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ABSTRACT. In this paper we generalize Bocher’s theorem for polyharmonic functions
u. In fact, if u is polyharmonic outside the origin and satisfies a certain integral
condition, then it is shown that u is written as the sum of partial derivatives of the
fundamental solution and a polyharmonic function near the origin.

1. Introduction

Let R" be the n-dimensional Euclidean space with points x =
(x1,X2,...,%,). For a multi-index A= (4,42,...,4,), wWe set

A=A+ 20+ 4 A,

b AL A
Xt =x{'x2 X

A Y5 Jn
pio (Y (LYY
0x1 0x> 0xy,

We denote by B(x,r) the open ball centered at x with radius » > 0, whose
boundary is written as S(x,r) = 0B(x,r). We also denote by B the unit ball
B(0,1) and by By the punctured unit ball B — {0}.

A real valued function u on an open set G < R" is called polyharmonic of
order m on G if ue C*"(G) and A™u = 0 on G, where m is a positive integer, 4
denotes the Laplacian and 4™u = 4™ '(4u). We denote by H”(G) the space
of polyharmonic functions of order m on G. In particular, u is harmonic on G
if ue H'(G). The fundamental solution of 4™ is written as K, that is,

and
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(x) = o { Ix|*" " log(1/|x|) if 2m — n is an even nonnegative integer,
m m

|x| 2" otherwise,

where the constant o, is chosen such that 4K, is the Dirac measure ¢ at the
origin.
Our aim of this paper is to prove the following theorem.

THEOREM. If ue H™(By) satisfies
J u(x)"|x|*dx < o (1)
By

for some integer s >0, then u is of the form

u= > (W)D"Kn+h
|1 <s+2m—1

for some he H™(B), where c(u) are constants and u"(x) = max{u(x),0}.

We shall show that u in the theorem satisfies
J ()| [ dx < oo. @)
By

Hence in case s < 0, u is integrable on B. 1In case s > 0, we shall show that u
defines a distribution 7, such that

{T,,vy = limj u(x)v(x)dx for v e C°(B).
B-B(0,r)

r—0

Armitage [1] treated the case where u e H™(By) satisfies

1

—_ u(x)|dS(x) = o(r™' as r — 0, 3
T g, OIS = o) ()

where w, denotes the surface area of S(0,1). If s’ <s+n, then (3) clearly
implies (1).

As an easy consequence of the theorem we have the following result due to
Ishikawa-Nakai-Tada [5]:

COROLLARY 1. If u is a harmonic function on By such that

lim sup u(x)|x|"~" <0,

x—0
then u is of the form
u=cky+hn

for some he H'(B) and a constant c.

As another application of our theorem, we obtain the following result.
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COROLLARY 2. [f ue H™(By) satisfies (2) for some integer s, then u is of
the form

u= Z c(u)D*Kyy + h

|1 <s4+2m—1

for some he H"(B), where c¢(u) are constants.

As to the behavior at infinity, we refer the reader to the recent papers
Kishi-Futamura-Mizuta [4] and Nakai-Tada [7].

2. Lemmas

In this section we prepare some lemmas, which will be used in the proof of
the theorem.

LemmA 1. If ue H™(By), then

1 m
_ J u(x)dS = Z{akrz(l-k>Km(r) 4 bR 2Ry (g
ut S(0,r) k=1

Sor all re(0,1), where {ar}, {br}, {cx} are constants and ar =0 when k >
m+1 .
X

Proor. We prove this lemma by induction on m. In the case that m =1,

this is known; see e.g. [3, Lemma 3.10]. So we suppose that (4) holds for m = /,
and take u € H'*'(By). Then Au e H'(By) because A4'(Au) = A" 'u = 0, so that

!
J AudS = o, Z{aktz(l—k)Jrn—lKl(t) + b2 g AU Ty
S(0,1) k=1

for 0 <t <1, where ar =0 when k>/+1—~. We integrate this equality
with respect to ¢ from r; to r,, where 0 <r; <r, <1, and obtain

r
J Au dx = J J Au dS | dt
{xir1<|x|<r} 2l S(0,17)

