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ABSTRACT. In this paper we shall show asymptotic behavior of all positive solutions
of the second order nonlinear differential equation written in the title. It will complete
this task to obtain an analytical expression or an asymptotic form of every solution
valid in a neighborhood of an end of its domain.

1. Introduction

Let us consider the second order nonlinear differential equation
(E) X" = eac/ﬁtxlwtac (/ _ d/dt)

where ¢ and x are real variables, and « and A are real parameters. As stated in
the famous Bellman’s book, (E) was deduced from an important second order
nonlinear differential equation containing the Emden equation in astrophysics
and the Fermi-Thomas equation in atomic physics (cf. [1]). Moreover (E) is
related to a positive radial solution of an elliptic partial differential equation
(cf. [13]). In fact (E) has been considered in many papers (cf. [6], [7], [10] and
so on). For example in [6] and [7], (E) was treated in more general form
and existence of the solution continuable to oo was mainly discussed. On
the other hand, in [10] and [14] an initial value problem of (E) with its own
form was considered and asymptotic behavior of all positive solutions was
investigated.
In this paper we shall consider (E) in a domain

-0 <t < o, x> 0.

Since the cases o > 0 and —1 < o < 0 have been already treated in [10] and [14]
respectively, we suppose
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o< —1, A<0

throughout this paper. The assumption 4 < 0 will not harm any generality,
since replacing ¢ with —¢ leads to the case 4 > 0. Here let the initial condition
of (E) be given as

) x(t0) = a, x'(tg) = b

where —o0 < fp < 00, a >0 and —oo < b < o0. Then for every (ty,a,b) we
shall show asymptotic behavior of a solution of an initial value problem (E)
and (I) in terms of getting an asymptotic form or an analytical expression of
the solution valid in a neighborhood of an end of its domain.

For stating our main conclusions, it is necessary to introduce a transfor-
mation

(T) x=p()y"* (namely y=p()*x*), z=y

where p(1) = 2%/%e~* (2¥* = (4%)"/*) is a particular solution of (E). Since we
consider only positive x, we always have y > 0. The transformation such as
(T) was originally used in [8] and [9], and applied in [10] through [16]. Fur-
thermore (T) transforms (E) into a first order rational differential equation

dz _ (o — 1)z + 2adyz — oﬂ}vz(ﬁ — )
dy oyz

(R)

Conversely (T) transforms (R) into (E). Using a parameter s, we rewrite (R)
as a 2-dimensional dynamical system

%: ayz
(D) i
= (= D2 4 2miyz = 22 (7 = ).

The singular points of (D) are (0,0), (1,0), and a solution of (R) always
represents an orbit of (D) in the region yz # 0.

In order to solve (E), we shall get a solution of (D), from this a solution of
(R) and through (T) a solution of (E). In this process, we shall sometimes use

(1.1) z=oy(A+x'/x)

which is obtained from (T). Setting r = ¢, in (1.1), we get from (I) an initial
condition

(1.2) z(»0) = 2o
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of (R) where
yo = A2e*0q?, 20 = ayo(A +b/a).

Now if —2 < a < —1, we claim that there exist three orbits Iy, I, and I3
of (D) with the following properties:
(i) If (p(s),z(s)) € I, then we have

(1.3) lim (y(s), z(s)) = (0,0), lim z(s)/y(s) = al

§—00 §—00
together with

lim p(s) o) =4 (0(s) = p(s)"'(s) — o),

and (y(s),z(s)) tends to (1,0) as s — —oo, going around (1,0) clockwise
infinitely many times.
(i) If (y(s),z(s)) € I'», then we obtain (1.3) and for some r (—o0 <r <)

lim y(s) = o, lim y(s) " ?z(s) = ain/2/(a + 2).

(iif) If (y(s),z(s)) € I's, then for some r (s <r < oo) we have

lim y(s) = oo, lim y(s)"*z(s) = —ad\/2/(a + 2)

§—r S§—r

and as s — —o0, (y(s),z(s)) tends to (1,0) like (y(s),z(s)) € I'1.

I';

=N
y 0 M y

The case -2<o<-1 The case a<-2

Figure 1
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Furthermore if o < —2, we claim that there exists an orbit "} of (D) with
the property (i). Of course these will be shown in the following sections.

If we denote a solution of an initial value problem (E) and (I) as x = x(z),
then we can state our theorems.

