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Abstract. The aim of this paper is to establish an equivalent criterion for certain

expansive di¤eomorphisms of the 2-torus to admit an invariant Borel probability

measure that is absolutely continuous with respect to the Riemannian volume. Our

result is closely related to the well known Livšic-Sinai theorem for Anosov di¤eo-

morphisms.

1. Introduction

Let g : M ! M be a transitive C 2 Anosov di¤eomorphism of a compact

Riemannian manifold M. A celebrated work of Livšic and Sinai [14] says that

g admits an invariant Borel probability measure that is absolutely continuous

with respect to the Riemannian volume on M if and only if jJacðDpg
nÞj ¼ 1

holds for every periodic point p A FixðgnÞ and n A N, where Jac stands for the

Jacobian and FixðgnÞ ¼ fx A M : gnðxÞ ¼ xg. We refer the reader to [2] for

more precise definitions. Our aim here is to further the study of relations of

this type for certain expansive di¤eomorphisms.

Let f : M ! M be a C1þa ða > 0Þ di¤eomorphism of a compact Rie-

mannian manifold M preserving a hyperbolic Borel probability measure m. In

Corollary 5.6 of [10] Ledrappier proved that the following (A) and (B) are

equivalent.
� Property (A) The measure m is absolutely continuous with respect to the

volume on M.
� Property (B) The measure m is absolutely continuous with respect to both the

stable and unstable laminations (see the definition in the next section).

It follows from the Pesin entropy formula ([17]) that (B) is equivalent to the

following:
� Property (C) the measure m is absolutely continuous with respect to the

unstable lamination and
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ð
logjJacðDx f ÞjdmðxÞ ¼ 0 ð1Þ

(see Lemma 5.2 below). Moreover we can derive (C) from the following:
� Property (D) the measure m is absolutely continuous with respect to the

unstable lamination and jJacðDp f
nÞj ¼ 1 holds for p A Fixð f nÞ and n A N

(see Lemma 5.3 below).

In this context, the Livšic-Sinai theorem for transitive C2 Anosov di¤eo-

morphisms could be reformulated as the properties (A) and (D) are equiv-

alent. It then asserts that all the properties above are equivalent, particularly

that (C) implies (D). This implication seems to be little known in the broader

context beyond Anosov. In this paper, we would turn to this problem.

To state the result we recall the following notion. Let x A M and d > 0.

Define the local stable and local unstable sets at x by

Ws
d ðxÞ ¼ fy A M : dð f nðxÞ; f nðyÞÞa d ðnb 0Þg;

Wu
d ðxÞ ¼ fy A M : dð f �nðxÞ; f �nðyÞÞa d ðnb 0Þg;

where d is the distance on M induced by the Riemannian metric.

Theorem 1.1. Let f : T2 ! T2 be an expansive C2 di¤eomorphism of the

2-torus preserving a hyperbolic Borel probability measure m. Assume that for all

x A T2 the local stable and unstable sets at x form C1 curves and they intersect

transversally at x in the sense that TxT
2 ¼ TxW

s
d ðxÞlTxW

u
d ðxÞ. Then the

following two assertions are equivalent:

(1) m is absolutely continuous with respect to the Riemannian volume on

T2.

(2) m is absolutely continuous with respect to the unstable lamination and

jJacðDp f
nÞj ¼ 1 for p A Fixð f nÞ and n A N.

As an immediate corollary of this theorem we have the following.

Corollary 1.2. Under the same assumption as in Theorem 1.1, all the

properties ðAÞ, ðBÞ, ðCÞ and ðDÞ are equivalent for an expansive C2 di¤eo-

morphism f on the 2-torus preserving a hyperbolic Borel probability measure m.

Background material is given in § 2. Sections 3, 4 and 5 are devoted to

our proof of Theorem 1.1. The implication that (2) follows from (1) is shown

in section 4 (Proposition 4.10). Since the proof of Proposition 4.10 makes use

of the bounded distortion property of surface di¤eomorphisms (§ 4, Case 2,

Lemma 4.8), it seems to be necessary to use an alternative method in order to

extend our theorem to higher dimensional dynamical systems.

The reverse implication is given in section 5 with no assumption on local

manifolds as in the theorem. More precisely we establish the implication
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for every di¤eomorphism on a Riemannian manifold preserving a hyperbolic

probability measure (Proposition 5.1).

We emphasize the assumption in Theorem 1.1 is not su‰cient to guarantee

the existence of hyperbolic absolutely continuous invariant probability mea-

sures. Indeed, after the construction of a di¤eomorphism of a compact surface

with nonzero Lyapunov exponents which is not Anosov due to Katok [8], a

di¤eomorphism of T2 admitting no hyperbolic absolutely continuous invariant

probability measures is given in § 6.

2. Definitions

2.1. Let M be a compact Cy manifold with a Riemannian norm k � k,
f : M ! M a C1þa ða > 0Þ di¤eomorphism of M and Df : TM ! TM the

derivative of f . Let also m be a Borel probability measure invariant under

f . A point x A M is said to be Lyapunov regular if there exist real

numbers w1ðxÞ > w2ðxÞ > � � � > wrðxÞðxÞ and a Dx f -invariant decomposition

TxM ¼ E1ðxÞlE2ðxÞl � � �lErðxÞðxÞ such that for each i ¼ 1; 2; . . . ; rðxÞ

lim
n!Gy

1

n
logkDx f

nðvÞk ¼ wiðxÞ ðv A EiðxÞnf0gÞ

exists, and

lim
n!Gy

1

n
logjJacðDx f

nÞj ¼
XrðxÞ
i¼1

wiðxÞ dim EiðxÞ:

We denote by G the set of Lyapunov regular points. By the multiplicative

ergodic theorem ([15]) G is a full m-measure subset. The numbers wiðxÞ are

called the Lyapunov exponents of f at the point x. The functions x 7! wiðxÞ,
rðxÞ and dim EiðxÞ are Borel measurable and f -invariant. A measure m is said

to be hyperbolic if none of the Lyapunov exponents of f for m vanish and there

exist Lyapunov exponents with di¤erent signs for m-almost every x A M.

Let x A G . We define the stable and unstable manifolds at x as

WsðxÞ ¼ y A M : lim sup
n!y

1

n
log dð f nðxÞ; f nðyÞÞ < 0

� �
;

WuðxÞ ¼ y A M : lim sup
n!y

1

n
log dð f �nðxÞ; f �nðyÞÞ < 0

� �
:

Then WsðxÞ and WuðxÞ are injectively immersed manifolds satisfying

TxW
sðxÞ ¼ EsðxÞ; TxW

uðxÞ ¼ EuðxÞ;
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where EsðxÞ ¼ 0
i:wiðxÞ<0

EiðxÞ and EuðxÞ ¼ 0
i:wiðxÞ>0

EiðxÞ ([1]). Both WsðxÞ
and WuðxÞ inherit a Riemannian structure from M and hence a Riemannian

volume and a distance. We write the volume and the distance on WtðxÞ as

mt
x and d t

x , respectively ðt ¼ s; uÞ.

2.2. We call

ef ðmÞ ¼ �
ð
logjJacðDx f ÞjdmðxÞ

the entropy production for m (in the sense of Ruelle [20]). It is easy to see that

the entropy production is independent of the choice of Riemannian metrics

and the multiplicative ergodic theorem asserts

ef ðmÞ ¼ �
ðXrðxÞ

i¼1

wiðxÞ dim EiðxÞdmðxÞ:

We refer the reader to [20, 21] for more precise definitions and results. Note

that the equation (1) says the entropy production for m vanishes.