! /53
— ZJ {allk)+n 1K()+bll+1 k)— +Cllk+n l}dl
k=1

/
lkn (I+1-k 2(1—k)+n
Zk PR () + by T e

/
{a;(rlz(l A)+nK](rl)+b1,(r12 (I+1— k>+c]/(rf<lfk)+l‘l} (5)
k=1
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where a; =0 when k >+ 1 *g' On the other hands, we have by Green’s

formula
J Au dx = c(r2) — J g Vu(x)dS(x)
{xr<|x|<r} S0,r) ¥
= o(r) — ! J £ Vu(r0)dS(0)
5(0,1)
=c(ry) — ™! 4 (J u(rC)dS(C))
dr \ Jsq0.1)
d{ 1
_ _ n 1
= c(r2) dr (r”l Js(o,r) ! dS)7
where 0 <r <r and ¢(r) J‘SOM (x)dS(x). Hence (5) leads to

Z{a/ 2(1- k+1Kl(r)+b]/{r2(l+lfk)+l n+C/r21 k+1}+d/ 1-n

d (1
| was
dr r”*l S(0,r)

for 0 <r<r,. We integrate both sides with respect to r from r; to r, to
obtain

n—1

1 —
), S = Z{ [ TORK () 4 BT 0
1 S(0,r1)

+b"logr —d"r7"+d" logr +e
—k) I+2-k I+1-k
_ Z{ ]/(/rl2(1 Kl+1(rl) —l—b// 2(142—k)—n + ]i/ l2( +1— )}7

where 0 <r <rp <1, a/, b/, ¢/ are determined such that @ =0 when
k>l+2—g, b" = b/ when k:l+2—g and d” =d' when n=2. But we

see that the constants a;/, b/, ¢

7, ¢; are determined independently of . Now the
induction is completed.

With the aid of Lemma 1, we prove

LemmA 2. If ue H™(By) and A is a multi-index, then
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1
— J Ll.)(f/1 ds
@nt™" Js(0.1)

m+|4|

_ Z {Akr2(1+\i|fk)1(m(r) _’_Ber(erlH/ka)fn + Cer(mH/ka)} (6)
k=1
for 0 <r <1, where Ay, By, Cy are constants and Ay =0 when k > m+1 — g

Proor. We prove this by induction on the length |4|. First we note from
Lemma 1 that the conclusion is true for 1| =0.

Now let |A| =7+ 1 and write A = 1"+ ¢;, where [2'| =7 and |¢;/ = 1. By
the Gauss-Green formula we have

L(o,rl) ux”(xj/rl)dS =— J d (u(x)x”)dx

{x:r<|x|<r} 5_xj
+J ux” (x;/r2)ds. (7)
S(O.I‘z)
Using the assumption on induction, we have

J Ou (x)x”'ds

S(0,r) 0x;
m=+|2| )
— {Akr2(l+\m |—k)+n—1Km(r) + Bkr2(111+1+\/1 |—k)—1 + Ckrz(m+|2 \—k)+i1—1}
k=1
and
a !
J u(x)—x*ds
sor) 0%
m+|A'|-1 )
— Z {AIIJ,Z(\)V \—k)-&-n—]Km(r) + B]/(},Z(m-H/» |—k)—1 + C[/{,,Z(m-&-\/l |—1—k)+n—l}7
k=1
where Ay = A, =0 when k >m+1 — g As in the proof of Lemma 1, using

polar coordinates in (7), we have the required conclusion for A with || =/+ 1.

