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Abstract. In this paper we shall show asymptotic behavior of all positive solutions

of the second order nonlinear di¤erential equation written in the title. It will complete

this task to obtain an analytical expression or an asymptotic form of every solution

valid in a neighborhood of an end of its domain.

1. Introduction

Let us consider the second order nonlinear di¤erential equation

x 00 ¼ ealtx1þa ð0 ¼ d=dtÞðEÞ

where t and x are real variables, and a and l are real parameters. As stated in

the famous Bellman’s book, (E) was deduced from an important second order

nonlinear di¤erential equation containing the Emden equation in astrophysics

and the Fermi-Thomas equation in atomic physics (cf. [1]). Moreover (E) is

related to a positive radial solution of an elliptic partial di¤erential equation

(cf. [13]). In fact (E) has been considered in many papers (cf. [6], [7], [10] and

so on). For example in [6] and [7], (E) was treated in more general form

and existence of the solution continuable to y was mainly discussed. On

the other hand, in [10] and [14] an initial value problem of (E) with its own

form was considered and asymptotic behavior of all positive solutions was

investigated.

In this paper we shall consider (E) in a domain

�y < t < y; x > 0:

Since the cases a > 0 and �1 < a < 0 have been already treated in [10] and [14]

respectively, we suppose
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a < �1; l < 0

throughout this paper. The assumption l < 0 will not harm any generality,

since replacing t with �t leads to the case l > 0. Here let the initial condition

of (E) be given as

xðt0Þ ¼ a; x 0ðt0Þ ¼ bðIÞ

where �y < t0 < y, a > 0 and �y < b < y. Then for every ðt0; a; bÞ we

shall show asymptotic behavior of a solution of an initial value problem (E)

and (I) in terms of getting an asymptotic form or an analytical expression of

the solution valid in a neighborhood of an end of its domain.

For stating our main conclusions, it is necessary to introduce a transfor-

mation

x ¼ pðtÞy1=a ðnamely y ¼ pðtÞ�a
xaÞ; z ¼ y 0ðTÞ

where pðtÞ ¼ l2=ae�lt ðl2=a ¼ ðl2Þ1=aÞ is a particular solution of (E). Since we

consider only positive x, we always have y > 0. The transformation such as

(T) was originally used in [8] and [9], and applied in [10] through [16]. Fur-

thermore (T) transforms (E) into a first order rational di¤erential equation

dz

dy
¼ ða� 1Þz2 þ 2alyz� a2l2ðy2 � y3Þ

ayz
:ðRÞ

Conversely (T) transforms (R) into (E). Using a parameter s, we rewrite (R)

as a 2-dimensional dynamical system

dy

ds
¼ ayz

dz

ds
¼ ða� 1Þz2 þ 2alyz� a2l2ðy2 � y3Þ:

ðDÞ

The singular points of (D) are ð0; 0Þ, ð1; 0Þ, and a solution of (R) always

represents an orbit of (D) in the region yz0 0.

In order to solve (E), we shall get a solution of (D), from this a solution of

(R) and through (T) a solution of (E). In this process, we shall sometimes use

z ¼ ayðlþ x 0=xÞð1:1Þ

which is obtained from (T). Setting t ¼ t0 in (1.1), we get from (I) an initial

condition

zðy0Þ ¼ z0ð1:2Þ
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of (R) where

y0 ¼ l�2ealt0aa; z0 ¼ ay0ðlþ b=aÞ:

Now if �2 < a < �1, we claim that there exist three orbits G1, G2 and G3

of (D) with the following properties:

(i) If ðyðsÞ; zðsÞÞ A G1, then we have

lim
s!y

ðyðsÞ; zðsÞÞ ¼ ð0; 0Þ; lim
s!y

zðsÞ=yðsÞ ¼ alð1:3Þ

together with

lim
s!y

yðsÞ�1
vðsÞ ¼ l ðvðsÞ ¼ yðsÞ�1

zðsÞ � alÞ;

and ðyðsÞ; zðsÞÞ tends to ð1; 0Þ as s ! �y, going around ð1; 0Þ clockwise

infinitely many times.

(ii) If ðyðsÞ; zðsÞÞ A G2, then we obtain (1.3) and for some r ð�ya r < sÞ

lim
s!r

yðsÞ ¼ y; lim
s!r

yðsÞ�3=2
zðsÞ ¼ al

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðaþ 2Þ

p
:

(iii) If ðyðsÞ; zðsÞÞ A G3, then for some r ðs < rayÞ we have

lim
s!r

yðsÞ ¼ y; lim
s!r

yðsÞ�3=2
zðsÞ ¼ �al

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðaþ 2Þ

p
and as s ! �y, ðyðsÞ; zðsÞÞ tends to ð1; 0Þ like ðyðsÞ; zðsÞÞ A G1.

Figure 1
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Furthermore if aa�2, we claim that there exists an orbit G1 of (D) with

the property (i). Of course these will be shown in the following sections.

If we denote a solution of an initial value problem (E) and (I) as x ¼ xðtÞ,
then we can state our theorems.