THEOREM 1. If =2 < a < —1, then we conclude the following:
(iv) If (to,a,b) satisfies (yo,z0) € I'1, then x(t) is defined for (—co,o0).
Moreover x(t) is represented as

(1.4)  x(¢) = 22 |1 4 2Ce* cos(AV/—1 — at +9)

+ Z Z C™e" Ly, cos n(iN/—1 — at + )

m=2 n=1
o)
+ by SIn n()u\/T—ﬁ}(l + (5)} 4 Z CmCZmeZm,lz‘|
m=1

(C(#0), 0, dyn, by and ¢, are constants)

in the neighborhood of t = oo, and

(1.5) x(t) = }Lz/“cl/“{l + zoo:an(ceazt)n}
n=1

(C(#£0) and a, are constants)

in the neighborhood of t = —o0.
(v) If (t,a,b) satisfies (yo,z0) € I'>, then x(t) is defined for (—oo,w,)
where w; < oo. Furthermore x(t) is represented as

1/a 0
(16)  x(t) = {2“‘; 2)} ¢ (0, — M“{l +3 elos — t>"}
n=1

(¢, are constants)

in the neighborhood of t = w., and

(et) ™

(1.7) x(1) :ct+d+We°‘)“’(l+0(l))

(¢(<0) and d are constants)

as t — —oo.
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(vi) If (to,a,b) satisfies (yo,z0) € I's, then x(t) is defined for (w_,o0)
where w_ > —c0. Moreover x(t) is represented as (1.4) in the neighborhood of
t= o0, and

1/a 0
(1.8) x(1) :{2(0(—|—2)} e_)w(t—w)z/a{l —I-ch(l—a))"}
n=1

)
(¢cn are constants)

in the neighborhood of t = w_.

Now, notice that in the case —2 < o < —1 of Figure 1, R; denotes a region
above I';, R, a region surrounded by Iy, I'; and I';, and R3 a region below
I'y and I's. Then we obtain

THeOREM 1I. If —2 < o < —1, then we conclude the following:
(vii) If (to,a,b) satisfies (yo,z0) € R1, then x(t) is defined for (—o0,m.)
where wy < co. Furthermore x(t) is represented as

(1.9) x(t) = K(wy — 1)

X {1 + Z (@5 — 1) (0 — )" (w04 — t)(Hz)n/z}

I+m+n>1
(K(#0) and dyn, are constants)

in the neighborhood of t = w., and (1.7) as t — —oo.

(viit) If (to,a,b) satisfies (yo,zo) € Ra, then x(t) is defined for (—co, o).
Moreover x(t) is represented as (1.4) in the neighborhood of t = oo, and (1.7) as
t— —oo.

(ix) If (to,a,b) satisfies (yo,z0) € R3, then x(t) is defined for (w_, )
where w_ > —oo.  Moreover x(t) is represented as (1.4) in the neighborhood of
t = o0, and

(1.10) x(t1)=K(t—w-)

X{1+ Z d/mn(t_w)l(l_w)ocm/Z(Z_w)(x+2)n/2}

I+m+n>1
(K(#0) and dy, are constants)
in the neighborhood of t = w_.

In the case o < —2, we can state the theorem more easily since Ry, R3, I,
and I'; do not appear.
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THEOREM III. If o0 < —2, then we conclude the following:
(x) If (to,a,b) satisfies (yo,z0) € I'1, then (iv) follows.
(xi) If not, then the conclusion of (viii) does.

The case (yo,z9) = (1,0) is missing in these theorems. However we clearly
get x(¢) = p(7) in this case.
2. Preliminaries

For proving our theorems, we prepare some lemmas. First, let

Z(y) = (@i/(1 =) {1 £ Voo — (2 — 1)y}
and P denote a region Z (y) <z < Z,(y). Then we get
Lemma 2.1. In (D),
dz/ds >0,=0,<0

respectively if (y,z) e P, z=2Z4(y), (y,z) ¢ P. Here P denotes the closure
of P.