Lemma 3. If ue H™(By) satisfies (2), then the limit

lim uv dx

r—0 J{x:r<|x<1}

exists for every ve C{(B). Further, the mapping
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T,:v~ lim uv dx

r—0 J {xr<|x|<1}
defines a distribution on B. In what follows we identify u with T,.
ProoF. We write

uvdx:J u U—Z D" (0) | dx

J{x:r<x|<1} B-B(0,r) <L ‘u

D#
+ Z U'(O) J uxt dx = I1(r) + J(r),
lu[<L j2 B-B(0,r)

U
where L is an integer such that L >s—1. Since U—EMSLX—'D”U(O) =
O(|x|*™), we have ~

()] < j 1
B-B(0,r)

so that lim,_o I(r) exists and is finite by (2).

v— Z D"v

=L

)|dx < CJ Jual| x| =" dx,
B-B(0,r)

In view of Lemma 2, we see that

1
limJ u(x)x* dx = limJ J u(x)x* dS(x) |dt
=0 J fxr<)x|<1} =0}, S(0,1)

exists and is finite; this limit is denoted by C(u). Hence J(r) converges to

D#v(0
52 200 ¢y
lul <L #
as r — 0. Therefore
{u,vy = hmJ uv dx
=0 Jferax|<1}
xH D"v (0)
:J ul v— Z—'D”UO derZC
Bo =t MW=L

is defined to be finite. Clearly, u is a distribution on B.

3. The proof of the main theorem

In this section we give a proof of the theorem.
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(I) We first prove the theorem under the strong condition (2). We recall
Green’s formula for 4™ (see e.g. [2], [8]):

J (ud™v — vA™u)dx
B—B(0,)

:_ZJ {A’l W_(Am"u)a(‘g;ﬂds 8)

for ue C*(By), ve C;°(B) and 0 < r < 1, where 0/dn denotes the inner normal
derivative. If ue H”(By) and ve C;°(B), then we obtain

n
ud™v dx =
JB—B(O, r) ; {

with constants C(4, 4, j). For simplicity, we put y(x) = D*v(x), and use its
Taylor expansion

|

D’uDﬂv | dS
S(0,7)

|A]+|p|=2m—1

W(x) = Z D¢(>+Rm(x>,

H<l

where / = s+ [4]. Then we have

J D}'uD”Uﬁ ds
S(0,r) r

:J Dﬂvu(x)R,H() L dS + - Z D'Y(0 J D*u(x)x"x; dS
S(0,r) S(0,r)

v\<[

= 1) +J ().

To evaluate I(y¥), we need the following lemma, which is an easy con-
sequence of [6, Lemma 8.4.5].

LemmA 4. If ue H™(By) and 0 <r <2/3, then

J |D*u|dS < Cr*MHJ |ue|dx
S(0,r) {xr/2<|x|<3r/2}

with a positive constant C.

From Lemma 4 it follows that
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1()| =

[ DR ds\
S(0,r) r

< ¢! J |D*u|dS
S(0,r)

< c’r’“-(‘il“)ﬂJ Ju(x)||x]|*dx,
{x:0<|x|<2r}

so that I(y) tends to zero as r — 0, since / = s+ |4].
On the other hand, we see from Lemma 2 that
1 1 v A v
J) = ;ZED .//(O)J D*u(x)x"x; dS

b=/ 5(0,r)

1 1 , m+|v|+1 22 bl
SO DELLCLED SRUNER K

vj<i ™" k=1

+ Bk(;L,V, j)r2(m+2+\v|—k)—] + Ck(i, v, j)r2(m+l+|v—k)+n—1>}

- Z C'(2,v, j)D"(0) as r— 0,

v <l

since Ax(4,v,j) =0 when k>m+1— g Hence it follows that

{u, 4™v)y = lim ud™v dx

=0 J{x:r<x<l}

= > C" (2, v)D"'u(0)
|| =2m—1,]v| <s+|4|

= Y C"()D(0). (9)

[l <s4+2m—1

Finally let us find constants ¢(x) for which u—3%", ., 1 c(u)D"Ky is
polyharmonic of order m. For this purpose, we have by (9)

<A”’ (u - Z c(y)D"Km> ,v>
[p| <s+2m—1

:<u_ Z c(,u)D”Km,A’”v>
| <s4+2m—1

= A"y — > (@)D Ko, A"0)

] <s4+2m—1
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= ) C"D(O0)— D c(u)<DH (A" K), 1)

[4] < s+2m—1 1] <s4+2m—1

= > C"WDw0) - D c(w<D",v)
[A] < s+2m—1 |1 <s4+2m—1

= > C"@WDPO)~ T e (=17, D"y
[A] <s4+2m—1 |1 <s+2m—1

= Y b))~ > c(w)(=1)"D"(0).
| < s4+2m—1 | <s4+2m—1

Hence if we take ¢(u) = (—1)“'C”(p), then

AM™ | u— Z c(u)D*Ky, | =0
|u < s4+2m—1
as required.

