A generalization of Bôcher's theorem for polyharmonic functions

Dedicated to Professor Maretsugu Yamasaki on the occasion of his sixtieth birthday

Toshihide Futamura, Kyoko Kishi and Yoshihiro Mizuta (Received May 9, 2000)

ABSTRACT. In this paper we generalize Bôcher's theorem for polyharmonic functions u. In fact, if u is polyharmonic outside the origin and satisfies a certain integral condition, then it is shown that u is written as the sum of partial derivatives of the fundamental solution and a polyharmonic function near the origin.

1. Introduction

Let \mathbb{R}^n be the *n*-dimensional Euclidean space with points $x = (x_1, x_2, \dots, x_n)$. For a multi-index $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_n)$, we set

$$|\lambda| = \lambda_1 + \lambda_2 + \dots + \lambda_n,$$
$$x^{\lambda} = x_1^{\lambda_1} x_2^{\lambda_2} \dots x_n^{\lambda_n}$$

and

$$D^{\lambda} = \left(\frac{\partial}{\partial x_1}\right)^{\lambda_1} \left(\frac{\partial}{\partial x_2}\right)^{\lambda_2} \cdots \left(\frac{\partial}{\partial x_n}\right)^{\lambda_n}.$$

We denote by B(x,r) the open ball centered at x with radius r > 0, whose boundary is written as $S(x,r) = \partial B(x,r)$. We also denote by **B** the unit ball B(0,1) and by **B**₀ the punctured unit ball $B - \{0\}$.

A real valued function u on an open set $G \subset \mathbb{R}^n$ is called polyharmonic of order m on G if $u \in C^{2m}(G)$ and $\Delta^m u = 0$ on G, where m is a positive integer, Δ denotes the Laplacian and $\Delta^m u = \Delta^{m-1}(\Delta u)$. We denote by $H^m(G)$ the space of polyharmonic functions of order m on G. In particular, u is harmonic on G if $u \in H^1(G)$. The fundamental solution of Δ^m is written as K_m , that is,

²⁰⁰⁰ Mathematics Subject Classification. Primary 31B30

Key words and phrases. polyharmonic functions, Bôcher's theorem, the fundamental solution of polyharmonic operator, Green's formula, mean value property

$$K_m(x) = \alpha_m \begin{cases} |x|^{2m-n} \log(1/|x|) & \text{if } 2m-n \text{ is an even nonnegative integer,} \\ |x|^{2m-n} & \text{otherwise,} \end{cases}$$

where the constant α_m is chosen such that $\Delta^m K_m$ is the Dirac measure δ at the origin.

Our aim of this paper is to prove the following theorem.

THEOREM. If $u \in H^m(\mathbf{B}_0)$ satisfies

$$\int_{\mathbf{B}_0} u(x)^+ |x|^s dx < \infty \tag{1}$$

for some integer $s \ge 0$, then u is of the form

$$u = \sum_{|\mu| \le s + 2m - 1} c(\mu) D^{\mu} K_m + h$$

for some $h \in H^m(\mathbf{B})$, where $c(\mu)$ are constants and $u^+(x) = \max\{u(x), 0\}$.

We shall show that u in the theorem satisfies

$$\int_{\mathbf{B}_0} |u(x)| |x|^s dx < \infty. \tag{2}$$

Hence in case $s \le 0$, u is integrable on **B**. In case s > 0, we shall show that u defines a distribution T_u such that

$$\langle T_u, v \rangle = \lim_{r \to 0} \int_{\mathbf{B} - B(0,r)} u(x)v(x)dx$$
 for $v \in C_0^{\infty}(\mathbf{B})$.

Armitage [1] treated the case where $u \in H^m(\mathbf{B}_0)$ satisfies

$$\frac{1}{\omega_n r^{n-1}} \int_{S(0,r)} |u(x)| dS(x) = o(r^{-s'}) \quad \text{as } r \to 0,$$
 (3)

where ω_n denotes the surface area of S(0,1). If s' < s + n, then (3) clearly implies (1).

