
Hiroshima Math. J.

37 (2007), 211–252

Bounds on numerical boundary slopes for Montesinos knots

Kazuhiro Ichihara and Shigeru Mizushima

(Received June 21, 2006)

(Revised October 30, 2006)

Abstract. We give an upper bound on the denominators of numerical boundary

slopes and an upper bound on the di¤erences between two numerical boundary slopes

for Montesinos knots.

1. Introduction

We consider compact connected surfaces properly embedded in compact

orientable irreducible 3-manifolds with single toral boundary, which are essen-

tial, meaning that incompressible and boundary-incompressible. The boundary

of such a surface consists of a parallel family of non-trivial simple closed

curves. Then they determine a slope, that is, the isotopy class of non-trivial

simple closed curves. This slope is called the boundary slope of the surface.

Boundary slopes of essential surfaces have been well-studied, especially, in

relation to the study of Dehn surgery on knots.

Recall that, for the knot exteriors in the 3-sphere S3, the set of slopes is

usually identified with the set of rational numbers with the infinity y. In fact,

such an identification can be done by using the standard meridian-longitude

system. See [R76] for example.

In this paper, we study numerical properties of the boundary slopes, re-

garded as rational numbers, for Montesinos knots; the knots composed by a

number of rational tangles. Precisely, the aim of this paper is: To give (1) an

upper bound on the denominator of a boundary slope and (2) an upper bound

on di¤erences between two boundary slopes for a Montesinos knot exterior.

Our bounds are actually described in terms of the Euler characteristic and some

other topological quantity of the surfaces.

For Montesinos knot exteriors, Hatcher and Oertel studied the boundary

slopes in [HO89] intensively. They gave an algorithm, based on the arguments

developed originally in [HT85], to list all essential surfaces up for a given

Montesinos knot exterior. Their algorithm has somehow combinatorial work-

ings, and in fact, was implemented to a computer program by Dunfield de-
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scribed in [Dun01]. By using this program, we had performed computer-aided

experiments, and got some observations which suggest the existence of such

numerical properties for the boundary slopes. This is the motivation of our

study.

In the following, let K be a Montesinos knot KðK1;K2; . . . ;KNÞ, where

Nb 3 is the number of tangles and each Ki is a non-integral rational number.

We identify a Montesinos knot and its mirror image. Though the signs of the

boundary slopes of a knot change if we replace the knot by its mirror image,

same results will be obtained for these knots in this paper. A non-meridional

slope corresponds to a fraction R ¼ P=Q, while the meridional slope is rep-

resented by y. Hence, we call a non-meridional boundary slope a finite

boundary slope. Moreover, for the fraction R ¼ P=Q, we assume that Q is

positive and that P and Q are relatively prime.

1.1. Bound on denominator. We first give an upper bound on the denom-

inators of boundary slopes for Montesinos knot exteriors.

Theorem 1.1. Let K be a Montesinos knot of length at least three. Let

F be an essential surface properly embedded in the exterior of K with boundary

slope P=Q. Let wðF Þ and abðFÞ be the Euler characteristic and the number of

boundary components of the surface F.

(1) If K is not the ð�2; 3; tÞ-pretzel knot for odd tb 3, then

Qa
�wðFÞ
abðFÞ : ð1:1Þ

(2) If K is the ð�2; 3; tÞ-pretzel knot for some odd tb 3, then

Qa
�wðF Þ
abðFÞ þ 1: ð1:2Þ

In this case, if Equation (1.1) is not satisfied, then another inequality

abðFÞb 2 holds.

Here, we remark that, as well as Kð�1=2; 1=3; 1=tÞ, for example, Mon-

tesinos knots Kðð�1=2Þ þ k; ð1=3Þ þ l; ð1=tÞ � k � lÞ for k; l A Z are also iso-

topic to the pretzel knot.

For a finite boundary slope P=Q, there may be many choices of surface

F with boundary slope P=Q. Hence it can be interpreted that the inequality

(1.1) gives a lower bound for the ratio �wðFÞ=abðFÞ rather than an upper

bound for Q, once P=Q is given. If the minimum for f�wðFÞ=abðF Þ jF has

boundary slope P=Qg exists, then (1.1) can be expressed as

Qamin
�wðFÞ
abðFÞ :

212 Kazuhiro Ichihara and Shigeru Mizushima



From Theorem 1.1, we have the following corollary immediately.

Corollary 1.2. Under the same assumption as in Theorem 1.1, and if the

surface considered is orientable of genus g, then the denominator of the boundary

slope is bounded as Q ¼ 1 if g ¼ 0, Qa 2 if g ¼ 1, and Qa 2g� 1 if gb 2.

Furthermore, there are no non-torus Montesinos knots whose exterior contains

essential planar surfaces. Thus non-torus Montesinos knots admit no reducible

surgery.

The last statement assures that the well-known Cabling Conjecture is true

for Montesinos knots directly. This fact has already been achieved in [EM92]

as a corollary of the result for strongly invertible knots.

The next corollary is the non-orientable version of the above. Recall that

a non-orientable surface is called of non-orientable genus h if it contains

mutually disjoint h Möbius bands.

Corollary 1.3. Under the same assumption as in Theorem 1.1, and if the

surface considered is a non-orientable surface of non-orientable genus h, then for

the denominator Q of the boundary slope, we have,

Qa
h

2
þ 1: ð1:3Þ

Moreover if ab ¼ 1,

Qa h� 1 ð1:4Þ

holds.

1.2. Bound on di¤erence. We next give an upper bound on the ‘‘di¤erence’’

between two boundary slopes for Montesinos knot exteriors by a linear func-

tion of the ratio �w=as of the negative of the Euler characteristic of the surface

and the number of sheets.

The number of sheets is the number of pieces of the surface in a small

neighborhood of a point on a knot. If a small meridian circle of the knot

meets the surface in m points, then the number of sheets is m.

Theorem 1.4. Let wi be the Euler characteristic of the surface corre-

sponding to a finite boundary slope Ri and asi its number of sheets, for i ¼ 1; 2

respectively. Then the di¤erence jR1 � R2j between the boundary slopes R1 and

R2 is bounded as

jR1 � R2ja 2
�w1
as1

þ�w2
as2

� �
þ 4: ð1:5Þ
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This inequality (1.5) can be rewritten as

DðR1;R2Þa 2 Q2
�w1
ab1

þQ1
�w2
ab2

� �
þ 4Q1Q2; ð1:6Þ

which may be preferable for understanding the meaning from the geometric

viewpoint. Here DðR1;R2Þ denotes the distance between the slopes R1 and R2,

which is defined to be the minimal geometric intersection number of the simple

closed curves representing R1 and R2. Recall that if Ri is expressed by an

irreducible fraction Pi=Qi for i ¼ 1; 2, then DðR1;R2Þ is equal to jP1Q2 � P2Q1j.
However, in the algorithm of Hatcher and Oertel, Ri ¼ Pi=Qi and asi play

significant roles rather than Pi, Qi and abi. Hence, in the light of the al-

gorithm, it seems natural to consider the di¤erence jR1 � R2j and �wi=asi.

Note that, in particular case that both R1 and R2 are integers, jR1 � R2j coin-
cides with DðR1;R2Þ, and we have an upper bound of the distance simulta-

neously.

From Theorem 1.4, we have three corollaries as follows.

When the surface are both orientable, we immediately have the following.

Corollary 1.5. Under the same assumption as in Theorem 1.4, and if the

surfaces considered are both orientable surfaces of genera g1 and g2 respectively,

then, the di¤erence jR1 � R2j between the boundary slopes R1 and R2 is bounded

as

jR1 � R2ja 4ðg1 þ g2Þ: ð1:7Þ

With respect to a linear bound on the di¤erence, or a somehow irregular

quadratic bound on the distance by Euler characteristics, the following cor-

ollary is easily obtained from Theorem 1.4. Though the bounds may not be

sharp for Montesinos knots with Nb 3, the equality holds for boundary slopes

of the trefoil knot.

Corollary 1.6. For two boundary slopes and their corresponding essential

surfaces, we have the inequality

jR1 � R2ja 6
�w1
as1

þ�w2
as2

� �
: ð1:8Þ

This is equivalent to the inequality

DðR1;R2Þa 6 Q2
�w1
ab1

þQ1
�w2
ab2

� �
: ð1:9Þ

Regarding the upper bound of the distance or di¤erence by the product

of Euler characteristics, we have the following. Though the bounds may not
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be sharp for Montesinos knots with Nb 3 tangles, the equality holds for

boundary slopes of the figure eight knot.

Corollary 1.7. If both of the Euler characteristics are negative, then we

have

DðR1;R2Þa 8 � �w1
ab1

� �w2
ab2

: ð1:10Þ

This is equivalent to the inequality

jR1 � R2ja 8 � �w1
as1

� �w2
as2

: ð1:11Þ

This paper is organized as follows. We review the algorithm in [HO89]

in Section 2 and prepare some formulae in Section 3. Then, Sections 4 and

5 are devoted to giving proofs of Theorem 1.1 and 1.4 respectively. In the

last section, a brief review on related known results is given, and some open

problems are stated.
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2. Algorithm of Hatcher and Oertel

The proofs of both Theorem 1.1 and 1.4 deeply depend on the algorithm

in [HO89]. Hence, in this section, we review its workings of enumerating all

boundary slopes.

Montesinos knot. As mentioned in the introduction, we assume that the knot

K is a Montesinos knot KðK1;K2; . . . ;KNÞ, where each Ki is a non-integral

fraction and Nb 3 in this article. By the assumption, we normalize Mon-

tesinos knots and eliminate two-bridge knots from the argument. This is

because boundary slopes are enumerated for two-bridge knots in [HT85], and

two-bridge knot case is excluded in [HO89]. Results for two-bridge knots

similar to our main results are obtained by [HT85].

Since a knot in this article is basically a Montesinos knot, we use the term

‘‘tangle’’ as a rational tangle if not mentioned otherwise particularly.

Decomposition. First, we regard S3 including a Montesinos knot K as the

union of an N-tuple of 3-balls Bi ði ¼ 1; 2; . . . ;NÞ in S3 with following prop-
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erties. The interiors of all Bi’s are disjoint. The intersection of all boundaries

qBi’s is a circle, which is called the axis of the knot K . Each qBi is divided

into two hemispheres by the axis, and the right hemisphere of qBi coincides

with the left hemisphere of qBiþ1 (indices are taken modulo N). Each ball Bi

includes the rational tangle Ki of the Montesinos knot K .

By this decomposition, a properly embedded essential surface F is also

decomposed into an N-tuple of surfaces Si in Bi. The boundary of Si is the

union of the tangle Ki in the interior of Bi and a curve system on the four-

punctured sphere qBinKi, where a curve system means the union of disjoint

circles and arcs connecting distinct punctures. A simple example of a curve

system is a p=q-tangle drawn on a four-punctured sphere. It is denoted by

hhp=qii. Note that a tangle usually means two strings in a 3-ball with their

four ends fixed on the boundary sphere, in some cases, we use ‘‘tangle’’ as a

rational tangle projected to, or drawn on the boundary disjointly. Another

example of a curve system is a p=q-circle, which is a non-trivial circle disjoint

from p=q-tangle in a sphere, and is denoted by hhp=qii�.

Surfaces Si’s. In the argument, surfaces Si’s are arranged to sit in a standard

position by isotopy, and are restricted to be saddle surfaces or cap surfaces as

shown in [HO89].

The simplest example of a surface Si is the direct product set of the curve

system hhp=qii in a four-punctured level sphere with an interval. Also this

surface is denoted by hhp=qii. This surface Si is topologically the union of

two disks, and is called base disks since every surface Si can be regarded to

include these kind of disks.

An example of a saddle surface Si is constructed by connecting two

surfaces by a saddle, where both of the two surfaces are ‘‘base disks’’ hhp=qii
and hhr=sii described above for p=q and r=s satisfying jps� qrj ¼ 1. See

Figure 1(a). A saddle is a disk on a level sphere bounded by a simple closed

curve made of p=q-tangle, r=s-tangle and four punctures. Though there are

Fig. 1. Examples of surfaces Si’s
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two choices of disks bounded by the simple closed curve, the choice does

not matter in our later argument. Note that jps� qrj ¼ 1 ensures that p=q-

tangle and r=s-tangle are disjoint in a level sphere. This surface is denoted by

hhp=qii� hhr=sii.
We can construct the disjoint union of k parallel copies of a surface

hhr=sii and l parallel copies of a saddle surface hhp=qii� hhr=sii. This

surface Si is denoted by ðkhhp=qiiþ lhhr=siiÞ � ðk þ lÞhhr=sii.
For a sequence ðkhhpj=qjiiþ lhhpj�1=qj�1iiÞ � ðk þ lÞhhpj�1=qj�1ii� � � �

� ðk þ lÞhhp1=q1ii, we can construct a surface by preparing surfaces corre-

sponding to each pair of successive two curve systems in the sequence and

gluing them together according to the sequence. The rightmost curve system

p1=q1 is required to coincide with Ki so that the boundary of Si includes the

rational tangle Ki. We regard hhp1=q1ii as the starting point of the sequence.