Theorem I. If �2 < a < �1, then we conclude the following:

(iv) If ðt0; a; bÞ satisfies ðy0; z0Þ A G1, then xðtÞ is defined for ð�y;yÞ.
Moreover xðtÞ is represented as

xðtÞ ¼ l2=ae�lt

"
1þ 2Celt cosðl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� a

p
tþ dÞð1:4Þ

þ
Xy
m¼2

Xy
n¼1

Cmemltfamn cos nðl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� a

p
tþ dÞ

þ bmn sin nðl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� a

p
tþ dÞg þ

Xy
m¼1

cmC
2me2mlt

#

ðCð0 0Þ; d; amn; bmn and cm are constantsÞ

in the neighborhood of t ¼ y, and

xðtÞ ¼ l2=aC1=a 1þ
Xy
n¼1

anðCealtÞn
( )

ð1:5Þ

ðCð0 0Þ and an are constantsÞ

in the neighborhood of t ¼ �y.

(v) If ðt0; a; bÞ satisfies ðy0; z0Þ A G2, then xðtÞ is defined for ð�y;oþÞ
where oþ < y. Furthermore xðtÞ is represented as

xðtÞ ¼ 2ðaþ 2Þ
a2

� �1=a
e�loþðoþ � tÞ�2=a 1þ

Xy
n¼1

cnðoþ � tÞn
( )

ð1:6Þ

ðcn are constantsÞ

in the neighborhood of t ¼ oþ, and

xðtÞ ¼ ctþ d þ ðctÞ1þa

a2l2
ealtð1þ oð1ÞÞð1:7Þ

ðcð<0Þ and d are constantsÞ

as t ! �y.
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(vi) If ðt0; a; bÞ satisfies ðy0; z0Þ A G3, then xðtÞ is defined for ðo�;yÞ
where o� > �y. Moreover xðtÞ is represented as (1.4) in the neighborhood of

t ¼ y, and

xðtÞ ¼ 2ðaþ 2Þ
a2

� �1=a
e�lo�ðt� o�Þ�2=a 1þ

Xy
n¼1

cnðt� o�Þn
( )

ð1:8Þ

ðcn are constantsÞ

in the neighborhood of t ¼ o�.

Now, notice that in the case �2 < a < �1 of Figure 1, R1 denotes a region

above G2, R2 a region surrounded by G1, G2 and G3, and R3 a region below

G1 and G3. Then we obtain

Theorem II. If �2 < a < �1, then we conclude the following:

(vii) If ðt0; a; bÞ satisfies ðy0; z0Þ A R1, then xðtÞ is defined for ð�y;oþÞ
where oþ < y. Furthermore xðtÞ is represented as

xðtÞ ¼ Kðoþ � tÞð1:9Þ

� 1þ
X

lþmþnb1

dlmnðoþ � tÞ lðoþ � tÞ�am=2ðoþ � tÞðaþ2Þn=2
( )

ðKð0 0Þ and dlmn are constantsÞ

in the neighborhood of t ¼ oþ, and (1.7) as t ! �y.

(viii) If ðt0; a; bÞ satisfies ðy0; z0Þ A R2, then xðtÞ is defined for ð�y;yÞ.
Moreover xðtÞ is represented as (1.4) in the neighborhood of t ¼ y, and (1.7) as

t ! �y.

(ix) If ðt0; a; bÞ satisfies ðy0; z0Þ A R3, then xðtÞ is defined for ðo�;yÞ
where o� > �y. Moreover xðtÞ is represented as (1.4) in the neighborhood of

t ¼ y, and

xðtÞ ¼ Kðt� o�Þð1:10Þ

� 1þ
X

lþmþnb1

dlmnðt� o�Þ lðt� o�Þ�am=2ðt� o�Þðaþ2Þn=2
( )

ðKð0 0Þ and dlmn are constantsÞ

in the neighborhood of t ¼ o�.

In the case aa�2, we can state the theorem more easily since R1, R3, G2

and G3 do not appear.
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Theorem III. If aa�2, then we conclude the following:

(x) If ðt0; a; bÞ satisfies ðy0; z0Þ A G1, then (iv) follows.

(xi) If not, then the conclusion of (viii) does.

The case ðy0; z0Þ ¼ ð1; 0Þ is missing in these theorems. However we clearly

get xðtÞ1 pðtÞ in this case.

2. Preliminaries

For proving our theorems, we prepare some lemmas. First, let

ZGðyÞ ¼ ðal=ð1� aÞÞyf1G
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a� ða� 1Þy

p
g

and P denote a region Z�ðyÞ < z < ZþðyÞ. Then we get

Lemma 2.1. In (D),

dz=ds > 0; ¼ 0; < 0

respectively if ðy; zÞ A P, z ¼ ZGðyÞ, ðy; zÞ B P. Here P denotes the closure

of P.

