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Periodic solutions for nonautonomous predator-prey system with
diffusion and time delay*
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ABSTRACT. By using the continuation theorem of coincidence degree theory, the ex-
istence of a positive periodic solution for the Lotka-Volterra population model, con-
sidered by Song-Chen. [1], is established.

1. Introduction

X. Song and L. Chen [1] considered the following Lotka-Volterra pop-
ulation model:

= x(0@(0) = bi(0)x1(1) = e(0y(1) + Dy () (xa(e) = 31 (1)),
dx;l(t) = x2()(aa(t) — ba(£)x2(1)) + Da(2)(x1(2) — x2(2)), (1.1)

0
dyT(tZ) = (1) < —d(t) + p(t)x1(2) — q()y(1) — B(2) J, k(s)y(t + s)ds> ,

where x; and y are the population density of prey species x and predator
species y in patch 1, and x, is the density of species x in patch 2. Predator
species y is confined to patch 1, while the prey species x can diffuse between
two patches. D;(¢) (i =1,2) are diffusion coefficients of species x.

In [1], they proved that system (1.1) is uniformly persistent under ap-
propriate conditions and obtained sufficient conditions for global stability of the
system (1.1). Our purpose in this paper is, by using the continuation theorem
which was proposed in [2] by Gaines and Mawhin, to establish the existence of
at least one positive w-periodic solution of system (1.1).

First, consider an abstract equation in a Banach space X,

Lx = JANx, Ae(0,1), (1.2)
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where L : Dom LN X — X is a linear operator and /4 is a parameter. Let P
and Q denote two projectors,

P:XNDom L — Ker L and Q:X — X\Im L.

For convenience we introduce a continuation theorem [2, p. 40] as follows.

LemMmA 1.1.  Let X be a Banach space and L a Fredholm mapping of index
zero. Assume that N : Q — X is L-compact on Q with Q open bounded in X.
Furthermore assume:

(a) for each 2€(0,1),xe dQ2NDom L,

Lx # ANx;
(b) for each xe dQNKer L,
ONx # 0;

(c) deg{QONx,Q2NKer L,0} #0.
Then Lx = Nx has at least one solution in Q.

2. Main result

In what follows, we use the following notation:

f:%J'f(z)dL f'= min |f(7)], S = max |f(1)],

0 te(0,w] te(0,w]

where f is a periodic continuous function with period w > 0.

In system (1.1), we always assume the following.

Assumption (H;). ai(t), bi(t), Di(t) (i=1,2), c(t), d(t), p(t), q(t) and
B(t) are positive periodic continuous functions with period w > 0.

Assumption (H;). k(s) is a continuous and nonnegative function on
[—7,0], 0 <7< o0.

Now we state our fundamental theorem about the existence of a positive
w-periodic solution of system (1.1).

THEOREM 2.1. In addition to Assumption (H,) and (H,), we assume the
following:

(i) p'ar—Dy)' > bid",

(1) aa(t) > Da(t), for Yte R.

Then system (1.1) has at least one positive w-periodic solution.

Proor. Consider the system
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dy

=) = Di(0) = bi (e — c()e”) + Dy(1)e” 70,

B — () = Do) — bo(e0 + Do()er 0 eh)
dys _ W) _ o) ’ »a(t+s)

U3 (o) + (0" — g(0e” — () | k(5)en ds,

where a;(1), bi(t), Di(t) (i=1,2), c(t), d(t), p(t), q(t) and p(z) are the same
as those in Assumption (H;), and 7 and k(s) are the same as those in Assump-
tion (H,), it is easy to see that if system (2.1) has an w-periodic solution
(y5(2), y3(2), yi(t)), then (€110 e?3() ¢¥i (1)) is a positive w-periodic solution of
system (1.1). Therefore, for (1.1) to have at least one positive w-periodic
solution it is sufficient that (2.1) has at least one w-periodic solution. In order
to apply Lemma 1.1 to system (2.1), we take