Figure 2

If in (R) we change (y,z) for (1,{) and next (,{) for (¢,w) in terms of

(21) V= 1/’77 z= I/Ca 111:7773/2@, 52771/23
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then we obtain a Briot-Bouquet differential equation

dw _oc+2

(22) =

w4 42Ew? — 202 (E* — w3,

Now, put the Briot-Bouquet differential equation of the general form

(2.3) D _ ALY

e
where f(&,w) is a holomorphic function in the neighborhood of (&, w) = (0,0)
with f(0,0) =0 and £,(0,0) < 0. Then we conclude

LEmMMA 2.2. If there exists a solution w=w(&) of (2.3) and if 0 is an
accumulation point of w(&) as & tends to 0 so that arg & is bounded, then w(¢&) is
the unique holomorphic solution.

This is Lemma 2.5 of [14] and the proof is omitted.

Let x = x(¢) be a solution of (E) and (w_,w,) denote the domain of x(z).
Moreover let y and z be functions obtained from x(¢) through (T). Then we
get

LemMmaA 2.3.  Suppose that o # —2, T = w4 and z does not vanish. Then if
y— o0 as t— 1, we obtain |t| < oo.

ProoF. Since z does not vanish, z is a solution of (R). Therefore from
y — o0 as t — 7 and (2.1) there exists a solution of (2.2) continuable to & =0
(namely y = o). So let us examine the solution of (2.2) for every value to
which the solution tends as £ — 0. For this, notice that the right-hand side of
(2.2) vanishes at (&, w) = (0, +p) where

p = (1/ai)/(2+2)/2

and let w, denote a solution of (2.2) which has an accumulation point y as
E—0.

Suppose that y # 0, +p, +00. Then from Painlevé’s theorem (cf. [3]), & is
a solution of d&/dw =¢&/x(&,w) (x(& w) is the right-hand side of (2.2)) with
an initial condition &(y) = 0. Hence the uniqueness of the solution implies a
contradiction ¢ = 0. Thus this case does not occur. Namely y is the limit of
w, and y =0, +p, too. Notice that the discussion for obtaining & = 0 will be
often used without such a detailed description.

Next suppose y =0. Then if -2 < a < —1, we have from (2.2)

Wy = Cg_(l+2/“) 1+ Z amnfm{cé_(l_'—z/“)}n

m+n>1
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where C is an arbitrary nonzero constant and the power series converges in the
neighborhood of & =0, since —(o + 2)/a > 0 and w divides the right-hand side
of (2.2) (cf. Chapitre III of [5], especially a formula (1.17) of this). Returning
to the original variables through (2.1) and (T), we obtain

Cy1+l/a{1 + Z amny111/2(Cy(a+2)/21)n}y/ -1
m+n>1
and integrating both sides of this with respect to ¢
acyl/%_i_ Z &mny—m/2+((oc+2)/2oc)n+l/oc =t+D
m+n>1

where D is an integral constant. If y — oo as t — w_, then the left-hand side

vanishes as t — w_ and hence we have D = —w_ and w_ > —oo. Similarly if
y — o0 as t — w,, then we obtain D = —w, and w; < co. Therefore we have
(24) yl/x{l + Z bmnym/2+((a<+2)/2x)n}

m+n>1

=(t—w_)/aC and (1 —w,)/aC.

If « < =2, then Lemma 2.2 implies that w, is the unique holomorphic solution
as —(x+2)/a<0. Hence we get a contradiction w, = 0 and this case does
not occur.

Now suppose that y = +p. Then we get —2<a < —1. Putting 0=
w— vy, we have

d9_2x+2) . 2a+2)

édfi o2 o

0+ ---

where - - - denotes a power series (a polynomial here) starting from terms whose
degrees are greater than the degree of the previous terms. Since 2(a + 2)/a < 0,
Lemma 2.2 implies that € is the unique holomorphic solution represented as

0= i a,&”.
n=1

Returning to the original variables, we get

(2.5) 2=y (p_l + any_"/2>

n=1

(2:6) =y <—P1 + any”/2>

n=1
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which imply yy=3/2(1 +---)y’ = 1. Integrating both sides with respect to ¢, it
follows from the similar discussion done for getting (2.4) that

o0

2
(2.7) —2yy 12 Z%y’(”“)/z =t—w_ and 1 —

n=1

where w_ > —o0 and w; < 0.
Finally suppose that y = +00. Putting w =1/6, we have § — 0 as £ — 0
and
g _ ol
d0 (0 +2)0% — 4ail0 + 24223 (&2 = 1)

These imply a contradiction £ =0. Consequently this case does not occur.
Namely if y — o0 as t — 7, then in all cases to occur we obtain |7 < co. This
completes the proof.

