HirosHIMA MATH. J.
37 (2007), 491-517

Absolutely continuous invariant measures for expansive
diffeomorphisms of the 2-torus

Michihiro HirAyama and Naoya Sumi

(Received October 16, 2006)
(Revised February 1, 2007)

ABSTRACT. The aim of this paper is to establish an equivalent criterion for certain
expansive diffeomorphisms of the 2-torus to admit an invariant Borel probability
measure that is absolutely continuous with respect to the Riemannian volume. Our
result is closely related to the well known Livsic-Sinai theorem for Anosov diffeo-
morphisms.

1. Introduction

Let g: M — M be a transitive C> Anosov diffeomorphism of a compact
Riemannian manifold M. A celebrated work of Livsic and Sinai [14] says that
¢ admits an invariant Borel probability measure that is absolutely continuous
with respect to the Riemannian volume on M if and only if |Jac(D,g")| =1
holds for every periodic point p € Fix(¢g”) and n € N, where Jac stands for the
Jacobian and Fix(¢") = {xe M : g"(x) = x}. We refer the reader to [2] for
more precise definitions. Our aim here is to further the study of relations of
this type for certain expansive diffeomorphisms.

Let f: M — M be a C'** (x> 0) diffeomorphism of a compact Rie-
mannian manifold M preserving a hyperbolic Borel probability measure x. In
Corollary 5.6 of [10] Ledrappier proved that the following (A) and (B) are
equivalent.

+ Property (A) The measure u is absolutely continuous with respect to the
volume on M.

* Property (B) The measure u is absolutely continuous with respect to both the
stable and unstable laminations (see the definition in the next section).

It follows from the Pesin entropy formula ([17]) that (B) is equivalent to the

following:

* Property (C) the measure u is absolutely continuous with respect to the
unstable lamination and
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JloglJaC(Dxf)ldﬂ(X) ~0 (1)

(see Lemma 5.2 below). Moreover we can derive (C) from the following:
Property (D) the measure u is absolutely continuous with respect to the
unstable lamination and |Jac(D,f")| =1 holds for p € Fix(f") and neN
(see Lemma 5.3 below).

In this context, the Livsic-Sinai theorem for transitive C?> Anosov diffeo-
morphisms could be reformulated as the properties (A) and (D) are equiv-
alent. It then asserts that all the properties above are equivalent, particularly
that (C) implies (D). This implication seems to be little known in the broader
context beyond Anosov. In this paper, we would turn to this problem.

To state the result we recall the following notion. Let xe M and J > 0.
Define the local stable and local unstable sets at x by

Wy (x)={yeM:d(f"(x),/"(y) <6 (n=0)},
Wi(x)={yeM :d(f™"(x),[(y) <6 (n=0)},
where d is the distance on M induced by the Riemannian metric.

THEOREM 1.1. Let f: T? — T? be an expansive C? diffeomorphism of the
2-torus preserving a hyperbolic Borel probability measure u. Assume that for all
x € T? the local stable and unstable sets at x form C' curves and they intersect
transversally at x in the sense that T T* = T WS (x) @ Ty W5 (x). Then the
following two assertions are equivalent:

(1) w is absolutely continuous with respect to the Riemannian volume on

T
(2) w is absolutely continuous with respect to the unstable lamination and
[Jac(D,f")| =1 for peFix(f") and neN.

As an immediate corollary of this theorem we have the following.

COROLLARY 1.2. Under the same assumption as in Theorem 1.1, all the
properties (A), (B), (C) and (D) are equivalent for an expansive C?* diffeo-
morphism [ on the 2-torus preserving a hyperbolic Borel probability measure p.

Background material is given in §2. Sections 3, 4 and 5 are devoted to
our proof of Theorem 1.1. The implication that (2) follows from (1) is shown
in section 4 (Proposition 4.10). Since the proof of Proposition 4.10 makes use
of the bounded distortion property of surface diffeomorphisms (§4, Case 2,
Lemma 4.8), it seems to be necessary to use an alternative method in order to
extend our theorem to higher dimensional dynamical systems.

The reverse implication is given in section 5 with no assumption on local
manifolds as in the theorem. More precisely we establish the implication
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for every diffeomorphism on a Riemannian manifold preserving a hyperbolic
probability measure (Proposition 5.1).

We emphasize the assumption in Theorem 1.1 is not sufficient to guarantee
the existence of hyperbolic absolutely continuous invariant probability mea-
sures. Indeed, after the construction of a diffecomorphism of a compact surface
with nonzero Lyapunov exponents which is not Anosov due to Katok [8], a
diffeomorphism of T? admitting no hyperbolic absolutely continuous invariant
probability measures is given in §6.

2. Definitions

2.1. Let M be a compact C* manifold with a Riemannian norm || - ||,
f:M— M a C"* (¢>0) diffecomorphism of M and Df : TM — TM the
derivative of f. Let also u be a Borel probability measure invariant under
f. A point xe M is said to be Lyapunov regular if there exist real
numbers y;(x) > x5(x) > -+ > y,(x) and a D,f-invariant decomposition
T.M = E|(x) ® Ex(x) ® - -- @ Ey(y)(x) such that for each i=1,2,...,r(x)

dim log D" = 1) (v e E(VO))

exists, and
.1 X ) .
Jim - loglJac(Dyf")| = -21 xi(x) dim E;(x).

We denote by I" the set of Lyapunov regular points. By the multiplicative
ergodic theorem ([15]) I" is a full u-measure subset. The numbers y,;(x) are
called the Lyapunov exponents of f at the point x. The functions x — y;(x),
r(x) and dim E;(x) are Borel measurable and f-invariant. A measure u is said
to be hyperbolic if none of the Lyapunov exponents of f for u vanish and there
exist Lyapunov exponents with different signs for p-almost every x € M.