X = {(0n (1), »2(0), 3(0)" € C(R,R®) : yilt + w) = yil0),i = 1,2,3}

and

131 (1), y2(0), y3(0)" || = max |y (1) + max |py(£)] + max [s(0)].
te[0,w)] te[0,w] te[0,w]

With this norm, X is a Banach space. Let

ar(1) = Dy(0) = bi(0)e) = e(Den ) + Dy (e

1 7
Nyl = ay(t) — Dy(t) — by (t )e}l +D2(1)6J1()*}'2() 7
0
V3 —d(1) + p(t)e” ) — g(1)ers) — /g(t)J k(s)e?> ) ds
'l w T
— yl(t)dt
/ wJo
I 4 I N 1" )1
L | = yé ) P 2| = Q » | = ;J yz(t)dl , N eX.
V3 yg 3 V3 { (Iv 3
— t)dt
_M) 0 y3( ) ]

Since Ker L = R3 and Im L is closed in X, L is a Fredholm mapping of index
zero. Furthermore, we have that N is L-compact on Q [2]; here Q is any open
bounded set in X. Corresponding to equation (1.2), we have
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% = Alai(t) — Dy () — bi(t )e“ (t)eys(t) + Dl(t)eyz(t)—yl(z)]’

% = Aay(t) — Da(t) — ba(t )er +D2([)6J’l(r)fyz(t)]7 (22)
0

% =1 |:—d(l) —l—p(l)eyl(t) _ q(l‘)eh(ﬁ —p(0) J,T k(s)eys(H—s) dS:| )

Suppose that (y,(2), y,(1), y3(1))" € X is a solution of system (2.2) for a certain
2 €(0,1). By integrating (2.2) over the interval [0,w], we obtain

w w

J Di(0)e” 010 g 4 J (ar(1) — Dy(1))dt = J bu(1)en® di + J (e dr,
0 0 0 0
(2.3)

JWDZ( Ye 1 (0=r2(0) dt—l—Jw(ag(t)—Dz(t))dt Jwbz( Ye2() dr (2.4)

0

w

pr( Yelt ) dr = de(t)dtJrJ q(1)e” dt+Jw/>’(t) <Jork(s)ey3(’“> ds)dt.

0 0 0 0
(2.5)
From (2.2)—(2.5), it follows that
J |y (0)lde < J (an (1) = Dy (1))di + J by(H)e® df + J e(6)e” ) dr
0 0 0 0
+J 'D](,)eyz(f%y](t) dr, (2.6)
0
J |y (0)|dt < J (az(t)—Dz(t))dt+J b (£)e* ) dz+J Da(0)e" 00 g (2.7)
0 0 0 0
and
J |yg(t)|dzgj d(z)dt+J p(n)et dt+J q(t)e”" dr
0 0 0 0
w 0
+J B(t) (J k(s)e>+) ds)dt. (2.8)
0 -7
By (2.3)-(2.5) and (2.6)—(2.8), we obtain
J |yl (0)lde < 2J by(1)en D dr + 2J c(t)e? dr, (2.9)
0 0 0
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Jylyé(t)ldtﬂj by(t)e*") dt (2.10)
0 0
|| itolar <2 pen ar 211
0 0

Choose ¢/ €[0,w], i=1,2,3 such that

yl<l1*) max J’i(t): l:17273

:te[() ]

Then it is clear that

yi(tf) =0, i=1,2,3.

From this and (2.2), we have

ar(t7) = Di(t)) = bi (7)) — e(17)e ) 4 Dy (7)) = 0, (2.12)
a(83) — Da(t3) — ba(13)e” )  Dy(85)er () 22(5) = (2.13)

0
~d(65) (1)) g(1)e )~ B(e5) | k() ds 0. (2.14)

(2.14) implies that

q(t3)e”s) < p(15)en ™) (2.15)
* i

ente) 5 A) 4 (2.16)
() " p*

Combining (2.16) with (2.12), we have

. . Dip" .
b{e}’l(ll) < bl(l;‘)eﬁ(ll) < (ay _Dl)u_|_Cll_ll’eyz(zz)7 (2.17)

from which, together with (2.13), it implies that

d'bible? ) < (bld'(ay — Dy)" + DYDip*)e?> ) + D¥d'(ay — Dy)".