We get solutions of (E) from (2.2) only through (2.4) and (2.7), and there-
fore representations of the solutions as follows:

COROLLARY 2.4. Suppose o # —2 and let y be an accumulation point of
a solution w of (2.2) as ¢ — 0. Then if =2 <o < —1 and y =0, we get either
(1.10) in the neighborhood of t = w_ or (1.9) in the neighborhood of t = w,,
and if =2 < o< —1 and y = +p, either (1.8) in the neighborhood of t = w_ or
(1.6) in the neighborhood of t = w.. Otherwise a solution x(t) of (E) cannot be
obtained.

In the alternatives of this corollary, notice that if & — 0 as t — w4 we take
the representation valid in the neighborhood of ¢ = w, respectively.

PrROOF OF COROLLARY 2.4. In (2.4) we put
0=yl t=(t—w_)/aC or (t—w;)/aC

and get

m+n=>1

Hence we have

0{1 + ) bmng—mﬁ@(wz)n/z} —

071/2 1+ Z cmnolm/Z()(a+2)n/2}:T—z/2

m+n>1

0(1+2)/2{1 + Z dmne—zm/20(1+2)n/2} — T(OH»Z)/Z.

m+n>1
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From the last two equations we obtain double power series of =% and ¢(*+2)/2
representing 0~*?% and 622, Substituting these into the first equation, we
get

0= f{l + Z gnm,[—m1/2f(oc+2)n/2}.

m+n>1

Returning to the original variables and using (T), we have (1.9) or (1.10).
For obtaining (1.6) or (1.8), it suffices to apply the inverse function theo-
rem directly to (2.7) and use (T). This completes the proof.

Furthermore we have
LemMa 2.5, If = —2 and z does not vanish, then y is bounded.

Proor. If y is unbounded, then (2.2) namely

d
(2.8) éd—vg = 456w + 432(E — D)
has a solution w = w(&) continuable to ¢ =0 since z does not vanish.
Now if w(£) accumulates to a nonzero number as ¢ — 0, then since the
right-hand side of (2.8) does not vanish we get a contradiction ¢ = 0.
Next if w(&) accumulates to 0 as ¢ — 0, then the theory of [4] implies that

(&) = {(820og e+ O 1+ S0 wad {84%(log ¢+ O} 1 2
1<2j+k<2(N+1)
|Q| < Ky[log & ™

where C is an arbitrary constant, N is a positive integer and Ky is a constant,
since w divides the right-hand side of (2.8) and £ € R. Thus as £ — 0, we have
a contradiction w ¢ R.

In both cases we have a contradiction and hence the proof is completed.

3. Existence of the orbit 7

First let us consider solutions of (D) in the neighborhood of its singular
point (0,0). When a solution of (D) passes a line z = aly, we get

d
(3.1) $(z —ady) = o222 >0,

Moreover from Lemma 5 of [10] and a transformation w = yz~! we conclude
that if a solution z(y) of (R) converges to 0 as y — 0, we have
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(3.2) lim @ = .
=0y

From the proof of Proposition 8 of [10], there exists uniquely a solution z;(y)
of (R) represented as

i

(3.3) z1(y) = ady + 2p? f—(”z)’“f +
20

in the neighborhood of y =0 such that (3.2) and

(3.4 tim 22— ) = v ta) - )

are valid. Hence from (T) and (3.3) we get y' =ady(1+---). Solving this,
we have y(1 +---) = Ce* which implies # — —oo0 as y — 0. Thus we obtain
a representation (1 ) o f a solution x(7), and this is valid in the neighborhood
of t =—o0.

Moreover notice that (y,z;(y)) is a solution of (D) whose orbit is
z=z1(y). If y of (y,z1(y)) increases, then s decreases since dy/ds <0 in
z>0 from (D). Therefore since Ay> <0 if y # 0, it follows from (3.1) that
in the case y > 0, the orbit z=2z;(y) and the line z = ady cannot cross and
z1(y) < ady. Furthermore the line z=oaly and a curve z=Z,(y) cross.
Therefore as y increases, the orbit z = z;(y) increases from Lemma 2.1 and
gets into the region P.

F 2 =0y
P
z=24y)
0 1 Y

The arrows show directions of the orbits of (D) as s increases.