Let xe I'. We define the stable and unstable manifolds at x as

W (x) = {ye M : limsupl log d(f"(x), f"(»y)) < 0}7

n— oo n

W (x) = {y eM: limsup% log d(f™"(x), f"(») < 0}.

n—oo
Then #*(x) and #“(x) are injectively immersed manifolds satisfying

T (x) = E*(x), T W *"(x) = E*(x),
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where E*(x) = @izy.(x)<0 E;(x) and E"(x) = @i:x»(x)>0 E;(x) ([1])). Both #7*(x)
and #""(x) inherit a Riemannian structure from M and hence a Riemannian
volume and a distance. We write the volume and the distance on #*(x) as

m? and d, respectively (v =s,u).

2.2. We call

¢/ (1) =~ [toglsac(D. )l dut

the entropy production for p (in the sense of Ruelle [20]). It is easy to see that
the entropy production is independent of the choice of Riemannian metrics
and the multiplicative ergodic theorem asserts

JZ;/, ) dim E;(x)du(x).

We refer the reader to [20, 21] for more precise definitions and results. Note
that the equation (1) says the entropy production for u vanishes.

2.3. Let # be the Borel g-algebra of M completed with respect to x4 and & a
partition of M. We say a subset 4 < M &-set if it is the union of elements of
&, A countable system {A4;};,.n < % of measurable &-sets is said to be a basis
of & if for any two distinct elements C;, C, of &, there exists A;, such that, up
to sets of measure zero, either C; < 4;, and C, & A4;) or C; ¢ A4;, and
C, c A;,. A partition with a basis is said to be measurable. Denote by
% the sub g-algebra of # whose elements are &-sets. We denote by C:(x) the
element of & containing x € M. We write n < & if 5 is, up to sets of measure
zero, a sub-partition of ¢.

For a measurable partition ¢ of M, there exists a canonical system of
conditional measures: for p-almost every x € M there is a probability measure

us deﬁned on C ( ) such that the function x + u(A4) is %:-measurable and
= [ps(4 ) for every A € %. See [19] for more details.

Let W= {W “( ) : x € I'} be the unstable lamination and &" a measurable
partition of M. We say that &" is subordinate to the ¥ “-lamination if for
u-almost every xe M, Cs(x) = #™"(x) and Cs«(x) contains an open neigh-
borhood of x in #™“(x). The measure u is said to be absolutely continuous
with respect to the W “-lamination if for every measurable partition & sub-
ordinate to the ¥ “-lamination, ,u§ is absolutely continuous with respect to m
for u-almost every x € M. The measurable partition subordinate to the -
lamination and the absolute continuity with respect to the #*-lamination are
defined similarly.
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3. Preliminaries

3.1. The Pesin invariant manifolds. Let f: M — M be a C? diffeomorphism
of a compact Riemannian manifold M preserving a hyperbolic Borel prob-
ability measure x. Recall that I denotes the set of Lyapunov regular points.
There exist an increasing family {4;},.n of closed subsets of M, a family
{#;L.(x)} (v =s,u) of C? disks passing through x € 4, and positive numbers
r;, 05, A; and B; such that
(i) I'e o, 4 and f"(4;) = 4, for some positive integer ¢ = ¢(/,n);
(i) #7°(x) = U, o /"(#ie(f"(x))) and
(%) = U, Lo /" (Wiie(f7(x))) for xeT;
(iif) for each x e 4, the disk #,.(x) contains the closed ball centered at x
of radius ¢; with respect to the induced distance df on # *(x);
(iv) for each x € A, there is ¢; € (0,1) such that for all y € A;N B(x, r¢;)
and re (0,r], #,,.(y)NB(x,r) is connected, and the map

AN B(x,rier) 3 y = Wig (y) N B(x, 1)

is continuous with respect to the Hausdorff metric on the space of all
subsets of B(x,r);
(v) if ye#.(x) and x e 4;, then for every n>0

o (" (0), " (x)) < s, %),

and if ye #,.(x), then for every n >0

A (S (), S7(X) < dge Pl (y, x)

(see [11]). We see, in particular, u(|J,., 4;) =1 by (i).

Fix /> 1 so large that u(4;) > 1/2 and a measurable partition #* sub-
ordinate to the ¥ *-lamination, T = s,u. We may take the partitions #* and #*
so that

(@) #*<fn’ and 5" < f~'y";

(0) Uig /(G (f1(x))) = #™*(x) and

U S(Cpu(f(x))) = #*(x) for p-almost every x € M;

(¢) both \/, fin* and \/, f~'n" are partitions into points.
See [11] for complete description. Assertion (c) yields

diam Cyiys(y) — 0 and diam Cy-i,u(y) — 0,
as i — oo, for p-almost every ye M. Here and below we write
diam 4 = sup{d(a,b) : a,b € A}. Given r € (0,min{d;,r;}/100), we thus let
A7, ={y e A, diam Crips(y) <r};

ALI

Lr,i

= {yed;:diam Cri,u(y) < r}.
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Note that 4], ;€ # (see [22] for example). We see
A, <= A;,r,i—‘—l’ AZ}',i < Al’{r,H-l

Lri

and

w ) = w(Uso 47,00, ) = u(\J,oo A1)

Therefore

1
lu(Air,i N A/L:r,i) = E/’t(/ll)

holds for some integer i > 1 large enough. Fix such an integer i, and below
we may write

gy, &=y
and
Airi =45, ,04], ;.

That &° is still a measurable partition subordinate to the ¥ *-lamination,
T=35,U.
For je N we consider

A rij=Ay € i d(@Ca(y), y) = r/j};
Al =y e+ d(0"Ce(y), y) 2 1/j},
where 0°A4 denotes the boundary of 4 in W7'(y), t=s,u. Again we see
Ay Al e Aflyi; Al e
and
w( Ay i) = /l(U_/Zl Als,r,i,j)v WA yi) = /‘(szl Allfr-,hj)'

Hence

1
WAL, NA ) = E/‘(Al,r,i)
holds for some integer j > 1 large enough. Fix such an integer j, and below
we may write
Alv’ = A/-,"-,"yj = A;;r,i,j N Alu,r‘7i,j
for notational simplicity. Let xo € 4;, be a density point of x4 and put

AIJ’(XO? Q) = Al,l‘ nB(X(), q)a
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for ¢ € (0,r/20j]. Define

Qj(x)= U L'y

e, (xo,9)

Of(xo)= U L"),
yed,(xo,q)
where L(y) = #;3.() N B(xo,r/2) and L¥(y) = #;(») N B(xo, /%)), respec-
tively. Clearly we have u(Qf(xo)) >0 since Qf(xo) contains A, ,(xo,q), T=
s,u. Notice that L*(y) is connected and L*(y) < Cs(y) for ye A;.(xo,9),
T=1s,U.