As an easy consequence of the theorem we have the following result due to Ishikawa-Nakai-Tada [5]:

COROLLARY 1. If u is a harmonic function on \mathbf{B}_0 such that

$$\lim_{x \to 0} \sup u(x)|x|^{n-1} \le 0,$$

then u is of the form

$$u = cK_1 + h$$

for some $h \in H^1(\mathbf{B})$ and a constant c.

As another application of our theorem, we obtain the following result.

COROLLARY 2. If $u \in H^m(\mathbf{B}_0)$ satisfies (2) for some integer s, then u is of the form

$$u = \sum_{|\mu| \le s+2m-1} c(\mu) D^{\mu} K_m + h$$

for some $h \in H^m(\mathbf{B})$, where $c(\mu)$ are constants.

As to the behavior at infinity, we refer the reader to the recent papers Kishi-Futamura-Mizuta [4] and Nakai-Tada [7].

2. Lemmas

In this section we prepare some lemmas, which will be used in the proof of the theorem.

LEMMA 1. If $u \in H^m(\mathbf{B}_0)$, then

$$\frac{1}{\omega_n r^{n-1}} \int_{S(0,r)} u(x) dS = \sum_{k=1}^m \{ a_k r^{2(1-k)} K_m(r) + b_k r^{2(m+1-k)-n} + c_k r^{2(m-k)} \}$$
 (4)

for all $r \in (0,1)$, where $\{a_k\}$, $\{b_k\}$, $\{c_k\}$ are constants and $a_k = 0$ when $k > m+1-\frac{n}{2}$.

PROOF. We prove this lemma by induction on m. In the case that m = 1, this is known; see e.g. [3, Lemma 3.10]. So we suppose that (4) holds for m = l, and take $u \in H^{l+1}(\mathbf{B}_0)$. Then $\Delta u \in H^l(\mathbf{B}_0)$ because $\Delta^l(\Delta u) = \Delta^{l+1}u = 0$, so that

$$\int_{S(0,t)} \Delta u \, dS = \omega_n \sum_{k=1}^{l} \{ a_k t^{2(1-k)+n-1} K_l(t) + b_k t^{2(l+1-k)-1} + c_k t^{2(l-k)+n-1} \}$$

for 0 < t < 1, where $a_k = 0$ when $k > l + 1 - \frac{n}{2}$. We integrate this equality with respect to t from r_1 to r_2 , where $0 < r_1 < r_2 < 1$, and obtain

$$\int_{\{x:r_1 < |x| < r_2\}} \Delta u \, dx = \int_{r_1}^{r_2} \left(\int_{S(0,t)} \Delta u \, dS \right) dt$$

$$= \omega_n \sum_{k=1}^{l} \int_{r_1}^{r_2} \{a_k t^{2(1-k)+n-1} K_l(t) + b_k t^{2(l+1-k)-1} + c_k t^{2(l-k)+n-1} \} dt$$

$$= \sum_{k=1}^{l} \{a'_k r_2^{2(1-k)+n} K_l(r_2) + b'_k r_2^{2(l+1-k)} + c'_k r_2^{2(l-k)+n} \}$$

$$- \sum_{k=1}^{l} \{a'_k r_1^{2(1-k)+n} K_l(r_1) + b'_k r_1^{2(l+1-k)} + c'_k r_1^{2(l-k)+n} \} \tag{5}$$

where $a'_k = 0$ when $k > l + 1 - \frac{n}{2}$. On the other hands, we have by Green's formula

$$\int_{\{x:r<|x|

$$= c(r_2) - r^{n-1} \int_{S(0,1)} \zeta \cdot \nabla u(r\zeta) dS(\zeta)$$

$$= c(r_2) - r^{n-1} \frac{d}{dr} \left(\int_{S(0,1)} u(r\zeta) dS(\zeta) \right)$$

$$= c(r_2) - r^{n-1} \frac{d}{dr} \left(\frac{1}{r^{n-1}} \int_{S(0,r)} u \, dS \right),$$$$

where $0 < r < r_2$ and $c(r_2) = \int_{S(0,r_2)} \frac{x}{r_2} \cdot \nabla u(x) dS(x)$. Hence (5) leads to

$$\sum_{k=1}^{l} \left\{ a'_k r^{2(1-k)+1} K_l(r) + b'_k r^{2(l+1-k)+1-n} + c'_k r^{2(l-k)+1} \right\} + d' r^{1-n}$$