Furthermore, we describe curve systems from right to left in a sequence of

curve systems as above.

A cap surface is constructed as follows. We prepare a curve system con-

sisting of k parallel copies of p=q-tangle and l parallel copies of p=q-circles.

Next, we take a direct product of the curve system with the interval, and

arrange the product to lie inside the ball Bi so that one of the two boundary

level spheres is placed at qBi. Then, p=q-circles of the inner boundary of the

product are capped by disks. See Figure 1(b). Both this curve system and the

cap surface are denoted by khhp=qiiþ lhhp=qii�.
For any type of a surface Si, the leftmost curve system of a sequence

represents the curve system Si V qBi.

Here, we note that some surfaces may correspond to the same repre-

sentation by hh ii and hh ii�, because of the two choices of saddles described

above. Though, the ambiguity does not cause trouble, and we regard a rep-

resentation as if it corresponds to a surface.

abc-coordinates. As illustrated in Figure 2, we normalize a curve system to

a standard form. The curve system in the standard form is represented by

integers a, b and c. a, b and c denote the number of subarcs of the curve

Fig. 2. A curve system with ða; b; cÞ ¼ ð1; 3; 2Þ
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system lying in a particular region as in the figure. The number of subarcs

around the axis, denoted by c, can be negative. If c is negative, ða; b; cÞ
represents a curve system which is the mirror image of the curve system

represented by ða; b; jcjÞ taken with respect to the axis. Thus, ða; b; cÞ rep-

resents a curve system and these are called abc-coordinates of a curve system.

For example, the coordinates of a p=q-tangle and a p=q-circle are

ð1; q� 1; pÞ and ð0; q; pÞ respectively. The coordinates of the disjoint union of

two curve systems are calculated as the vector sum of the coordinates of both

curve systems.

Though there is no explicit description about hhyii in [HO89], we only

have to introduce the d-coordinate for the number of y-tangles.

With the abc-coordinates, we can explicitly describe conditions for surfaces

Si’s to be glued consistently. For the abc-coordinates of the last curve systems

for all surfaces Si’s, one of the conditions is that a-coordinates are the same for

all Si’s and so are b-coordinates. The other condition is that c-coordinates

for all Si’s sum up to exactly 0.

uv-coordinates. By projectifying the abc-coordinates to the uv-coordinates

by u ¼ b=ðaþ bÞ and v ¼ c=ðaþ bÞ, we can make the subsequent argument

simpler. An important fact is that a curve system consisting of parallel copies

of a curve system of arbitrary multiplicity is mapped to the same point in the

uv-plane.

A curve system hhp=qii is projected to ðu; vÞ ¼ ððq� 1Þ=q; p=qÞÞ, which

is denoted by hp=qi. A curve system ðkhhp=qiiþ lhhr=siiÞ has coordinates

ða; b; cÞ ¼ ðk þ l; kðq� 1Þ þ lðs� 1Þ; kpþ lrÞ, and thus is projected to the point

ðu; vÞ ¼ ðkq=ðkqþ lsÞÞððq� 1Þ=q; p=qÞ þ ðls=ðkqþ lsÞÞððs� 1Þ=s; r=sÞ. Thus, for

fixed p, q, r and s, the uv-coordinates depend on only the ratio of k to l.

After projectification, the curve system is represented as a point on the segment

connecting hp=qi and hr=si. This point is denoted by ððk=ðk þ lÞÞhp=qiþ
ðl=ðk þ lÞÞhr=siÞ. Note that we use the ratio k=ðk þ lÞ instead of kq=ðkqþ lsÞ,
since it is suitable in later calculation.

A curve system hhp=qii� is projected to ðu; vÞ ¼ ð1; p=qÞ on a vertical

line u ¼ 1, and is denoted by hp=qi�. A curve system ðkhhp=qiiþ lhhp=qii�Þ
has coordinates ða; b; cÞ ¼ ðk; kðq� 1Þ þ lq; kpþ lpÞ, and thus is projected to

ðu; vÞ ¼ ðk=ðk þ lÞÞ � ððq� 1Þ=q; p=qÞ þ ðl=ðk þ lÞÞ � ð1; p=qÞ on the horizontal

segment connecting hp=qi and hp=qi�. Note that, for fixed p and q, the uv-

coordinates depend on only the ratio of k to l. This point is denoted by

ððk=ðk þ lÞÞhp=qiþ ðl=ðk þ lÞÞhp=qi�Þ.
After projectification, from a sequence of points in the abc-space repre-

senting a surface Si, we obtain a sequence of points on the uv-plane for the

surface.
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The conditions for surfaces Si’s to be glued together consistently with

respect to the abc-coordinates are translated into the conditions of the uv-

coordinates. For the uv-coordinates of the last one of the sequence of curve

systems for all surfaces Si’s, u-coordinates are the same for all surfaces and

v-coordinates for all surfaces sum up to 0.

The diagram and edgepaths. A surface Si is formally related to a piecewise

linear path in the uv-plane. Such a path is called an edgepath, and we will

often use g as the symbol for it. Edgepaths lie on a ‘‘diagram’’ described as

follows.

The diagram D is a graph on the u-v plane. A vertex is a point hp=qi,
whose coordinates are ðu; vÞ ¼ ððq� 1Þ=q; p=qÞ, a point hp=qi�, whose coor-

dinates are ðu; vÞ ¼ ð1; p=qÞ, where p=q is an irreducible fraction, or a point

hyi, whose coordinates are ðu; vÞ ¼ ð�1; 0Þ. If two vertices hp=qi and hr=si
satisfy the condition jps� qrj ¼ 1, the two vertices are connected by a segment.

This segment is one of the two types of edges of the diagram and is denoted

by hp=qi� hr=si. We call the segment a non-horizontal edge. In particular,

for an integer z, there are edges hzi� hzþ 1i and hyi� hzi. The former is

called a vertical edge since it is a segment of the vertical line u ¼ 0. The latter

is called an y-edge. The other type of edge is called a horizontal edge, which

connects vertices hp=qi ¼ ððq� 1Þ=q; p=qÞ and hp=qi� ¼ ð1; p=qÞ. This edge

is denoted by hp=qi� hp=qi�. Note that though the edge hyi� h0i is hori-

zontal in the usual sense, we regard the edge as a non-horizontal edge rather

than a horizontal edge for ease in our later argument. The region �1a ua 1

is triangulated by these kinds of edges, though the triangulation is not locally

finite. In particular, we denote by S the part of the diagram lying in the strip

0a ua 1.

The edgepath gi of a cap surface Si is a point on the horizontal segment

hKii� hKii
�. The edgepath gi of a saddle surface Si is a piecewise linear path

starting from the vertex hKii. The endpoint of an edgepath is either of a

vertex of the diagram or a point on an edge of the diagram. Hence, the last

edge of an edgepath may be a part of a non-horizontal edge. We call such an

edge a partial edge. In comparison with this, we use the term complete edge to

express the whole of a non-horizontal edge. An edgepath consisting of only

one point is called a constant edgepath. The other type of edgepath is called a

non-constant edgepath.

Edgepath systems. By collecting edgepaths for surfaces Si, we can represent

the original surface F . We call this kind of N-tuple ðg1; g2; . . . ; gNÞ an edgepath

system and will often use G as the symbol for it.

Conversely, for an appropriate edgepath system, by unprojecting all ver-

tices in its edgepaths in the uv-plane to integral points in the abc-space with the
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common a-coordinate, we can construct surfaces Si’s and a surface F , though

some ambiguity remains.

The set of the edgepath systems are divided into three classes according

to the common u-coordinate of the endpoints of edgepaths in their edgepath

system. An edgepath system and the corresponding surface are said to be type

I, type II or type III, if all edgepaths in the edgepath system end at u > 0, u ¼ 0

or u < 0 respectively.

Candidate surfaces. In the enumeration of boundary slopes, we first list

candidates for essential surfaces, and then omit compressible surfaces from

the candidates. Precise conditions for an edgepath system G ¼ ðg1; g2; . . . ; gNÞ
to be an edgepath system of a candidate surface are given in [HO89] as

follows.

(E1) The starting point of gi lies on the edge hKii� hKii
�, and if this

starting point is not the vertex hKii, then the edgepath gi is

constant.

(E2) gi is minimal, i.e., it never stops and retraces itself, nor does it ever

go along two sides of the same triangle of D in succession.

(E3) The ending points of the gi’s are rational points of D which all lie

on one vertical line and whose vertical coordinates add up to zero.

(E4) gi proceeds monotonically from right to left, ‘‘monotonically’’ in the

weak sense that motion along vertical edges is permitted.

Basic edgepath systems and consistency on gluing. The enumeration is per-

formed by use of basic edgepath systems. A basic edgepath is an edgepath

which starts from a vertex hp=qi, goes leftwards monotonically, and ends at

Fig. 3. The diagram D
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the time when the edgepath first reaches u ¼ 0. Moreover, a basic edgepath

system is an edgepath system which consists of basic edgepaths. We will often

use l and L as the symbols for a basic edgepath and a basic edgepath system.

In order to seek type I edgepaths, it is convenient to introduce an ex-

tended basic edgepath ~ll which is obtained by connecting a horizontal segment

hp=qi� hp=qi� to the starting point hp=qi of a basic edgepath l. We define

an extended basic edgepath system ~LL similarly.

Sometimes, we regard an edgepath g as a function from an interval in R

to R, which maps u-coordinate to v-coordinate, and then allow ourselves to

use expressions like gðuÞ, although we cannot define its value for u ¼ 0 if the

edgepath includes vertical edges. The function is piecewise linear. Similar

notation is used for a basic edgepath and an extended basic edgepath. With

the notation, a condition of consistency on gluing in (E3) can be described

as

XN
i¼1

giðu0Þ ¼ 0; ð2:1Þ

where u0 denotes the common u-coordinate of the endpoints of edgepaths

g1; g2; . . . ; gN . In particular, for type I surfaces, we need to solve (2.1) for some

extended basic edgepath system to determine the common u-coordinate of the

endpoints of its edgepath system.

Enumeration. We have finished introducing notions used in the algorithm in

[HO89]. Now, we review its workings. All boundary slopes are enumerated

as follows.

All basic edgepath systems for the Montesinos knot K are enumerated

first. Then, type I, type II and type III candidate edgepath systems G are

obtained for each basic edgepath system L. A type I edgepath system is

obtained by solving the equation (2.1) for the extended basic edgepath system
~LL. For a solution u0 of the equation, we construct an edgepath system as

follows. Let elili be the i-th extended basic edgepath starting from hKii where

Ki ¼ pi=qi. If ðqi � 1Þ=qi < u0, then the line u ¼ u0 intersects with the hor-

izontal edge of the extended basic edgepath. Therefore, we prepare a constant

edgepath with a single point ðu; vÞ ¼ ðu0;KiÞ. Otherwise, the line u ¼ u0 inter-

sects with the non-horizontal part of the extended basic edgepath. Hence, we

cut out an edgepath gi starting from hKii and ending at u ¼ u0, from the

original basic edgepath li. The edgepath system is obtained by collecting all

such edgepaths. A type II edgepath system G is obtained by adding vertical

edges to the basic edgepaths of the basic edgepath system L so that v coor-

dinates of endpoints of the edgepath system G sum up to 0. A type III

edgepath system G is obtained by adding an y-edge to each basic edgepath
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li. Thus, we can enumerate all candidate surfaces. The process is completed

in finite time.

After enumerating all the candidate edgepath systems, we verify their

incompressibility. Detailed conditions for the edgepath system of a candidate

surface to be incompressible are also described in [HO89]. By the conditions,

we can eliminate compressible surfaces from the set of candidate surfaces, and

complete the enumeration of essential surfaces. Though, the conditions are

not so crucial in this paper and we hardly make use of the conditions.

Besides, the determination of the orientability is omitted in [HO89]. It must be

performed by oneself if necessary.

3. Preparation

In this section, we prepare some formulae for concrete calculation in the

subsequent sections. We also introduce an operation named ‘‘simplification’’.

Notation. We first give some notation about edgepaths and edgepath systems.

For an edgepath g, symbols g>0 and gb0 denote a part of g inside the region

u > 0 and ub 0 respectively. A part of g consisting of vertical edges is de-

noted by g¼0.

For type II and type III edgepath systems let gðþ0Þ denote the value of v

at the moment when u-coordinate reaches 0. Furthermore, for an edgepath

system G ¼ ðg1; g2; . . . ; gNÞ, let Gðþ0Þ denote the sum
PN

i¼1 giðþ0Þ.

Signs of edges. A complete non-horizontal non-y edge e ¼ hp=qi� hr=si is

said to be increasing or decreasing if the v-coordinate of a point increases or

decreases respectively when it goes from hr=si to hp=qi along e. We define

the sign of the edge e to be þ1 or �1 according to whether the edge is in-

creasing or decreasing respectively. The sign is calculated by ps� qr. Mean-

while, we define that an y-edge is neither increasing nor decreasing, and that

its sign is 0. The sign of a partial edge is defined as the sign of the com-

plete edge including the partial edge. The sign of an edge e is denoted by

sðeÞ.