If in (R) we change ðy; zÞ for ðh; zÞ and next ðh; zÞ for ðx;wÞ in terms of

y ¼ 1=h; z ¼ 1=z; w ¼ h�3=2z; x ¼ h1=2;ð2:1Þ

Figure 2
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then we obtain a Briot-Bouquet di¤erential equation

x
dw

dx
¼ � aþ 2

a
wþ 4lxw2 � 2al2ðx2 � 1Þw3:ð2:2Þ

Now, put the Briot-Bouquet di¤erential equation of the general form

x
dw

dx
¼ f ðx;wÞð2:3Þ

where f ðx;wÞ is a holomorphic function in the neighborhood of ðx;wÞ ¼ ð0; 0Þ
with f ð0; 0Þ ¼ 0 and fwð0; 0Þ < 0. Then we conclude

Lemma 2.2. If there exists a solution w ¼ wðxÞ of (2.3) and if 0 is an

accumulation point of wðxÞ as x tends to 0 so that arg x is bounded, then wðxÞ is

the unique holomorphic solution.

This is Lemma 2.5 of [14] and the proof is omitted.

Let x ¼ xðtÞ be a solution of (E) and ðo�;oþÞ denote the domain of xðtÞ.
Moreover let y and z be functions obtained from xðtÞ through (T). Then we

get

Lemma 2.3. Suppose that a0�2, t ¼ oG and z does not vanish. Then if

y ! y as t ! t, we obtain jtj < y.

Proof. Since z does not vanish, z is a solution of (R). Therefore from

y ! y as t ! t and (2.1) there exists a solution of (2.2) continuable to x ¼ 0

(namely y ¼ y). So let us examine the solution of (2.2) for every value to

which the solution tends as x ! 0. For this, notice that the right-hand side of

(2.2) vanishes at ðx;wÞ ¼ ð0;GrÞ where

r ¼ ð1=alÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 2Þ=2

p
and let wg denote a solution of (2.2) which has an accumulation point g as

x ! 0.

Suppose that g0 0;Gr;Gy. Then from Painlevé’s theorem (cf. [3]), x is

a solution of dx=dw ¼ x=wðx;wÞ ðwðx;wÞ is the right-hand side of (2.2)) with

an initial condition xðgÞ ¼ 0. Hence the uniqueness of the solution implies a

contradiction x1 0. Thus this case does not occur. Namely g is the limit of

wg and g ¼ 0;Gr;Gy. Notice that the discussion for obtaining x1 0 will be

often used without such a detailed description.

Next suppose g ¼ 0. Then if �2 < a < �1, we have from (2.2)

wg ¼ Cx�ð1þ2=aÞ 1þ
X

mþnb1

amnx
mfCx�ð1þ2=aÞgn

" #
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where C is an arbitrary nonzero constant and the power series converges in the

neighborhood of x ¼ 0, since �ðaþ 2Þ=a > 0 and w divides the right-hand side

of (2.2) (cf. Chapitre III of [5], especially a formula (1.17) of this). Returning

to the original variables through (2.1) and (T), we obtain

Cy�1þ1=a 1þ
X

mþnb1

amny
�m=2ðCyðaþ2Þ=2aÞn

( )
y 0 ¼ 1

and integrating both sides of this with respect to t

aCy1=a þ
X

mþnb1

~aamny
�m=2þððaþ2Þ=2aÞnþ1=a ¼ tþD

where D is an integral constant. If y ! y as t ! o�, then the left-hand side

vanishes as t ! o� and hence we have D ¼ �o� and o� > �y. Similarly if

y ! y as t ! oþ, then we obtain D ¼ �oþ and oþ < y. Therefore we have

y1=a 1þ
X

mþnb1

bmny
�m=2þððaþ2Þ=2aÞn

( )
ð2:4Þ

¼ ðt� o�Þ=aC and ðt� oþÞ=aC:

If a < �2, then Lemma 2.2 implies that wg is the unique holomorphic solution

as �ðaþ 2Þ=a < 0. Hence we get a contradiction wg 1 0 and this case does

not occur.

Now suppose that g ¼Gr. Then we get �2 < a < �1. Putting y ¼
w� g, we have

x
dy

dx
¼ 2ðaþ 2Þ

a2l
xþ 2ðaþ 2Þ

a
yþ � � �

where � � � denotes a power series (a polynomial here) starting from terms whose

degrees are greater than the degree of the previous terms. Since 2ðaþ 2Þ=a < 0,

Lemma 2.2 implies that y is the unique holomorphic solution represented as

y ¼
Xy
n¼1

anx
n:

Returning to the original variables, we get

z ¼ y3=2 r�1 þ
Xy
n¼1

bny
�n=2

 !
ð2:5Þ

z ¼ y3=2 �r�1 þ
Xy
n¼1

bny
�n=2

 !
ð2:6Þ
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which imply gy�3=2ð1þ � � �Þy 0 ¼ 1. Integrating both sides with respect to t, it

follows from the similar discussion done for getting (2.4) that

�2gy�1=2 �
Xy
n¼1

2an
nþ 1

y�ðnþ1Þ=2 ¼ t� o� and t� oþð2:7Þ

where o� > �y and oþ < y.

Finally suppose that g ¼Gy. Putting w ¼ 1=y, we have y ! 0 as x ! 0

and

dx

dy
¼ axy

ðaþ 2Þy2 � 4alxyþ 2a2l2ðx2 � 1Þ
:

These imply a contradiction x1 0. Consequently this case does not occur.

Namely if y ! y as t ! t, then in all cases to occur we obtain jtj < y. This

completes the proof.