$$= \frac{d}{dr} \left(\frac{1}{r^{n-1}} \int_{S(0,r)} u \, dS \right)$$

for $0 < r < r_2$. We integrate both sides with respect to r from r_1 to r_2 to obtain

$$\frac{1}{r_1^{n-1}} \int_{S(0,r_1)} u \, dS = \sum_{k=1}^{l} \{ a_k'' r_1^{2(1-k)+2} K_l(r) + b_k'' r_1^{2(l+1-k)-n+2} + c_k'' r_1^{2(l-k)+2} \}
+ b'' \log r_1 - d'' r_1^{2-n} + d''' \log r_1 + e$$

$$= \sum_{k=1}^{l+1} \{ a_k'' r_1^{2(1-k)} K_{l+1}(r_1) + b_k'' r_1^{2(l+2-k)-n} + c_k'' r_1^{2(l+1-k)} \},$$

where $0 < r_1 < r_2 < 1$, a_k'' , b_k'' , c_k'' are determined such that $a_k'' = 0$ when $k > l + 2 - \frac{n}{2}$, $b'' = b_k'$ when $k = l + 2 - \frac{n}{2}$ and d''' = d' when n = 2. But we see that the constants a_k'' , b_k'' , c_k'' are determined independently of r_2 . Now the induction is completed.

With the aid of Lemma 1, we prove

LEMMA 2. If $u \in H^m(\mathbf{B}_0)$ and λ is a multi-index, then

$$\frac{1}{\omega_{n}r^{n-1}} \int_{S(0,r)} ux^{\lambda} dS$$

$$= \sum_{k=1}^{m+|\lambda|} \left\{ A_{k}r^{2(1+|\lambda|-k)} K_{m}(r) + B_{k}r^{2(m+1+|\lambda|-k)-n} + C_{k}r^{2(m+|\lambda|-k)} \right\} \tag{6}$$

for 0 < r < 1, where A_k , B_k , C_k are constants and $A_k = 0$ when $k > m + 1 - \frac{n}{2}$.

PROOF. We prove this by induction on the length $|\lambda|$. First we note from Lemma 1 that the conclusion is true for $|\lambda| = 0$.

Now let $|\lambda| = l + 1$ and write $\lambda = \lambda' + e_j$, where $|\lambda'| = l$ and $|e_j| = 1$. By the Gauss-Green formula we have

$$\int_{S(0,r_1)} ux^{\lambda'}(x_j/r_1)dS = -\int_{\{x:r_1<|x|< r_2\}} \frac{\partial}{\partial x_j} \left(u(x)x^{\lambda'}\right)dx$$

$$+\int_{S(0,r_2)} ux^{\lambda'}(x_j/r_2)dS. \tag{7}$$

Using the assumption on induction, we have

$$\int_{S(0,r)} \frac{\partial u}{\partial x_j}(x) x^{\lambda'} dS$$

$$= \sum_{k=1}^{m+|\lambda'|} \{ A_k r^{2(1+|\lambda'|-k)+n-1} K_m(r) + B_k r^{2(m+1+|\lambda'|-k)-1} + C_k r^{2(m+|\lambda'|-k)+n-1} \}$$

and

$$\int_{S(0,r)} u(x) \frac{\partial}{\partial x_j} x^{\lambda'} dS$$

$$= \sum_{k=1}^{m+|\lambda'|-1} \{ A'_k r^{2(|\lambda'|-k)+n-1} K_m(r) + B'_k r^{2(m+|\lambda'|-k)-1} + C'_k r^{2(m+|\lambda'|-1-k)+n-1} \},$$

where $A_k = A_k' = 0$ when $k > m + 1 - \frac{n}{2}$. As in the proof of Lemma 1, using polar coordinates in (7), we have the required conclusion for λ with $|\lambda| = l + 1$.

LEMMA 3. If $u \in H^m(\mathbf{B}_0)$ satisfies (2), then the limit

$$\lim_{r \to 0} \int_{\{x: r < |x| < 1\}} uv \ dx$$

exists for every $v \in C_0^{\infty}(\mathbf{B})$. Further, the mapping

$$T_u: v \mapsto \lim_{r \to 0} \int_{\{x: r < |x| < 1\}} uv \ dx$$

defines a distribution on **B**. In what follows we identify u with T_u .