Lengths of edgepaths. Next, we define the length of an edgepath. The lengths

of a single point and a complete edge are defined to be 0 and 1 respectively.

The length of a partial edge e ¼ ðk=ðk þ lÞhp=qiþ l=ðk þ lÞhr=siÞ � hr=si is

k=ðk þ lÞ. Note that the ratio of the Euclidean length on the uv-plane of

the partial edge to that of the complete edge hp=qi� hr=si is kq=ðkqþ lsÞ as

calculated in the previous section. Thus, the length of a partial edge does not

coincide with the ratio generally. The length of an edge e is denoted by jej.
The length of an edgepath is the sum of the lengths of the edges in the
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edgepath. A constant edgepath is of length 0. The length of an edgepath g

is denoted by jgj.
Here, we prepare another formula of the length of a partial edge. For

a partial edge e of a complete edge hp=qi� hr=si, assume that u-coordinate

of the endpoint of the partial edge is u0. If a curve system khhp=qiiþ
lhhr=sii corresponds to the endpoint, we have abc-coordinates ða0; b0; c0Þ ¼
kð1; q� 1; pÞ þ lð1; s� 1; rÞ and u-coordinate u0 ¼ b0=ða0 þ b0Þ ¼ fkðq� 1Þþ
lðs� 1Þg=ðkqþ lsÞ, and hence,

jej ¼ k

k þ l
¼ 1þ sðu0 � 1Þ

ðs� qÞðu0 � 1Þ : ð3:1Þ

Boundary slopes and twists of surfaces. The boundary slope of a surface is

calculated via the total number of twists, which we call twist for short.

Roughly, the twist tðFÞ of a surface F is a variation of the numerical boundary

slope, which fits with the algorithm. With the twist, the boundary slope R

is calculated by R ¼ tðFÞ � tðFSÞ where FS is a Seifert surface in the list of

candidate surfaces of the knot K .

We define the twist of a surface Si first. Base disks have twist 0. For a

non-y-edge hhp=qii� hhr=sii, if we draw both tangles in standard position

as in Figure 2, the saddle for the edge surrounds two of the four punctures

(see Figure 4). This means that two of the four boundary arcs of a saddle

component of a surface Si revolve once around the strands of the tangle.

Hence, the edge of the edgepath contributes G2 to the twist. The sign of the

value is determined by whether the boundary arc revolves in clockwise or

Fig. 4. A saddle corresponding to h0iah1i
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counter-clockwise direction, and the sign coincides with �sðeÞ for an edge e.

For a partial edge ðkhhp=qiiþ lhhr=siiÞ � ðk þ lÞhhr=sii, at two of the four

boundary arcs of a component of a surface Si, k of ðk þ lÞ sheets go around

the strands once. Hence, the partial edge contributesG2k=ðk þ lÞ to the twist.

Note that k=ðk þ lÞ coincides with the length of the partial edge. The twist of

a surface Si is the sum of the twists of the edges of the edgepath corresponding

to the surface. Naturally, the twist of a cap surface is 0, since the corre-

sponding edgepath is a point.

The twist of the surface F is the sum of the twists of its surfaces Si. The

precise definition of the twist is

tðF Þ ¼
X

gi AGnon-const

X
ei; j A gi

�2sðei; jÞjei; jj: ð3:2Þ

Though the twist is originally defined for a surface, it is well-defined for an

edgepath system.

Surfaces with the same boundary slope. We think about surfaces with the same

boundary slope. In the proofs of the theorems, only a surface of minimal

�w=as is important among such surfaces sharing the common boundary slope.

Therefore, we take the surface of minimal �w=as as their representative, ignore

the others and will simplify the subsequent argument, especially in Section 5.

We call this operation simplification.

By the simplification, we ignore (1) most of type I surfaces corresponding

to non-isolated solutions of (2.1), (2) type II surfaces with redundant vertical

edges, (3) type III surfaces with partial y-edges and (4) augmented type III

surfaces mentioned in [HO89].

Euler characteristics. Instead of the Euler characteristic itself, formulae for

calculating �w=as are given since they are more suitable. Note that though

the Euler characteristic itself is not well-defined for an edgepath system, so is

the quantity �w=as.

To construct a type III surface, we have base disks for each tangle first,

add saddles according to non-y-edges in the edgepath system, add also saddles

according to y-edges, and then glue Si’s together at arcs which are halves

of y-tangle on qBi. The Euler characteristic of the surface F so obtained

is calculated by w ¼
PN

i¼1ð2 �asÞ �
PN

i¼1ðjgi;>0j �asÞ �
PN

i¼1ð1 �asÞ �N �as.

Thus,

�w

as
¼
XN
i¼1

jgi;>0j: ð3:3Þ
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To construct a type II surface, we have base disks first, add saddles for

the basic edgepath, add also saddles for vertical edges, and then glue Si’s to-

gether at integral tangles on Si V qBi. Euler characteristic is w ¼
PN

i¼1ð2 �asÞ�PN
i¼1ðjgi;>0j �asÞ �

PN
i¼1ðjgi;¼0j �asÞ � 2ðN � 1Þ �as. Thus,

�w

as
¼
XN
i¼1

ðjgi;>0jÞ þ jGðþ0Þj � 2: ð3:4Þ

To construct a type I surface, we have base disks first, add caps for con-

stant edgepaths, add saddles for non-constant edgepaths, and then glue Si’s at

curve systems on qBi’s.

Assume that C is a part of a surface described by ðkhhp=qiiþ lhhr=siiÞ�
ðk þ lÞhhr=sii. k saddles are included in the part C, and contribute �k to

the Euler characteristic. Since as ¼ k þ l, the contribution to �w=as by the

partial edge ðk=ðk þ lÞhp=qiþ l=ðk þ lÞhr=siÞ � hr=si is k=ðk þ lÞ, which coin-

cides with the length of the partial edge e by definition.

Next assume that C is a cap surface described by khhp=qiiþ lhhp=qii�.
l caps are included in the surface C, and contribute þl to Euler char-

acteristic. By as ¼ k, the contribution to �w=as by the constant edgepath

k=ðk þ lÞhp=qiþ l=ðk þ lÞhp=qi� is �l=k. Since the curve system khhp=qiiþ
lhhp=qii� has abc-coordinates kð1; q� 1; pÞ þ lð0; q; pÞ, we have u ¼ b=ðaþ bÞ ¼
1� k=fðk þ lÞqg. Then the contribution is calculated by 1� 1=fqð1� uÞg.

For every surface Si, the last curve system of the sequence of curve systems

corresponding to the surface has the common a and b coordinates, say a0 and

b0, respectively. On every hemisphere of qBi divided by the axis, ð2a0 þ b0Þ
subarcs of qSi exist. ð2a0 þ b0Þ subarcs on each of 2N hemisphere are glued

each other first, and then ð2a0 þ 2b0Þ disks intersecting the axis are con-

nected next. Thus, the e¤ect of the gluing on the Euler characteristic is

�ð2a0 þ b0ÞN þ ð2a0 þ 2b0Þ. Since as ¼ a0 and u0 ¼ b0=ða0 þ b0Þ, the ratio

of this e¤ect to the number of sheets is f�ð2a0 þ b0ÞN þ 2a0 þ 2b0g=a0 ¼
�1=ð1� u0Þ � ðN � 2Þ �N.

Fig. 5. Gluing N surfaces at subarcs on qBi ’s
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Hence,

w ¼
XN
i¼1

ð2 �asÞ þ
X

gi AGconst

1

qið1� uÞ � 1

� �
�as

� �

�
X

gi AGnon-const

ðjgij �asÞ

þ � 1

1� u
ðN � 2Þ �N

� �
�as;

�w

as
¼

X
gi AGnon-const

jgij þNconst �N þ N � 2�
X

gi AGconst

1

qi

 !
1

1� u
; ð3:5Þ

where the edgepath system G is divided into the set Gnon-const of non-constant

edgepaths and the set Gconst of constant edgepaths, and Nconst denotes the

number of the constant edgepaths.

Number of sheets. When we construct a surface from an edgepath system, the

number of sheets of a surface denoted by as is determined as follows.

Assume first that the last edge of an edgepath of an edgepath system is

a partial edge of length k=m where the fraction k=m is irreducible. Since

the number of saddles k=m �as must be an integer, as is a multiple of m.

Assume next that an edgepath of an edgepath system is a constant edgepath

k=mhp=qi� ð1� k=mÞhp=qi�. Since the number of caps ðm� kÞ=k �as must

be an integer, as is a multiple of k. Thus, as is determined as the least

common multiple of these integers.

A remark for proofs. Here, we give an elementary fact for the subsequent

sections.

Remark 3.1. Let L be a Montesinos link LðK1;K2; . . . ;KNÞ where Nb 3

is the number of tangles and each Ki is a non-integral rational number. For the

link L to be a knot, fractions K1;K2; . . . ;KN must satisfy either of:
� Exactly one of the fractions has even denominator.
� All denominators are odd and the number of odd numerators is odd.

Moreover,
P

Ki 0 0 holds under the condition. This means that a type I edge-

path system with all its edgepaths being constant does not exist for a Montesinos

knot.

4. A bound on the denominator

The purpose of this section is to prove Theorem 1.1 about an upper bound

of the denominator of a boundary slope. Proving Lemma 4.1 which claims a
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lower bound of �w=as, immediately gives the theorem. We also show the best

possibility and some corollaries.

4.1. A lower bound of �w=as. This subsection is devoted to giving a proof of

Lemma 4.1, which claims a lower bound of �w=as.

Lemma 4.1. Let F be an essential surface with finite boundary slope P=Q

for a Montesinos knot K.

(1) If K is not the ð�2; 3; tÞ-pretzel knot, tb 3 odd, then

�wðF Þ
asðFÞ b 1: ð4:1Þ

(2) If K is the ð�2; 3; tÞ-pretzel knot, tb 3 odd, then

�wðF Þ
asðFÞ b

Q� 1

Q
:

In this case, if Equation (4.1) is not satisfied, then another inequality

abðFÞb 2 holds.

4.1.1. Type II surfaces and Type III surfaces. A lower bound of �w=as is

easily obtained for type II surfaces and type III surfaces.

Lemma 4.2. �w=asb 1 holds for any type II surface and any type III

surface corresponding to any Montesinos knot with Nb 3 tangles.

Proof. For a type II surface, since every edgepath has at least 1 com-

plete edge in u > 0, we have �w=as ¼ ð
PN

i¼1 jgi;>0jÞ þ jGðþ0Þj � 2b 1. For

a type III surface, �w=as ¼ ð
PN

i¼1 jgi;>0jÞb 3. By the simplification, we can

ignore the e¤ect by the augmentation and type III surfaces with partial y-

edges. r

4.1.2. Type I surfaces. For type I surfaces, to verify the bound is not so

easy as type II and type III surfaces. Though, for a major part of the type I

surfaces, the bound is shown by ‘‘denominator sequences’’ only.

Fix a Montesinos knot K and a basic edgepath system L. Though type

I edgepath systems must correspond to the solution u of the equation (2.1),

we can formally calculate �w=as by the formula (3.5) for arbitrary 0 < u < 1.

Thus, we have a function XLðuÞ : ð0; 1Þ ! R. The function depends on the

basic edgepath system L. Though, by examining the formula (3.5) together

with the formula (3.1) about lengths of partial edges, we can confirm that

the function XL does not depend on the numerators of vertices which edge-

paths pass through or reach. Namely, for a basic edgepath li ¼ hpi; j=qi; ji�
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hpi; j�1=qi; j�1i� � � � � hpi;2=qi;2i� hpi;1=qi;1i, XL depends on only an N-tuple

of sequences of denominators of the form qi; jð¼ 1Þ � qi; j�1 � � � � � qi;2 � qi;1.

We introduce a preorder of basic edgepaths and basic edgepath systems.

For two basic edgepaths la and lb, we say that la a lb if qa;k a qb;k for all

k ¼ 1; 2; . . . ;minð ja; jbÞ where ja and jb mean the lengths of their denominator

sequences. For two basic edgepath systems La and Lb, we define a preorder

by La aLb if la; i a lb; i is satisfied for all indices i. It is easy to confirm that

if La aLb, then XLa
ðuÞaXLb

ðuÞ holds for any u A ð0; 1Þ.
By elementary calculations, for a basic edgepath system L whose set of

denominator sequences is one of

� f1a2; 1a3; 1a3; 1a3; . . .g ðNb 4Þ;
� f1a2; 1a7; 1a3a7g;
� f1a2; 1a2a7; 1a2a7g;
� f1a3; 1a4; 1a7g;
� f1a3; 1a4; 1a2a5g;
� f1a3; 1a5; 1a5g;
� f1a4; 1a4; 1a4g;

ð4:2Þ

the inequality XLðuÞb 1 holds for arbitrary u. For instance, if a basic edge-

path system L has the set of denominator sequences f1a4; 1a4; 1a4g, XLðuÞ is

1 for 0 < ua 3=4 and is 1=f4ð1� uÞg for 3=4a u < 1. Necessarily, another

edgepath system greater than such an edgepath system also satisfies XLðuÞb 1.

