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ABSTRACT. The classification of solutions for some dissipative systems by the infor-
mation of the spectrum is established. Its generator is non self-adjoint Schrédinger
operator with rank one singular perturbation. For the proof, a generalized Parseval
formula is constructed.

1. Introduction

Let s be a Hilbert space. We shall consider the relation between the
asymptotics of solutions for the equation

(1.1) i0,u = Hu, u,o=f, feA,

where H is some maximal dissipative operators in ., and the spectral structure
of the operator H. By the analogy of the general theory of ordinary dif-
ferential equations with constant coefficients (cf. Coddington and Levinson [4]),
we especially expect that o(H) N R brings non-decay, i.e. lim, .., e ™ f # 0 and
o(H)NC_ brings decay, i.e. lim, ., e ™ f =0, where ¢(H) and C_ denote the
spectrum for operators H and the complex lower half-plain, respectively. We
also know some examples which suggest the above situation. These are stated
in Appendix C below.

In order to define an operator with singular perturbation, we prepare some
notations. Let Hy= —d?/dx* in # = L*(R). Then H, is a self-adjoint
operator with the domain D(Hy) = #>, where

= P = [ QWP I k< ) for seR
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is the usual Sobolev space and %, is the Fourier transform in the sense of
tempered distribution. {-,-> is the inner product of # and we use the same
symbol for the dual coupling of #°* and #~*, (in the case s =0, i.e. #° = #,
its norm is denoted by || - ||).

In this paper we shall deal with the Schrédinger equation (1.1) with

2
# =L*R"Y), H=H,= —%+a<~,5>5,

where J(e %”1) is the Dirac delta and o = o + iy with o« <0 and op, < 0.
We define the domain of H,, D(H,) as follows (see also section 2):

D(H,) = {U =u+aHy(H} +1)"'0|ue #? acC,
Cu, 6y = —a(o™' + <0, Ho(HZ +1)7'0))} (2 #0).

Then it follows from Appendix A that H, with o < 0 is maximal dissipative
(the case ap, = 0 is self-adjoint), i.e., H, with oy < 0 generates a contraction
semi-group {e~":} _ (the case oy = 0 generates a unitary group {e "}, _p).
Keeping -

Ho(HE + 1) = 5 ((Ho +1) "5+ (Ho — i) o)

in mind, we can rewrite the domain of H, as follows:
D(H,) ={UeA#";U'(0+) = U'(0-) = aU(0), 2(0.0) U" + X(_p.y U" € #},

where y; is the characteristic function on /.

Our aim is to classify the asymtotics of the solutions of dissipative system
(1.1) (see Corollary 1.5).

To state our results, we prepare several definitions.

0,(A) = {z € (A) | there exists f # 0 such that Af =zf} : the set of point
spectrum of A.
0,(A) ={ze€0(4)|z¢0,(A4), the range space of (4 —z) is not dense in X}
: the set of residual spectrum of A.
o.(A) ={zea(A)\(o,(A)Ua,(4))} : the set of continuous spectrum of A.
Oess(A) = {z € a(A)\oa(A)} : the set of essential spectrum of A4,
where g,(A4) = {z€a(A)|z is an isolated eigenvalue with finite multiplicity}

(the set of discrete spectrum).

The first result is the following theorem:
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THEOREM 1.1 (Spectral structure of H,). Let o= oy +iop with oy <0,
oy £0. Then the spectrum of H, is given by

[0,00)U {—ﬁ—z} (o1 < 0),
[0,00) (a1 =0).
Exact classification of the spectrum o(H,) is
Oess(Hy) = 0c(H,) = [0,00),  0,(H,) = &
and
aﬂHn{”“H”:{‘f} (o1 < 0),
I (0 =0).
Moreover the projection with respect to —% (g #0) is given by
P apuf =—0/2f, eD/25px)/2

REMARK 1.2. The condition o; < 0 and o < 0 is necessary and sufficient
for the existence of a point spectrum in the complex lower half-plane (cf.
section 2).

To state main theorem (Theorem 1.3) we note that
Ker P_,» )y + Range P_,2 /)y = A
and
Ker P_,» /4 NRange P_,2 /4 = {0}
(cf. Reed-Simon [21], Theorem XIIL.5), where
Ker 4 = {feD(A4)|Af =0}, Range 4 = {Af | f € D(A4)}
for an operator A. Thus for each f € #, we obtain a unique decomposition:
(1.2) f =+ fa,
where
Ss=F—P_ppufeKer Py
and
Ja =P_2pf € Range P2 .
Note that f € Ker P_,>), if and only if
(1.3) f,e®N2y =,
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As is explained later, we can define the wave operator W (x«)

W(a) =s- lim eHoeitHs
t—+0o0
as a non-trivial operator from # to # (see Proposition 3.1), where o; < 0 and
o < 0.
The existence of W (a) implies that the asymptotics of solutions for (1.1)
with o) <0 and o < 0 is scattering (asymptotic free, non-decay) or decay.
We have the following main theorem:

THEOREM 1.3.
(i) Assume that oy <0 and o, < 0. Then

Ker W(a) = Range P_,2 4.
(i) Assume that oy =0 and ay < 0. Then
Ker W (iay) = {0}.