PROOF. We write

$$\int_{\{x:r<|x|<1\}} uv \ dx = \int_{\mathbf{B}-B(0,r)} u \left(v - \sum_{|\mu| \le L} \frac{x^{\mu}}{\mu!} D^{\mu} v(0)\right) dx$$
$$+ \sum_{|\mu| \le L} \frac{D^{\mu} v(0)}{\mu!} \int_{\mathbf{B}-B(0,r)} ux^{\mu} \ dx = I(r) + J(r),$$

where L is an integer such that $L \ge s-1$. Since $v - \sum_{|\mu| \le L} \frac{x^{\mu}}{\mu!} D^{\mu} v(0) = O(|x|^{L+1})$, we have

$$|I(r)| \le \int_{\mathbf{B} - B(0,r)} |u| \left| v - \sum_{|u| < L} \frac{x^{\mu}}{\mu!} D^{\mu} v(0) \right| dx \le C \int_{\mathbf{B} - B(0,r)} |u| |x|^{L+1} dx,$$

so that $\lim_{r\to 0} I(r)$ exists and is finite by (2).

In view of Lemma 2, we see that

$$\lim_{r \to 0} \int_{\{x: r < |x| < 1\}} u(x) x^{\mu} \, dx = \lim_{r \to 0} \int_{r}^{1} \left(\int_{S(0, t)} u(x) x^{\mu} \, dS(x) \right) dt$$

exists and is finite; this limit is denoted by $C(\mu)$. Hence J(r) converges to

$$\sum_{|\mu| < L} \frac{D^{\mu}v(0)}{\mu!} C(\mu)$$

as $r \to 0$. Therefore

$$\langle u, v \rangle \equiv \lim_{r \to 0} \int_{\{x: r < |x| < 1\}} uv \, dx$$

$$= \int_{\mathbf{B}_0} u \left(v - \sum_{|\mu| \le L} \frac{x^{\mu}}{\mu!} D^{\mu} v(0) \right) dx + \sum_{|\mu| \le L} C(\mu) \frac{D^{\mu} v(0)}{\mu!}$$

is defined to be finite. Clearly, u is a distribution on \mathbf{B} .

3. The proof of the main theorem

In this section we give a proof of the theorem.

(I) We first prove the theorem under the strong condition (2). We recall Green's formula for Δ^m (see e.g. [2], [8]):

$$\int_{\mathbf{B}-B(0,r)} (u\Delta^{m}v - v\Delta^{m}u)dx$$

$$= -\sum_{i=1}^{m} \int_{S(0,r)} \left[(\Delta^{i-1}u) \frac{\partial (\Delta^{m-i}v)}{\partial n} - (\Delta^{m-i}v) \frac{\partial (\Delta^{i-1}u)}{\partial n} \right] dS \tag{8}$$

for $u \in C^{\infty}(\mathbf{B}_0)$, $v \in C_0^{\infty}(\mathbf{B})$ and 0 < r < 1, where $\partial/\partial n$ denotes the inner normal derivative. If $u \in H^m(\mathbf{B}_0)$ and $v \in C_0^{\infty}(\mathbf{B})$, then we obtain

$$\int_{\mathbf{B}-B(0,r)} u \Delta^m v \ dx = \sum_{j=1}^n \left\{ \sum_{|\lambda|+|\mu|=2m-1} C(\lambda,\mu,j) \int_{S(0,r)} D^{\lambda} u D^{\mu} v \frac{x_j}{r} \ dS \right\}$$

with constants $C(\lambda, \mu, j)$. For simplicity, we put $\psi(x) = D^{\mu}v(x)$, and use its Taylor expansion

$$\psi(x) = \sum_{|\nu| \le l} \frac{x^{\nu}}{\nu!} D^{\nu} \psi(0) + R_{l+1}(x),$$

where $l = s + |\lambda|$. Then we have

$$\int_{S(0,r)} D^{\lambda} u D^{\mu} v \frac{x_{j}}{r} dS$$

$$= \int_{S(0,r)} D^{\lambda} u(x) R_{l+1}(x) \frac{x_{j}}{r} dS + \frac{1}{r} \sum_{|\nu| \le l} \frac{1}{\nu!} D^{\nu} \psi(0) \int_{S(0,r)} D^{\lambda} u(x) x^{\nu} x_{j} dS$$

$$= I(\psi) + J(\psi).$$

To evaluate $I(\psi)$, we need the following lemma, which is an easy consequence of [6, Lemma 8.4.5].