Note that f1a2; 1a3; 1a3; 1a3; . . .g ðNb 4Þ is the denominator sequence of one

of the smallest basic edgepath systems for fixed N.

Hence, in a sense, a major part of the edgepath systems corresponding to

candidate surfaces satisfies �w=asb 1. We have:

Lemma 4.3. Assume that a type I edgepath system G is included in the

extended basic edgepath system of a basic edgepath system L. If the basic

edgepath system L is equal to or greater than one of the basic edgepath systems

listed in (4.2). Then G satisfies �w=asb 1. In particular, any type I surface

of a Montesinos knot with Nb 4 tangles always satisfies the inequality.

4.1.3. Remaining cases. We only have to check for the rest of the edgepath

systems. For the remaining basic edgepath systems L, we concretely solve the

equation
P eliliðuÞ ¼ 0, enumerate all the candidate edgepath systems, and cal-

culate �w=as one by one. Remaining cases are described by denominator

sequences as follows.
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� l1 : 1a2; l2 : � � � a3; l3 : arbitrary;
� l1 : 1a2; l2 : � � � a5; l3 : arbitrary;
� l1 : 1a2; l2 : 1at1; l3 : 1at2 ðt1; t2 odd and b7Þ;
� l1 : 1a2; l2 : 1at1; l3 : 1a2at2 ðt1; t2 odd and b7Þ;
� l1 : 1a3 or 1a2a3; l2 : 1a3 or 1a2a3; l3 : arbitrary;

� l1 : 1a3 or 1a2a3; l2 : 1a4 or � � � a3a4; l3 : 1a5:

ð4:3Þ

Basically, l1, l2 and l3 are arranged so that the denominators of their starting

points Ki are in ascending order.

For the rest of type I surfaces, that is, the type I surfaces to which Lemma

4.3 cannot be applied, nevertheless Lemma 4.1 holds.

Proof of Lemma 4.1 for remaining cases. First, we enumerate all

choices of a pair ðl1; l2Þ of basic edgepath systems whose denominator

sequences are included in the list (4.3). Without loss of generality, we can

normalize edgepath systems by assuming that the tangles K1 and K2 of the

Montesinos knot K satisfy 0 < K1;K2 < 1 and that the last edge of the

edgepath l1 is decreasing. There are 27 possible pairs of two edgepaths as

listed in the rest of this subsection. For each choice of l1 and l2, we think

about the sum l1 þ l2, which is a function defined by l1ðuÞ þ l2ðuÞ. Then, we

seek all edges of D intersecting the sum and all vertices on the sum. For each

such an edge or vertex e, we take its mirror image e3 ¼ �e with respect to the

u-axis, and then make a basic edgepath l3 including e3. The triple ðl1; l2; l3Þ
is ignored if it does not match with the condition in the list (4.3). l1, l2 and

l3 have a solution of the equation (2.1) at the u-coordinate of the intersection

point. From the solution, we cut the basic edgepaths ðl1; l2; l3Þ and obtain

constant or non-constant edgepaths ðg1; g2; g3Þ. Note that there are many

choices of l3 which share e3 as the common tail part but have di¤erent parts.

Hence, we implicitly discuss many choices of edgepath g3 at the same time,

though the edgepath with minimum �w=as is important.

In the detailed argument, note that the denominator Q of the slope is the

same as the denominator of the twist. Besides, for a constant edgepath gi,

a fraction ki=mi denotes a particular ratio which appears in the description

ðki=miÞhpi=qiiþ ð1� ki=miÞhpi=qii� of the unique point of the constant edge-

path, in particular when we calculate as. The following fact is used often in

the argument.

Remark 4.4. The starting points of an edgepath system correspond to the

tangles of the Montesinos link. Therefore, the starting points must satisfy a
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condition in Remark 3.1, for the corresponding Montesinos link to be a knot. If

an edgepath system does not satisfy the condition, we must add at least one edge

to the beginning of some edgepath of an edgepath system.

Here, we briefly show the calculation of �w=as for the 27 cases.

( 1 ) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=3i. In Figure 6, the left and the

middle pictures illustrate extended basic edgepath systems el1l1 and el2l2,
while the right figure shows el1l1 þ el2l2 and possible choices of the

edge e.

(a) e3 ¼ h�1iah�1=2i. The equation (2.1) gives 3=2u ¼ 1� u,

and we have u ¼ 2=5 ð0 < 2=5 < 1=2Þ. From formulae (3.1)

and (3.5), jg1j ¼ f1þ 2ð2=5� 1Þg=fð2� 1Þð2=5� 1Þg ¼ 1=3,

jg2j ¼ f1þ 3ð2=5� 1Þg=fð3� 1Þð2=5� 1Þg ¼ 2=3, jg3j ¼ jg1j ¼
1=3, �w=as ¼ 1=3þ 2=3þ 1=3þ ð0� 3Þ þ ð3� 2Þ � 5=3 ¼ 4=3�
3þ 5=3 ¼ 0. Though, as Remark 4.4, we must extend the

edgepath g3 by adding at least one edge. Thus, �w=asb 1.

(b) e3 ¼ h�1iah�2=3i. u ¼ 1=2, jg1j ¼ 0, jg2j ¼ 1=2, jg3j ¼ 1=2,

�w=as ¼ 0. This example is obtained for the torus knot

Kð�1=2; 1=3; 1=3Þ. jtj ¼ 2. Q ¼ 1. Thus, �w=as ¼ 0 ¼
ðQ� 1Þ=Q. Moreover, as ¼ lcmð1; 2; 2Þ ¼ 2 and Q ¼ 1 give

ab ¼ 2.

(c) e3 ¼ h�1iah�3=4i. u ¼ 3=5 ð1=2 < 3=5 < 2=3Þ, g1 is con-

stant, jg2j ¼ 1=4, jg3j ¼ 1=2, �w=as ¼ 0. By Remark 4.4,

�w=asb 1.

(d) e3 ¼ h�1iah�4=5i. u ¼ 2=3, g1 is constant, jg2j ¼ 0, jg3j ¼
1=2, �w=as ¼ 0. This example is obtained for the torus knot

Kð�1=2; 1=3; 1=5Þ. jtj ¼ 1. Q ¼ 1. �w=as ¼ 0 ¼ Q=ðQ� 1Þ.

Fig. 6. el1l1, el2l2, el1l1 þ el2l2, e
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Moreover, k1=m1 ¼ 2=3, as ¼ lcmð2; 1; 2Þ ¼ 2 and Q ¼ 1 give

ab ¼ 2.

(e) e3 ¼ h�5=6i. u ¼ 5=6, g1 and g2 is constant, jg3j ¼ 0,

�w=as ¼ 0. By Remark 4.4, �w=asb 1.

( 2 ) l1 ¼ h0iah1=2i, l2 ¼ h1iah1=2iah1=3i.
(a) e3 ¼ h�1iah�ðt� 1Þ=ti ðtb5Þ. u¼ ðt� 1Þ=f2ðt� 2Þg ð1=2 <

ua 2=3Þ, g1 is constant, jg2j ¼ ðt� 5Þ=ðt� 3Þ, jg3j ¼ ðt� 4Þ=
ðt� 3Þ, �w=as ¼ 1� 2=ðt� 3Þ. If t ¼ 6, �w=as ¼ 1=3. By

Remark 4.4, �w=as ¼ 1=3þ 1b 1. If t is even, �w=asb 1

similarly. If t ¼ 5, �w=as ¼ 0. This example is obtained

for the torus knot Kð�1=2; 1=3; 1=5Þ. For odd tb 7, jtj ¼
2=ðt� 3Þ. Q¼ ðt� 3Þ=2. ðQ� 1Þ=Q ¼ 1� 2=ðt� 3Þ ¼ �w=as.

Moreover, for the constant edgepath g1, k1=m1 ¼ q1ð1� uÞ ¼
ðt� 3Þ=ðt� 2Þ, as ¼ lcmðt� 3; ðt� 3Þ=2; t� 3Þ ¼ t� 3, and

Q ¼ ðt� 3Þ=2 give ab ¼ 2.

(b) e3 ¼ h�5=6i. The edgepath system is the same as in the item

1-e.

( 3 ) l1 ¼ h0iah1=2i, l2 ¼ h1iah2=3i.
(a) e3 ¼ h�1iah�4=3i. u is non-isolated ð0a ua 1=2Þ, jg1j ¼

ð1� 2uÞ=ð1� uÞ, jg2j ¼ ð2� 3uÞ=ð2� 2uÞ, jg3j ¼ ð2� 3uÞ=
ð2� 2uÞ, �w=as ¼ 2� 1=ð1� uÞ. At u ¼ 0, �w=as ¼ 1. At

u ¼ 1=2, �w=as ¼ 0. 0a�w=asa 1.

This edgepath system is obtained for the torus knot

Kð�1=2; 1=3; 1=3Þ.
jtj ¼ 2. Q ¼ 1. ðQ� 1Þ=Q ¼ 0a�w=as.

If 0 < u < 1=2, jg1j B Z gives asb 2. Since Q ¼ 1, we have

abb 2. In the case u ¼ 0, the surface can be regarded as

Type II. If u ¼ 1=2, the argument reduces to the item 1-b

corresponding to the torus knot Kð�1=2; 1=3; 1=3Þ.
(b) e3 ¼ h�1iah�5=4i. The calculation is the same as in the item

1-c, though the edgepath systems themselves do not coincide

with each other.

(c) e3 ¼ h�1iah�6=5i. The calculation is the same as in the item

1-d.

(d) e3 ¼ h�7=6i. The calculation is the same as in the item 1-e.

( 4 ) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=2iah2=3i.
(a) e3 ¼ h�1iah�ðt � 1Þ=ti ðtb 2Þ. u ¼ ðt � 1Þ=ð2t � 1Þ ð1=3a

u < 1=2Þ, jg1j ¼ 1=t, jg2j ¼ 1þ 1=t, jg3j ¼ ðt� 1Þ=t, �w=as ¼ 1.

(b) e3 ¼ h�1iah�ðtþ 1Þ=ti ðtb 5Þ. The calculation is the same

as in the item 2-a.

(c) e3 ¼ h�7=6i. The calculation is the same as in the item 1-e.
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( 5 ) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=5i.
(a) e3 ¼ h�1iah�1=2i. u ¼ 4=9 ð0 < 4=9 < 1=2Þ, jg1j ¼ 1=5,

jg2j ¼ 4=5, jg3j ¼ 1=5, �w=as ¼ 0. By Remark 4.4, �w=as

b 1.

(b) e3 ¼ h�2=3i. u ¼ 2=3, g1 is constant, jg2j ¼ 1=2, jg3j ¼ 0,

�w=as ¼ 0. For the denominators of tangles to be in ascen-

ding order, we must add at least an edge to the edgepath

g3. Hence, �w=asb 1.

(c) e3 ¼ h�2=3iah�5=7i. u is non-isolated ð2=3a ua 4=5Þ, g1
is constant, jg2j ¼ ð4� 5uÞ=ð4� 4uÞ, jg3j ¼ ð6� 7uÞ=ð4� 4uÞ,
�w=as ¼ 1.

(d) e3 ¼ h�7=10i. u ¼ 9=10, g1 and g2 is constant, jg3j ¼ 0,

�w=as ¼ 2.

( 6 ) l1 ¼ h0iah1=2i, l2 ¼ h1iah1=2iah1=3iah1=4iah1=5i.
(a) e3 ¼ h�1iah�ðt� 1Þ=ti ðtb5Þ. u¼ ðt� 1Þ=f2ðt� 2Þg ð1=2 <

ua 2=3Þ, g1 is constant, jg2jb 2, jg3jb 0, �w=asb 1.

(b) e3 ¼ h�3=4i. u ¼ 3=4, g1 is constant, jg2j ¼ 1, jg3j ¼ 0,

�w=as ¼ 1.

(c) e3 ¼ h�2=3iah�5=7i. u ¼ 4=5, g1 is constant, jg2j ¼ 0, jg3j ¼
1=2, �w=as ¼ 1.

(d) e3 ¼ h�7=10i. The edgepath system is the same as in the

item 5-d.

( 7 ) l1 ¼ h0iah1=2i, l2 ¼ h1iah1=2iah2=5i.
(a) e3 ¼ h�1iah�ðt� 1Þ=ti ðtb9Þ. u¼ ðt� 1Þ=f2ðt� 4Þg ð1=2 <

ua 4=5Þ, g1 is constant, jg2j ¼ ðt� 9Þ=ðt� 7Þ, jg3j ¼ ðt� 8Þ=
ðt� 7Þ, �w=as ¼ 1.

(b) e3 ¼ h�9=10i. The calculation is the same as in the item 5-d.