Recall that u is absolutely continuous with respect to the Riemannian
volume on M if and only if x4 is absolutely continuous with respect to both
the #°-lamination and the # “-lamination ([10]). Thus we let the density
functions along these laminations be defined as follows:

oy = 9

h(x) = W;(x)’ xe Ce(y);
wy A

h'(x) = dm¥ (x), x e Ce(y),

for u-almost every y € M. Given a constant C > 1, we define
Ay c(x0,q) = {y € A1,(x0,q) : C <h(x) < C (xe L () };
Ay e(x0.q) = {y € A14(x0,9) : €' <h(x) < C (xe L"(»))}-

Then it is proved in Corollary 6.1.4 of [12] that these densities #* and A" are
indeed of class C! and strictly positive along #°*(y) and #“(y), respectively,
for p-almost every y € M. Thus we might choose C > 1 so large that

[um—

1Ay r c(x0,q) N A1 c(x0,9)) = 5 ulA11(x0, 9)).

Put
Al,r,C<x07 Q) = AZ;~7C(XO7 Q) N A[Lfnc(x(% q)
Without loss of generality we may assume xo € 4;, ¢(xo,¢). Set
o' = U Ly and Q"= U L),
e, c(x0,9) yeir c(xo,q)

respectively. That x(Q7) > 0 holds since QF contains A4, ¢(xo,q), T = s,u. It
follows that QF has positive volume since u is assumed to be absolutely
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continuous with respect to the volume (r =s,u). In what follows we denote
by L*(y) the component passing through y € QF, t = s, u, whether y belongs to
Ap . c(x0,q) or not.

Consider the families of local manifolds

2 ={L(y): ye Q°},
L' ={L"(y): ye Q"}.

Given a manifold T < M, we denote by my the induced Riemannian volume
on T. A manifold T is said to be a transversal to the family & if T intersects
each L € #* in a unique point and the intersection is transverse. Let 77 and
T, be two transversals to the family #*. We then define the holonomy map on
Q¢ sliding along #*
ps : QsﬂTl — QSQTZ
by setting
p’(z) = L*(w)N T,

for ze L*(w)NT, and we Q°. The holonomy map p® is a homeomorphism
onto its image. It is called absolutely continuous if mr, is absolutely contin-
uous with respect to pimy,. Define the Jacobian J.(p*) of p* at ze Q*N T to
be the Radon-Nikodym derivative

dm T,

T=0") = Grtmr)

(®°(2))-
It is well known that the holonomy map p* is absolutely continuous and has a
bounded Jacobian in the sense that there is a constant J = J(/) > 1 such that

Jh <L) <J 2)

for ze Q°NTy ([17]). Below we say p* has the J-distortion property on Q* if it
satisfies (2).

The holonomy map p“: Q“NT; — QN T, sliding along #* is defined
analogously, where 7T and 7, are transversals to the family #% The
holonomy map p* also possesses the absolute continuity property in the sense
explained above and has the J-distortion property on QY.

3.2. Local product structure. Let us recall several known facts from topo-
logical dynamics we need later. Let T? be the 2-torus. Given x e T? and
0 >0, we define the local stable and local unstable sets at x by

W3(x) = {yeT> 1 d(f"(x), f"(y)) <3 (n = 0)},

W3(x) ={yeT?:d(f"(x),/"(y) <6 (n=0)}.
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Clearly #j(x) is a closed subset of T? t=s,u. A homeomorphism
f:T? = T? is said to be expansive if there exists a constant g > 0, called
an expansivity constant, such that d(f"(x), f"(y)) <& for all neZ implies
x=y. Itis well known that every expansive homeomorphism of T2 possesses
the local product structure: for any small 6 > 0 there exists ¢y > 0 such that the
intersection #5’(z) N #3"(w) consists of one point, denoted by [z, w], whenever
d(z,w) <e. See [5, 6, 13] for more precise. For Z, W < T? we denote by
[Z, W] the subset {[z,w]:zeZ,we W} if it makes sense.

Given 0 € (0,&/100) and &€ (0,0/100), the following

R'(x,&,0) = [W ' (x), W3 (x)],
RY(x,0,¢) = [W3(x), W} (x)]

make sense for x € T?. We call these sets the stable and unstable rectangles
around x, respectively. Define also R(x,d) = [#(x), #5 (x)].

4. Preserving the volume around periodic orbits

Let f:T? — T? be an expansive C? diffeomorphism of the 2-torus T
preserving a hyperbolic Borel probability measure x4 and ¢ > 0 an expan-
sivity constant for f. Notice that the map f is topologically conjugate to
a hyperbolic toral automorphism ([5, 6]). Throughout this section we let
d€(0,60/100) and ¢ € (0,6/100), and assume that for all x € T? both the local
stable set #;’(x) and the local unstable set #;"(x) form C! curves and they
intersect transversally at x:

TT = T3 (x) © To ' (x). (3)

We then show the invariant measure u is absolutely continuous with respect
to the # “-lamination and |Jac(D,f")| =1 for all p € Fix(f”) and n € N pro-
vided that u is absolutely continuous with respect to the Riemannian volume on
T

Fix p e Fix(f"). Without loss of generality we may assume that n = 1.
It follows from (3) that the point p is neither attracting nor repelling and its
eigenvalues at p are real numbers. We may as well assume that D,f has
positive eigenvalues 2° <1 < A",

Define the (global) stable and (global) unstable sets at p as

W3 (p)={yeT>:d(f"(p),/"(y) — 0 as n — oo},

W' (p) ={yeT>:d(f"(p)./"(¥)) = 0 as n — w0},

It can be shown that for o € (0,&,/100)
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= U f e, = U /"0 ))

n>0 n>0
and that # %(p) is dense in T?, 7 =s,u. We refer the reader to [5, 6], for
instance. It then follows from (3.1)(ii) and (v) that for Lyapunov regular
points x € I the stable and unstable sets defined here coincide with the stable
and unstable manifolds defined in the end of (2.1), respectively. Observe also
that the assumption (3) implies #™“(p) and #"*(p) intersect ¥° and ¥*“
transversely, respectively.