2.3. Let B be the Borel s-algebra of M completed with respect to m and x a

partition of M. We say a subset AHM x-set if it is the union of elements of

x. A countable system fAigi AN HB of measurable x-sets is said to be a basis

of x if for any two distinct elements C1, C2 of x, there exists Ai0 such that, up

to sets of measure zero, either C1 HAi0 and C2 QAi0 or C1 QAi0 and

C2 HAi0 . A partition with a basis is said to be measurable. Denote by

Bx the sub s-algebra of B whose elements are x-sets. We denote by CxðxÞ the
element of x containing x A M. We write ha x if h is, up to sets of measure

zero, a sub-partition of x.

For a measurable partition x of M, there exists a canonical system of

conditional measures: for m-almost every x A M there is a probability measure

mx
x defined on CxðxÞ such that the function x 7! mx

xðAÞ is Bx-measurable and

mðAÞ ¼
Ð
mx
xðAÞdmðxÞ for every A A B. See [19] for more details.

Let Wu ¼ fWuðxÞ : x A Gg be the unstable lamination and xu a measurable

partition of M. We say that xu is subordinate to the Wu-lamination if for

m-almost every x A M, Cx uðxÞHWuðxÞ and CxuðxÞ contains an open neigh-

borhood of x in WuðxÞ. The measure m is said to be absolutely continuous

with respect to the Wu-lamination if for every measurable partition xu sub-

ordinate to the Wu-lamination, mx u

x is absolutely continuous with respect to mu
x

for m-almost every x A M. The measurable partition subordinate to the Ws-

lamination and the absolute continuity with respect to the Ws-lamination are

defined similarly.
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3. Preliminaries

3.1. The Pesin invariant manifolds. Let f : M ! M be a C2 di¤eomorphism

of a compact Riemannian manifold M preserving a hyperbolic Borel prob-

ability measure m. Recall that G denotes the set of Lyapunov regular points.

There exist an increasing family fLlgl AN of closed subsets of M, a family

fWt
locðxÞg ðt ¼ s; uÞ of C2 disks passing through x A Ll and positive numbers

rl , dl , Al and Bl such that

( i ) G H6
lb1

Ll and f nðLlÞHLq for some positive integer q ¼ qðl; nÞ;
( ii ) WsðxÞ ¼ 6y

n¼0
f �nðWs

locð f nðxÞÞÞ and

WuðxÞ ¼ 6y
n¼0

f nðWu
locð f �nðxÞÞÞ for x A G;

(iii) for each x A Ll the disk Wt
locðxÞ contains the closed ball centered at x

of radius dl with respect to the induced distance d t
x on WtðxÞ;

(iv) for each x A Ll there is cl A ð0; 1Þ such that for all y A Ll VBðx; rclÞ
and r A ð0; rl �, Wt

locðyÞVBðx; rÞ is connected, and the map

Ll VBðx; rlclÞ C y 7! Wt
locðyÞVBðx; rlÞ

is continuous with respect to the Hausdor¤ metric on the space of all

subsets of Bðx; rlÞ;
( v ) if y A Ws

locðxÞ and x A Ll , then for every nb 0

d s
f nðxÞð f nðyÞ; f nðxÞÞaAle

�nBl d s
xðy; xÞ;

and if y A Wu
locðxÞ, then for every nb 0

d u
f �nðxÞð f �nðyÞ; f �nðxÞÞaAle

�nBl d u
x ðy; xÞ

(see [11]). We see, in particular, mð6
lb1

LlÞ ¼ 1 by (i).

Fix l > 1 so large that mðLlÞ > 1=2 and a measurable partition ht sub-

ordinate to the Wt-lamination, t ¼ s; u. We may take the partitions hs and hu

so that

(a) hs a f hs and hu a f �1hu;

(b) 6y
i¼0

f �iðCh sð f iðxÞÞÞ ¼ WsðxÞ and

6y
i¼0

f iðCh uð f �iðxÞÞÞ ¼ WuðxÞ for m-almost every x A M;

(c) both 4y
i¼0

f ihs and 4y
i¼0

f �ihu are partitions into points.

See [11] for complete description. Assertion (c) yields

diam Cf ih sðyÞ ! 0 and diam Cf �ihuðyÞ ! 0;

as i ! y, for m-almost every y A M. Here and below we write

diam A ¼ supfdða; bÞ : a; b A Ag. Given r A ð0;minfdl ; rlg=100Þ, we thus let

Ls
l; r; i ¼ fy A Ll : diam Cf ih sðyÞ < rg;

Lu
l; r; i ¼ fy A Ll : diam Cf �ih uðyÞ < rg:

495Absolutely continuous invariant measures



Note that Lt
l; r; i A B (see [22] for example). We see

Ls
l; r; i HLs

l; r; iþ1; Lu
l; r; i HLu

l; r; iþ1

and

mðLlÞ ¼ mð6
ib0

Ls
l; r; iÞ; mðLlÞ ¼ mð6

ib0
Lu

l; r; iÞ:

Therefore

mðLs
l; r; i VLu

l; r; iÞb
1

2
mðLlÞ

holds for some integer i > 1 large enough. Fix such an integer i, and below

we may write

xs ¼ f ih s; xu ¼ f �ihu;

and

Ll; r; i ¼ Ls
l; r; i VLu

l; r; i:

That xt is still a measurable partition subordinate to the Wt-lamination,

t ¼ s; u.

For j A N we consider

Ls
l; r; i; j ¼ fy A Ll; r; i : dðqsCx sðyÞ; yÞb r=jg;

Lu
l; r; i; j ¼ fy A Ll; r; i : dðquCxuðyÞ; yÞb r=jg;

where qtA denotes the boundary of A in W tðyÞ; t ¼ s; u. Again we see

Ls
l; r; i; j HLs

l; r; i; jþ1; Lu
l; r; i; j HLu

l; r; i; jþ1

and

mðLl; r; iÞ ¼ mð6
jb1

Ls
l; r; i; jÞ; mðLl; r; iÞ ¼ mð6

jb1
Lu

l; r; i; jÞ:

Hence

mðLs
l; r; i; j VLu

l; r; i; jÞb
1

2
mðLl; r; iÞ

holds for some integer j > 1 large enough. Fix such an integer j, and below

we may write

Ll; r ¼ Ll; r; i; j ¼ Ls
l; r; i; j VLu

l; r; i; j

for notational simplicity. Let x0 A Ll; r be a density point of m and put

Ll; rðx0; qÞ ¼ Ll; r VBðx0; qÞ;
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for q A ð0; r=20j�. Define

Qs
l ðx0Þ ¼ 6

y ALl; rðx0;qÞ
LsðyÞ;

Qu
l ðx0Þ ¼ 6

y ALl; rðx0;qÞ
LuðyÞ;

where LsðyÞ ¼ Ws
locðyÞVBðx0; r=2jÞ and LuðyÞ ¼ Wu

locðyÞVBðx0; r=2jÞ, respec-

tively. Clearly we have mðQt
l ðx0ÞÞ > 0 since Qt

l ðx0Þ contains Ll; rðx0; qÞ, t ¼
s; u. Notice that LtðyÞ is connected and LtðyÞHCxtðyÞ for y A Ll; rðx0; qÞ,
t ¼ s; u.