( 8 ) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=2iah2=5i.
(a) e3 ¼ h�1iah�ðt � 1Þ=ti ðtb 2Þ ð0 < u < 1=2Þ. u ¼ ðt � 1Þ=

ð2t� 1Þ ð1=3a u < 1=2Þ, jg1j ¼ 1=t, jg2j ¼ 1þ 1=t, jg3j ¼
ðt� 1Þ=t, �w=as ¼ 1.

(b) e3 ¼ h�1iah�ðt� 1Þ=ti ðtb 9Þ ðu > 1=2Þ. The edgepath sys-

tem is the same as in the item 7-a.

(c) e3 ¼ h�9=10i. The calculation is the same as in the item 5-d.

( 9 ) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=3iah2=5i.
(a) e3 ¼ h�1iah�1=2i. u ¼ 2=5 ð0 < 2=5 < 1=2Þ,

jg1j ¼ 1=3, jg2j ¼ 1þ 2=3, jg3j ¼ 1=3, �w=as ¼ 1.

(b) e3 ¼ h�1iah�2=3i. u ¼ 1=2, jg1j ¼ 0, jg2j ¼ 1þ 1=2, jg3j ¼
1=2, �w=as ¼ 1.

(c) e3 ¼ h�1iah�3=4i. u ¼ 3=5 ð1=2 < 3=5 < 2=3Þ, g1 is con-

stant, jg2j ¼ 1þ 1=4, jg3j ¼ 1=2, �w=as ¼ 1.
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(d) e3 ¼ h�1iah�ðt� 1Þ=ti ð5a ta9Þ. u¼ ðt� 1Þ=ðtþ 1Þ ð2=3a
ua 4=5Þ, g1 is constant, jg2j ¼ ð9� tÞ=4, jg3j ¼ 1=2, �w=as ¼ 1.

(e) e3 ¼ h�9=10i. The calculation is the same as in the item 5-d.

(10) l1 ¼ h0iah1=2i, l2 ¼ h1iah1=2iah3=5i.
(a) e3 ¼ h�1iah�ðtþ 1Þ=ti ðtb 9Þ. The calculation is the same

as in the item 7-a.

(b) e3 ¼ h�11=10i. The calculation is the same as in the item 5-d.

(11) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=2iah3=5i.
(a) e3 ¼ h�1iah�ðt� 1Þ=ti. The calculation is the same as in

the item 8-a.

(b) e3 ¼ h�1iah�ðtþ 1Þ=ti ðtb 9Þ. The calculation is the same

as in the item 7-a.

(c) e3 ¼ h�11=10i. The calculation is the same as in the item 5-d.

(12) l1 ¼ h0iah1=2i, l2 ¼ h1iah2=3iah3=5i.
(a) e3 ¼ h�1iah�4=3i. u is non-isolated ð0a ua 1=2Þ, jg1j ¼

ð1� 2uÞ=ð1� uÞ, jg3j ¼ ð2� 3uÞ=ð2� 2uÞ, jg2j ¼ 1þ ð2� 3uÞ=
ð2� 2uÞ, �w=as ¼ 1.

(b) e3 ¼ h�1iah�5=4i. The calculation is the same as in the

item 9-c.

(c) e3 ¼ h�1iah�ðtþ 1Þ=ti ð5a ta 9Þ. The calculation is the

same as in the item 9-d.

(d) e3 ¼ h�11=10i. The calculation is the same as in the item 5-d.

(13) l1 ¼ h0iah1=2i, l2 ¼ h1iah4=5i.
(a) e3 ¼ h�4=3i. The calculation is the same as in the item 5-b.

(b) e3 ¼ h�4=3iah�9=7i. The calculation is the same as in the

item 5-c.

(c) e3 ¼ h�13=10i. The calculation is the same as in the item 5-d.

(14) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=2iah2=3iah3=4iah4=5i.
(a) e3 ¼ h�1iah�ðt � 1Þ=ti ðtb 2Þ. u ¼ ðt � 1Þ=ð2t � 1Þ ð1=3a

u < 1=2Þ, jg1j ¼ 1=t, jg2j ¼ 3þ 1=t, jg3j ¼ ðt� 1Þ=t, �w=as ¼ 3.

(b) e3 ¼ h�1iah�ðtþ 1Þ=ti ðtb 5Þ. The calculation is the same

as in the item 6-a.

(c) e3 ¼ h�1iah�5=4i. The calculation is the same as in the item

6-b.

(d) e3 ¼ h�4=3iah�9=7i. The calculation is the same as in the

item 6-c.

(e) e3 ¼ h�13=10i. The calculation is the same as in the item 5-d.

(15) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=ti (odd tb 7).

Properly speaking, ta 2p� 1 is required in the items 15-b, 15-c

and 15-d below. Though, in this part, we allow the denomi-

nator of the second tangle to be greater than that of the third

233Bounds on boundary slopes for knots



tangle exceptionally. Thus, we avoid repeating essentially the

same calculations.

(a) e3 ¼ h�1iah�1=2i. u ¼ ðt� 1Þ=ð2t� 1Þ, jg1j ¼ 1=t, jg2j ¼
ðt� 1Þ=t, jg3j ¼ 1=t, �w=as ¼ 0. By Remark 4.4, �w=asb 1.

(b) e3 ¼ h�1=2iah�p=ð2p� 1Þi ðpb 4; ua ðt� 1Þ=tÞ. pb 4 is

derived from 2p� 1b 7. By the conditions 1=2þ 1=ðt� 1Þ �
u� f1=ð2p� 3Þ � ðu� 1=2Þ þ 1=2g ¼ 0 from (2.1), 1=2a ua

ðt� 1Þ=t and 1=2a ua ð2p� 2Þ=ð2p� 1Þ, the solution u ¼
ðt� 1Þ=f2ðt� 2pþ 2Þg exists if t� 4pþ 3b 0 holds. g1 is

constant, jg2j ¼ ðt� 4pþ 4Þ=ðt� 4pþ 5Þ, jg3j ¼ ðt� 4pþ 3Þ=
ðt� 4pþ 5Þ, �w=as ¼ 1þ ð2p� 6Þ=ðt� 4pþ 5Þb 1.

(c) e3 ¼ h�1=2iah�p=ð2p� 1Þi ðpb 2; ub ðt� 1Þ=tÞ. By the

conditions 1=2þ 1=t� f1=ð2p� 3Þ � ðu� 1=2Þ þ 1=2g ¼ 0 from

(2.1), ub ðt� 1Þ=t and 1=2a ua ð2p� 2Þ=ð2p� 1Þ, we have

a contradiction 4p� 2a ta 4p� 4. Thus, no solution exists.

(d) e3 ¼ h�p=ð2p� 1Þiah�p=ð2p� 1Þi� ðpb 4Þ. By the condi-

tions 1=2þ 1=ðt� 1Þ � u� p=ð2p� 1Þ ¼ 0, ub ð2p� 2Þ=ð2p� 1Þ
and 1=2a ua ðt� 1Þ=t, the solution u ¼ ðt� 1Þ=f2ð2p� 1Þg
exists if 4p� 3a ta 4p� 2 holds. The solution for t ¼ 4p� 3

is treated in 15-b, while t ¼ 4p� 2 is even and unsuitable.

(16) l1 ¼ h0iah1=2i, l2 ¼ h0iahðt� 1Þ=ti (odd tb 7).

(a) e3 ¼ h�1=2iah�p=ð2pþ 1Þi ðpb 2Þ. For the denominators

of the tangles to be in ascending order, 7a ta 2p� 1 and

pb 4 are required. The calculation is similar to the item 15-b.

(17) l1 ¼ h0iah1=2i, l2 ¼ h0iah1=2iahp=ð2pG 1Þi.
(a) e3 ¼ h�1iah�1=ti. The calculation is the same as in the item

15-b.

(18) l1 ¼ h0iah1=3i, l2 ¼ h0iah1=3i.
(a) e3 ¼ h0iah�1=2i. u is non-isolated ð0a ua 1=2Þ, jg1j ¼

ð3u� 2Þ=ð2u� 2Þ, jg2j ¼ ð3u� 2Þ=ð2u� 2Þ, jg3j ¼ ð2u� 1Þ=
ðu� 1Þ, �w=as ¼ 2� 1=ð1� uÞb 0. Similarly to the item 3-a,

�w=asb ðQ� 1Þ=Q holds.

(b) e3 ¼ h�1=2iah�2=3i. u is non-isolated ð1=2a ua 2=3Þ,
jg1j ¼ ð3u� 2Þ=ð2u� 2Þ, jg2j ¼ ð3u� 2Þ=ð2u� 2Þ, jg3j ¼ ð3u� 2Þ=
ðu� 1Þ, �w=as ¼ 3� 1=ð1� uÞb 0. By Remark 4.4, �w=as

b 1.

(19) l1 ¼ h0iah1=3i, l2 ¼ h1iah2=3i. No solution exists.

(20) l1 ¼ h0iah1=3i, l2 ¼ h1iah1=2iah1=3i.
(a) e3 ¼ h�1iah�2=3i. u is non-isolated ð0a ua 1=2Þ, jg1j ¼

ð3u� 2Þ=ð2u� 2Þ, jg2j ¼ 1þ ð2u� 1Þ=ðu� 1Þ, jg3j ¼ ð3u� 2Þ=
ð2u� 2Þ, �w=as ¼ 3� 1=ð1� uÞb 1.
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(b) e3 ¼ h�1iah�2=3i. u is non-isolated ð1=2 < ua 2=3Þ, jg1j ¼
ð3u� 2Þ=ð2u� 2Þ, jg2j ¼ ð3u� 2Þ=ðu� 1Þ, jg3j ¼ ð3u� 2Þ=
ð2u� 2Þ, �w=as ¼ 3� 1=ð1� uÞb 0. By Remark 4.4, �w=as

b 1.

(21) l1 ¼ h0iah1=3i, l2 ¼ h0iah1=2iah2=3i.
(a) e3 ¼ h�1iah�1=2i. u ¼ 2=5 ð0 < 2=5 < 1=2Þ,

jg1j ¼ 2=3, jg2j ¼ 1þ 1=3, jg3j ¼ 1=3, �w=as ¼ 1.

(b) e3 ¼ h�1iah�ðt� 1Þ=ti ðtb 3Þ. u ¼ ð2t� 2Þ=ð3t� 1Þ ð1=2a
u < 2=3Þ, jg1j ¼ 2=ðtþ 1Þ, jg2j ¼ 4=ðtþ 1Þ, jg3j ¼ ðt� 1Þ=
ðtþ 1Þ, �w=as ¼ 1.

(22) l1 ¼ h0iah1=2iah2=3i, l2 ¼ h0iah1=2iah2=3i.
(a) e3 ¼ h�1iah�ðt � 1Þ=ti ðtb 2Þ. u ¼ ðt � 1Þ=ð2t � 1Þ ð1=3a

u < 1=2Þ, jg1j ¼ 1þ 1=t, jg2j ¼ 1þ 1=t, jg3j ¼ 1� 1=t, �w=as

¼ 2.

(b) e3 ¼ h�1iah�ðtþ 1Þ=ti. u¼ ðt� 1Þ=ð2t� 3Þ ð1=2 < ua2=3Þ,
jg1j ¼ ðt� 3Þ=ðt� 2Þ, jg2j ¼ ðt� 3Þ=ðt� 2Þ, jg3j ¼ ðt� 3Þ=ðt� 2Þ,
�w=as ¼ 2� 2=ðt� 2Þ. If t ¼ 3, though �w=as ¼ 0, by Re-

mark 4.4, we have �w=asb 1. If tb 4, �w=asb 1 holds.

(23) l1 ¼ h0iah1=2iah2=3i, l2 ¼ h1iah1=2iah1=3i. No solutions

exist.

(24) l1 ¼ h0iah1=3i or h1iah1=2iah1=3i, l2 ¼ h0iah1=4i. The check

is necessary only for the case that the denominators for the edge e3
is 1–5. Neither h0iah�1=5i nor h�1iah�4=5i intersects the sum

l1 þ l2. Thus, no solution exists.

(25) l1 ¼ h0iah1=3i or h1iah1=2iah1=3i, l2 ¼ h1iah3=4i.
(a) e3 ¼ h�1iah�6=5i. u ¼ 12=19 ð1=2 < 12=19 < 2=3Þ, jg1j ¼

2=7, jg2j ¼ 3=7, jg3j ¼ 4=7, �w=as ¼ 1.

(26) l1 ¼ h0iah1=3i or h1iah1=2iah1=3i, l2 ¼ h1iah1=2iah1=3ia
h1=4i.
(a) e3 ¼ h�1iah�6=5i. u ¼ 4=9 ð0 < 4=9 < 1=2Þ, jg1j ¼ 1þ 1=5,

jg2j ¼ 2þ 1=5, jg3j ¼ 4=5, �w=as ¼ 3.

(b) e3 ¼ h�1iah�4=5i. u ¼ 4=7 ð1=2 < 4=7 < 2=3Þ, jg1j ¼ 2=3,

jg2j ¼ 1þ 2=3, jg3j ¼ 2=3, �w=as ¼ 7=3.