Figure 3
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Next we consider solutions of (D) in the neighborhood of its singular point
(1,0). Putting y =147 and z={ in (D), we get

T A I
ds ds

in the neighborhood of (#,{) =(0,0). The coefficient matrix of the linear
terms of this has eigenvalues

w=1+v-1—-aial, a=01-v-1—-aial
Therefore from Theorem A of [2] and its proof, we get

N = ade! + ade™ + Z A (Aet)" (Ae™)"

m+n=>2

{=pde™ + gAe™ + " by(Ae™)" (Ae™)"

m+n>2

(3.5)

where A is an arbitrary nonzero constant, and d,,,, b,,, are constants such that
Ay = Apmy, bun = bum, since 7, € R. Hence we obtain a solution

y=1+o0de” +ode™ + Y ap(Ae’)"(Ae)"

mn>2
(3.6) o o
z = uAde* + pde* + Z byn(Aet)™ (Ae™)"
m+n>2
of (D) which is valid in the neighborhood of s = —co, since # — 0 as s —» —0

from (3.5). The orbit (3.6) tends to (1,0) as s — —oo.

Now, let us investigate how (3.6) does so. For this, put Imu=v
(=aiv/—1—0a), 6 =arg A, namely A = |A|e”, u=al+vi. Then from (3.5)
we get

n = 20| Ale™™ cos(vs + ) + O(e***)
¢ =2|A|e™ {al cos(vs 4+ ) — v sin(vs + )} + O(e*H)
as s — —o0. So, define a set
Se={s:sp—e<s<sy+er,—e<s<t,+e mn=0,+1,+2,...)}
for a sufficiently small positive ¢, where s =s,, s =1, are solutions of
cos(vs +0) =0, ol cos(vs 4+ J) — vsin(vs +0) =0
respectively, namely

Sp =Vv (/2 — 0+ nn), 7, =v Y(Tan"! al/v — & + nn).
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Then as s¢ .S, and s — —o0, cos(vs+0) and al cos(vs+J) — vsin(vs +J) do
not accumulate to 0 and we obtain

n = {20]Ale™ cos(vs + ) }{1 + O(e**)}
¢ =2|A|e™ {al cos(vs + ) — v sin(vs +0) H1 + O(e*™)}

% = {}v —5 tan(vs —1—5)}{1 + O(e™™)}.

Here if we put # =rcos @, { =rsin 6§, then we have
r= 0(e™), 0 = tan™! {)L —5 tan(vs +5)}{1 + 0(e™)}.

Hence (3.6) tends to (1,0), going around this clockwise infinitely many times,
since #, { are continuous in s.
Here we need the following:

Lemma 3.1. (D) has no periodic orbit in the region y > 0.

ProOOF. Suppose that (D) has a periodic orbit I’y in the region y > 0.
Then I'y surrounds the singular point (1,0). However if z # 0, then (D) is
equivalent to a 2-dimensional dynamical system

ai o dt oy

_1).2 25202 3
(3.7) dy dz  (o— 1)z +20lyz — a2 (y y)'

On the y axis z =0, we get from (D)

dy dz 27202 3

—=0 —=—u"A - 7).

=0 =AY

This implies that if (y,z) # (0,1), then an orbit (y,z) of (D) passes the y axis
only as s attains discrete values. Similarly (y,z) has the same property as an
orbit of (3.7). Hence orbits of (D) are those of (3.7). Therefore using ¢ as a
parameter, we represent [y as

Since (3.7) is a dynamical system, y(¢) and z(7) are defined on —o0 <7< ©
and periodic functions. Moreover since y(f) is the y coordinate of I'y, y(¢)
periodically attains every value of a closed interval containing 1 as its inner
point.

Now if we denote as x = x(#) the solution of (E) got from applying (T) to
Iy, then we have
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(3.8) x(1) = p(0)y(1)'"*.

On the other hand, since x(¢) can be continued to oo, it follows from Kamo’s
theorem (Theorem 4.3 (ii) of [6]) that we obtain

(3.9) x(t) ~ p(1) as t — oo.

However (3.8) and (3.9) are contradiction. This denies the existence of "4 and
the proof is complete.

LemMA 3.2. A solution of (D) passing a point of P tends to (1,0) as
§— —0o0.

Proor. Let z=2z(y) be an orbit of (D) passing a point of P. Then if
z(y) is bounded as y — oo, it implies a contradiction # =0 to put y =1/ in
(R). Indeed, from (E) we have

dy an’z

dz (0 — Dpdz2 + 2uinpz — 0202 (p — 1)

Moreover from Lemma 3.1, there does not exist a periodic orbit around (1,0).
Hence from Poincaré-Bendixon’s theorem the solution (y,z(y)) tends to (1,0)
as s — —oo and the proof is completed.