Recall that m is absolutely continuous with respect to the Riemannian

volume on M if and only if m is absolutely continuous with respect to both

the Ws-lamination and the Wu-lamination ([10]). Thus we let the density

functions along these laminations be defined as follows:

hsðxÞ ¼
dmx s

y

dms
y

ðxÞ; x A Cx sðyÞ;

huðxÞ ¼
dmxu

y

dmu
y

ðxÞ; x A Cx uðyÞ;

for m-almost every y A M. Given a constant C > 1, we define

Ls
l; r;Cðx0; qÞ ¼ fy A Ll; rðx0; qÞ : C�1

a hsðxÞaC ðx A LsðyÞÞg;

Lu
l; r;Cðx0; qÞ ¼ fy A Ll; rðx0; qÞ : C�1

a huðxÞaC ðx A LuðyÞÞg:

Then it is proved in Corollary 6.1.4 of [12] that these densities hs and hu are

indeed of class C1 and strictly positive along WsðyÞ and WuðyÞ, respectively,
for m-almost every y A M. Thus we might choose C > 1 so large that

mðLs
l; r;Cðx0; qÞVLu

l; r;Cðx0; qÞÞb
1

2
mðLl; rðx0; qÞÞ:

Put

Ll; r;Cðx0; qÞ ¼ Ls
l; r;Cðx0; qÞVLu

l; r;Cðx0; qÞ:

Without loss of generality we may assume x0 A Ll; r;Cðx0; qÞ. Set

Qs ¼ 6
y ALl; r;Cðx0;qÞ

LsðyÞ and Qu ¼ 6
y ALl; r;Cðx0;qÞ

LuðyÞ;

respectively. That mðQtÞ > 0 holds since Qt contains Ll; r;Cðx0; qÞ, t ¼ s; u. It

follows that Qt has positive volume since m is assumed to be absolutely
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continuous with respect to the volume ðt ¼ s; uÞ. In what follows we denote

by LtðyÞ the component passing through y A Qt, t ¼ s; u, whether y belongs to

Ll; r;Cðx0; qÞ or not.

Consider the families of local manifolds

Ls ¼ fLsðyÞ : y A Qsg;

Lu ¼ fLuðyÞ : y A Qug:

Given a manifold T HM, we denote by mT the induced Riemannian volume

on T . A manifold T is said to be a transversal to the family Ls if T intersects

each L A Ls in a unique point and the intersection is transverse. Let T1 and

T2 be two transversals to the family L s. We then define the holonomy map on

Qs sliding along Ls

p s : Qs VT1 ! Qs VT2

by setting

p sðzÞ ¼ LsðwÞVT2

for z A LsðwÞVT1 and w A Qs. The holonomy map p s is a homeomorphism

onto its image. It is called absolutely continuous if mT2
is absolutely contin-

uous with respect to ps
�mT1

. Define the Jacobian JzðpsÞ of ps at z A Qs VT1 to

be the Radon-Nikodym derivative

JzðpsÞ ¼ dmT2

dðps
�mT1

Þ ðp
sðzÞÞ:

It is well known that the holonomy map p s is absolutely continuous and has a

bounded Jacobian in the sense that there is a constant J ¼ JðlÞ > 1 such that

J�1
a Jzðp sÞa J ð2Þ

for z A Qs VT1 ([17]). Below we say p s has the J-distortion property on Qs if it

satisfies (2).

The holonomy map pu : Qu VT1 ! Qu VT2 sliding along Lu is defined

analogously, where T1 and T2 are transversals to the family Lu. The

holonomy map pu also possesses the absolute continuity property in the sense

explained above and has the J-distortion property on Qu.

3.2. Local product structure. Let us recall several known facts from topo-

logical dynamics we need later. Let T2 be the 2-torus. Given x A T2 and

d > 0, we define the local stable and local unstable sets at x by

Ws
d ðxÞ ¼ fy A T2 : dð f nðxÞ; f nðyÞÞa d ðnb 0Þg;

Wu
d ðxÞ ¼ fy A T2 : dð f �nðxÞ; f �nðyÞÞa d ðnb 0Þg:
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Clearly Wt
d ðxÞ is a closed subset of T2, t ¼ s; u. A homeomorphism

f : T2 ! T2 is said to be expansive if there exists a constant e0 > 0, called

an expansivity constant, such that dð f nðxÞ; f nðyÞÞ < e0 for all n A Z implies

x ¼ y. It is well known that every expansive homeomorphism of T2 possesses

the local product structure: for any small d > 0 there exists e0 > 0 such that the

intersection Ws
d ðzÞVWu

d ðwÞ consists of one point, denoted by ½z;w�, whenever
dðz;wÞa e0. See [5, 6, 13] for more precise. For Z;W HT2 we denote by

½Z;W � the subset f½z;w� : z A Z;w A Wg if it makes sense.

Given d A ð0; e0=100Þ and e A ð0; d=100Þ, the following

Rsðx; e; dÞ ¼ ½Wu
e ðxÞ;Ws

d ðxÞ�;

Ruðx; d; eÞ ¼ ½Wu
d ðxÞ;Ws

e ðxÞ�

make sense for x A T2. We call these sets the stable and unstable rectangles

around x, respectively. Define also Rðx; dÞ ¼ ½Wu
d ðxÞ;Ws

d ðxÞ�.

4. Preserving the volume around periodic orbits

Let f : T2 ! T2 be an expansive C2 di¤eomorphism of the 2-torus T2

preserving a hyperbolic Borel probability measure m and e0 > 0 an expan-

sivity constant for f . Notice that the map f is topologically conjugate to

a hyperbolic toral automorphism ([5, 6]). Throughout this section we let

d A ð0; e0=100Þ and e A ð0; d=100Þ, and assume that for all x A T2 both the local

stable set Ws
d ðxÞ and the local unstable set Wu

d ðxÞ form C 1 curves and they

intersect transversally at x:

TxT
2 ¼ TxW

s
d ðxÞlTxW

u
d ðxÞ: ð3Þ

We then show the invariant measure m is absolutely continuous with respect

to the Wu-lamination and jJacðDp f
nÞj ¼ 1 for all p A Fixð f nÞ and n A N pro-

vided that m is absolutely continuous with respect to the Riemannian volume on

T2.

Fix p A Fixð f nÞ. Without loss of generality we may assume that n ¼ 1.

It follows from (3) that the point p is neither attracting nor repelling and its

eigenvalues at p are real numbers. We may as well assume that Dp f has

positive eigenvalues ls
a 1a lu.

Define the (global ) stable and (global ) unstable sets at p as

WsðpÞ ¼ fy A T2 : dð f nðpÞ; f nðyÞÞ ! 0 as n ! yg;

WuðpÞ ¼ fy A T2 : dð f �nðpÞ; f �nðyÞÞ ! 0 as n ! yg:

It can be shown that for d A ð0; e0=100Þ
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WsðpÞ ¼ 6
nb0

f �nðWs
d ð f nðpÞÞÞ; WuðpÞ ¼ 6

nb0

f nðWu
d ð f �nðpÞÞÞ

and that WtðpÞ is dense in T2, t ¼ s; u. We refer the reader to [5, 6], for

instance. It then follows from (3.1)(ii) and (v) that for Lyapunov regular

points x A G the stable and unstable sets defined here coincide with the stable

and unstable manifolds defined in the end of (2.1), respectively. Observe also

that the assumption (3) implies WuðpÞ and WsðpÞ intersect L s and Lu

transversely, respectively.

Take a point a A Lsðx0ÞVWuðpÞ so close to x0 that dða; x0Þ < r=100, and

set V u ¼ ½Qs; a�. Note that V u HWuðpÞ. Similarly take b A Luðx0ÞVWsðpÞ
so that dðb; x0Þ < r=100, and set V s ¼ ½b;Qu�. Note that V s HWsðpÞ. Be-

low we write ai ¼ f �iðaÞ, bi ¼ f iðbÞ and V u
i ¼ f �iðV uÞ, V s

i ¼ f iðV sÞ for

notational simplicity ði A NÞ.
Suppose on the contrary that jJacðDp f Þj0 1. We split the proof into

following two cases: whether the point p is hyperbolic, that is lt 0 1 ðt ¼ s; uÞ,
or not.