2d'bibse2) < bld'(ay — D))" + DI Dp"

+{(bla'(ay — D2)" + DY DYp")* + 4d'b{bID3d (a) — D1)"}'/?,
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from which, by using inequality
(a+b)1/2<a1/2+b1/2, for a >0, b>0, (2.18)

it implies that

24'b{bhe™5) < 2b1d" (ay — Da)" + 2D DYp" +2\/d!blb4DYd! (ay — Dy)".

That is

(ar— D) DUDEp" -+ \Ja'blBIDYd @y — Dy)”
T abTD]

eJ’Z(’g*) <

Y4, (2.19)

from which, together with (2.17), it follows that

(a1 —D1)" | Dip"

.}’1(’;) < A = A . 220
‘ b Tl T (220

Combining (2.15) with (2.20), we obtain

(6 <1;_”l‘ (a1 ;{Dl)”_’_IZ{i’c]Z):AI Yy, (2.21)
Therefore for Ve R,
N < 4y, e < 4y, el < Aj. (2.22)
From (2.13), we have
nt) < @2(3) = Da(t3) _ (a2 — Do) (2.23)
ba(13) by

By (2.3) and (2.5), it implies that there exist two points #;,#, € (0, w) such that

b)) J O gy 4 J c(t)e? O df = J Di(£)er 00 gy 4 Jw(al (6) — Di(1))dt
: 0 0 0 (2.24)
and
w w w w 0
p(1,) L e dr = L d(t)dt + L q(0)e) dr + JO B(1) <J k(s)es (9 ds> dt.

(2.25)
Substituting (2.25) into (2.24) gives
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0

w

bi(m) L q(t)e”") dt + p(n,) JO k(s)e?s(+9) ds) dt

c(t)ent dr+b1<m>j:ﬂ<t><j

-7

= p(n2) j Dy(1)e” 10 d 1 p(i) j( (1) — Dy (1))dt — i) j d(1)dr
> p'w(ay — D) — bi'wd". (2.26)
In view of

w

w w 0
bilm) || a0 de+pns) | et ar i) | ﬁ(z)([ k(e ds>dz

0
0 *
< | biq" +p“c" + b{‘ﬁ”J k(s)ds | we”(5),

from this and (2.26), we have

pllay — D) = btd* def

o) 5 L Y 4. (2.27)
bigq" + pUc' + biB" |~ k(s)ds
By (2.9)-(2.11) and (2.22), we can get
w , " " def
J |y1(6)|dt <2wb{Ay + 2wc Az = d), (2.28)
0
J |5 (8)|dt < 2wb”A1 d2 (2.29)
0
and
J 4(0)|de < 2p"wdAr Y (2.30)
0

From (2.16), (2.23) and (2.27), it follows that there exist three constants p;, p,
and p; such that

WE) > —pi (i) > —pa (53> —ps. (2.31)

Since for V¢ e [0,w],

t

(0 =n(6) = | sitoyas

t

(t) = y(25) —j Y4 (s)ds

¥
H
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and

t
* Vi(s)ds,

3

33(0) = »3(15) — J

t

from (2.31) and (2.28)—(2.30), it implies that for i =1,2,3,

w

3ilt) > —p;— j YLS)lds > —p; — . (2.32)

From (2.22) and (2.32), we can obtain

»
131 (0)] < max{[In Ao, p, +di} < Ry,

de,
112(0)] < max{[In 4], p, + o} Z R,

and

de
|y3()| < max{|In 43|, p; + d5} :fR3.