LEMMA 4. If $u \in H^m(\mathbf{B}_0)$ and 0 < r < 2/3, then

$$\int_{S(0,r)} |D^{\lambda}u| dS \le Cr^{-|\lambda|-1} \int_{\{x: r/2 < |x| < 3r/2\}} |u| dx$$

with a positive constant C.

From Lemma 4 it follows that

$$|I(\psi)| = \left| \int_{S(0,r)} D^{\lambda} u(x) R_{l+1}(x) \frac{x_j}{r} dS \right|$$

$$\leq C r^{l+1} \int_{S(0,r)} |D^{\lambda} u| dS$$

$$\leq C' r^{l+1-(|\lambda|+1)-s} \int_{\{x:0<|x|<2r\}} |u(x)| |x|^s dx,$$

so that $I(\psi)$ tends to zero as $r \to 0$, since $l = s + |\lambda|$.

On the other hand, we see from Lemma 2 that

$$J(\psi) = \frac{1}{r} \sum_{|\nu| \le l} \frac{1}{\nu!} D^{\nu} \psi(0) \int_{S(0,r)} D^{\lambda} u(x) x^{\nu} x_{j} dS$$

$$= \frac{1}{r} \sum_{|\nu| \le l} \frac{1}{\nu!} D^{\nu} \psi(0) \left\{ \sum_{k=1}^{m+|\nu|+1} (A_{k}(\lambda, \nu, j) r^{2(2+|\nu|-k)+n-1} K_{m}(r) + B_{k}(\lambda, \nu, j) r^{2(m+2+|\nu|-k)-1} + C_{k}(\lambda, \nu, j) r^{2(m+1+|\nu|-k)+n-1}) \right\}$$

$$\to \sum_{|\nu| \le l} C'(\lambda, \nu, j) D^{\nu} \psi(0) \quad \text{as } r \to 0,$$

since $A_k(\lambda, \nu, j) = 0$ when $k > m + 1 - \frac{n}{2}$. Hence it follows that

$$\langle u, \Delta^m v \rangle = \lim_{r \to 0} \int_{\{x: r < |x| < 1\}} u \Delta^m v \, dx$$

$$= \sum_{|\lambda + \mu| = 2m - 1, |\nu| \le s + |\lambda|} C''(\lambda, \nu) D^{\mu + \nu} v(0)$$

$$= \sum_{|\lambda| \le s + 2m - 1} C'''(\lambda) D^{\lambda} v(0). \tag{9}$$

Finally let us find constants $c(\mu)$ for which $u - \sum_{|\mu| \le s+2m-1} c(\mu) D^{\mu} K_m$ is polyharmonic of order m. For this purpose, we have by (9)

$$\left\langle \Delta^{m} \left(u - \sum_{|\mu| \le s + 2m - 1} c(\mu) D^{\mu} K_{m} \right), v \right\rangle$$

$$= \left\langle u - \sum_{|\mu| \le s + 2m - 1} c(\mu) D^{\mu} K_{m}, \Delta^{m} v \right\rangle$$

$$= \left\langle u, \Delta^{m} v \right\rangle - \sum_{|\mu| \le s + 2m - 1} c(\mu) \left\langle D^{\mu} K_{m}, \Delta^{m} v \right\rangle$$

$$\begin{split} &= \sum_{|\lambda| \le s+2m-1} C'''(\lambda) D^{\lambda} v(0) - \sum_{|\mu| \le s+2m-1} c(\mu) \langle D^{\mu} (A^{m} K_{m}), v \rangle \\ &= \sum_{|\lambda| \le s+2m-1} C'''(\lambda) D^{\lambda} v(0) - \sum_{|\mu| \le s+2m-1} c(\mu) \langle D^{\mu} \delta, v \rangle \\ &= \sum_{|\lambda| \le s+2m-1} C'''(\lambda) D^{\lambda} v(0) - \sum_{|\mu| \le s+2m-1} c(\mu) (-1)^{|\mu|} \langle \delta, D^{\mu} v \rangle \\ &= \sum_{|\mu| \le s+2m-1} C'''(\mu) D^{\mu} v(0) - \sum_{|\mu| \le s+2m-1} c(\mu) (-1)^{|\mu|} D^{\mu} v(0). \end{split}$$