Case 1: p A Fixð f Þ is hyperbolic. In this case either ls < ðluÞ�1ð<1Þ or

ðluÞ�1 < lsð<1Þ might occur. Without loss of generality we may assume

ls < ðluÞ�1, that is area contracting in a neighborhood of p.

Let us choose an integer N > 1 so large that aN A Wu
d=2ðpÞ and

diam V u
N < e. Similarly choose an integer M > 1 so large that bM A

Ws
d=2ðpÞ and diam V s

M < e. Consider

Ls
N ¼ fLs

NðzÞ : z A V u
Ng and Lu

M ¼ fLu
MðzÞ : z A V s

Mg;

where Ls
NðzÞ ¼ ½z;Ws

d ðaNÞ� for z A V u
N and Lu

MðzÞ ¼ ½Wu
d ðbMÞ; z� for z A V s

M ,

respectively. Define

Qs
N ¼ 6

z AV u
N

Ls
NðzÞ and Qu

M ¼ 6
z AV s

M

Lu
MðzÞ:

We see Qs
N HRsðaN ; e; dÞ and Qu

M HRuðbM ; d; eÞ by the choice of N and M,

respectively.

Lemma 4.1. mðQs
NÞ > 0 and mðQu

MÞ > 0.

Proof. We prove only the first statement as the latter can be shown in

the same way.

By the invariance of m we have

mðQs
NÞ ¼

ð
T2

m
f �Nx s

f �N ðzÞðQ
s
NÞdmðzÞ

¼
ð
T2

mx s

z ð f NðQs
NÞÞdmðzÞ
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¼
ð
T2

ð
f N ðQs

N
ÞVCx s ðzÞ

hsðwÞdms
zðwÞdmðzÞ

bC�1

ð
T2

ms
zð f NðQs

NÞVLsðzÞÞdmðzÞ > 0:

This completes the proof. r

It follows from Lemma 4.1 that both Qs
N and Qu

M have positive volume

since m is assumed to be absolutely continuous with respect to the volume.

From now on we assume that the ranges of the holonomy maps ps and pu

are in WuðpÞ and WsðpÞ, respectively. More precisely let p s : Qs VL ! V u

ðL A LuÞ be the holonomy map sliding along Ls and pu : Qu VL ! V s

ðL A LsÞ the holonomy map sliding along Lu. The holonomy maps ps
N on

Qs
N sliding along Ls

N and pu
M on Qu

M sliding along Lu
M can be defined similarly

as in (3.1).

Lemma 4.2. The holonomy map ps
N : Qs

N VL ! V u
N possesses the J-

distortion property on Qs
N for a constant J ¼ Jðl;NÞ > 1:

J�1
a

mu
p ðV u

NÞ
mLðQs

N VLÞ a J

for z A Qs
N VL and L A Lu

M. Similarly, the holonomy map pu
M : Qu

M VL ! V s
M

has the J-distortion property on Qu
M for a constant J ¼ Jðl;MÞ > 1:

J�1
a

ms
pðV s

MÞ
mLðQu

M VLÞ a J

for z A Qu
M VL and L A L s

N .

Proof. It is enough to prove only the case for the stable holonomy

ps : Qs
N VL ! V u

N as just consider f �1 instead of f for the case for the unstable

holonomy.

As we noted in (3.1) the holonomy p s : Qs VL ! V u ðL A LuÞ pos-

sesses the J-distortion property. Since the map ps is a bijection and ps
N ¼

f �N � p s � f N holds on Qs
N VL ðL A Lu

MÞ, the map ps
N is also a bijection and

possesses the J-distortion property for a constant J ¼ Jðl;NÞ.
Lemma 4.1 asserts that the numerator and the denominator do not vanish.

r

Associated to the hyperbolic point p A Fixð f Þ there is a splitting TpT
2 ¼

EsðpÞlEuðpÞ. We thus obtain TzT
2 ¼ EsðzÞlEuðzÞ by identifying TzT

2 ¼
R2 for z A T2 near to p. For a A ð0; 1Þ define the stable and unstable cones at

z A T2 as
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Cs
aðzÞ ¼ fw A TzT

2 : kwuka akwskg;

Cu
a ðzÞ ¼ fw A TzT

2 : kwska akwukg;

where w ¼ ws þ wu with respect to the splitting TzT
2 ¼ EsðzÞlEuðzÞ. Set

R ¼ Rðp; dÞ ¼ ½Wu
d ðpÞ;Ws

d ðpÞ�. A map that associates to every point z A R a

cone C t
a ðzÞ in TzT

2 is said to be a cone field on R ðt ¼ s; uÞ. Since the number

d is small, for su‰ciently small b > 0 and a A ð0; 1Þ there are continuous cone

fields Cs
a and Cu

a on R so that

( i ) if x A RV f ðRÞ
(a) Dx f

�1ðCs
aðxÞÞHCs

að f �1ðxÞÞ;
(b) ðls � bÞkvka kDx f ðvÞka ðls þ bÞkvk for v A Cs

aðxÞnf0g;
( ii ) TpW

sðpÞHCs
aðpÞ,

and

(iii) if x A RV f �1ðRÞ
(a) Dx f ðCu

a ðxÞÞHCu
a ð f ðxÞÞ;

(b) ðlu þ bÞkvkb kDx f ðvÞkb ðlu � bÞkvk for v A Cu
a ðxÞnf0g;

(iv) TpW
uðpÞHCu

a ðpÞ.
Below we write the cone field C t instead of C t

a for notational simplicity

ðt ¼ s; uÞ.

Proposition 4.3 (the inclination lemma or l-lemma [16]). Let p be

hyperbolic and LHT2 a C1 curve having a transversal intersection point q

with WsðpÞ. Then f nðLÞ converges to WuðpÞ as n ! y in the sense that for

each n there is a disk Dn H f nðLÞ, a neighborhood of f nðqÞ in f nðLÞ, such that

limn!y Dn ¼ D. Here DHWuðpÞ is a disk around p, and the convergence

means that for each n large enough, Dn and D are C1 near. Similarly, for a C1

curve LHT2 having a transversal intersection with WuðpÞ, f �nðLÞ converges to

WsðpÞ as n ! y.

It follows from the inclination lemma that

TzLHCsðzÞ for z A L; L A Ls
N ; ð4Þ

TzLHCuðzÞ for z A L; L A Lu
M : ð5Þ

We now construct a transversely laminated set in the unstable rectangle

RuðbM ; d; eÞ around bM as follows. Given k > 1 large enough, define

Qs
Nþk ¼ 6

z AV u
Nþk

Ls
NþkðzÞ;

where Ls
NþkðzÞ ¼ ½z;Ws

d ðaNþkÞ� for z A V u
Nþk. Define then

Qk ¼ Qs
Nþk VQu

M :

502 Michihiro Hirayama and Naoya Sumi



This is the desired. Notice that

Qk ¼ ½V u
Nþk;V

s
M �

holds. Observe that the maps ps
N : f kðQk VLu

MðzÞÞ ! V u
N , z A V s

M , and pu
M :

Qk V f �kðLs
NðzÞÞ ! V s

M , z A V u
N , are bijections by construction.

Lemma 4.4. Let g be a subset of a leaf, say Lu
MðzÞ, of the family Lu

M. If

f iðgÞHR for i ¼ 0; 1; . . . ; k � 1, then

mu
f kðzÞð f

kðgÞÞa ðlu þ bÞkmu
z ðgÞ:

Proof. It follows from (5) and (iii-b) that

mu
f ðzÞð f ðgÞÞ ¼

ð
g

jJacðDx f jTxW
u
d ðzÞÞjdmu

z ðxÞ

¼
ð
g

kDx f jTxW
u
d ðzÞkdmu

z ðxÞ

a ðlu þ bÞmu
z ðgÞ:

Successive use of this inequality proves the lemma. r

Proposition 4.5. There is a constant K1 > 0 such that mðQkÞb
K1ðlu þ bÞ�k

for large k.