We get solutions of (E) from (2.2) only through (2.4) and (2.7), and there-

fore representations of the solutions as follows:

Corollary 2.4. Suppose a0�2 and let g be an accumulation point of

a solution w of (2.2) as x ! 0. Then if �2 < a < �1 and g ¼ 0, we get either

(1.10) in the neighborhood of t ¼ o� or (1.9) in the neighborhood of t ¼ oþ,

and if �2 < a < �1 and g ¼Gr, either (1.8) in the neighborhood of t ¼ o� or

(1.6) in the neighborhood of t ¼ oþ. Otherwise a solution xðtÞ of (E) cannot be

obtained.

In the alternatives of this corollary, notice that if x ! 0 as t ! oG we take

the representation valid in the neighborhood of t ¼ oG respectively.

Proof of Corollary 2.4. In (2.4) we put

y ¼ y1=a; t ¼ ðt� o�Þ=aC or ðt� oþÞ=aC

and get

y 1þ
X

mþnb1

bmny
�am=2yðaþ2Þn=2

( )
¼ t:

Hence we have

y�a=2 1þ
X

mþnb1

cmny
�am=2yðaþ2Þn=2

( )
¼ t�a=2

yðaþ2Þ=2 1þ
X

mþnb1

dmny
�am=2yðaþ2Þn=2

( )
¼ tðaþ2Þ=2:
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From the last two equations we obtain double power series of t�a=2 and tðaþ2Þ=2

representing y�a=2 and yðaþ2Þ=2. Substituting these into the first equation, we

get

y ¼ t 1þ
X

mþnb1

~bbmnt
�am=2tðaþ2Þn=2

( )
:

Returning to the original variables and using (T), we have (1.9) or (1.10).

For obtaining (1.6) or (1.8), it su‰ces to apply the inverse function theo-

rem directly to (2.7) and use (T). This completes the proof.

Furthermore we have

Lemma 2.5. If a ¼ �2 and z does not vanish, then y is bounded.

Proof. If y is unbounded, then (2.2) namely

x
dw

dx
¼ 4lxw2 þ 4l2ðx2 � 1Þw3ð2:8Þ

has a solution w ¼ wðxÞ continuable to x ¼ 0 since z does not vanish.

Now if wðxÞ accumulates to a nonzero number as x ! 0, then since the

right-hand side of (2.8) does not vanish we get a contradiction x1 0.

Next if wðxÞ accumulates to 0 as x ! 0, then the theory of [4] implies that

wðxÞ ¼ f8l2ðlog xþ CÞg�1=2 1þ
X

1a2jþk<2ðNþ1Þ
wjkx

jf8l2ðlog xþ CÞg�k=2 þW

2
4

3
5;

jWjaKN jlog xj�N

where C is an arbitrary constant, N is a positive integer and KN is a constant,

since w divides the right-hand side of (2.8) and x A R. Thus as x ! 0, we have

a contradiction w B R.

In both cases we have a contradiction and hence the proof is completed.

3. Existence of the orbit G1

First let us consider solutions of (D) in the neighborhood of its singular

point ð0; 0Þ. When a solution of (D) passes a line z ¼ aly, we get

d

ds
ðz� alyÞ ¼ a2l2y3 > 0:ð3:1Þ

Moreover from Lemma 5 of [10] and a transformation w ¼ yz�1 we conclude

that if a solution zðyÞ of (R) converges to 0 as y ! 0, we have
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lim
y!0

zðyÞ
y

¼ al:ð3:2Þ

From the proof of Proposition 8 of [10], there exists uniquely a solution z1ðyÞ
of (R) represented as

z1ðyÞ ¼ alyþ ly2 � ðaþ 1Þl
2a2

y3 þ � � �ð3:3Þ

in the neighborhood of y ¼ 0 such that (3.2) and

lim
y!0

vðyÞ
y

¼ l ðvðyÞ ¼ y�1z1ðyÞ � alÞð3:4Þ

are valid. Hence from (T) and (3.3) we get y 0 ¼ alyð1þ � � �Þ. Solving this,

we have yð1þ � � �Þ ¼ Cealt which implies t ! �y as y ! 0. Thus we obtain

a representation (1.5) of a solution xðtÞ, and this is valid in the neighborhood

of t ¼ �y.

Moreover notice that ðy; z1ðyÞÞ is a solution of (D) whose orbit is

z ¼ z1ðyÞ. If y of ðy; z1ðyÞÞ increases, then s decreases since dy=ds < 0 in

z > 0 from (D). Therefore since ly2 < 0 if y0 0, it follows from (3.1) that

in the case y > 0, the orbit z ¼ z1ðyÞ and the line z ¼ aly cannot cross and

z1ðyÞ < aly. Furthermore the line z ¼ aly and a curve z ¼ ZþðyÞ cross.

Therefore as y increases, the orbit z ¼ z1ðyÞ increases from Lemma 2.1 and

gets into the region P.

The arrows show directions of the orbits of (D) as s increases.