Take a point a € L*(xo) N #"(p) so close to xq that d(a,x) < r/100, and
set V¥ =1[0% a]. Note that V* = #*(p). Similarly take b e L"(x¢) N #"*(p)
so that d(b,xy) <r/100, and set V* = [b,Q"]. Note that V* < #*(p). Be-
low we write a;= f~(a), b; = f(b) and V= f~{(V"), V&= fi(V*) for
notational simplicity (i € N).

Suppose on the contrary that |Jac(D,f)| #1. We split the proof into
following two cases: whether the point p is hyperbolic, that is A* # 1 (t = s, u),
or not.

Case 1: p e Fix(f) is hyperbolic. 1In this case either 1* < (1*)"'(<1) or
(A < 2°(<1) might occur. Without loss of generality we may assume
25 < (A")"!) that is area contracting in a neighborhood of p.

Let us choose an integer N >1 so large that aye #j,(p) and
diam Vjy < e Similarly choose an integer M >1 so large that by e
Ws)(p) and diam V3, <e.  Consider

Ly ={Ly(z):ze Vy} and Ly =A{Ly(2) 1z Vy,},
where L (z) = [z, #' (an)] for ze V}; and LY, (z) = [#5'(bu),z] for ze V},,

respectively. Define

Ov= U Ly(z) and  Qfy= U Lj(2).

- u - 5
zeVy zeVy,

We see Qx < R'(an,¢,0) and QY < R*(by,0,¢) by the choice of N and M,
respectively.

Lemma 4.1. p(0%) >0 and u(Q3,) > 0.

ProoF. We prove only the first statement as the latter can be shown in
the same way.
By the invariance of u we have

WO = | i (Rdnta

= | @iau)
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h*(w)dm(w)du(z)

JTZ Jf“’(va)ﬂCéf(f)
> m (@ N L E)duE) > 0

This completes the proof. O

It follows from Lemma 4.1 that both Q3 and Q}, have positive volume
since u is assumed to be absolutely continuous with respect to the volume.

From now on we assume that the ranges of the holonomy maps p* and p“
are in # “(p) and #*(p), respectively. More precisely let p*: Q*NL — V*
(Le #") be the holonomy map sliding along ¥* and p“:Q“NL— V*
(L e £*) the holonomy map sliding along #“. The holonomy maps py on
Qy sliding along &5, and p}, on Qj, sliding along %}, can be defined similarly
as in (3.1).

LemmAa 4.2. The holonomy map vy : Oy L — Vy possesses the J-
distortion property on Qy for a constant J =J(I,N) > 1:
mu Vu
# < J
my (O NL)
for ze ONNL and L e &y, Similarly, the holonomy map pjy, - O, L — V3,
has the J-distortion property on QY for a constant J = J(I,M) > 1:

‘]*l < M < J
mL(Qljf/[mL)

J <

for ze Qi NL and L e &y,

Proor. It is enough to prove only the case for the stable holonomy
ps: Oy NL — V} as just consider f~! instead of f for the case for the unstable
holonomy.

As we noted in (3.1) the holonomy p*: Q°NL — V* (Le ") pos-
sesses the J-distortion property. Since the map p* is a bijection and pj =
SNopSo fN holds on Q5 NL (Le Z},), the map p} is also a bijection and
possesses the J-distortion property for a constant J = J(I,N).

Lemma 4.1 asserts that the numerator and the denominator do not vanish.

]

Associated to the hyperbolic point p € Fix(f) there is a splitting 7, pT2 =
E*(p) @ E*(p). We thus obtain T.T> = E*(z) @ E“(z) by identifying T.T> =
R? for z € T? near to p. For ae (0,1) define the stable and unstable cones at
zeT? as
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Ca(z) = {we T2« wu]| < aljwill},

Ci(2) = {we T.T : [|wi|| <al|wil},

a

where w = w, +w, with respect to the splitting 7.T> = E*(z) @ E¥(z). Set
R=R(p,0) = [“//b (p), 75 (p)]. A map that associates to every point z€ R a
cone Cf(z) in T.T? is said to be a cone field on R (t = s,u). Since the number
o0 is small, for sufficiently small f > 0 and a € (0, 1) there are continuous cone
fields C; and CY on R so that
(i) if xe RNf(R)
(a) Duf~1(C3x) = G/ (x)):
(b) (' = Bllell < DS @) < G+ B)loll for ve C(x)\{0};
(i) T,9(p) = C3(p),
and
(iii) if xe RNfY(R)
(@) Do f(CY(x)) = Ci(f(x));
®) Pl = 1Dof @) = (2" = Bllell for ve CF(x)\{0};
(v) T,9"(p) = C(p).
Below we write the cone field C* instead of C; for notational simplicity
(t =s,u).

ProposITION 4.3 (the inclination lemma or A-lemma [16]). Let p be
hyperbolic and L < T? a C' curve having a transversal intersection point ¢
with #*(p). Then f"(L) converges to W"(p) as n — oo in the sense that for
each n there is a disk D, < f"(L), a neighborhood of f"(q) in f"(L), such that
lim, .., D, =D. Here D < #*(p) is a disk around p, and the convergence
means that for each n large enough, D, and D are C' near. Similarly, for a C'
curve L < T2 having a transversal intersection with W"(p), f~"(L) converges to
W (p) as n — oo.