(27) l1 ¼ h0iah1=3i or h1iah1=2iah1=3i, l2 ¼ h0iah1=2iah2=3ia
h3=4i.
(a) e3 ¼ h�1iah�4=5i. u ¼ 4=7 ð1=2 < 4=7 < 2=3Þ, jg1j ¼ 1=3,

jg2j ¼ 1þ 2=3, jg3j ¼ 2=3, �w=as ¼ 2.

Thus, in most of the cases, �w=asb 1 is satisfied. The cases in which

only �w=asb ðQ� 1Þ=Q is satisfied are items 1-b, 1-d, 2-a, 3-a, 3-c, 4-b

and 18-a. Last three items are reduced to 1-d, 2-a and 3-a respectively.

In any of these cases, the knot is a Montesinos knot Kð�1=2; 1=3; 1=tÞ
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(tb 3, t is odd). Eventually, the candidate surfaces with 0a�w=as < 1

are

(a) annuli for the torus knots Kð�1=2; 1=3; 1=3Þ and Kð�1=2; 1=3; 1=5Þ,
(b) a surface with 1=2a�w=as ¼ 1� 2=ðt� 3Þ < 1 corresponding to the

knot Kð�1=2; 1=3; 1=tÞ for odd tb 7,

(c) a family of surfaces with 0 < �w=as < 1 which corresponds to the

non-isolated solutions for Kð�1=2; 1=3; 1=3Þ.
Note that surfaces in the family (c) in the above list are compressible, in

fact. r

4.2. Corollaries and best possibility of Theorem 1.1

4.2.1. Proofs of corollaries. Once the theorem is shown, the proof of Corol-

lary 1.2 is straightforward. Since the argument does not depend on the ori-

entability, Corollary 1.3 is also easily obtained.

Proof of Corollary 1.2. First, assume thatabb 2. A boundary slope

and its corresponding surface satisfy at least the inequality Qa�w=abþ 1 in

Theorem 1.1. With a variable g ¼ ð2� w�abÞ=2, if gb 1, we have

Qa
�2þ 2gþab

ab
þ 1 ¼ �2þ 2g

ab
þ 2a gþ 1: ð4:4Þ

If g ¼ 0, we have Qa 2� 2=ab < 2, which means Q ¼ 1. Qa gþ 1 is sat-

isfied also in this case.

Next, assume that ab ¼ 1. Then the inequality Qa�w in Theorem 1.1

is satisfied. Then,

Qa�2þ 2gþab ¼ 2g� 1: ð4:5Þ

By taking maximum of gþ 1 and 2g� 1, we have Qa gþ 1 for g ¼ 0; 1

and Qa 2g� 1 for gb 2.

In the case of g ¼ 0, equivalently, the surface is planar, the inequality

Qa�w=ab in Theorem 1.1 cannot be satisfied. This means that the cases are

exceptional, that is, the knot is a torus knot or Kð�1=2; 1=3; 1=tÞ for odd tb 7,

as stated in the last of the proof of Lemma 4.1. However, in the latter case,

the surface satisfies �w=as ¼ 1� 2=ðt� 3Þ and as ¼ t� 3. Therefore non-

torus Montesinos knots have no essential planar surfaces. r

Proof of Corollary 1.3. We only have to check for an essential sur-

face with non-orientable genus h ¼ 1 and abb 2. In this case, since Qa

ð�2þ hþabÞ=abþ 1 ¼ 2� 1=ab < 2, we have Q ¼ 1a h=2þ 1 ¼ 3=2. r

4.2.2. The best possibility. The upper bounds in Theorem 1.1, Corollary 1.2

and Corollary 1.3 are best possible in a sense. Let F denote a surface. Note
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that we do not care the orientability of the surface F . In this part, g denotes

ð2� w�abÞ=2, which coincides with genus if the surface is orientable and with

2h where h is non-orientable genus if the surface is non-orientable.

First, we assume that the candidate surface F corresponds to the edgepath

system in the item 2-a in the previous subsection for odd t. Since the edgepath

g1 is constant, F is incompressible by the Proposition 2.1 in [HO89], and thus,

is an essential surface. �w=as ¼ ðQ� 1Þ=Q and ab ¼ 2 hold, and give Q ¼
�w=abþ 1 and Q ¼ gþ 1. Since Q ¼ ðt� 3Þ=2, the value of g ¼ ðt� 5Þ=2 for

t ¼ 5; 7; 9; . . . is 0; 1; 2; . . . : This indicates that if abb 2 is satisfied, Qa

�w=abþ 1 and Qa gþ 1 are best possible for arbitrary non-negative in-

teger g.

Next, let F be a candidate surface in the item 4-a for odd t. It is in-

compressible by Proposition 2.6 in [HO89]. Since jtj ¼ 4þ 2=t, we have

Q ¼ t. as ¼ lcmðt; t; tÞ ¼ t gives ab ¼as=Q ¼ 1. Thus �w=as ¼ 1 gives

Q ¼ �w=ab and Q ¼ 2g� 1. The value of g ¼ ðtþ 1Þ=2 for t ¼ 3; 5; 7; . . . is

2; 3; 4; . . . : This indicates that if ab ¼ 1 is satisfied, Qa�w=abþ 1 and

Qa 2g� 1 are best possible for arbitrary integer gb 2.

5. A bound on the di¤erence

The purpose of this section is to prove Theorem 1.4, which claims an

upper bound of the di¤erence of two boundary slopes. A large part of this

section is the proof of a technical lemma, which is used for proving the

theorem. The best possibility and some corollaries are also given.

We begin with several remarks on these results.

(1) From the argument, we must exclude the meridional boundary slope,

for it corresponds to ‘‘infinity’’ numerical boundary slope. Note that

it can actually appear if Nb 4. See [O84] for a detail.

(2) There is an apparent lower bound jR1 � R2jb 0. The lower and

upper bounds meet at jR1 � R2j ¼ 0 and ð�w1=as1Þ þ ð�w2=as2Þ ¼
�2. This corresponds to the boundary slope of the incompressible

disk in the trivial knot exterior.

(3) The upper bound (1.5) is sharp: there is an infinite sequence of

Montesinos knots each of whose exterior includes two essential sur-

faces with boundary slopes satisfying the equality. See Subsection

5.3 for more detail.

(4) No such a ‘‘linear’’ upper bound can hold for D. See Subsection 5.1

for example. In fact known bounds on D are quadratic with respect

to �wi=asi.

(5) In [I], the first author obtains the same upper bounds for 2-bridge

knot exteriors and Seifert fibered manifolds which include torus knot
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exteriors. Therefore, the upper bound (1.5) may be applicable for

some wider class of knot exteriors or manifolds.

5.1. Linear bound of the distance. Any linear bounds of the distance of two

boundary slopes are impossible. This is a reason why we consider an upper

bound of the di¤erence rather than of the distance.

We give a concrete example of a pair of boundary slopes, which make any

linear bounds impossible. The example is two boundary slopes R1 and R2 of

the Montesinos knot Kð�1=2; 1=3; 1=tÞ for odd tb 7.

R1 is a boundary slope which appears in 2-a in Subsection 4.1. It corre-

sponds to a type I edgepath system G1

g1;1 ¼ ððt� 3Þ=ðt� 2ÞÞ � h�1=2iþ ð1=ðt� 2ÞÞ � h�1=2i�

g1;2 ¼ ðððt� 5Þ=ðt� 3ÞÞ � h1=2iþ ð2=ðt� 3ÞÞ � h1=3iÞ � h1=3i

g1;3 ¼ ðððt� 4Þ=ðt� 3ÞÞ � h0iþ ð1=ðt� 3ÞÞ � h1=tiÞ � h1=ti:

8<:
For the edgepath system, t1 ¼ 2=ðt� 3Þ, �w1=as1 ¼ 1� 2=ðt� 3Þ, Q1 ¼
ðt� 3Þ=2, �w1=ab1 ¼ ðt� 3Þ=2� 1.

On the other hand, the second slope R2 corresponds to a type III edgepath

system G2

g2;1 ¼ hyi� h0i� h�1=2i

g2;2 ¼ hyi� h1i� h1=2i� h1=3i

g2;3 ¼ hyi� h1i� h1=2i� � � � � h1=ðt� 1Þi� h1=ti:

8<:
For the edgepath system, t2 ¼ �2ðtþ 2Þ, Q2 ¼ 1, �w2=as2 ¼ �w2=ab2 ¼ tþ 2.

Since we have both ð�w1=ab1Þ þ ð�w2=ab2Þ ¼ ðt� 3Þ=2� 1þ tþ 2 ¼
ð3t� 1Þ=2 and DðR1;R2Þ ¼ Q1Q2jR1 � R2j ¼ Q1Q2jt1 � t2j ¼ t2 � t� 5 at the

same time, D cannot be bounded by an inequality

DðR1;R2ÞaX
�w1
ab1

þ�w2
ab2

� �
þ Y

for any constant X and Y .

5.2. An upper bound of the sum of remainder terms. In this subsection, we

state and prove Lemma 5.1, which claims an upper bound of the sum of

‘‘remainder terms’’ of two boundary slopes and is the key to proving Theorem

1.4.

By definition, the twist t is roughly twice of a sum of signed lengths of

edges. On the other hand, as we see in Section 3, the major part of �w=as

is the sum of lengths of the edgepaths in the edgepath system. Hence, by

the triangle inequality, these facts imply a bound of the twist by an inequal-

ity like jtja 2ð�w=asÞ þ a. Then, we introduce the remainder term rðF Þ1
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jtj � 2ð�w=asÞ. With the remainder term, the key lemma is described as

follows.

Lemma 5.1. For a Montesinos knot K, after simplification, distinct two

candidate surfaces F1 and F2 satisfy

r1 þ r2 a 4;

where ri ¼ rðFiÞ.
In fact, the set of candidate surfaces satisfies following conditions.
� For a type I (type II) surface F, we have ra 4. Furthermore, there is

at most one type I (type II) surface with 0 < ra 4, and any other type I

(type II) surface F satisfies ra 0.
� For a type III surface F, we have ra 0.
� There is at most one surface with 0 < ra 4. Namely, the type I surface

F1 with r1 > 0 and the type II surface F2 with r2 > 0 do not exist for a

Montesinos knot K at the same time.

The simplification is mentioned in Section 3. We divide Lemma 5.1 into

some partial claims, and prove the lemma in the rest of this subsection. We

first introduce two notions which are used in the proof of Lemma 5.1.

Cancellation. On summation in (3.2), opposite signs of sðeÞ’s for two or more

edges cause cancellation. If such a cancellation occurs, we call an edgepath

system G an edgepath system with cancellation, and the corresponding surface

a surface with cancellation. A constant edgepath does not cause cancellation.

Only a surface F without cancellation will be able to have r > 0 in Lemma 5.1.

For an edgepath system, we collect all non-y-edges of every non-constant

edgepath, divide them into two classes according to the sign sðei; jÞ of an edge

ei; j, and then sum up the lengths of edges for each class. With their total

lengths lþ and l�, let kðF Þ denote minðlþ; l�Þ. k means the amount of the

cancellation in calculating the twist for a surface. With the variable k, the

twist is related to the total length of edgepaths in S as

jtj ¼ 2jlþ � l�j ¼ 2flþ þ l� � 2 minðlþ; l�Þg

¼ 2
X

gi AGnon-const

jgi;b0j
 !

� 4 � k:

Monotonic edgepath systems. For an edgepath system, the edgepath system is

said to be monotonically increasing (resp. decreasing) if the v-coordinates are

monotonically increasing (resp. decreasing) for all edgepaths in the edgepath

system. A surface without cancellation corresponds to a monotonic edgepath

system.
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Since each vertex hp=qi ðq > 1Þ of the diagram D has two leftward edges,

one is increasing and the other is decreasing, there exist only one monotonically

increasing basic edgepath and one monotonically decreasing basic edgepath.

5.2.1. Type II and type III surfaces. The situation for type III surfaces is the

simplest among all types of surfaces. Even for type II surfaces, the argument

is not so complicated.

Lemma 5.2. After simplification, for any type III surface, the inequality

ra 0 holds.

Proof. (3.2) and (3.3) give jtja 2 �
PN

i¼1 jgi;>0j ¼ 2ð�w=asÞ. Hence, r ¼
jtj � 2ð�w=asÞa 0. r

Lemma 5.3. After simplification, for any type II surface F, the inequality

ra 4 holds. Moreover, there exists at most one surface without cancellation, for

which 0 < ra 4, while any surface with cancellation satisfies ra 0.

Proof. (3.2) and (3.4) give

jtja 2
XN
i¼1

jgi;>0j
 !

þ 2jGðþ0Þj ¼ 2ð�w=asþ 2Þ: ð5:1Þ

Hence,

r ¼ jtj � 2ð�wÞ=asa 4: ð5:2Þ

When cancellation occurs, the di¤erence between both sides of the in-

equality (5.1) increases by 2ðþ1� ð�1ÞÞ ¼ 4 at a pair of complete edges

causing cancellation. Thus, r ¼ jtj � 2ð�w=asÞa 0.