Figure 3
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Next we consider solutions of (D) in the neighborhood of its singular point

ð1; 0Þ. Putting y ¼ 1þ h and z ¼ z in (D), we get

dh

ds
¼ azþ � � � ; dz

ds
¼ a2l2hþ 2alzþ � � �

in the neighborhood of ðh; zÞ ¼ ð0; 0Þ. The coe‰cient matrix of the linear

terms of this has eigenvalues

m ¼ ð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� a

p
iÞal; m ¼ ð1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� a

p
iÞal:

Therefore from Theorem A of [2] and its proof, we get

h ¼ aAems þ aAems þ
X

mþnb2

amnðAemsÞmðAemsÞn

z ¼ mAems þ mAems þ
X

mþnb2

bmnðAemsÞmðAemsÞn
ð3:5Þ

where A is an arbitrary nonzero constant, and amn, bmn are constants such that

amn ¼ anm, bmn ¼ bnm, since h; z A R. Hence we obtain a solution

y ¼ 1þ aAems þ aAems þ
X

mþnb2

amnðAemsÞmðAemsÞn

z ¼ mAems þ mAems þ
X

mþnb2

bmnðAemsÞmðAemsÞn
ð3:6Þ

of (D) which is valid in the neighborhood of s ¼ �y, since h ! 0 as s ! �y
from (3.5). The orbit (3.6) tends to ð1; 0Þ as s ! �y.

Now, let us investigate how (3.6) does so. For this, put Im m ¼ n

ð¼ al
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�1� a

p
Þ, d ¼ arg A, namely A ¼ jAjeid, m ¼ alþ ni. Then from (3.5)

we get

h ¼ 2ajAjeals cosðnsþ dÞ þOðe2alsÞ

z ¼ 2jAjealsfal cosðnsþ dÞ � n sinðnsþ dÞg þOðe2alsÞ

as s ! �y. So, define a set

Se ¼ fs : sn � e < s < sn þ e; tn � e < s < tn þ e ðn ¼ 0;G1;G2; . . .Þg

for a su‰ciently small positive e, where s ¼ sn, s ¼ tn are solutions of

cosðnsþ dÞ ¼ 0; al cosðnsþ dÞ � n sinðnsþ dÞ ¼ 0

respectively, namely

sn ¼ n�1ðp=2� dþ npÞ; tn ¼ n�1ðTan�1 al=n� dþ npÞ:
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Then as s B Se and s ! �y, cosðnsþ dÞ and al cosðnsþ dÞ � n sinðnsþ dÞ do

not accumulate to 0 and we obtain

h ¼ f2ajAjeals cosðnsþ dÞgf1þOðealsÞg

z ¼ 2jAjealsfal cosðnsþ dÞ � n sinðnsþ dÞgf1þOðealsÞg

z

h
¼ l� n

a
tanðnsþ dÞ

� �
f1þOðealsÞg:

Here if we put h ¼ r cos y, z ¼ r sin y, then we have

r ¼ OðealsÞ; y ¼ tan�1 l� n

a
tanðnsþ dÞ

� �
f1þOðealsÞg:

Hence (3.6) tends to ð1; 0Þ, going around this clockwise infinitely many times,

since h, z are continuous in s.

Here we need the following:

Lemma 3.1. (D) has no periodic orbit in the region y > 0.

Proof. Suppose that (D) has a periodic orbit G4 in the region y > 0.

Then G4 surrounds the singular point ð1; 0Þ. However if z0 0, then (D) is

equivalent to a 2-dimensional dynamical system

dy

dt
¼ z;

dz

dt
¼ ða� 1Þz2 þ 2alyz� a2l2ðy2 � y3Þ

ay
:ð3:7Þ

On the y axis z ¼ 0, we get from (D)

dy

ds
¼ 0;

dz

ds
¼ �a2l2ðy2 � y3Þ:

This implies that if ðy; zÞ0 ð0; 1Þ, then an orbit ðy; zÞ of (D) passes the y axis

only as s attains discrete values. Similarly ðy; zÞ has the same property as an

orbit of (3.7). Hence orbits of (D) are those of (3.7). Therefore using t as a

parameter, we represent G4 as

y ¼ yðtÞ; z ¼ zðtÞ:

Since (3.7) is a dynamical system, yðtÞ and zðtÞ are defined on �y < t < y
and periodic functions. Moreover since yðtÞ is the y coordinate of G4, yðtÞ
periodically attains every value of a closed interval containing 1 as its inner

point.

Now if we denote as x ¼ xðtÞ the solution of (E) got from applying (T) to

G4, then we have
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xðtÞ ¼ pðtÞyðtÞ1=a:ð3:8Þ

On the other hand, since xðtÞ can be continued to y, it follows from Kamo’s

theorem (Theorem 4.3 (ii) of [6]) that we obtain

xðtÞ@ pðtÞ as t ! y:ð3:9Þ

However (3.8) and (3.9) are contradiction. This denies the existence of G4 and

the proof is complete.

Lemma 3.2. A solution of (D) passing a point of P tends to ð1; 0Þ as

s ! �y.