Proof. Put hu
M ¼ dm f Mx u

z =dmu
z . By the invariance of m we have

mðQkÞ ¼
ð
T2

m f Mx u

z ðQkÞdmðzÞ

¼
ð
T2

ð
QkVCf M x u ðzÞ

hu
MðwÞdmu

z ðwÞdmðzÞ

bC�1
1

ð
T2

mu
z ðQk VLu

MðzÞÞdmðzÞ

for a constant C1 ¼ C1ðC;MÞ > 1 since C�1 a hujLaC ðL A QuÞ holds. By

Lemmas 4.4 and 4.2 we have

ð
T2

mu
z ðQk VLu

MðzÞÞdmðzÞb ðlu þ bÞ�k

ð
T2

mu
f kðzÞð f

kðQk VLu
MðzÞÞÞdmðzÞ

b ðlu þ bÞ�k
J�1

ð
Qu

M

mu
p ðV u

NÞdmðzÞ

¼ ðlu þ bÞ�k
J�1 mu

p ðV u
NÞmðQu

MÞ:
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It follows from the above consideration that

mðQkÞb ðlu þ bÞ�kðC1JÞ�1
mu

p ðV u
NÞmðQu

MÞ;

thereby the desired estimate follows for K1 ¼ ðC1JÞ�1
mu

p ðV u
NÞmðQu

MÞ, which is

positive by Lemmas 4.1 and 4.2. r

Lemma 4.6. Let g be a subset of a leaf, say Ls
NðzÞ, of the family Ls

N . If

f �iðgÞHR for i ¼ 0; 1; . . . ; k � 1, then

ms
f �kðzÞð f

�kðgÞÞb ðl s þ bÞ�k
ms

zðgÞ:

Proof. It follows from (4) and (i-b) that

ms
f �1ðzÞð f

�1ðgÞÞ ¼
ð
g

jJacðDx f
�1 jTxW

s
d ðzÞÞjdms

zðxÞ

¼
ð
g

kDx f
�1 jTxW

s
d ðzÞkdms

zðxÞ

b ðls þ bÞ�1
ms

zðgÞ:

Successive use of this inequality proves the lemma. r

Notice that

f kðQkÞ ¼ Qs
N V f kðQu

MÞ:

Proposition 4.7. There is a constant K2 > 0 such that mð f kðQkÞÞa
K2ðl s þ bÞk for large k.

Proof. Put hs
N ¼ dm f �Nx s

z =dms
z . By the invariance of m we have

mð f kðQkÞÞ ¼
ð
T2

m f �Nx s

z ð f kðQkÞÞdmðzÞ

¼
ð
T2

ð
f kðQkÞVCf�N x s ðzÞ

hs
NðwÞdms

zðwÞdmðzÞ

aC2

ð
T2

ms
zð f kðQkÞVLs

NðzÞÞdmðzÞ

for a constant C2 ¼ C2ðC;NÞ > 1 since C�1 a hsjLaC ðL A QsÞ holds. By

Lemmas 4.6 and 4.2 we have
ð
T2

ms
zð f kðQkÞVLs

NðzÞÞdmðzÞ

a ðls þ bÞk
ð
T2

ms
f �kðzÞðQk V f �kðLs

NðzÞÞÞdmðzÞ
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¼ ðls þ bÞk
ð
T2

ms
f �kðzÞðQk VLs

Nþkð f �kðzÞÞÞdmðzÞ

¼ ðls þ bÞk
ð
f kðQkÞ

ms
f �kðzÞðQ

u
M VLs

Nþkð f �kðzÞÞÞdmðzÞ

a ðls þ bÞkJ
ð
Qs

N

ms
pðV s

MÞdmðzÞ

¼ ðls þ bÞkJ ms
pðV s

MÞmðQs
NÞ:

It follows that

mð f kðQkÞÞa ðl s þ bÞkC2J m
s
pðV s

MÞmðQs
NÞ;

thereby the desired estimate follows for K2 ¼ C2J m
s
pðV s

MÞmðQs
NÞ, which is

positive by Lemmas 4.1 and 4.2. r

Combining Propositions 4.5 and 4.7 we obtain

K1ðlu þ bÞ�k
a mðQkÞaK2ðls þ bÞk

as m is invariant under f , where neither K1 nor K2 depend on k. It follows

that

K1K
�1
2 a fðls þ bÞðlu þ bÞgk

and the second term above tends to zero as k goes infinity since l slu < 1.

This yields a contradiction. Our proof for Case 1 is completed.

Case 2: p A Fixð f Þ is non-hyperbolic. In this case either ls < 1 ¼ lu

or ls ¼ 1 < lu might occur. Without loss of generality we may assume

ls < 1 ¼ lu. The argument below is a simple adaptation to our case of an

argument in the proof of Theorem A in [7] by Hu and Young and is presented

for the sake of completeness. Given a positive number r > 0, we denote by

OrðAÞ the r-neighborhood of AHT2, that is OrðAÞ ¼ fv A T2 : dðv;AÞ < rg.
Let EsðpÞ and EuðpÞ be the eigenspaces of Dp f corresponding to ls and lu,

respectively. Consider again Rðp; dÞ ¼ ½Wu
d ðpÞ;Ws

d ðpÞ�, where d A ð0; e0=100Þ
is chosen so small that there is a continuous (stable) cone field Cs, which can

be defined similarly as in Case 1, on an open neighborhood U of Rðp; dÞU
f ðRðp; dÞÞ. In the rest of this section we will write R instead of Rðp; dÞ for

notational simplicity.

We first construct an f -invariant Lipschitz stable foliation of smooth

leaves as follows. Given r A ð0; d=100Þ, we consider the r-neighborhood

Orð f ðRÞnRÞ of the set f ðRÞnR, and denote it by Vr for notational simplicity,

that is Vr ¼ Orð f ðRÞnRÞ. Without loss of generality we may assume the

positive number r is so small that Vr HU and Vr V f �2ðVrÞ ¼ q.
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There is a C 1 vector field X0 : Vr ! TT2 such that X0ðzÞ A CsðzÞ since

Vr HU . Thus pushing forward the vector field X0 by f �1 gives a C1 vector

field ð f �1Þ�X0 on f �1ðVrÞ:

ðð f �1Þ�X0ÞðzÞ ¼ Dz f
�1ðX0ð f ðzÞÞÞ ðz A f �1ðVrÞÞ:

Given an arbitrarily small positive number h A ð0; r=100Þ so that

OhðVrn f �1VrÞHU and OhðVrn f �1VrÞVR ¼ q;

we consider a Cy function c ¼ cr;h : Vr ! ½0; 1� such that

cðzÞ ¼ 0 if z A Vrn f �1ðVrÞ;
1 if z A Vr V f �1ðVrÞnOhðVrn f �1ðVrÞÞ:

�

We then define a vector field X : Vr ! Cs as

X ¼ c � ð f �1Þ�X0 þ ð1� cÞ � X0:

The resulting vector field X is of class C1 and Df -invariant on

Vr V f �1ðVrÞnOhðVrn f �1ðVrÞÞ in the sense that ð f �1Þ�X ¼ X . Indeed we

have, by definition, for z A Vr V f �1ðVrÞnOhðVrn f �1ðVrÞÞ

X ðzÞ ¼ ðð f �1Þ�X0ÞðzÞ ¼ Df ðzÞ f
�1X0ð f ðzÞÞ;

and

ðð f �1Þ�X ÞðzÞ ¼ Df ðzÞ f
�1ðX ð f ðzÞÞÞ ¼ Df ðzÞ f

�1ðX0ð f ðzÞÞÞ

as Vr V f �2ðVrÞ ¼ q.