Recall here that the orbit z = z;(y) gets into P as s decreases. Then it
follows from Lemma 3.2 that (y,z;(y)) tends to (1,0) as s — —oco. Therefore
z1(y) is represented as (3.6) in the neighborhood of s = —oo. Substituting
(3.6) into z = y’ and comparing coefficients as power series of 4 and 4, we get
s=1t/au+ C (C is a constant) and a solution x(#) of (E) such as

(3.10) x(t) = /12/“6)"{1 + AelH/t 4 golt/0t

m+n>2

+ Z xmn(Ae(”/“)’)m(/fe(’z/“”)”}

which is valid in the neighborhood of # = co. Here A4e#C is replaced with A.
Since x(¢) attains real values, we have x,,, = X, and (1.4) where C = |A4| from
(3.10).

Now let I'y be an orbit of (D) which is represented as z = z;(y) in the
neighborhood of y =0. Then from the above discussion I'; tends to (1,0)
as s — —oo in the way stated at the outset. Moreover take (,a,b) of (I)
satisfying (yo,z0) € I'1 and let x(¢) be a solution of (E) and (I). Then through
(T) we define a solution (y,z) of (D) passing (o, zo) so that (y,z) also satisfies
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(3.7). Therefore if (y,z) passes (yo,z0) at some ¢, then y is defined for
—o0 < t< oo and the orbit of (y,z) is the whole of I';. Hence from the
above discussion we get the representations (1.4) and (1.5) of x(¢) as in (iv) of
Theorem 1.

4. On the case (fy,a,b) with (yo,zo) ¢ I'y

Now we take (fy,a,b) of (I) such that (yg,zo) ¢ I'1. Then we get a
solution z(y) of (R) from the solution of (D) passing (yo,zo), and a solution
x(¢) of (E) and (I) from z(y) through (T). Conversely from x(¢) and (T) we
define the same solution (y,z) of (D) whose orbit is z = z(y). Here recall that
(w—, ;) denotes the domain of x(¢).

Consider the case t — w,. Then there exist the following possibilities:

(4.1) w4 < 00, ZIBL& x(6)=0
(4.2) w4 < 00, rE{R x(t) =
4.3) Wi = o0, IE?UE x(t) =0
(4.4) W = 0, 0< IEI(R x(1) < oo
(4.5) W, = o0, IE?A x(t) = o0.

In the cases (4.1), (4.3) and (4.4), we get lim,,,, y = oo from (T). Here
we show the fact that z does not vanish for y > 1.

Suppose the contrary. Then z vanishes for some y(>1). Therefore (y,z) is
in the region P of Figure 2. However if dy/ds # 0, then from (T) and (D) we
get

ds dy dy l <o
di— di/ ds oy
Furthermore dy/ds # 0 holds for almost every s, since dy/ds =0 now occurs
only if z=0 and implies dz/ds # 0 in (D). Thus s decreases as ¢ increases.
Therefore from Lemma 3.2 (y,z) tends to (1,0) as ¢t — w, since (y,z) also
satisfies (3.7). This contradicts lim,,,, y = co. Hence we conclude the above
fact.

Consequently if o # —2, then Lemma 2.3 implies w; < co. Namely (4.3)
and (4.4) do not occur. So we suppose o # —2 and (4.1).

Notice here that we have —c0 < x'(w;) < 0 from x”(¢) > 0 and x(w) = 0.
Then if o« < —2, we get from (T) and (1.1)
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/ /
im 2 = tim X0 _ et iy X0
IE‘I(R yoz 11—1>1;r)1+ y1/2x(t) e ,l_lgl_ x(t)(wrz)/z

=0.
Namely using ¢ and w defined in (2.1), from the above fact we have a solution
w of (2.2) with lims_9 w = o0o. Therefore from Corollary 2.4 there does not
exist x(¢) satisfying (4.1).