It follows from the inclination lemma that
T.L = C*(2) for ze L, Le %5; 4)
T.L = C“(z2) for ze L, L e &%y;. (5)

We now construct a transversely laminated set in the unstable rectangle
RY(bp,0,¢) around by, as follows. Given k > 1 large enough, define

Q/SV+k_ u LN+k

N+A

where Ly, (2) = [z, ¥ (ank)] for ze V.. Define then

Qk = Q)\ﬂk N QL
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This is the desired. Notice that
Ok = [Vyx Vil

holds. Observe that the maps p% : fX(Qx N LY (z)) — V4, ze V3, and p¥ :
O N f~K(Ly(2)) — V3, ze Vi, are bijections by construction.

Lemma 4.4. Let y be a subset of a leaf, say L},(z), of the family %y, If
f'(y) =R for i=0,1,... .k —1, then

m;k(z)(fk(y)) < (A" +ﬁ)km?(}’)-

Proor. It follows from (5) and (iii-b) that

i (1)) = | ae(Dof | T2l ()

7

- j 1D f | Tew (=) | (x)
7

< (2" + BymZ(y).
Successive use of this inequality proves the lemma. O

ProposITION  4.5. There is a constant K; >0 such that p(Qx) =
K\(Z"+ )" for large k.

PrOOF. Put h%, = du/""<"/dm". By the invariance of x4 we have
"M zu
w00 = [ " (Q)dutz)
T

-1 ] I () () dp(2)
T> JONCrzu(2)

> ¢t [ mt(Qun Ly () duta

for a constant C; = C;(C, M) > 1 since C~' < h*|L < C (L e Q") holds. By
Lemmas 4.4 and 4.2 we have

|| meoun Ly edutz) = [t (4@ L))

> (e[ mpvduta

u
M

= "+ BT m V()
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It follows from the above consideration that

1) = (A + B (C1d) ™ mi(Viu(QYy),

thereby the desired estimate follows for K; = (CyJ)™" my (Vy)u(Qjy), which is
positive by Lemmas 4.1 and 4.2. O

LemMMA 4.6.  Let y be a subset of a leaf, say Ly (z), of the family £%. If
7)) =R for i=0,1,... .k =1, then

Ml (f5G)) = (2 + B miy).

Proor. It follows from (4) and (i-b) that

b

DT T3 () [ldmz ()

@
m j Jac(Dof 1 | T (2)) ldm3 (x)

> (2 + ) 'mi().
Successive use of this inequality proves the lemma. O

Notice that
SH(Q0) = On N *(Q4)

PROPOSITION 4.7. There is a constant Ky >0 such that p(f*(Qx)) <
Ky (2*+ B)* for large k.

PROOF. Put i3, = du/ "< /dm$. By the invariance of u we have
W) = | (M@0t

Iy (w)dms () d (=)

JTZ Jfk(Q/C>ﬂC/’A\’5.V (Z>

<G| mirt Q)N L4t

for a constant C; = C3(C,N) > 1 since C~! <h*|L < C (L e Q) holds. By
Lemmas 4.6 and 4.2 we have

| merto0n LiEnane)

<G D | (NS L))
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— (@ +p) |

) (Qe N Ly (f(2)du(z)

=] @5 L))

SGEpN | i

= (" + ) T my(Vipu(ON)-
It follows that

1(f(00) < (2" + P CTmi (Vi 0y),

thereby the desired estimate follows for K» = GoJ my(Vi)u(Qy), which is
positive by Lemmas 4.1 and 4.2. O

Combining Propositions 4.5 and 4.7 we obtain
Ki(2" + 57" <u(Qu) < a2+ )

as u is invariant under f, where neither K| nor K, depend on k. It follows
that

KiK' < {(X°+B) (A" + B)}*

and the second term above tends to zero as k goes infinity since A°A" < 1.
This yields a contradiction. Our proof for Case 1 is completed.

Case 2: peFix(f) is non-hyperbolic. In this case either A° < 1=41"
or 2*=1<A" might occur. Without loss of generality we may assume
A* < 1= A" The argument below is a simple adaptation to our case of an
argument in the proof of Theorem A in [7] by Hu and Young and is presented
for the sake of completeness. Given a positive number p > 0, we denote by
0,(A) the p-neighborhood of 4 = T?, that is O,(A4) = {ve T?: d(v,4) < p}.

Let E°(p) and E*(p) be the eigenspaces of D, f corresponding to A* and 1%,
respectively. Consider again R(p,d) = [#5(p), #3(p)], where 0 € (0,¢,/100)
is chosen so small that there is a continuous (stable) cone field C*¥, which can
be defined similarly as in Case 1, on an open neighborhood U of R(p,d)U
f(R(p,0)). In the rest of this section we will write R instead of R(p,d) for
notational simplicity.

We first construct an f-invariant Lipschitz stable foliation of smooth
leaves as follows. Given pe (0,0/100), we consider the p-neighborhood
O,(f(R)\R) of the set f(R)\R, and denote it by ¥/, for notational simplicity,
that is V), = O,(f(R)\R). Without loss of generality we may assume the
positive number p is so small that ¥, = U and V,Nf2(V,) = &.
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There is a C' vector field X, : ¥, — TT? such that Xp(z) e C*(z) since
V, = U. Thus pushing forward the vector field X, by f ~1 gives a C! vector
field ('), Xo on f~1(V),):

(S X0)(2) = D-f ' (Xo(f(2)) (2 /7' (V)
Given an arbitrarily small positive number # € (0, p/100) so that
0,(V,\f'V,)cU and  O,(V,\f'V,)NR =,
we consider a C* function ¢ =, , : V, — [0,1] such that

( ){0 it ze V,\f1(V,);

RS ET AT AN UAVEIIA)
We then define a vector field X : V, — C* as

X=vy (X +1-y) Xo.

The resulting vector field X is of class C! and Df-invariant on
V,N Y V,)N\O,(V,\f"'(V,)) in the sense that (f~!),X =X. Indeed we
have, by definition, for ze V,N f~Y(V,)\O,(V,\/~1(V}))

X(z) = (f71).X0)(2) = Dyop /™' Xo (£ (2)),

W

and
(f.X)(2) = Dy S (X (f(2)) = Dy f~ (Xo(f(2)))

as V,Nf2(V,) = &.