Integrating the vector field X gives a Lipschitz (stable) foliation Fs
0 . No-

tice that the associated holonomy map hs
0 on Vr sliding along Fs

0 has a

bounded distortion in the sense that for all pair of transversals T1 and T2 to the

family Fs
0 , there is some constant J0 > 1 such that

J�1
0 a

lðT1Þ
lðT2Þ

a J0 ð6Þ

holds, where l denotes the induced leaf volume.

Pushing forward the vector field X by f �1 defines a C1 vector field of

which Df -invariant on (a neighborhood of ) RnWs
d ðpÞ and then, integrating the

resulting vector field shall give an f -invariant Lipschitz stable foliation. This

is the desired. We denote by Fs the resulting foliation and by F sðzÞ the leaf

containing z.

Since the intersection F sðzÞVWu
d ðwÞ consists of one point, we now define

bz;wc ¼ F sðzÞVWu
d ðwÞ;

whenever z A RnWs
d ðpÞ and w A R. For Z;W HR we denote by bZ;Wc the

subset fbz;wc : z A ZnWs
d ðpÞ;w A Wg if it makes sense.
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Let hs be the holonomy map on RnWs
d ðpÞ sliding along Fs, that is

hs : ðRnWs
d ðpÞÞVL ! Wu

d ðpÞ

where L is a transversal to the family Fs. We show the map hs :

ðRnWs
d ðpÞÞVL ! Wu

d ðpÞ sliding along the foliation Fs possesses the same

property as in (6) for every transversal L to the family Fs. To see this,

let I HWu
d ðpÞn f �1ðWu

d ðpÞÞ be an arbitrary (nontrivial) curve, BðnÞ ¼
b f �nðIÞ;Ws

d ðpÞc and F sðw; nÞ a leaf of F s containing w A BðnÞ for n A NU f0g.
Then we observe that

(1) f nðBðnÞÞHVr;

(2) diam f iðBðnÞÞa diamðRU f ðRÞÞ for i ¼ 0; 1; . . . ; n;

(3) there is k > 1 so that for all w A BðnÞ,

Xn

i¼0

lð f iðF sðw; nÞÞÞa k

for all n A NU f0g.
We therefore have the following by Lemma 3.4.1 in [18].

Lemma 4.8 (Lemma 3.4.1 in [18]). There is a constant J ¼ JðJ0; kÞ > 1,

independent of n, such that the map h s has the bounded distortion property as in

(6) for every transversal to the family Fs.

Choose an integer M > 1 so large that V s
M meets Ws

d ðpÞn f ðWs
d ðpÞÞ and

put Bs
M ¼ V s

M V ðWs
d ðpÞn f ðWs

d ðpÞÞÞ. Define

Qu
M ¼ 6

z ABs
M

Lu
MðzÞ;

where Lu
MðzÞ ¼ bWu

d ðpÞ; zc for z A Bs
M . By Lemma 4.1 we have mðQu

MÞ > 0.

For each n A NU f0g define

Qn ¼ bWu
d ðpÞ; f nðBs

MÞc:

Notice that Qn VQm ¼ q for n0m and that

f �nðQnÞ ¼ b f �nðWu
d ðpÞÞ;Bs

Mc:

An argument analogous to Proposition 4.5 shows the following.

Proposition 4.9. There is a constant K > 0 such that mð f �nðQnÞÞb
Kmu

p ð f �nðWu
d ðpÞÞÞ for all n.

Proof. Put hu
M ¼ dm f Mx u

z =dmu
z . By the invariance of m we have
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mð f �nðQnÞÞ ¼
ð
T2

m f Mx u

z ð f �nðQnÞÞdmðzÞ

¼
ð
T2

ð
f �nðQnÞVCf M xu ðzÞ

hu
MðwÞdmu

z ðwÞdmðzÞ

bC�1
3

ð
T2

mu
z ð f �nðQnÞVLu

MðzÞÞdmðzÞ

for a constant C3 ¼ C3ðC;MÞ > 1 since C�1 a hujLaC ðL A QuÞ holds. By

Lemma 4.8 we have

ð
T2

mu
z ð f �nðQnÞVLu

MðzÞÞdmðzÞb J�1

ð
Qu

M

mu
p ð f �nðWu

d ðpÞÞÞdmðzÞ

¼ J�1 mu
p ð f �nðWu

d ðpÞÞÞ mðQu
MÞ:

It follows from the above consideration that

mð f �nðQnÞÞb ðC3JÞ�1 mðQu
MÞmu

p ð f �nðWu
d ðpÞÞÞ;

thereby the desired estimate follows for K ¼ ðC3JÞ�1
mðQu

MÞ. r

Note that Qn, n A NU f0g, are pairwise disjoint subsets in R. By using

Proposition 4.9 we have

1b mðRÞb
Xy
n¼0

mðQnÞb
Xy
n¼0

mð f �nðQnÞÞbK
Xy
n¼0

mu
p ð f �nðWu

d ðpÞÞÞ:

Lemma 4.1 in [7] would show that the sum
Py

n¼0 m
u
p ð f �nðWu

d ðpÞÞÞ diverges,

which gives a contradiction.

The result we have proved in this section is summarized in the following

proposition.

Proposition 4.10. Let f : T2 ! T2 be an expansive C2 di¤eomorphism of

the 2-torus preserving a hyperbolic Borel probability measure m. Assume that

for all x A T2 the local stable and unstable sets at x form C 1 curves and they

intersect transversally at x in the sense that TxM ¼ TxW
s
d ðxÞlTxW

u
d ðxÞ. If m

is absolutely continuous with respect to the Riemannian volume on T2, then m is

absolutely continuous with respect to the unstable lamination and jJacðDp f
nÞj ¼ 1

for p A Fixð f nÞ and n A N.

5. Vanishing entropy production

As we noted at the end of § 1, we show the following.
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Proposition 5.1. Let f : M ! M be a C1þa ða > 0Þ di¤eomorphism of

a compact Riemannian manifold M preserving a hyperbolic Borel probability

measure m. If the measure m is absolutely continuous with respect to the Wu-

lamination and jJacðDp f
nÞj ¼ 1 for p A Fixð f nÞ and n A N, then it is absolutely

continuous with respect to the Riemannian volume on M.

Combining Proposition 4.10 and this proposition shall complete the proof

of the main theorem (Theorem 1.1).

Lemma 5.2. Let f be as in Proposition 5.1. If the entropy production for

m vanishes and m is absolutely continuous with respect to the Wu-lamination, then

m is absolutely continuous with respect to the Riemannian volume on M.

Proof. Recall that the measure m is absolutely continuous with respect to

the Riemannian volume on M if and only if m is absolutely continuous with

respect to both the Wu-lamination and the Ws-lamination ([10]). Thus it

is enough to show the measure m is absolutely continuous with respect to the

Ws-lamination, equivalently

hmð f �1Þ ¼ �
ð X
i:wiðxÞ<0

wiðxÞ dim EiðxÞdmðxÞ:

We have

0 ¼ ef ðmÞ ¼ �
ð
logjJacðDx f ÞjdmðxÞ

¼ �
ðX

i

wiðxÞ dim EiðxÞdmðxÞ

¼ �
ð X
i:wiðxÞ>0

wiðxÞ dim EiðxÞ þ
X

i:wiðxÞ<0

wiðxÞ dim EiðxÞdmðxÞ

¼ �hmð f Þ �
ð X
i:wiðxÞ<0

wiðxÞ dim EiðxÞdmðxÞ;

thereby

hmð f �1Þ ¼ hmð f Þ ¼ �
ð X
i:wiðxÞ<0

wiðxÞ dim EiðxÞdmðxÞ:

This is the desired. r

In the following lemma we assume the invariant measure m to be ergodic.