Proof. Let z ¼ zðyÞ be an orbit of (D) passing a point of P. Then if

zðyÞ is bounded as y ! y, it implies a contradiction h1 0 to put y ¼ 1=h in

(R). Indeed, from (E) we have

dh

dz
¼ � ah4z

ða� 1Þh3z2 þ 2alh2z� a2l2ðh� 1Þ
:

Moreover from Lemma 3.1, there does not exist a periodic orbit around ð1; 0Þ.
Hence from Poincaré-Bendixon’s theorem the solution ðy; zðyÞÞ tends to ð1; 0Þ
as s ! �y and the proof is completed.

Recall here that the orbit z ¼ z1ðyÞ gets into P as s decreases. Then it

follows from Lemma 3.2 that ðy; z1ðyÞÞ tends to ð1; 0Þ as s ! �y. Therefore

z1ðyÞ is represented as (3.6) in the neighborhood of s ¼ �y. Substituting

(3.6) into z ¼ y 0 and comparing coe‰cients as power series of A and A, we get

s ¼ t=aþ C (C is a constant) and a solution xðtÞ of (E) such as

xðtÞ ¼ l2=ae�lt

(
1þ Aeðm=aÞt þ Aeðm=aÞtð3:10Þ

þ
X

mþnb2

xmnðAeðm=aÞtÞmðAeðm=aÞtÞn
)

which is valid in the neighborhood of t ¼ y. Here AemC is replaced with A.

Since xðtÞ attains real values, we have xmn ¼ xnm and (1.4) where C ¼ jAj from
(3.10).

Now let G1 be an orbit of (D) which is represented as z ¼ z1ðyÞ in the

neighborhood of y ¼ 0. Then from the above discussion G1 tends to ð1; 0Þ
as s ! �y in the way stated at the outset. Moreover take ðt0; a; bÞ of (I)

satisfying ðy0; z0Þ A G1 and let xðtÞ be a solution of (E) and (I). Then through

(T) we define a solution ðy; zÞ of (D) passing ðy0; z0Þ so that ðy; zÞ also satisfies
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(3.7). Therefore if ðy; zÞ passes ðy0; z0Þ at some t, then y is defined for

�y < t < y and the orbit of ðy; zÞ is the whole of G1. Hence from the

above discussion we get the representations (1.4) and (1.5) of xðtÞ as in (iv) of

Theorem I.

4. On the case ðt0; a; bÞ with ðy0; z0Þ B G1

Now we take ðt0; a; bÞ of (I) such that ðy0; z0Þ B G1. Then we get a

solution zðyÞ of (R) from the solution of (D) passing ðy0; z0Þ, and a solution

xðtÞ of (E) and (I) from zðyÞ through (T). Conversely from xðtÞ and (T) we

define the same solution ðy; zÞ of (D) whose orbit is z ¼ zðyÞ. Here recall that

ðo�;oþÞ denotes the domain of xðtÞ.
Consider the case t ! oþ. Then there exist the following possibilities:

oþ < y; lim
t!oþ

xðtÞ ¼ 0ð4:1Þ

oþ < y; lim
t!oþ

xðtÞ ¼ yð4:2Þ

oþ ¼ y; lim
t!oþ

xðtÞ ¼ 0ð4:3Þ

oþ ¼ y; 0 < lim
t!oþ

xðtÞ < yð4:4Þ

oþ ¼ y; lim
t!oþ

xðtÞ ¼ y:ð4:5Þ

In the cases (4.1), (4.3) and (4.4), we get limt!oþ y ¼ y from (T). Here

we show the fact that z does not vanish for y > 1.

Suppose the contrary. Then z vanishes for some yð>1Þ. Therefore ðy; zÞ is
in the region P of Figure 2. However if dy=ds0 0, then from (T) and (D) we

get

ds

dt
¼ dy

dt

�
dy

ds
¼ 1

ay
< 0:

Furthermore dy=ds0 0 holds for almost every s, since dy=ds ¼ 0 now occurs

only if z ¼ 0 and implies dz=ds0 0 in (D). Thus s decreases as t increases.

Therefore from Lemma 3.2 ðy; zÞ tends to ð1; 0Þ as t ! oþ since ðy; zÞ also

satisfies (3.7). This contradicts limt!oþ y ¼ y. Hence we conclude the above

fact.

Consequently if a0�2, then Lemma 2.3 implies oþ < y. Namely (4.3)

and (4.4) do not occur. So we suppose a0�2 and (4.1).

Notice here that we have �y < x 0ðoþÞa 0 from x 00ðtÞ > 0 and xðoþÞ ¼ 0.

Then if a < �2, we get from (T) and (1.1)
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lim
t!oþ

y�3=2z ¼ lim
t!oþ

ax 0ðtÞ
y1=2xðtÞ ¼ �ale�aloþ=2 lim

t!oþ

x 0ðtÞ
xðtÞðaþ2Þ=2 ¼ 0:

Namely using x and w defined in (2.1), from the above fact we have a solution

w of (2.2) with limx!0 w ¼ y. Therefore from Corollary 2.4 there does not

exist xðtÞ satisfying (4.1).