Hence if we take $c(\mu) = (-1)^{|\mu|}C'''(\mu)$, then

$$\Delta^{m}\left(u-\sum_{|\mu|\leq s+2m-1}c(\mu)D^{\mu}K_{m}\right)=0$$

as required.

(II) Now we assume that (1) holds for $u \in H^m(\mathbf{B}_0)$. Using polar coordinates and Lemma 1, we have

$$\int_{\mathbf{B}-B(0,r)} u(x)|x|^{s} dx$$

$$= \int_{r}^{1} t^{s} \left(\int_{S(0,t)} u(x) dS \right) dt$$

$$= \int_{r}^{1} \omega_{n} t^{s+n-1} \sum_{k=1}^{m} \{ a_{k} t^{2(1-k)} K_{m}(t) + b_{k} t^{2(m+1-k)-n} + c_{k} t^{2(m-k)} \} dt$$

$$= \sum_{k=1}^{m} \{ a'_{k} r^{2(1-k)+s+n} K_{m}(r) + b'_{k} r^{2(m+1-k)+s} + c'_{k} r^{2(m-k)+s+n} \} + d,$$

where $a_k' = 0$ for $k > m + 1 - \frac{n}{2}$. Hence $\int_{\mathbf{B} - B(0,r)} u(x) |x|^s dx$ is bounded for 0 < r < 1. Therefore (1) implies (2). In view of the first half of the proof, u is of the form

$$u = \sum_{|\mu| < s+2m-1} c(\mu) D^{\mu} K_m + h$$

for some $h \in H^m(\mathbf{B})$. The proof of the theorem is now completed.

4. Proofs of Corollaries 1 and 2

In this section we give proofs of Corollaries 1 and 2.

PROOF OF COROLLARY 1. Assume that u is a harmonic function on \mathbf{B}_0 such that

$$u(x) \le o(|x|^{-n+1})$$
 as $x \to 0$. (10)

Then we have

$$\int_{\mathbf{B}_0} u(x)^+ dx < \infty,$$

so that (1) holds for s = 0. Hence our therem shows that u is of the form

$$u = \sum_{|\mu| \le 1} c(\mu) D^{\mu} K_1 + h$$

for some $h \in H^1(\mathbf{B})$ and some constants $c(\mu)$. In view of (10), we see that $c(\mu) = 0$ when $|\mu| = 1$, which proves the corollary.

PROOF OF COROLLARY 2. Assume that $u \in H^m(\mathbf{B}_0)$ satisfies (2) for an integer s. Then

$$\int_{\mathbf{B}_0} |u(x)| |x|^{s'} dx < \infty$$

for a nonnegative integer $s' \ge s$. Hence it follows from our theorem that u is the form

$$u = \sum_{|\mu| \le s' + 2m - 1} c(\mu) D^{\mu} K_m + h$$

for some $h \in H^m(\mathbf{B})$. According to (2), $\sum_{s+2m-1<|\mu|\leq s'+2m-1}c(\mu)D^{\mu}K_m$ should disappear, which completes the proof of Corollary 2.

5. Remark

REMARK 1. If $u \in H^m(\mathbf{B}_0)$, then u is expressed as Laurent series expansion:

$$u(x) = \sum_{\mu} c(\mu) D^{\mu} K_m(x) + h(x) \qquad (h \in H^m(\mathbf{B}))$$

(cf. [3, Chapter 10]).