Suppose —2 < o < —1 now. Then if x'(w,) =0, 'Hospital’s theorem
implies

2 / 2 212

. o 1 t) 202
1 -3/2 — 2/12 CZT | X ( — )
(Jim o3 =i i L0 =200

Now we show lim, .,,, y™3/?z>0. If (y,z) e P for some ¢, then from the rea-
soning used for showing the above fact, (y,z) tends to (1,0), which contradicts
y— o0 as t — wy. Moreover if (y,z) ¢ P and z < 0 for some ¢ (cf. the point
p in Figure 4), then y decreases as ¢ increases from )y’ =z < 0. Hence since
y— oo as t — w4, (y,z) enters a region z > 0 in the end. In this case (y,z)
exists below I'y. Therefore (y,z) gets into P and we have a contradiction
(y,z) — (1,0) again. Thus we obtain z >0 namely lim,,, y~*?z >0, and
(4.6) fim Pz p (o= (/)T 2)2)

(cf. the point ¢ in Figure 4).

Here, recall the proof of Lemma 2.3. Then the orbit of (D) satisfying
(4.6) (namely y=p) is represented only as (2.5) in the neighborhood of
y = oo. Hence this exists uniquely. So let z = z,(y) be the orbit with (4.6).
Then I'; appearing in Section 1 is the orbit z = z;(y). As shown below, I,

S
~
<

Figure 4
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tends to (0,0) as s — oo. Now if we take (1, a,b) satisfying (yo,zo) € I'2, we
get (1.6) from Corollary 2.4.
On the other hand, if x'(w;) # 0 namely —oo < x'(wy) <0 we have
Jfim »732 = oo
Therefore if z=z(y) is an orbit of (y,z) satisfying this, then we obtain
z(y) > z2(y) and (,a,b) satisfies (y9,z0) € Ry (cf. Figure 1). Moreover we
get (1.9) from Corollary 2.4.

Next if « = —2, then Lemma 2.5 implies that (4.1), (4.3) and (4.4) do not
occur. Indeed it is already shown that z does not vanish.

Now, suppose (4.2). Then we get lim,.,, y =0. Since y >0, z(=)')
attains a negative value and hence from the same reasoning as in the case
(4.1) and —2 < a < —1 we conclude a contradiction (y,z) — (1,0) as ¢t — w,
(cf. the point p of Figure 4).

Suppose (4.5). Then if |x'(w)| < o0, we have

and

lim y= lim A2 <x(l.)> —
e

t—w, t—w,y —A

Hence from Lemmas 2.3, 2.5 and 3.2 we get a contradiction as in the cases
(4.1), (4.3) and (4.4).
If x'(t) - oo as t — w,, then we have

fim X9~ gim X _ oy ! (x(t))lﬂ.

oy e mo. R o )2 \e M

However the sign of z = y’ is definite as the point ¢ of Figure 4, or a solution
(y,z) of (D) gets into P and is on the curve tending to (1,0) spirally as the
point p of Figure 4. Therefore lim,_,, y exists. Hence lim,_,,, x(¢) /e‘“ also
exists. If ¢ denotes this, then we obtain ¢ = (1/2%)c'**. Therefore we get
c=0, 22/ *, oo and lim,.,. y = 00,1,0 respectively. However lim,.,, y =0
is impossible as in the case (4.2), and lim, ., y = oo deduces a contradiction
from Lemmas 2.3, 2.5 and 3.2. Hence we conclude lim,,, y=1. In this
case the solution (y,z) of (D) tends to (1,0), turning. Moreover if —2 <
o < —1 and z = z(y) is the orbit of (y,z), then we get z(y) < z»(y) and hence
take (f9,a,b) such that (yo,z¢) belongs to a region below I';. Furthermore
from the same reasoning as in Section 3 we have (1.4) and w, = o0.
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Next we consider the case 1 — w_. Then there exist the following possi-
bilities:

4.7) w_ > —o0, tEI(R x(t)=0
(4.8) w_ > —00, z&r}ol, x(t) = o0
(4.9) w_ = —o0, tE}l;LI)li x(t)=0
(4.10) w_ = —o0, 0< IE}ICIU{ x(f) < oo
(4.11) w_ = —00, tE»raI)l, x(1) = o0.

Define (y,z) from x(¢) and (T) again. Then as stated in the proof of
Lemma 3.2, z is not bounded as y — oo. Therefore if (y,z) e P and z <0
for some ¢, then it follows from z = y’ and Lemma 2.1 that as ¢ decreases, y
increases, (y,z) gets into the region z > 0, and eventually y decreases.