Integrating the vector field X gives a Lipschitz (stable) foliation #;. No-
tice that the associated holonomy map b; on V), sliding along #; has a
bounded distortion in the sense that for all pair of transversals 7, and 75 to the
family #;, there is some constant Jy > 1 such that

() <Jo (6)

-1
Jo' < (M) =

holds, where [ denotes the induced leaf volume.

Pushing forward the vector field X by f~! defines a C' vector field of
which Df-invariant on (a neighborhood of ) R\#;’(p) and then, integrating the
resulting vector field shall give an f-invariant Lipschitz stable foliation. This
is the desired. We denote by 7 ° the resulting foliation and by F*(z) the leaf
containing z.

Since the intersection F*(z) N #3"(w) consists of one point, we now define

2] = F¥() N3 (w),

whenever z € R\#;(p) and we R. For Z, W < R we denote by |Z, W] the
subset {|z,w]:ze Z\W3(p),we W} if it makes sense.



Absolutely continuous invariant measures 507

Let h® be the holonomy map on R\#}'(p) sliding along Z°, that is
b (R\7§'(p)) N L — #5(p)

where L is a transversal to the family #°. We show the map b’:
(R\75(p))NL — #3(p) sliding along the foliation #* possesses the same
property as in (6) for every transversal L to the family #°. To see this,
let I<w(p)\f "(#;(p)) be an arbitrary (nontrivial) curve, B(n)=
Lf "), 75 (p)] and F*(w,n) a leat of #* containing w € B(n) for n € NU {0}.
Then we observe that

(1) (B = Vs
(2) diam f'(B(n)) < diam(RU f(R)) for i =0,1,...,n;
(3) there is x > 1 so that for all we B(n),

S IFE wm)) < 5
i=0

for all ne NU{0}.
We therefore have the following by Lemma 3.4.1 in [18].

LemMa 4.8 (Lemma 3.4.1 in [18]). There is a constant J = J(Jo, k) > 1,
independent of n, such that the map %' has the bounded distortion property as in
(6) for every transversal to the family F°.

Choose an integer M > 1 so large that V', meets #5 (p)\f(#5(p)) and
put By, = Vi N (#5(p)\f(#;(p))). Define

Qi = U Ly,

RS
zeBy,

where Ly, (z) = |#5'(p),z] for ze B},. By Lemma 4.1 we have u(Qj,) > 0.
For each n e NU {0} define

Qn = LWéu(p)7fn(B;Y\/l)J
Notice that 0, N Q,, = & for n # m and that
S7@n) = LS (W5 (p), Biy -
An argument analogous to Proposition 4.5 shows the following.

ProOPOSITION 4.9. There is a constant K >0 such that pu(f™"(Q)) =
Kmy (f (05" (p))) Jor all n.

PrOOF. Put h%, = du/""<"/dm". By the invariance of u we have
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W@ = [ ™ )t

iy (w) i (w) ()

JTZ an(Q”)nc/M:“ (z)
> ¢ mt 0 N L ) duta)

for a constant C3 = C3(C, M) > 1 since C~' < h*|L < C (L e Q") holds. By
Lemma 4.8 we have

| merm@an Ly @ = - jQu a0 () d2)

= tmy (" (05 (p)) Qi)
It follows from the above consideration that
1 (Qn) = (C3 )™ (@l mi(f " (H3(p))),
thereby the desired estimate follows for K = (C3J)~" w(04). O

Note that Q,, n e NU{0}, are pairwise disjoint subsets in R. By using
Proposition 4.9 we have

0 o0

0 [e¢]
L2 p(R) = Y ul(Qn) = Y u(f7(Qn) = K Y mi(f~" (W5 (p)))-
n=0 n=0 n=0
Lemma 4.1 in [7] would show that the sum 77, m(f~"(#4(p))) diverges,
which gives a contradiction.
The result we have proved in this section is summarized in the following
proposition.

PROPOSITION 4.10. Let f: T?> — T? be an expansive C? diffeomorphism of
the 2-torus preserving a hyperbolic Borel probability measure u. Assume that
for all x € T? the local stable and unstable sets at x form C' curves and they
intersect transversally at x in the sense that T\M = T W (x) @ T\ Wy (x). If u
is absolutely continuous with respect to the Riemannian volume on T?, then u is
absolutely continuous with respect to the unstable lamination and |Jac(D,f")| = 1
for peFix(f") and neN.

5. Vanishing entropy production

As we noted at the end of §1, we show the following.
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PROPOSITION 5.1. Let f: M — M be a C'** (a>0) diffeomorphism of
a compact Riemannian manifold M preserving a hyperbolic Borel probability
measure u. If the measure p is absolutely continuous with respect to the W -
lamination and |Jac(D,f")| =1 for p € Fix(f") and n e N, then it is absolutely
continuous with respect to the Riemannian volume on M.

Combining Proposition 4.10 and this proposition shall complete the proof
of the main theorem (Theorem 1.1).

LEMMA 5.2.  Let f be as in Proposition 5.1. If the entropy production for
u vanishes and u is absolutely continuous with respect to the W ™"-lamination, then
W is absolutely continuous with respect to the Riemannian volume on M.

Proor. Recall that the measure u is absolutely continuous with respect to
the Riemannian volume on M if and only if u is absolutely continuous with
respect to both the ¥ “-lamination and the #’-lamination ([10]). Thus it
is enough to show the measure u is absolutely continuous with respect to the
#/*-lamination, equivalently

W == | 30 7o) dim B du).

i;(x)<0
We have
0= es(u) = — [loglJac(D. f)|du(x)
=_ in(x) dim E;(x)du(x)
=— Z xi(x) dim E;(x) + Z yi(x) dim E;(x)du(x)
i (x)>0 iy;(x)<0
— b = | 3 10 dim E ().
iz (x) <0
thereby
W =) == [ X 200 dim ECOdut)
iy (x)<0

This is the desired. O

In the following lemma we assume the invariant measure u to be ergodic.