If the equality in (5.2) holds for an edgepath system, the edgepath system

satisfies either of:
� the corresponding basic edgepath system is monotonically decreasing

and Gðþ0Þb 0,
� the corresponding basic edgepath system is monotonically increasing

and Gðþ0Þa 0.

Both types of edgepath systems are not obtained simultaneously for a Mon-

tesinos knot K . By the uniqueness of the monotonically increasing or de-

creasing basic edgepath system, there is at most one type II surface with

0 < ra 4. r

5.2.2. Type I surfaces. For type I surfaces, the argument is more complicated

than for type II and type III surfaces. Thus, we here introduce two inequal-

ities for type I surfaces.

An inequality for type I surfaces.
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Lemma 5.4. For a type I surface F, its remainder term r is upper-bounded

as

ra 2ðN �NconstÞ � N � 2�
X

gi AGconst

1

qi

 !
2

1� u
: ð5:3Þ

Proof. First, an edgepath system for type I surface does not include any

vertical edge or y-edge. (3.2) gives

t ¼
X

Gnon-const

X
ei; j A gi

�2sðei; jÞjei; jj:

By (3.5),

r ¼ jtj � 2
�w

as

¼ �4 � kþ 2ðN �NconstÞ � N � 2�
X

gi AGconst

1

qi

 !
2

1� u
: ð5:4Þ

Even if we ignore the e¤ect of cancellation k, we have the upper bound in the

statement. r

An inequality for type I surfaces with cancellation. Under the assumption that

we could prove ra 4, we think about the e¤ect of cancellation. If kb 1, since

cancellation works on the twist by �4k, ra 0 immediately follows. The case

of k < 1 only remains. In the formula (5.4), k and the term 2=ð1� uÞ are in

the trade-o¤ relationship. We examine the variation of r in detail and make

an inequality about r for an edgepath system with cancellation.

Lemma 5.5. Let F be a type I surface F with cancellation. Assume that a

partial edge of an edge hp=qi� hr=si ðjps� qrj ¼ 1; q < sÞ causes cancellation.

Then, the remainder term r is upper-bounded as

ra 2ðN �NconstÞ � 2x minfs; qþ 2=xg; ð5:5Þ

where x ¼ N � 2�
P

gi AGconst
ð1=qiÞ > 0.

Proof. Assume that the length of the partial edge included in hp=qi�
hr=si is k=m, and the edge causes cancellation. We start from (5.4), that

is, r ¼ �4 � kþ 2ðN �NconstÞ � x � 2=ð1� uÞa�4k=mþ 2ðN �NconstÞ � x � 2=
ð1� uÞ. Since the length k=m is given by k=m ¼ f1þ sðu� 1Þg=fðs� qÞ �
ðu� 1Þg as the formula (3.1), the above inequality can be deformed into ra

2ðN �NconstÞ � 4s=ðs� qÞ þ f2=ðs� qÞ � xg � 2=ð1� uÞ. The right-hand side is

monotonically increasing, constant, or monotonically decreasing as a function
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of u, according to the sign of ð2=ðs� qÞ � xÞ. Thus, r can be upper-bounded

as in the statement. r

Now we show the following.

Lemma 5.6. After the simplification, for all type I surfaces F , the inequality

ra 4 holds. Moreover, there exists at most one surface without cancellation, for

which 0 < ra 4, while any surface with cancellation satisfies ra 0.

Proof. First, we here examine type I surfaces without cancellation. For

such a surface, the edgepath system is monotonically increasing or decreasing.

According to the sign of the sum of the tangles Ki as fractions, only one of

the two monotonic basic edgepath systems has a solution of the equation (2.1),

that is,
PN

i¼1
~llðuÞ ¼ 0. Thus, there exists at most one type I surface without

cancellation.

For a type I surface, since the situation is complicated, we separate the

arguments for N ¼ 3 and Nb 4. Furthermore, if N ¼ 3, we check the lemma

case by case according to the number of the constant edgepaths.

(1) Nb 4.

First, without considering the e¤ect of cancellation, the inequality (5.3)

is ra 2ðN �NconstÞ � fN � 2�Nconstð1=2Þg � 2=ð1� uÞ. By looking at u ¼ 0,

we have ra 4�Nconst a 4. For a surface F with cancellation, even if

k < 1, by (5.5) for x ¼ N � 2�Nconst � 1=2, qb 1 and sb 2, we obtain ra

maxf�2N þ 8;�Nconstga 0.

(2) N ¼ 3.

First, we introduce a notation. We represent the complete non-horizontal

edges including a partial edge ei of gi by hpi=qii� hri=sii, and the denom-

inators of the v-coordinates of constant edgepaths ga and gb by qa and qb.

Though the indices of non-constant edgepaths may not be successive and be

something like g1 and g3, we replace the indices so that the non-constant

edgepaths have successive indices like g1 and g2, for ease in the argument. If

cancellation occurs, g1 denotes an edgepath whose partial edge causes can-

cellation.

(2-1) N ¼ 3, Nconst ¼ 0.

For an edgepath system with no constant edgepath, the formula (5.3) is

ra 6� 2=ð1� uÞ. Since 0a u < 1, we have ra 4. This is su‰cient for

edgepath systems without cancellation. For an edgepath system with can-

cellation, the inequality (5.5) is simplified into ra 6� 2 minfs1; q1 þ 2g. If

s1 ¼ 2, then ra 2. Otherwise, ra 0. In the case of s1 ¼ 2, there are two

possibilities: (2-1-1) final edges of all edgepaths have common sign, (2-1-2) final

edges of edgepaths have both positive and negative signs. In the former case,

except the case s2 ¼ s3 ¼ 2, by applying the edgepath system to an inequality
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similar to (5.5), we have ra 0. For the case s1 ¼ s2 ¼ s3 ¼ 2, by solving the

equation
PN

i¼1
eliliðuÞ ¼ 0, k is 1 or greater, and thus ra 0. In the latter

case, the solutions of the equation are non-isolated and their representative is

an edgepath system which causes no cancellation on hp=qi� hr=si. Thus, we

have verified the claim for the remaining case of s1 ¼ 2 such that there is no

such a surface F with cancellation and the remainder term 0 < ra 2.

(2-2) N ¼ 3, Nconst ¼ 1.

For a type I surface with one constant edgepath, the formula (5.3) is

ra 4� ð1� 1=qaÞ � 2=ð1� uÞ. If qa ¼ 2, since ub 1=2, then ra 2. If qa b 3,

then ra 0. For an edgepath system with one constant edgepath qa ¼ 2 and

cancellation, by the inequality (5.5), we have ra 4�minfs1; q1 þ 4g, where the

edge hp1=q1i� hr1=s1i causes cancellation. The possibility of r > 0 remains

when ðq1; s1Þ ¼ ð1; 2Þ; ð1; 3Þ; ð2; 3Þ. In any cases, we can check that every

candidate edgepath system with cancellation obtained by solving the equationPN
i¼1
eliliðuÞ ¼ 0 actually satisfies ra 0 as follows.

First, if the last edge e1 is of type ðq1; s1Þ ¼ ð1; 2Þ, the u-coordinate of the

endpoints satisfies ua 1
2 . At the same time, as ga is a constant edgepath,

ub 1
2 is required. Hence, we have a contradiction.

For the case of ðq1; s1Þ ¼ ð1; 3Þ, possible edgepath systems are essentially

the same as the following:

ga is a constant edgepath consisting of a point on the edge h1=2iah1=2i�;

e1 is a partial edge of h0iah1=3i;

e2 is a partial edge of h�1iah�ðt� 1Þ=ti ðt ¼ 3; 4; 5Þ:

8<:
This appears as the items 1-b, 1-c and 1-d in the previous section. Note that

e1 and e2 have a common sign. The value of je1j þ je2j is 1=2þ 1=2 ¼ 1 for

t ¼ 3, 1=4þ 1=2 ¼ 3=4 for t ¼ 4. Since ra 2 holds even if we ignore the

e¤ect of the cancellation, by taking it into account, we have ra 0. When

t ¼ 5, since je1j is zero, the edgepath system contradicts the hypothesis that e1
causes cancellation.

For the case of ðq1; s1Þ ¼ ð2; 3Þ, possible edgepath systems are essentially

the same as the following:

ga is a constant edgepath consisting of a point on the edge h1=2iah1=2i�;

e1 is a partial edge of h1=2iah1=3i;

e2 is a partial edge of h�1iah�ðt� 1Þ=ti ðtb 5Þ:

8<:
This corresponds to the item 2-a. Note that e1 and e2 have opposite signs.

In this case, we have u ¼ ðt� 1Þ=f2ðt� 2Þg, jtj ¼ 2=ðt� 3Þ, and �w=as ¼
1� 2=ðt� 3Þ. Hence, r ¼ jtj � 2 � ð�w=asÞ ¼ 6=ðt� 3Þ � 2. If t ¼ 5, since
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je1j ¼ 0, e1 does not cause cancellation and the edgepath system contradicts

the hypothesis. If tb 6, then ra 0.

(2-3) N ¼ 3, Nconst ¼ 2.

First, the inequality (5.3) is ra 2� f1� 1=qa � 1=qbg � 2=ð1� uÞ. Let

qa denote the smaller of denominators of the tangles corresponding to con-

stant edgepaths, and qb the larger. By the condition for the Montesinos link

to be a knot, we have qa b 2 and qb b 3. By ub ðqb � 1Þ=qb, we also have

1=ð1� uÞb qb b 3. Thus ra 2� ð1� 1=2� 1=3Þ2 � 3 ¼ 1. If qa ¼ 2 and

qb ¼ 5, then ra 2� ð1� 1=2� 1=5Þ2 � 5 ¼ �1. If qa ¼ 3 and qb ¼ 3, then

ra 2� ð1� 1=3� 1=3Þ2 � 3 ¼ 0. Similarly, for other edgepath systems, we

have ra 0.

For an edgepath with cancellation, it is su‰cient to check for qa ¼ 2

and qb ¼ 3. Since x ¼ 1� 1=qa � 1=qb ¼ 1=6, by inequality (5.5), ra 2�
1=3 minfs1; q1 þ 12g. If s1 b 6, then ra 0. Hence, an edgepath system with

s1 a 5 only remains. Not so many such concrete examples exist, in fact. The

edgepath system must be

ga is a constant edgepath consisting of a point on the edge hx=2i� hx=2i�;

gb is a constant edgepath consisting of a point on the edge hy=3i� hy=3i�;

e1 is a partial edge of hp1=q1i� hr1=s1i

8<:
for some appropriate integer x and y. In order for the edgepath system to

satisfy
PN

i¼1 giðuÞ ¼ 0 at the common u-coordinate of the endpoints, the edge e1
must intersect with the horizontal segments v ¼G1=6þ z ðz A ZÞ within a strip

region 2=3a u < 1. The only example of such an edgepath system has the

partial edge of h0i� h1=5i as e1 (or another example essentially the same as

this example). We must add at least one increasing complete edge to e1 so

that e1 actually causes cancellation. Since je1j ¼ 1=2, we have r ¼ 1� 4 � 1=2
¼ �1 for this edgepath system.

(2-4) N ¼ 3, Nconst ¼ 3.

As mentioned in Remark 3.1, no edgepath system with three constant

edgepaths exists. r

5.2.3. Type I surface and type II surface without cancellation. Now, we have

only to show the following.

Lemma 5.7. The type I surface without cancellation and the type II sur-

face without cancellation do not exist for a Montesinos knot K at the same

time.

Proof. For the type I surface without cancellation,
PN

i¼1 Ki and Gðþ0Þ
have opposite signs. In contrast with this, for the type II surface without

cancellation,
PN

i¼1 Ki and Gðþ0Þ have the same sign or Gðþ0Þ ¼ 0. r
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Combining sub-lemmas completes the proof of Lemma 5.1.

5.3. Proof, best possibility and corollaries of Theorem 1.4

5.3.1. Proof. Theorem 1.4 follows from Lemma 5.1.

Proof of Theorem 1.4. By the triangle inequality and Lemma 5.1

jR1 � R2j ¼ jft1 � tSg � ft2 � tSgj

¼ jt1 � t2j

a jt1j þ jt2j

¼ 2
�w1
as1

þ�w2
as2

� �
þ ðr1 þ r2Þ

a 2
�w1
as1

þ�w2
as2

� �
þ 4;

where tS is the twist of a Seifert surface FS of K .

Note that there is no side e¤ect by simplification. For example, the in-

equality (1.5) holds also for two surfaces F1 and F2 with the same boundary

slope, since essential surfaces satisfy ð�w1=as1Þ þ ð�w2=as2Þb�2 even if they

are disks. r

5.3.2. Best possibility. The upper bound in Theorem 1.4 is best possible in a

sense.

First, we provide a concrete example of a family of Montesinos knots and

pairs of edgepath systems of boundary slopes of the knots. The Montesinos

knot is Kð1=ð2kÞ; 1=5; . . . ; 1=5Þ with Nb 3 tangles and the natural number k.

