.,
Providence, R. 1., 1968.

J. Moser, A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J. 20
(1971), 1077-1092.

T. Nagai, Blow-up of radially symmetric solutions to a chemotaxis system, Adv. Math.
Sci. Appl. 5 (1995), 581-601.

T. Nagai, T. Senba and T. Suzuki, Concentration behavior of blow-up solutions for a
simplified system of chemotaxis, preprint.



[21]
[22]
[23]
[24]
[25]
[26]

(27]

Chemotactic collapse in a parabolic system 497

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a
parabolic system of chemotaxis, Funckcial. Ekvac. 40 (1997), 411-433.

V. Nanjundiah, Chemotaxis, signal relaying, and aggregation morphology, J. Theor. Biol.
42 (1973), 63-105.

T. Senba and T. Suzuki, Some structures of the solution set for a stationary system of
chemotaxis, Adv. Math. Sci. Appl. 10 (2000), 191-224.

T. Senba and T. Suzuki, Chemotactic collapse in a parabolic—elliptic system of mathe-
matical biology, to appear in Advances in Differential Equations.

T. Senba and T. Suzuki, Local and norm behavior of blowup solutions to a parabolic
system of chemotaxis, to appear in J. Korean Math. Soc.

H. Tanabe, Functional Analytic Methods for Partial Differential Equations, Dekker, New
York, 1997.

A. Yagi, Norm behavior of solutions to the parabolic system of chemotaxis, Math.
Japonica 45 (1997), 241-265.

T. Nagai
Department of Mathematics
Faculty of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan

T. Senba
Department of Applied Mathematics
Faculty of Technology
Miyazaki University
Miyazaki 889-2192, Japan

T. Suzuki
Department of Mathematics
Graduate School of Science

Osaka University
Toyonaka 560-0043, Japan