(II) Now we assume that (1) holds for ue H™(By). Using polar
coordinates and Lemma 1, we have

J u(x)| x| dx
B-B(0,7)

(j )ds>dt

(5= IZ{ak[ -k g K )_i_bktZ(mH—k)fn+ckl2(m—k)}d[

Z 2(1-k) +Y+nKvm( ) bl/cr2(m+17k)+x + C//(,,Z(m#c)«hﬁn} + d,
k=

where a; =0 for k>m+1 —g. Hence JIBfB(O,r) u(x)|x|°dx is bounded for

0 <r< 1. Therefore (1) implies (2). In view of the first half of the proof, u is
of the form

W= Z c(u)D*K,, + h
| <s4+2m—1

for some h e H"(B). The proof of the theorem is now completed.

4. Proofs of Corollaries 1 and 2

In this section we give proofs of Corollaries 1 and 2.
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PrOOF OF COROLLARY 1. Assume that u is a harmonic function on B
such that

u(x) <o(lx™")  as x—0. (10)

Then we have
J u(x)"dx < oo,
By

so that (1) holds for s=0. Hence our therem shows that u is of the
form

u= Z c(u) DKy + h

<1

for some /e H'(B) and some constants ¢(u). In view of (10), we see that
c¢(u) =0 when |y =1, which proves the corollary.

PrOOF OF COROLLARY 2. Assume that ue H™(By) satisfies (2) for an
integer s. Then

J |u(x)||x]* dx < oo
By

for a nonnegative integer s’ >s. Hence it follows from our theorem that u is
the form

u= Z c(u)D*K,, + h

[l <s'+2m—1

for some he H"(B). According to (2), > .0, 1<<s+2m-1 () D" Ky should
disappear, which completes the proof of Corollary 2.

5. Remark

RemMARK 1. If ue H"™(By), then u is expressed as Laurent series ex-
pansion:

u(x) =Y c(u)D"Kn(x) + h(x)  (he H"(B))

(cf. [3, Chapter 10]).
To show this, fix x € By and find from (8) (Green’s formula for A4™)
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0 =j () A" Ko — 3) — Ko — ) A" u(y))dy
B(0,r2)—B(0,r1)—B(x,r)

_ . i-1, a(Am_iKm(x - 7))
B ; L(o,rz) {(A ) ony,

(4" u(y))
on,

_ - i-1 (A" K(x — y))
ZJS(O,H) [(A “0)) ony

=

AR (x— ) ]dsw

m—i 6( l_lu(y))
- (a1 =) T s
& NV )
;J [A u ) on,
- (@ M4 sy

= a(ry, x) — p(r,x) — p(r,x)

for 0 <r <|x|<ry and r>0 with B(x,r) < B(0,r2) — B(0,r;). Note that
lim,_ y(r, x) = cu(x) for some constant ¢ and lim,,,; «(r2,x) € H"(B). Fur-
ther, using the Taylor expansion for K, and Lemma 2, we have

lim ﬁ(”lv x) = Z (1) D*Kin(x),

r1~> u
where ¢(u) are constans. Hence we see that

u(x) = Z ¢ (W) D" Ky (x) + h(x) (he H™(B)).

u

Our aim in this paper has been to find conditions which assure that the
series in the above expression contains only finite terms.

OPEN PROBLEM. Under the weaker condition that

lim inf fH“J u(x)*dS < o
(0.7)

r—0

instead of (1), we do not know whether ue H™(By) is a polynomial or
not.
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