Lemma 5.3. Let f : M ! M be a C1þa ða > 0Þ di¤eomorphism of a

compact Riemannian manifold preserving an ergodic hyperbolic Borel probability
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measure m. Assume jJacðDp f
nÞj ¼ 1 for p A Fixð f nÞ and n A N. Then we have

ef ðnÞ ¼ 0 for every ergodic hyperbolic probability measure n invariant under f .

Proof. We recall the following proposition given in [9] and present it in

the form that suits to our purpose. The support of m is the smallest closed set

F with mðFÞ ¼ 1. We denote it by Supp m.

Proposition 5.4 (Theorem S.5.5 in [9]). Let f and m be as in Lemma 5.3

and x A Supp m. Then for any e > 0, neighborhood V of x and finite family F

of continuous functions on M there exist n A N and a hyperbolic periodic point

z A V VFixð f nÞ such that

ð
j dm� 1

n

Xn�1

i¼0

jð f iðzÞÞ
�����

����� < e

for all j A F.

Fix an arbitrarily ergodic hyperbolic Borel probability measure n invariant

under f . Take j ¼ �logjJacðDf Þj. We have, by the chain rule,

Xn�1

i¼0

jð f iðzÞÞ ¼ �
Xn�1

i¼0

logjJacðDf iðzÞ f Þj ¼ �logjJacðDz f
nÞj ¼ 0

for the periodic point z of period n for Proposition 5.4, where for the third

equality the assumption on the Jacobian is used. On the other hand we obtain

ð
j dn ¼

ð
�logjJacðDf Þjdn ¼ ef ðnÞ

by definition. Applying Proposition 5.4 shall imply jef ðnÞj < e. Thus Lemma

5.3 follows from the arbitrariness of the positive number e. r

Proof of Proposition 5.1. Combining Lemmas 5.2 and 5.3 yields the

proof for the case when the measure m is ergodic. Reducing the non-ergodic

measure to the ergodic one via the ergodic decomposition theorem completes

the proof.

6. An example

We present here an example of a di¤eomorphism of the 2-torus which

satisfies all the assumptions of Theorem 1.1 but does not admit any hyperbolic

absolutely continuous invariant probability measures.

Starting with a hyperbolic linear automorphism g of T2 having positive

eigenvalues a�1 < 1 < a, we let p A T2 be a fixed point of g.

510 Michihiro Hirayama and Naoya Sumi



Proposition 6.1. There is a one-parameter family fgaga A ½0;1� of expansive
Cy di¤eomorphisms of T2 with g0 ¼ g satisfying the following:

(1) for each a A ½0; 1Þ the di¤eomorphism ga is Anosov and admits an

invariant probability measure which is absolutely continuous with respect

to the Riemannian volume on T2;

(2) the di¤eomorphism g1 admits no hyperbolic absolutely continuous

invariant probability measures while it has the properties that for

all x A T2 the local stable and unstable sets at x form C1 curves and

they intersect transversally at x in the sense that TxM ¼ TxW
s
d ðxÞl

TxW
u
d ðxÞ, and jJacðDqg

n
1 Þj ¼ 1 for q A Fixðgn

1 Þ and n A N.

We shall denote by ðx; yÞ a coordinate system such that p is the origin and

in which the map g has the diagonal linear form gðx; yÞ ¼ ðax; a�1yÞ. Let

us denote the neighborhood of p which is given in this coordinate as

fðx; yÞ : x2 þ y2 a r2g by Dr. Observe that the automorphism gð¼ g0Þ is the

time-one map of the flow generated by the following system of vector fields:

_xx ¼ x log a;

_yy ¼ �y log a:

Here and below _xx denotes the di¤erentiation dx=dt.

Given su‰ciently small positive numbers r0, r1 and r2 so that 0 < r2 <

r1 < r0=100a, choose a real-valued Cy function c on the unit interval ½0; 1�
such that

(1) c 0ðuÞb 0;

(2) cðuÞ ¼ 1 for ub ðr1Þ2 and cðuÞ ¼ u2 for 0a ua ðr2Þ2.
We let

caðuÞ ¼
1� aþ a

1� a

ð1�a

0

cðuþ sÞds if a A ½0; 1Þ;

c if a ¼ 1:

8><
>:

Then it is easy to verify that c0 ¼ 1 and lima!1 ca ¼ c1.

Consider the time-one map ~gga, defined on Dr1 , generated by the following

system of vector fields:

_xx ¼ xcaðx2 þ y2Þ log a;

_yy ¼ �ycaðx2 þ y2Þ log a:

Let ga be a toral di¤eomorphism which coincides with ~gga inside Dr1 and is

extended to g outside Dr1 :

gaðzÞ ¼
~ggaðzÞ if z A Dr1 ;

gðzÞ if z A T2nDr1 :

�
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Define

raðzÞ ¼
1

caðxðzÞ
2 þ yðzÞ2Þ

if z A Dr1 ;

1 if z A T2nDr1 :

8><
>:

Observe that the function ra is of class Cy and positive everywhere except

the case when a ¼ 1 and z ¼ p. It can be shown that the map ga, a A ½0; 1Þ,
preserves the probability measure

dna ¼ D�1
a ra dm; ð7Þ

where Da ¼
Ð
ra dm and m denotes the Riemannian volume on T2.

Let EsðzÞ and EuðzÞ be the eigenspaces corresponding to the eigenvalues

a�1 and a, respectively. Define the cones at z A T2 as

CsðzÞ ¼ fw A TzT
2 : kwuka kwskg;

CuðzÞ ¼ fw A TzT
2 : kwska kwukg;

where w ¼ ws þ wu with respect to the splitting TzT
2 ¼ EsðzÞlEuðzÞ. We

now recall several results from [3, 4, 8].

Lemma 6.2 (Proposition 4.1 in [8]). Under the above assumptions we have

the following.

(1) For every a A ½0; 1� and z A T2 the families of cones C sðzÞ and CuðzÞ
are invariant:

Dzg
�1
a ðCsðzÞÞHCsðg�1

a ðzÞÞ and DzgaðCuðzÞÞHCuðgaðzÞÞ:

(2) For every a A ½0; 1� and z A T2, except the case when a ¼ 1 and z ¼ p,

the intersections

E s
aðzÞ ¼ 7

nb0

Dgn
a ðzÞg

�n
a ðCsðgn

a ðzÞÞÞ;

Eu
a ðzÞ ¼ 7

nb0

Dg�n
a ðzÞg

n
a ðCuðg�n

a ðzÞÞÞ

are one-dimensional subspaces of TzT
2.

Lemma 6.3 (Corollaries 4.1 and 4.2 in [8]). Under the same assumptions

as in Lemma 6.2 we have for a A ½0; 1Þ the subspaces E s
aðzÞ and Eu

a ðzÞ vary

continuously on z A T2, and the map ga is an Anosov di¤eomorphism.

To see, next, the map g1 admits no hyperbolic absolutely continuous

invariant probability measures on T2 we need several lemmas below. In what

follows we will use f instead of g1 and use the same notations as in sections 3
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and 4. We set W ¼ T2nDr1 . Then the first return map F ¼ f o : W ! W is

well-defined, up to sets of measure zero, where o : W ! N is the first return

time of f to W.

Lemma 6.4. Let a ¼ 1. Under the same assumptions as in Lemma 6.2 we

have the following.