Clearly, R; (i =1,2,3) are independent of 1. Denote M = R; + R, + R; + Ro;
here Ry is taken sufficiently large such that each solution (a*,f",y*) of the
following system:

a — Dy — bie* — ¢’ + D1ef " =0,

@ — Dy — bye? + Dye* P =0,
2—Dy— by 2 (2.33)

0
—d + pe” — (q +ﬁ_J k(s)ds) e’ =0,

satisfies ||(o*, B, y*)|| = |o*| + |f"| + |y*| < M, provided that system (2.33) has
a solution or a number of solution. Now we take Q = {(y,(7), (1), y3(1))" €
X :||(y1, y2 ¥3) " < M}. This satisfies condition (a) of Lemma 1.1. When
(1, ¥2, v3) € 8Q2NKer L=0QNR3, (y,, 5, ;)" is a constant vector in R>
with ||+ |y,| + 3] = M. TIf system (2.33) has a solution or a number of
solutions, then

ai — Dy — bje’t — ée¥’ + Djerr ™

»i P v 4 Ty
a, — Dy — bye?? + Dye?1 2
ON | »

0
V3 —d + pe’t — <c7 + ﬁ_J k(s)ds) e’

0
# 10
0
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If system (2.33) does not have a solution, then naturally

»1 0
ON|»m | # |0
3 0

This prove that condition (b) of Lemma 1.1 is satisfied. Finally we will prove
that condition (c) of Lemma 1.1 is satisfied. To this end, we define ¢ : Dom L x
[0,1] = X by

a, — D; — bje? — ce?s

@ — D — hye Dy
(1, ¥2: y3, 1) = 0 +u| Dyen 2 |,
—d + pe’t — (cj + ﬂ_J k(s)ds) e” 0
-1

where e [0,1] is a parameter. When (y,, y,, v3)" € 32 NKer L = 0QN R3,
(y1, 72, ¥3)" is a constant vector in R® with |y, + |y, + |y3| = M. We will
show that when (y;, y,,y3)" € 0QNKer L, ¢(y,, vy, v3, 1) # 0. If the conclu-
sion is not true, a.e., constant vector (y, vy, ;)" with |yi| + |y,| + |y3| = M
satisfies @(y|, 5, ¥3,4) = 0, then from

CTl — D_1 _ b_le}’l _ Ee}’g +ﬂD_ley2_YI — 07

@ — Dy — bye” + uDre” 2 = 0,
~ 0
—d + pe’" — (j+,6’J k(s)ds |e” =0,
-7

following the argument of (2.22) and (2.31) gives
‘yl‘ < max{‘ln AZ‘apl}a
|y2| < max{[ln 4], p,}

and
| v3] < max{[ln 43, p3}.
Thus

|11+ |32] + |y3] < max{|In A>[, p;} + max{[In 4;],p,} + max{[ln 43|, p;} < M,

which contradicts the fact that |y,|+ |y,| 4+ |y3] = M. Therefore
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deg(QN(yla V25 y})T7‘Q N Ker L’ (OaOaO)T)

= deg ¢(y17 y27y3a0)aQﬂKer La (O,O,O)T)

deg((al — Dy — bie* —¢e” @ — Dy — bye”?, —d + pe”!
0 T
- <q+ﬁj k(s)ds>ey3> ,QNKer L, (0,0,0)T>.

Because of (i) of Theorem 2.1, then the system of algebraic equations

a — Dy —byu—cz=0,

@ — D_2 - b_ZU = 07
3 0
—d + pu — gz — q—f—ﬁj k(s)ds |z=0
-7
has a unique solution (u*,v*, z*) which satisfies u* > 0, v* > 0 and z* > 0, thus

deg<<a_l - ﬁl - b_ley] - Eey}?a_2 - D_2 - b_zey27 —(7—'—?6}7]

T
— <q+ ﬁJi k(s)ds) ey-‘) ,QNKer L, (0,0, 0)T>

—bju* 0 —cz*

) 0 —byv* 0
= sign

Consequently

deg(QN(ylvy27 y3)T7 QNKer L7 (07070)T) 7 0.
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This completes the proof of condition (c¢) of Lemma 1.1. By now we have
known that Q verifies all the requirements of Lemma 1.1 and then system (2.1)
has at least one w-periodic solution. This completes the proof.
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