REMARK 1.4.

(1) For the case o) <0 and oy < 0, it is easy to show that f; =0 is a
sufficient condition for lim, .., ||e”"f|| = 0 (see Corollary 3.2). However it is
not clear that f; =0 is a necessary condition for lim, . [e""f| =0. In
order to show the necessity, we require a generalized Parseval formula (see
Lemma 4.1).

(2) For the case a; =0 and oy < 0, the situation changes, i.e., the point
%3 /4 is not an eigenvalue. According to Reed-Simon [21], XIL.6, we may call
this point resonance. Therefore we must analyze this effect to construct the
generalized Parseval formula (see Proposition 5.1).

(3) For the case a3 >0 and oy <0, there are no eigenvalues and no
resonance. So we can obtain Ker W(x) = {0}. Since the proof is done
similarly with Theorem 1.3 (i), we omit the proof.

CorOLLARY 1.5 (The classification of asymptotics by the initial data).
(i) Assume that o is the same as in Theorem 1.3 (). Then for each f € H
decomposed as in (1.2), we have the following characterization:

lim [[e="#f — e~ W (a) f]| = 0,
S)  f#0 if and only if 1=

W) f #0
and

(D) =0 if and only if  lim e f| =0 (e7f = IS,
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(i) Assume that o is the same as in Theorem 1.3 (i). Then we have

lim ||e i f — e~ tHo W (joy) f|| = 0,
feAH and f#0 if and only if =
W(iaz)f # 0.

In the case o, = 0, the asymptotics of the solutions of (1.1) is well-known
since H,, is self-adjoint operators (cf. Enss [6], Kuroda [13] and Reed-Simon
[21]). Indeed, let E, (1) be the spectral family of H,. Then we have by
Theorem 1.1 and spectral theory

2
Range E,, ((0, 00)) @ Range E,, ({?}) =x.
Furthermore scattering theory implies that

f € Range E, ((0, 0)) if and only if
lim (e~ f — e " W, (o) f]| = O

t—+w
and
062 . . i ) (02 .
f € Range E,, ({—f}) if and only if e " f = /4y
where

Wi (o) =s- lim e™e ™ E, ((0,00)).

t—+oo

REMARK 1.6. It is well-known that the existence of Wi () is equivalent
to the asymptotic completeness for

H,

e e*i[Ho .

A . i it
Qo) = i

Corollary 1.5 asserts that it is possible to construct a formulation for
dissipative systems (1.1) which is similar to the self-adjoint case. There are
many works studying the asymptotics of solutions for dissipative systems.
However it seems that there are no works dealing with a classification like
Corollary 1.5.

We mention related works. Schrédinger operators with rank one per-
turbation are known as point interaction (Albeverio, Gesztesy, Hoegh-Krohn
and Holden [2], Albeverio and Kurasov [3]). Self-adjoint realizations are
considered by Watanabe [23], Kurasov and Watanabe [11], [12]. Kato [10]
deals with scattering theory for a perturbation of rank one. Non self-adjoint
scattering theory was investigated by Kato [9], in which he developed the
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smooth perturbation theory. Pavlov [18] studied the spectral properties for the
one-dimensional non self-adjoint Schrédinger operator, in which he derived
“generalized” Parseval formula. Using Kato’s theory, scattering theory for
wave equations with dissipative terms is considered by Mochizuki [14], [15],
Nakazawa [17] and Kadowaki [7]. Kadowaki [8] used the Enss method to
prove the existence of the wave operators for some dissipative systems.
Adamyan and Neidhardt [1] treated the non self-adjoint Friedrichs model and
studied the absolute continuity of the spectrum for it.

The present paper is organized as follows.

In section 2, we prove Theorem 1.1. The existence of the wave operator
is shown in section 3. In section 4 and 5, we prove Theorem 1.3 (i) and
Theorem 1.3 (ii), respectively. In their proof, we construct a generalized
Parseval formula (Lemma 4.1 and Proposition 5.1, respectively). In Appendix
A, we show that H, with o, < 0 is maximal dissipative (H,, is self-adjoint). In
Appendix B, we mention Kadowaki’s results [8] which supplement subject in
section 3. In Appendix C, we state two examples by which our work is
motivated.