(1) The subspaces E s
1ðzÞ and Eu

1 ðzÞ vary continuously on z A T2 except,

maybe, the point p (Corollary 4.2 in [8]);

(2) There exist constants C > 1 and g A ð0; 1Þ such that

kDzF
nðwsÞkaCgnkwsk ðws A Es

1ðzÞÞ;

kDzF
�nðwuÞkaCgnkwuk ðwu A Eu

1 ðzÞÞ

holds for n A N and z A W whenever F is defined (Proposition 2.3 in

[3]);

(3) The sets Ws
d ðzÞ and Wu

d ðzÞ, with respect to f , are smooth curves

so that TzW
s
d ðzÞ ¼ Es

1ðzÞ and TzW
u
d ðzÞ ¼ Eu

1 ðzÞ for z A T2, where

E t
1 ðpÞ ¼ E tðpÞ, t ¼ s; u. In particular, f is expansive (Lemma 4.1

in [8], Corollary 6.1 and Proposition 6.1 in [4]).

Choose d A ð0;minfe0; r2g=100Þ, where e0 is an expansivity constant for

f . Then we can set R ¼ Rðp; dÞ ¼ ½Wu
d ðpÞ;Ws

d ðpÞ� by the local product

structure (see (3.2)). Notice that RHDr2 . Suppose that f admits a hyper-

bolic absolutely continuous invariant probability measure m. Let V s
MHWs

d=2ðpÞ
be the same notation defined before Lemma 4.1. Consider

Lu
M ¼ fLu

MðzÞ : z A V s
Mg;

where Lu
MðzÞ ¼ ½Wu

d ðpÞ; z� for z A V s
M . Define

Qu
M ¼ 6

z AV s
M

Lu
MðzÞ:

Lemma 6.5. We have mðQu
MÞ > 0.

Proof. Since the measure m is supposed to be hyperbolic and absolutely

continuous with respect to the volume, just the same argument as in the proof

of Lemma 4.1 yields Lemma 6.5. r

Define a level set for each n A N as

Jn ¼ ðx; yÞ A R :
d

nþ 1
< xya

d

n

� �
:

Note that Jn V Jm ¼ q for n0m and that Jn, for n su‰ciently large, trans-

verses to Qu
M . Denote by Pn ¼ Jn VQu

M for such n.
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For functions x and h that x@ h ðx ! aÞ means xðxÞ=hðxÞ � 1 ¼
oð1Þ ðx ! aÞ. Note that c1 ¼ c and ðcjRÞðuÞ ¼ u2.

Lemma 6.6. There is a constant K1 > 0 such that we have mðJnÞb
K1n

4 mðPnÞ for large n.

Proof. Given arbitrarily small c A ð0; dÞ so that c=d < d=2, we first

estimate the ‘‘escape’’ time T of when the solution of the vector fields along

the segment of the hyperbola fðx; yÞ : xy ¼ c; x A ½0; d�; y A ½0; d�g goes out the

region R under the initial condition x ¼ c=d. Since y ¼ c=x, it follows that

_xx ¼ xcðx2 þ y2Þ log a ¼ xcðx2 þ ðc=xÞ2Þ log a:

Thus we have

ðT

0

dt ¼
ð d

c=d

1

_xx
dx ¼

ð d

c=d

x3

ðx4 þ c2Þ2 log a
dx

b
k

log a

ð d

c=d

x3

c4
dx

¼ k

4c4 log a
fd4 � ðc=dÞ4g

b
k

4c4 log a
ðd=2Þ4 ¼ k

26 log a
ðd=cÞ4

for a constant k > 0 which comes from the similarity 1=ðx4 þ c2Þ@ 1=c2

ðx ! 0Þ. Substituting c ¼ d=n shall imply

T b
k

26 log a
n4

for n > 2=d.

It then follows from the invariance of m that

mðJnÞb mðPnÞ � T b
k

26 log a
� n4 mðPnÞ;

thereby the estimate holds for K1 ¼ k=26 log a. r

Lemma 6.7. There is a constant K2 > 0 such that we have mðPnÞbK2=n
2

for large n.

Proof. Put hu
M ¼ dm f Mx u

z =dmu
z . By the invariance of the measure m we

have
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mðPnÞ ¼
ð
T2

m f Mx u

z ðPnÞdmðzÞ

¼
ð
T2

ð
PnVCf M xu ðzÞ

hu
MðwÞdmu

z ðwÞdmðzÞ

bC�1
4

ð
T2

mu
z ðJn VLu

MðzÞÞdmðzÞ

¼ C�1
4

ð
Qu

M

mu
z ðJn VLu

MðzÞÞdmðzÞ

for a constant C4 ¼ C4ðC;MÞ > 1 since C�1 a hujLaC ðL A QuÞ holds.

There is a constant s > 1 independent of z and n such that mu
z ðJn VLu

MðzÞÞb
s�1=n2 since the local unstable manifolds vary uniformly continuously on Ll

with respect to the C 1 topology ([1]). It follows that

mðPnÞb ðC4sÞ�1
mðQu

MÞ=n2;

thereby the desired estimate follows for K2 ¼ ðC4sÞ�1mðQu
MÞ, which is positive

by Lemma 6.5. r

Proof of Proposition 6.1. It follows from Lemma 6.3 that for each

a A ½0; 1Þ the map ga is an Anosov di¤eomorphism and as we have seen above

the map ga preserves the absolutely continuous probability measure na defined

by (7).

We next show the assertion (2). It can be verified readily that g1 is

expansive and possesses the transverse intersections TzT
2 ¼ TzW

s
d ðzÞlTzW

u
d ðzÞ

for all z A T2 by Lemma 6.4 (3). Put Fixðgn
1 Þ

� ¼ Fixðgn
1 Þnfpg for each n A N.

It follows from Lemma 6.4 (2) that Fixðgn
1 Þ

� consists of hyperbolic periodic

points and hence, there is a map (so-called a continuation, see [16] for instance)

C ¼ Cn : Fixðgn
1 Þ

� � ½0; 1� ! T2

that associates every point ðq; aÞ A Fixðgn
1 Þ

� � ½0; 1� to a periodic point in

Fixðgn
a Þ

� such that
� Cðq; 1Þ ¼ q, that is Fixðgn

1 Þ
� can be identified with Fixðgn

1 Þ
� � f1g via

C ;
� for each q A Fixðgn

1 Þ
� the map

Cq ¼ CnðqÞ : ½0; 1� ! T2

defined as CqðaÞ ¼ Cðq; aÞ is continuous.

It follows that for q A Fixðgn
1 Þ

�

jJacðDqg
n
1 Þj ¼ lim

a!1
jJacðDCqðaÞg

n
a Þj ¼ 1
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since jJacðDCqðaÞg
n
a Þj ¼ 1 for all a A ½0; 1Þ. The equality jJacðDpg

n
1 Þj ¼ 1 follows

a priori, so does jJacðDqg
n
1 Þj ¼ 1 for all q A Fixðgn

1 Þ.
It remains to show g1 admits no hyperbolic absolutely continuous invariant

probability measures. Suppose, to derive a contradiction, g1 admits a hyper-

bolic absolutely continuous invariant probability measure m. Note that Jn,

n A NU f0g, are pairwise disjoint subsets in R. By using Lemmas 6.6 and 6.7

we obtain

1b mðRÞb
Xy
n¼1

mðJnÞbK1K2

Xy
n¼1

n2:

This gives a contradiction.
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Math. 59 (1984), 163–188.

[11] F. Ledrappier and J. M. Strelcyn, A proof of estimation from below in Pesin’s entropy

formula, Ergod. Th. & Dynam. Sys. 2 (1982), 203–219.

516 Michihiro Hirayama and Naoya Sumi



[12] F. Ledrappier and L.-S. Young, The metric entropy of di¤eomorphisms, Part I: Charac-

terization of measures satisfying Pesin’s entropy formula, Ann. of Math. 122 (1985), 509–

539.

[13] J. Lewowicz, Expansive homeomorphisms of surfaces, Bol. Soc. Brasil. Mat. (N. S.) 20

(1989), 113–133.
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