The two edgepath systems G1 ¼ ðg1;1; g1;2; . . . ; g1;NÞ and G2 ¼ ðg2;1; g2;2; . . . ; g2;NÞ
of F1 and F2 are as follows.

g1;1 ¼ h0i� h1=ð2kÞi;

g1; i ¼ h0i� h1=5i for 2a iaN;

g2;1 ¼ hyi� h1i� h1=2i� h1=3i� � � � � h1=ð2k � 1Þi� h1=ð2kÞi;

g2; i ¼ hyi� h1i� h1=2i� h1=3i� h1=4i� h1=5i for 2a iaN:

These candidate edgepath systems G1 and G2 are type II and type III respec-

tively. Two candidate surfaces F1 and F2 are both incompressible by Cor-

ollary 2.4 and Proposition 2.5 in [HO89].

245Bounds on boundary slopes for knots



Since G1 and G2 are monotonically decreasing and increasing, their re-

mainder terms r are easily confirmed to be 4 and 0. t1 and t2 with opposite

signs give jt1 � t2j ¼ jt1j þ jt2j. Thus, F1 and F2 satisfy

jR1 � R2j ¼ 2
�w1
as1

þ�w2
as2

� �
þ 4:

Note that ð�w1=as1Þ þ ð�w2=as2Þ is greater than arbitrary t for su‰ciently

large k.

5.3.3. Corollaries. As described in Section 4, if a Montesinos knot K is not

the same type as ð�2; 3; tÞ-pretzel knots for odd tb 3, we have �w=asb 1 for

its boundary slopes. The ð�2; 3; tÞ-pretzel knots have boundary slopes and

corresponding essential surfaces as follows. Note that they are torus knots if

t ¼ 3 or 5.
� t ¼ 3

� Ra ¼ 12, Qa ¼ 1, wa ¼ 0, asa ¼aba ¼ 2, �wa=asa ¼ �wa=aba ¼ 0,

� Rb ¼ 0, Qb ¼ 1, wb ¼ �5, asb ¼abb ¼ 1, �wb=asb ¼ �wb=abb ¼ 5.
� t ¼ 5

� Ra ¼ 15, Qa ¼ 1, wa ¼ 0, asa ¼aba ¼ 2, �wa=asa ¼ �wa=aba ¼ 0,

� Rb ¼ 0, Qb ¼ 1, wb ¼ �7, asb ¼abb ¼ 1, �wb=asb ¼ �wb=abb ¼ 7.
� tb 7,

� Ra ¼ 16, Qa ¼ 1, wa ¼ 6� t, asa ¼aba ¼ 1, �wa=asa ¼ �wa=aba ¼
t� 6,

� Rb ¼ ðt2 � t� 5Þ=fðt� 3Þ=2g, Qb ¼ ðt� 3Þ=2, wb ¼ 5� t, asb ¼
t� 3, abb ¼ 2, �wb=asb ¼ 1� 2=ðt� 3Þ, �wb=abb ¼ ðt� 5Þ=2,

� Rc ¼ 2tþ 6, Qc ¼ 1, �wc=asc ¼ �wc=abc ¼ 1,

� Rd ¼ 0, Qd ¼ 1, �wd=asd ¼ �wd=abd ¼ tþ 2.

By examining these boundary slopes, we obtain linear or quadratic upper

bounds of the di¤erence and the distance of the two boundary slopes.

Proof of Corollary 1.5. If the knot K is not ð�2; 3; tÞ-pretzel, �w=as

b 1 and gb 1 hold for all essential surfaces. Since gb 1 gives �w=asa

2g� 1, we have the inequality (1.7). If the knot K is ð�2; 3; tÞ-pretzel with

tb 7, then the genus of any essential surface is found to be 1 or greater.

Similarly to the previous case, we have (1.7). For the remaining ð�2; 3; 3Þ and
ð�2; 3; 5Þ-pretzel knots, the value of jR1 � R2j � 4ðg1 þ g2Þ for the two bound-

ary slopes is j12� 0j � 4ð0þ 3Þ ¼ 0 for ð�2; 3; 3Þ and j15� 0j � 4ð0þ 4Þ ¼
�1 < 0 for ð�2; 3; 5Þ. r

Proof of Corollary 1.6. If the knot K is neither ð�2; 3; 3Þ nor

ð�2; 3; 5Þ-pretzel, we have �w=asb 1=2 for all boundary slopes. Then, since

ð�w1=as1Þ þ ð�w2=as2Þb 1, we obtain (1.8) from (1.5) in Theorem 1.4.
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For remaining ð�2; 3; 3Þ and ð�2; 3; 5Þ-pretzel knots, since the expression

jRa � Rbj � 6ðð�wa=asaÞ þ ð�wb=asbÞÞ has its value 12� 6 � 5 ¼ �18 < 0 and

15� 6 � 7 ¼ �27 < 0 respectively, the inequality (1.8) holds. r

Proof of Corollary 1.7. If both boundary slopes satisfy �w=asb 1,

or equivalently Qa�w=ab, we obtain (1.10) easily from (1.6). Thus, we are

done for all Montesinos knots but ð�2; 3; tÞ-pretzel knots.

For ð�2; 3; 3Þ and ð�2; 3; 5Þ-pretzel knots, since one of the two essential

surfaces has Euler characteristic 0, there are no pairs of boundary slopes to be

applied to the inequality. For ð�2; 3; tÞ-pretzel knots with odd tb 7, the value

of the expression DðRi;RjÞ � 8 � ð�wi=abiÞ � ð�wj=abjÞ for ði; jÞ ¼ ða; bÞ; ðb; cÞ;
ðb; dÞ are �3t2 þ 35t� 101, �3tþ 16 and �3t2 þ 11tþ 35 respectively, which

are all negative for any tb 7. r

6. Known results and open problems

Here we give a brief review about the study of boundary slopes of essential

surfaces related to our results, and collect some open problems.

For the existence and the number of boundary slopes, the following are

fundamental. It was shown by Hatcher in [H82] that there are just finitely

many boundary slopes of essential surfaces for a compact, orientable, irre-

ducible 3-manifold with boundary a single torus. Also it was shown by Culler

and Shalen in [CS84] that there are at least two boundary slopes for a non-

trivial knot exterior in the 3-sphere S3. See also [CS04].

Boundary slopes for some class of knots have been intensively studied.

As a pioneering work, for two-bridge knots, Hatcher and Thurston gave a

complete enumeration of boundary slopes in [HT85]. Following this work,

Hatcher and Oertel [HO89] developed a procedure to compute the bound-

ary slopes for Montesinos knots, on which our arguments heavily depend.

Recently boundary slopes of genus one essential surface for Montesinos knots

of length three are completely determined by Wu [W].

The denominators of boundary slopes have also been studied in relation to

the study of Dehn surgery.

In the following, let F be an essential surface properly embedded in the

exterior of a non-trivial knot K in S3. Assume that the surface F is of Euler

characteristic w and has the boundary slope R of F , which is represented by an

irreducible fraction R ¼ P=Q. Let as denote the number of sheets of F and

ab the number of boundary components of F , where they are related to each

other by as ¼ Qab.

Note that the results cited below will often be modified from the original

statements. It is for making easy to see their relationship and to compare with

our results.
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First, for genus 0 case, by Gordon and Luecke in [GLu87], it was shown

that Qa 1, that is, R is integral. On the other hand, for genus one case,

no corresponding results are found in literature at least by the author. The

related result was obtained by Gordon and Luecke in [GLu95, GLu00]. That

is, if a Dehn surgery on a hyperbolic knot in S3 along a slope R yields a closed

3-manifold containing an incompressible torus, then Qa 2. Note that if such

a surgery can occur, then R is a boundary slope of an essential surface of genus

one. However the converse does not hold in general.

Following these results, it is natural to ask:

Problem 1. Find a generalization to these results for the higher genus

case or the non-orientable surface case.

Concerning this problem, some results are already known. By using the

argument used in [GLi84, Proposition 6.1], together with Gabai’s thin position

argument [Ga87], we have

Qa 6
�w

ab

if the knot K is non-cabled. Originally in their argument, F is assumed to be

orientable, but the assumption might be not necessary. This result had not

been included in [GLi84], but was suggested in [R00].

In [T96], other generalization was developed if K admits some tangle

decomposition. In particular if K has non-trivial t connected summands, he

obtained

Qa
g

t� 1
;

where F is assumed to be orientable and g denotes the genus of F .

Under restriction to the class of knots, two excellent results are known.

One is for two-bridge knots, by Hatcher and Thurston [HT85]. They gave a

classification of essential surfaces in two-bridge knot exteriors, and as a cor-

ollary, it was shown that all such surfaces have integral slopes. Another one is

for alternating knots, by Menasco and Thistlethwaite [MT92]. They presented

that

Qa
�w

ab

for non-torus alternating knots. As a corollary they achieved the a‰rmative

answer to the well-known Cabling Conjecture for alternating knots. We also

remarked that it is known that a torus knot exterior contains only two essential

surfaces and their boundary slopes are both integers, see [T94] for instance.
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Recently, Matignon and Sayari [MS04] obtained similar bounds for non-

orientable surfaces. Their result was obtained by using Dehn surgery method,

and in fact, they do not assume that the surfaces they are considering are

essential. However, as pointing out in [T], the condition that the surfaces

are essential is necessary. Under the essentiality condition, their results could

be interpreted in terms of boundary slopes as follows. They actually showed

that

Qa
�w

ab
þ 4

if F is non-orientable and ab > 1. If ab ¼ 1, they had

Qa�3wþ 1

if K is not a cable knot, and

Qa�5wþ 3

if K is cable knot. They also showed that

Qa
�w

ab

if K is a composite knot, and

Qa
�w

ab
þ 1

if K admits a Conway sphere.

Remark that, for a non-orientable genus two case, namely, punctured

Klein bottle case, it was obtained in [GLu95] that Q ¼ 1, that is, R is integral.

There are many results which give upper bounds on the distances between

boundary slopes. The main problem would be:

Problem 2. Establish a sharp estimate on the distances between boundary

slopes in terms of the genera of the corresponding essential surfaces.

In the following let M be a compact orientable irreducible 3-manifold

whose boundary qM is homeomorphic to the torus T 2. For i ¼ 1; 2, let Fi be

an essential surface properly embedded in M of Euler characteristic wi. The

boundary slope Ri of Fi is represented by an irreducible fraction Ri ¼ Pi=Qi.

Let asi denote the number of sheets. Note that if the number of boundary

of Fi is denoted byabi,abi andasi are related to each other byasi ¼ Qiabi.
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For small genus surface case, intensively fine results have been achieved in

relation to the study of the exceptional Dehn surgery. If both Fi’s are planar,

Gordon and Luecke proved in [Glu96, Theorem 1.1] that Da 4 holds. If both

Fi’s are punctured torus, Gordon proved in [G98, Theorem 1.1] that Da 8

holds. Moreover, he gave Da 5 with just four exceptional manifolds, which

are completely characterized.

As a generalization to the higher genera case, Gordon and Litherland

obtained in [GLi84, Proposition 6.1] the following: Suppose that M contains

no cable spaces. If both Fi’s are orientable and F1 is planar, then D <

6ð�w2=ab2Þ holds.

As a natural extension of [GLi84, Proposition 6.1], Torisu obtained in

[T96, Theorem 1] the following: Suppose that M contains no essential annuli.

If both Fi’s are orientable and of genus gi b 1, then D < 36ð2g1 � 1Þð2g2 � 1Þ
holds.

On the other hand, Rieck obtained in [R00] a slightly sharper bound.

Suppose that M contains no essential annuli. If both Fi’s are orientable and

of genus gi b 1, D < 18ð2g1 þ 1Þðg2 þ 1Þ holds. Moreover if abi b 2 for i ¼
1; 2, then D < 18ðg1 þ 1Þðg2 þ 1Þ holds. This is slightly di¤erent from the

original form. Refer [R00, Theorem 5.2] as the original form. In fact, from

his proof, we can find

D < 18 2
g1

ab1
þ 1

� �
2

g2

ab2
þ 1

� �
:

These above are all proved by the combinatorial analysis of the graph

constructed from the intersection of the two surfaces.

On the other hand, by a di¤erential geometric approach, the following

bound was shown by Hass, Rubinstein and Wang in [HRW99]: Suppose that

the interior of M admits a complete hyperbolic metric of finite volume. Then

Da
ð2pÞ2

3:35

�w1
ab1

�w2
ab2

¼: 11:8
�w1
ab1

�w2
ab2

holds. This bound still holds in the case that the surface Fi is immersed

essential surface. We remark that this also di¤ers from the original form. In

the original form, the surfaces are assumed to be orientable, but this ori-

entability condition is not necessary in their argument. Refer [HRW99,

Theorem 4.5] as the original form. Moreover, by using the result of Agol

[A00, Theorem 5.1], this bound is improved as

Da
36

3:35

�w1
ab1

�w2
ab2

¼: 43

4

�w1
ab1

�w2
ab2

:
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