Acknowledgements

We are grateful to Professor M. Kawashita for his valuable comments for
Lemma 4.1 and Proposition 5.1.

2. Proof of Theorem 1.1
We consider the operator
HO( = HO + a<' v¢>(p
with the domain

i {U=u+aHy(H} +1) 'gplue #* acC,
D(H:) = Cu,p) =—a(e" + o, Ho(H +1)"'p>)} (o #0),
A (2=0),

where 0 e C, pe # '\ A.

For o #0, U e D(H,) means H,U € # for any U e D(H,) since
(2.1) H,U = Hou — a(H; + 1) 9.

Put o =0y +io, with oy <0 and o <0. Then H, is dissipative, i.e.,
Im{H,U,U) <0 for U e D(H,), and Hj is accretive, i.e., In(H;V, V) = 0 for
V e D(H;). Moreover we have the following properties:
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(i) H, is a maximal dissipative operator,

(ii) Hj is a maximal accretive operator,

(i) H' = H;.

These will be proven in Appendix A.

Especially, H, denotes the operator H, defined by choosing ¢ =J (Dirac
delta) e #° (s < —1/2). We also denote by R,(z) (resp. R,(z)) the resolvent
(H, —z)"" (resp. (H, —z)"") of H, (resp. H,) for z € p(H,) (resp. z € p(H,)),
where p(A4) is the resolvent set of a closed operator A in .

The proof of Theorem 1.1 can be divided into several steps. First of all,
consider the representation of the resolvent of H,.

LEMMA 2.1. Assume that o = oy + iy with oy £0 and oy £0. Then we
have for any f e A,

R,(2)f = Ro(2)f — o{1 + 2l Ro(2)p, 9>}~ {Ro(2).S, 9> Ro(2)p

Jor any z € p(Hy)N{z € C[1+alRo(z)p, 9> # O}.

Proor. The above equality can be obtained by using the arguments
similar to these used by S. Albeverio and P. Kurasov [3], Theorem 1.1.1. [J

LeMMA 2.2.  Suppose ¢ =9 in addition to the assumption of Lemma 2.1.
Then we obtain for any f € #,

(2.2) (Ro(2).1)(x) = (Ro(2)./)(x) + JRI K(x, y;2)f (y)dy,

o

where K(x, y;z) = RN

VI ¢ LZ(RL X Ryl,)

with ITm +/z > 0, where

_ [ C\([0,0)U{-0?/4}) (1 <0),
zeplts) = {C\[O, ) (m =0).

Proor. The equality (2.2) is easily obtained by using the explicit for-
mula for the free resolvent Ry(z). [

The equality (2.2) implies the following corollary.

COROLLARY 2.3. Under the same assumptions as in Lemma 2.2, we have
Oess(Hy) = [0, o0).

Next we shall show that —a?/4 (¢ < 0) is the eigenvalue of H,.
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LEMMA 2.4. Assume o; <0 and ap £0. Then —oc2/4 is the eigenvalue of
H,. Moreover the projection with respect to —“Tz, P_2)4, Is given by

(2.3) (P_yjaf)(x) = =/ 2 f, PN/ 25 /2,

ProOOF. Since —«?/4 is an isolated point of o(H,), Reed-Simon [21],
Theorem XII.5 and the equality (2.2) give for any f and ge #,

(24) <P—o:2/4f7g> = —(27[[)1{ JC <R0(Z)f,g>d2

e ei\/EM X)dx ei\/f\ Ta(v) A
+) vz (JR; s ) (L y (y)dy>d }

where C is a closed curve enclosed —«?/4 in C_ and Im /z > 0. Firstly we
find

L (Rol2)f g>dz = 0.

On the other hand, since the point z = —a?/4 is the simple pole, the residual
theorem gives

(2.5) eiﬁxlj‘(x)dx> (J eiﬁ|ymdy> dz
Rl

[ (.

_¢ (alx])/2 CEerreny
> (J f(X)dX> (j 90) y)

—a il .
s NS YN

1
X

Therefore we find —«?/4 € 5,(H,) and (2.3) from (2.4) and (2.5). O

LEMMA 2.5. Under the same assumption as in Lemma 2.1, we have for
U,V e D(H,),

2iIlmo -

(26) <ﬁotUa V> - <U7 ﬁ1V> = |2 ab7

|oc
where

_ {u, 9y
o+ <o, Ho(HZ + 1))

_ v, 9>
1+ <o Ho(HE 1) ')

and

for some u,ve A
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Proor. Using self-adjointness of Hy and (2.1), we find the left hand side
of (2.3) becomes

Cu, bHG (H§ + 1) 9> — Ca(HG + 1) p,0) + Cu, b(HF +1) "' 9>
— (aHOZ(HO2 + 1)71(/), V).