Suppose �2 < a < �1 now. Then if x 0ðoþÞ ¼ 0, l’Hospital’s theorem

implies

lim
t!oþ

y�3=2z

� �2
¼ a2l2e�aloþ lim

t!oþ

x 0ðtÞ2

xðtÞaþ2
¼ 2a2l2

aþ 2
:

Now we show limt!oþ y�3=2zb 0. If ðy; zÞ A P for some t, then from the rea-

soning used for showing the above fact, ðy; zÞ tends to ð1; 0Þ, which contradicts

y ! y as t ! oþ. Moreover if ðy; zÞ B P and z < 0 for some t (cf. the point

p in Figure 4), then y decreases as t increases from y 0 ¼ z < 0. Hence since

y ! y as t ! oþ, ðy; zÞ enters a region z > 0 in the end. In this case ðy; zÞ
exists below G1. Therefore ðy; zÞ gets into P and we have a contradiction

ðy; zÞ ! ð1; 0Þ again. Thus we obtain z > 0 namely limt!oþ y�3=2zb 0, and

lim
t!oþ

y�3=2z ¼ r�1 ðr ¼ ð1=alÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaþ 2Þ=2

p
Þð4:6Þ

(cf. the point q in Figure 4).

Here, recall the proof of Lemma 2.3. Then the orbit of (D) satisfying

(4.6) (namely g ¼ r) is represented only as (2.5) in the neighborhood of

y ¼ y. Hence this exists uniquely. So let z ¼ z2ðyÞ be the orbit with (4.6).

Then G2 appearing in Section 1 is the orbit z ¼ z2ðyÞ. As shown below, G2

Figure 4
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tends to ð0; 0Þ as s ! y. Now if we take ðt0; a; bÞ satisfying ðy0; z0Þ A G2, we

get (1.6) from Corollary 2.4.

On the other hand, if x 0ðoþÞ0 0 namely �y < x 0ðoþÞ < 0 we have

lim
t!oþ

y�3=2z ¼ y:

Therefore if z ¼ zðyÞ is an orbit of ðy; zÞ satisfying this, then we obtain

zðyÞ > z2ðyÞ and ðt0; a; bÞ satisfies ðy0; z0Þ A R1 (cf. Figure 1). Moreover we

get (1.9) from Corollary 2.4.

Next if a ¼ �2, then Lemma 2.5 implies that (4.1), (4.3) and (4.4) do not

occur. Indeed it is already shown that z does not vanish.

Now, suppose (4.2). Then we get limt!oþ y ¼ 0. Since y > 0, zð¼ y 0Þ
attains a negative value and hence from the same reasoning as in the case

(4.1) and �2 < a < �1 we conclude a contradiction ðy; zÞ ! ð1; 0Þ as t ! oþ
(cf. the point p of Figure 4).

Suppose (4.5). Then if jx 0ðoþÞj < y, we have

lim
t!oþ

xðtÞ
e�lt

¼ lim
t!oþ

x 0ðtÞ
�le�lt

¼ 0

and

lim
t!oþ

y ¼ lim
t!oþ

l�2 xðtÞ
e�lt

� �a
¼ y:

Hence from Lemmas 2.3, 2.5 and 3.2 we get a contradiction as in the cases

(4.1), (4.3) and (4.4).

If x 0ðtÞ ! y as t ! oþ, then we have

lim
t!oþ

xðtÞ
e�lt

¼ lim
t!oþ

x 00ðtÞ
l2e�lt

¼ lim
t!oþ

1

l2
xðtÞ
e�lt

� �1þa

:

However the sign of z ¼ y 0 is definite as the point q of Figure 4, or a solution

ðy; zÞ of (D) gets into P and is on the curve tending to ð1; 0Þ spirally as the

point p of Figure 4. Therefore limt!oþ y exists. Hence limt!oþ xðtÞ=e�lt also

exists. If c denotes this, then we obtain c ¼ ð1=l2Þc1þa. Therefore we get

c ¼ 0, l2=a, y and limt!oþ y ¼ y; 1; 0 respectively. However limt!oþ y ¼ 0

is impossible as in the case (4.2), and limt!oþ y ¼ y deduces a contradiction

from Lemmas 2.3, 2.5 and 3.2. Hence we conclude limt!oþ y ¼ 1. In this

case the solution ðy; zÞ of (D) tends to ð1; 0Þ, turning. Moreover if �2 <

a < �1 and z ¼ zðyÞ is the orbit of ðy; zÞ, then we get zðyÞ < z2ðyÞ and hence

take ðt0; a; bÞ such that ðy0; z0Þ belongs to a region below G2. Furthermore

from the same reasoning as in Section 3 we have (1.4) and oþ ¼ y.
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Next we consider the case t ! o�. Then there exist the following possi-

bilities:

o� > �y; lim
t!o�

xðtÞ ¼ 0ð4:7Þ

o� > �y; lim
t!o�

xðtÞ ¼ yð4:8Þ

o� ¼ �y; lim
t!o�

xðtÞ ¼ 0ð4:9Þ

o� ¼ �y; 0 < lim
t!o�

xðtÞ < yð4:10Þ

o� ¼ �y; lim
t!o�

xðtÞ ¼ y:ð4:11Þ

Define ðy; zÞ from xðtÞ and (T) again. Then as stated in the proof of

Lemma 3.2, z is not bounded as y ! y. Therefore if ðy; zÞ A P and z < 0

for some t, then it follows from z ¼ y 0 and Lemma 2.1 that as t decreases, y

increases, ðy; zÞ gets into the region z > 0, and eventually y decreases.