Lemma 5.3. Let f:M — M be a C'** (a>0) diffeomorphism of a
compact Riemannian manifold preserving an ergodic hyperbolic Borel probability
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measure u.  Assume |Jac(D, f")| =1 for p € Fix(f") and n e N.  Then we have
er(v) =0 for every ergodic hyperbolic probability measure v invariant under f.

Proor. We recall the following proposition given in [9] and present it in
the form that suits to our purpose. The support of u is the smallest closed set
F with u(F)=1. We denote it by Supp u.

PROPOSITION 5.4 (Theorem S.5.5 in [9]). Let f and p be as in Lemma 5.3
and x € Supp u.  Then for any & > 0, neighborhood V of x and finite family ®
of continuous functions on M there exist n € N and a hyperbolic periodic point
z€ VNFIx(f") such that

n—1
[odu=23 otrien| <o
i=0

for all g e ®.

Fix an arbitrarily ergodic hyperbolic Borel probability measure v invariant
under f. Take ¢ = —log|Jac(Df)|. We have, by the chain rule,

n—

1 n—1
p(f(z)) = = _log|Jac(Dy.) f)| = —loglJac(D /)| = 0
i=0 i=0

for the periodic point z of period n for Proposition 5.4, where for the third
equality the assumption on the Jacobian is used. On the other hand we obtain

o v =] —togirac(opiar = ;)

by definition. Applying Proposition 5.4 shall imply |e/(v)| < e. Thus Lemma
5.3 follows from the arbitrariness of the positive number e. O

PrOOF OF PrOPOSITION 5.1. Combining Lemmas 5.2 and 5.3 yields the
proof for the case when the measure u is ergodic. Reducing the non-ergodic
measure to the ergodic one via the ergodic decomposition theorem completes
the proof.

6. An example

We present here an example of a difftomorphism of the 2-torus which
satisfies all the assumptions of Theorem 1.1 but does not admit any hyperbolic
absolutely continuous invariant probability measures.

Starting with a hyperbolic linear automorphism ¢ of T? having positive
eigenvalues o' < 1 <« we let peT? be a fixed point of g.
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PROPOSITION 6.1.  There is a one-parameter family {ga}ae[o,u of expansive

C* diffeomorphisms of T2 with go = g satisfying the following:

(1) for each a€l0,1) the diffeomorphism g, is Anosov and admits an
invariant probability measure which is absolutely continuous with respect

to the Riemannian volume on T?;

(2) the diffeomorphism g, admits no hyperbolic absolutely continuous
invariant probability measures while it has the properties that for
all x € T? the local stable and unstable sets at x form C' curves and
they intersect transversally at x in the sense that TxM = T\ W5 (x) @

T 3" (x), and |Jac(Dygy)| =1 for q e Fix(g7) and neN.

We shall denote by (x, y) a coordinate system such that p is the origin and

in which the map ¢ has the diagonal linear form g(x,y) = (ox, 0 'y).

Let

us denote the neighborhood of p which is given in this coordinate as
{(x,y): x>+ y* <r?} by D,. Observe that the automorphism g(= go) is the
time-one map of the flow generated by the following system of vector fields:

x = x log «,

y=—yloga.

Here and below x denotes the differentiation dx/dr.

Given sufficiently small positive numbers ry, r; and r; so that 0 < r, <
r1 < r9/100a, choose a real-valued C* function y on the unit interval [0, 1]

such that
(1) ¥'(w) =0

2) Y(u) =1 for u> (r;)* and Y(u) = u* for 0 <u < ()™

We let

a 1—a
Vo) = I‘HEL

W ifa=1.

Y(u+s)ds if ael0,1);

Then it is easy to verify that ¥, =1 and lim,_; ¥, = ¢,.

Consider the time-one map g,, defined on D, , generated by the following

system of vector fields:

X = xp, (x> + y?) log a,

y ==Y, (x*+ »?) logo.

Let g, be a toral difftomorphism which coincides with g, inside D,, and is

extended to g outside D,,:

(2) = g.(z) if zeD,;
dalr = g(z) if ze TA\D,,.
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Define
1
pa(z) =4 Va(x(2)* + ¥(2)%)
1 if ze T*\D,,.

if ze D,;

Observe that the function p, is of class C* and positive everywhere except
the case when ¢ =1 and z=p. Tt can be shown that the map ¢,, a €[0,1),
preserves the probability measure

dv, = A p, dm, (7)

where 4, = [p, dm and m denotes the Riemannian volume on T2.
Let E*(z) and E"(z) be the eigenspaces corresponding to the eigenvalues
a~' and «, respectively. Define the cones at z e T? as

C(z) = {we T2« wu]| < [lwsll},
C'(z) = {we T-T% : [|ws|| < [wall},

where w = wy +w, with respect to the splitting 7.T> = E(z) ® E“(z). We
now recall several results from [3, 4, §].

LemmA 6.2 (Proposition 4.1 in [8]). Under the above assumptions we have
the following.
(1) For every ae|0,1] and z € T? the families of cones C*(z) and C"(z)
are invariant:

D:g,'(C°(2)) = C(g,'(2)  and  D:ga(C"(2)) = C"(gal2)).
(2) For every ae[0,1] and z € T2, except the case when a =1 and z = p,
the intersections

E;(2) = () Dyy59."(C*(94(2));

n>=0

Ej(2) = () Dgr994(C*(9,"(2)))

n>0
are one-dimensional subspaces of T.T?.

LemmA 6.3 (Corollaries 4.1 and 4.2 in [8]). Under the same assumptions
as in Lemma 6.2 we have for ac|0,1) the subspaces E}(z) and E!(z) vary
continuously on z € T2, and the map g, is an Anosov diffeomorphism.

To see, next, the map ¢g; admits no hyperbolic absolutely continuous
invariant probability measures on T? we need several lemmas below. In what
follows we will use f instead of g; and use the same notations as in sections 3
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and 4. We set @ =T*\D,,. Then the first return map F = f©:Q — Q is
well-defined, up to sets of measure zero, where w: 2 — N is the first return
time of f to Q.