Therefore if (4.7) is valid, then it suffices to follow the discussion done in
the cases (4.1), (4.3) and (4.4). Hence we conclude that if o < —2, then there
does not exist x(z) satisfying (4.7) and if -2 < o < —1 and x'(w_) =0, then z
satisfies (2.6) in the neighborhood of y = co. Here let I'5 be the orbit of (D)
which is represented uniquely as (2.6) in the neighborhood of y = co. Then
since I3 lies in the region z < 0 and (y,z) ¢ P as p of Figure 4, I'; tends to
(1,0) as s —» —oco. Furthermore (f, a,b) satisfies (o, zo) € I's and we get (1.8)
in the neighborhood of 7= w_ from Corollary 2.4. Moreover we conclude
that if —2 < o < —1 and x'(w_) # 0, then (#, a, b) satisfies (o, zo) € R3 and we
get (1.10) in the neighborhood of r=cw_. If o = -2, Lemmas 2.5 and 3.2
imply that (4.7) does not occur.

In the cases (4.8), (4.10) and (4.11), we get from (T)

(4.12) lim y=0.
—w_

Now we suppose (4.9). If x'(w_) # 0, then we have (4.12) immediately.
On the other hand, if x'(w_) =0, then from the same discussion as in the
case (4.5) we obtain lim, ., y=0,1,0. If lim,,, y=1, then the orbit
(y,z) of (D) tends to (1,0). However since I'; surrounds (1,0), (y,z) cannot
tend to (1,0), going around this anticlockwise. Therefore from Lemma 2.1
and z = ', lim,_,_ y =1 is impossible. Moreover from Lemmas 2.3, 2.5 and
3.2, lim,,_ y = oo deduces a contradiction. Hence we get (4.12).

Recall that (y,z) is a solution of (D) passing (yo,zo). Then if (y,z) is
in the region 0 < z < z;(y) and tends to (0,0) as ¢t — w_ (as the point p of
Figure 5), then z is a solution of (R) with (3.2). However a solution of (R)
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Figure 5

satisfying (3.2) and (3.4) is only z;(y). Therefore (3.2) holds and (3.4) does
not. This is a condition (9) of [12] and hence from discussion after this we
obtain z > z;(y). This is a contradiction and (y,z) does not tend to (0,0) as
t — w_, remaining in 0 <z < z;(p).

So, suppose that (y,z) is in the region z < 0 (as the point ¢ of Figure 5).
Then y increases as ¢ decreases since ' =z < 0. Therefore due to (4.12) and
the above, (y,z) enters the region z > 0, going around (1,0). In this case
(»0,20) ¢ I'; U Ry must hold. If (y,z) is in the region z > 0, then as ¢ decreases
y decreases from y’ =z >0 and if ¢ is sufficiently close to w_, then (y,z) is
outside P. On the other hand, s increases as y decreases in terms of dy/ds =
ayz < 0. Therefore as ¢ decreases, z decreases from Lemma 2.1 and Poincaré-
Bendixon’s theorem implies that (y,z) converges to (0,0) as f— w_, since
(y,z) satisfies the 2-dimensional dynamical system (3.7). Hence z is a solution
of (R) satisfying (3.2). Here notice that from the discussion just done, I, also
tends to (0,0) as t — w_ (namely s — o0).

Moreover from the uniqueness of zi(y), z satisfies a condition (9) of [12]
again and from discussions after this we obtain
(4.13) x(t) ~ ct as t — —o
where ¢ is a negative constant. Hence integrating (E) from —oo to ¢ twice we
get (1.7) (cf. [6]).

Here for proving (v) of Theorem I, suppose that (fy,a,b) satisfies
(»0,20) € I',.  Then in the above discussions of the case t — w,, we get only
the case when (4.1), —2 <a < —1 and x'(w;) =0 hold and do not get the
other cases. Moreover in those of the case 1 — w_, we do not have the case
(4.7) and have the other cases. Since all cases to occur have been examined,
we therefore conclude (v) of Theorem I. Similarly we get (vi) through (xi) of
Theorems I, II and III. Now the proof is completed.
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At the end of this paper, let us notice about the solution x4(7) of x” =
+e*x!1%% satisfying (4.13) which appeared also in [12]. From the same proof
as of (1.7), x(¢) satisfies

(cl)l-HX
a2 )2

xi(f) =ct+d+ (14 0(1))

as t — —oo. Here the double signs correspond in the same order.
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