To show this, fix $x \in \mathbf{B}_0$ and find from (8) (Green's formula for Δ^m)

$$0 = \int_{B(0,r_2)-B(0,r_1)-B(x,r)} (u(y)\Delta^m K_m(x-y) - K_m(x-y)\Delta^m u(y))dy$$

$$= \sum_{i=1}^m \int_{S(0,r_2)} \left[(\Delta^{i-1}u(y)) \frac{\partial (\Delta^{m-i}K_m(x-y))}{\partial n_y} - (\Delta^{m-i}K_m(x-y)) \frac{\partial (\Delta^{i-1}u(y))}{\partial n_y} \right] dS(y)$$

$$- \sum_{i=1}^m \int_{S(0,r_1)} \left[(\Delta^{i-1}u(y)) \frac{\partial (\Delta^{m-i}K_m(x-y))}{\partial n_y} - (\Delta^{m-i}K_m(x-y)) \frac{\partial (\Delta^{i-1}u(y))}{\partial n_y} \right] dS(y)$$

$$- \sum_{i=1}^m \int_{S(x,r)} \left[(\Delta^{i-1}u(y)) \frac{\partial (\Delta^{m-i}K_m(x-y))}{\partial n_y} - (\Delta^{m-i}K_m(x-y)) \frac{\partial (\Delta^{i-1}u(y))}{\partial n_y} \right] dS(y)$$

$$- (\Delta^{m-i}K_m(x-y)) \frac{\partial (\Delta^{i-1}u(y))}{\partial n_y} dS(y)$$

$$= \alpha(r_2, x) - \beta(r_1, x) - \gamma(r, x)$$

for $0 < r_1 < |x| < r_2$ and r > 0 with $B(x,r) \subset B(0,r_2) - B(0,r_1)$. Note that $\lim_{r \to 0} \gamma(r,x) = cu(x)$ for some constant c and $\lim_{r_2 \to 1} \alpha(r_2,x) \in H^m(\mathbf{B})$. Further, using the Taylor expansion for K_m and Lemma 2, we have

$$\lim_{r_1\to 0}\beta(r_1,x)=\sum_{\mu}c(\mu)D^{\mu}K_m(x),$$

where $c(\mu)$ are constans. Hence we see that

$$u(x) = \sum_{\mu} c'(\mu) D^{\mu} K_m(x) + h(x) \qquad (h \in H^m(\mathbf{B})).$$

Our aim in this paper has been to find conditions which assure that the series in the above expression contains only finite terms.

OPEN PROBLEM. Under the weaker condition that

$$\liminf_{r\to 0} r^{-s-n+1} \int_{S(0,r)} u(x)^+ dS < \infty$$

instead of (1), we do not know whether $u \in H^m(\mathbf{B}_0)$ is a polynomial or not.

References

- [1] D. H. Armitage, On polyharmonic functions in $\mathbb{R}^n \{0\}$, J. London Math. Soc. (2) 8 (1974), 561–569.
- [2] N. Aronszajn, T. M. Creese and L. J. Lipkin, Polyharmonic functions, Clarendon Press, 1983.
- [3] S. Axler, P. Bourdon and W. Ramey, Harmonic function theory, Springer-Verlag, 1992.
- [4] T. Futamura, K. Kishi and Y. Mizuta, A generalization of the Liouville theorem to polyharmonic functions, to appear in J. Math. Soc. Japan 53 (2001).
- [5] Y. Ishikawa, M. Nakai and T. Tada, A form of classical Picard principle, Proc. Japan Acad. Ser. A Math. Sci. 72 (1996), 6-7.
- [6] Y. Mizuta, Potential theory in Euclidean spaces, Gakkōtosho, Tokyo, 1996.
- [7] M. Nakai and T. Tada, A form of classical Liouville theorem for polyharmonic functions, Hiroshima Math. J. 30 (2000), 205–213.
- [8] M. Nicolesco, Recherches sur les fonctions polyharmoniques, Ann. Sci. École Norm Sup. 52 (1935), 183–220.

Toshihide Futamura and Kyoko Kishi
Department of Mathematics
Graduate School of Science
Hiroshima University
Higashi-Hiroshima 739-8526, Japan
T. Futamura: toshi@mis.hiroshima-u.ac.jp
K. Kishi: kyo@mis.hiroshima-u.ac.jp

Yoshihiro Mizuta
The Division of Mathematical and Information Sciences
Faculty of Integrated Arts and Sciences
Hiroshima University
Higashi-Hiroshima 739-8521, Japan
mizuta@mis.hiroshima-u.ac.jp