Therefore if (4.7) is valid, then it su‰ces to follow the discussion done in

the cases (4.1), (4.3) and (4.4). Hence we conclude that if a < �2, then there

does not exist xðtÞ satisfying (4.7) and if �2 < a < �1 and x 0ðo�Þ ¼ 0, then z

satisfies (2.6) in the neighborhood of y ¼ y. Here let G3 be the orbit of (D)

which is represented uniquely as (2.6) in the neighborhood of y ¼ y. Then

since G3 lies in the region z < 0 and ðy; zÞ B P as p of Figure 4, G3 tends to

ð1; 0Þ as s ! �y. Furthermore ðt0; a; bÞ satisfies ðy0; z0Þ A G3 and we get (1.8)

in the neighborhood of t ¼ o� from Corollary 2.4. Moreover we conclude

that if �2 < a < �1 and x 0ðo�Þ0 0, then ðt0; a; bÞ satisfies ðy0; z0Þ A R3 and we

get (1.10) in the neighborhood of t ¼ o�. If a ¼ �2, Lemmas 2.5 and 3.2

imply that (4.7) does not occur.

In the cases (4.8), (4.10) and (4.11), we get from (T)

lim
t!o�

y ¼ 0:ð4:12Þ

Now we suppose (4.9). If x 0ðo�Þ0 0, then we have (4.12) immediately.

On the other hand, if x 0ðo�Þ ¼ 0, then from the same discussion as in the

case (4.5) we obtain limt!o� y ¼ y; 1; 0. If limt!o� y ¼ 1, then the orbit

ðy; zÞ of (D) tends to ð1; 0Þ. However since G1 surrounds ð1; 0Þ, ðy; zÞ cannot

tend to ð1; 0Þ, going around this anticlockwise. Therefore from Lemma 2.1

and z ¼ y 0, limt!o� y ¼ 1 is impossible. Moreover from Lemmas 2.3, 2.5 and

3.2, limt!o� y ¼ y deduces a contradiction. Hence we get (4.12).

Recall that ðy; zÞ is a solution of (D) passing ðy0; z0Þ. Then if ðy; zÞ is

in the region 0 < z < z1ðyÞ and tends to ð0; 0Þ as t ! o� (as the point p of

Figure 5), then z is a solution of (R) with (3.2). However a solution of (R)
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satisfying (3.2) and (3.4) is only z1ðyÞ. Therefore (3.2) holds and (3.4) does

not. This is a condition (9) of [12] and hence from discussion after this we

obtain z > z1ðyÞ. This is a contradiction and ðy; zÞ does not tend to ð0; 0Þ as

t ! o�, remaining in 0 < z < z1ðyÞ.
So, suppose that ðy; zÞ is in the region z < 0 (as the point q of Figure 5).

Then y increases as t decreases since y 0 ¼ z < 0. Therefore due to (4.12) and

the above, ðy; zÞ enters the region z > 0, going around ð1; 0Þ. In this case

ðy0; z0Þ B G3 UR3 must hold. If ðy; zÞ is in the region z > 0, then as t decreases

y decreases from y 0 ¼ z > 0 and if t is su‰ciently close to o�, then ðy; zÞ is

outside P. On the other hand, s increases as y decreases in terms of dy=ds ¼
ayz < 0. Therefore as t decreases, z decreases from Lemma 2.1 and Poincaré-

Bendixon’s theorem implies that ðy; zÞ converges to ð0; 0Þ as t ! o�, since

ðy; zÞ satisfies the 2-dimensional dynamical system (3.7). Hence z is a solution

of (R) satisfying (3.2). Here notice that from the discussion just done, G2 also

tends to ð0; 0Þ as t ! o� (namely s ! y).

Moreover from the uniqueness of z1ðyÞ, z satisfies a condition (9) of [12]

again and from discussions after this we obtain

xðtÞ@ ct as t ! �yð4:13Þ
where c is a negative constant. Hence integrating (E) from �y to t twice we

get (1.7) (cf. [6]).

Here for proving (v) of Theorem I, suppose that ðt0; a; bÞ satisfies

ðy0; z0Þ A G2. Then in the above discussions of the case t ! oþ, we get only

the case when (4.1), �2 < a < �1 and x 0ðoþÞ ¼ 0 hold and do not get the

other cases. Moreover in those of the case t ! o�, we do not have the case

(4.7) and have the other cases. Since all cases to occur have been examined,

we therefore conclude (v) of Theorem I. Similarly we get (vi) through (xi) of

Theorems I, II and III. Now the proof is completed.

Figure 5
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At the end of this paper, let us notice about the solution xGðtÞ of x 00 ¼
Gealtx1þa satisfying (4.13) which appeared also in [12]. From the same proof

as of (1.7), xGðtÞ satisfies

xGðtÞ ¼ ctþ dG
ðctÞ1þa

a2l2
ealtð1þ oð1ÞÞ

as t ! �y. Here the double signs correspond in the same order.
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