LeMMA 6.4. Let a=1. Under the same assumptions as in Lemma 6.2 we
have the following.
(1) The subspaces Ej(z) and E!(z) vary continuously on zeT? except,
maybe, the point p (Corollary 4.2 in [8]);
(2) There exist constants C > 1 and y e (0,1) such that

[DE"(wo)l| < Cy"lwsll - (wy € Ef(2));
[ID-E"(wa) || < Cy"|lwall - (wu € EY'(2))

holds for ne N and z € Q whenever F is defined (Proposition 2.3 in
13));

(3) The sets W3'(z) and W'(z), with respect to f, are smooth curves
so that T W3 (z) = Ej(z) and T.W(z) = El'(z) for zeT? where
Ef(p)=E*(p), t=s,u. In particular, f is expansive (Lemma 4.1
in [8], Corollary 6.1 and Proposition 6.1 in [4]).

Choose J € (0, min{ggp,r,}/100), where ¢ is an expansivity constant for
f. Then we can set R= R(p,0)=[#5(p),#5(p)] by the local product
structure (see (3.2)). Notice that R = D,,. Suppose that /' admits a hyper-
bolic absolutely continuous invariant probability measure u. Let V3, =%, (p)
be the same notation defined before Lemma 4.1. Consider

Ly =A{Ly(2) 1z V3, },
where LY, (z) = [#§'(p),z] for ze V},. Define

Qi = U Ly (2).
ze Vs,

LEmMA 6.5. We have p(Qj,) > 0.

ProoF. Since the measure u is supposed to be hyperbolic and absolutely
continuous with respect to the volume, just the same argument as in the proof
of Lemma 4.1 yields Lemma 6.5. O

Define a level set for each ne N as

1) 0
Jn:{(x,y)eR.n—_H<xy£ E}'

Note that J,NJ,, = & for n # m and that J,, for n sufficiently large, trans-
verses to Q},. Denote by P, =J,NQj, for such n.
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For functions & and 5 that &~ (x —a) means &(x)/n(x)—1=
o(1) (x —a). Note that ¥, =y and (Y|R)(u) = u?.

LEMMA 6.6. There is a constant K; >0 such that we have u(J,) >
Kin* u(P,) for large n.

ProOF. Given arbitrarily small ce (0,0) so that ¢/d <d/2, we first
estimate the “escape” time T of when the solution of the vector fields along
the segment of the hyperbola {(x, y): xy =c¢,x€[0,0],y € [0,0]} goes out the
region R under the initial condition x =¢/d. Since y = ¢/x, it follows that

% = x(x> + p?) log o = xy (x> + (¢/x)?) log o

Thus we have

T i o 3
[ L
0 c/s X /o (x*+¢%)" loga

5 3
> LJ T oax
log o J /5 c*

_ kK 4
"~ 4ctlog a {07 = {e/0)"}

K 4 K \4
Z 3 log « 0/2)" = 26 log « (0/¢)

for a constant x >0 which comes from the similarity 1/(x*+ ¢?) ~1/c?
(x — 0). Substituting ¢ =J/n shall imply

>
~ 20loga

for n > 2/o.
It then follows from the invariance of u that

K 4

w(Jn) = p(Pn) n" p(Py),

T> ——— .
r= 26 log o
thereby the estimate holds for Kj = x/2° log a. O

LeMMA 6.7. There is a constant Ky > 0 such that we have u(P,) > K, /n*
for large n.

PrOOF. Put h%, = du/"¢" /dm*. By the invariance of the measure u we
have
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u(Py) = | " (Pa)autc)

-] I o) () 2)
T? Pu\Cpasu(2)

> ¢! [ mi N L ) dute)

T
=it men L))

for a constant Cy = C4(C,M) > 1 since C!'<h*|L<C (Le Q") holds.
There is a constant ¢ > 1 independent of z and » such that m¥(J, N L}, (z)) =

o~ !/n? since the local unstable manifolds vary uniformly continuously on A,
with respect to the C! topology ([1]). It follows that

u(Py) = (Cao)™ u(Qhy) /1,

thereby the desired estimate follows for K, = (Cy0) " #(Q4), which is positive
by Lemma 6.5. O]

PrOOF OF ProposiTiON 6.1. It follows from Lemma 6.3 that for each
a€0,1) the map g, is an Anosov diffeomorphism and as we have seen above
the map g, preserves the absolutely continuous probability measure v, defined
by (7).

We next show the assertion (2). It can be verified readily that g; is
expansive and possesses the transverse intersections 7.T? = T. % (z) ® T.%;"'(2)
for all ze T? by Lemma 6.4 (3). Put Fix(g!")* = Fix(¢/)\{p} for each neN.
It follows from Lemma 6.4 (2) that Fix(g)" consists of hyperbolic periodic
points and hence, there is a map (so-called a continuation, see [16] for instance)

¥ =¥, :Fix(g!)" x [0,1] — T?

that associates every point (¢,a) € Fix(gf)* x [0,1] to a periodic point in
Fix(¢g”)" such that
¥(q,1) = q, that is Fix(¢9})" can be identified with Fix(g})" x {1} via
v,
for each ¢ e Fix(g7)" the map
¥, =¥.(q):[0,1] — T?

defined as ¥,(a) = ¥(q,a) is continuous.
It follows that for ¢ € Fix(¢})"

Tac(Dyg})| = lim Jac(Dy,g2)| = 1
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since |Jac(Dy,(4)g;)| = 1 for all a € [0,1). The equality [Jac(D,g{)| = 1 follows
a priori, so does |[Jac(Dygi)| =1 for all ¢ € Fix(g7).

It remains to show ¢g; admits no hyperbolic absolutely continuous invariant
probability measures. Suppose, to derive a contradiction, g; admits a hyper-
bolic absolutely continuous invariant probability measure x. Note that J,,,
n e NU{0}, are pairwise disjoint subsets in R. By using Lemmas 6.6 and 6.7
we obtain

0 o0
1> u(R) = > ull) = Kiky» n’.
n=1 n=1
This gives a contradiction.
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