Combining the first and the third terms, and the second and the fourth terms,
respectively, we have

E<H, (ﬂ> - d<(ﬂ7 U>'

Noting the relation on <{u,p) in D(ﬁx), we easily obtain the desired
results. []

LemMA 2.6. Assume oy <0 and oy < 0. Then we find

(2.7) op(H:) "R = &,
(2.8) a,(Hz) "R = &,
(2.9) o.(H,)NR = .

Proor. Firstly we shall show (2.7). Assume that U, is the eigen-
function of the operator H, with respect to the Aeag,(H,)NR. Taking
U=V =U, in (2.6) of Lemma 2.5, we have

0=A|U|I> = 2|U|)> = (AU, Uy = (U, iUy = o’

Hence it follows a =0. Therefore, we have U =u (see the definition of
D(H,)) and H,U = Hou by (2.1). It then follows that

Hoyu = H,U = AU = Ju.

This means /A € g,(Ho) N R, which is the contradiction.

The similar argument is applicable to show (2.8).

Finally, we shall show (2.9). Assume Aeo.(H,)NR. Then /=
Jea,(H}) =0,(H;) and this contradicts with (2.8). [J

Since the spectral theory for the self-adjoint operator implies a,(H,,) = &,
the proof of Theorem 1.1 is complete.

In the rest of this section, we give the principle of limiting absorption
which follows from (2.2). Let

o= Pl = [ G+ PP d <o} for seR

be the weighted L? space.
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ProprosiTiION 2.7 (The principle of limiting absorption for H,). Let
s> 1/2. Then there exist the limits

lim R,(A +i
;?01 2(4 £ ie)

in the uniform operator topology of B(L**,L>~*), i.e., we have

R, (A +1i0) = ligl R, (2 + ig) (1 < 0,00 £0),
Riy,(A+10) = lgif(r)l Ry, (A + ie) (02 < 0)

for every 1€ (0,00). In particular,
Ry, (A —i0) = lif‘{)l Riy, (A — ie) (02 < 0)
&

o2

exists for every 1€ (0, oo)\{%}
Proor. It is well-known that for every 4 > 0, the existence of the limits

in the uniform operator topology of B(L>*, L>~*). Moreover it is easy to see
that for every 1> 0,

.
lim J (1 -+ x]?) e VATER _ o7l g —

+el0 J_ o

Therefore we find that the following limits exist in the uniform operator
topology of B(L>*, L>~%),

etV

lim R,(4 + ie) = Ro(/ + i0) T GG

el0 2iVA(+2iVA — )

for ¢ and A as in the conclusion of Proposition 2.7. []

3. [Existence of wave operators

In this section we show the existence of wave operator and construct a
generalized Fourier transform for H, (Propositions 3.1 and 3.7).

ProrosiTiON 3.1 (Existence of the wave operator). Let o= o + iop with
o1 £0, ap <0. Then there exists

W(a) =s- lim e™e
t—+o0

as non-trivial operator from H to H.
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From Theorem 1.1 and Proposition 3.1, we find the following Corollary:

COROLLARY 3.2. Let o = oy + ioy with oy <0 and onp < 0. Then we have
Range P_,./, = Ker W(a) = {f| rlir+n |e~Haf || = 0}.
——+00

On the other hand, we can show the existence of the following wave
operators by Cook-Kuroda method;

Q_(2) =s- lim e it

t—+0

Q. (a) =s- lim e~
t—+00

in #. So, we can define the scattering operator S(x) by
S(o) = W(a)Q2_(a).

We show Proposition 3.1 by the argument in Kadowaki [8] (see Appendix B)
which is due to Enss method (c.f. Enss [6], Simon [22], Kuroda [13] and Perry
(19], [20]).

RemaArRk 3.3. To show Proposition 3.1 we may apply Simon [22],
Theorem 9.3 with simple modifications (compare our condition on perturbation
with that of [22], Theorem 9.3).

According to Theorem B in Appendix B, Proposition 3.1 follows from
lemmas below (Lemmas 3.4-3.6) and g,(H,) NR = & (see Theorem 1.1).
The following lemma is well known.

LemMa 3.4. (¢f (Bl) in Appendix B) o(Hy) = 64.(Hy) = [0, 00).

LEMMA 3.5. (¢f (B2) in Appendix B) K = (H,—i) ' —(Hy—i)" is a
compact operator in A .

Proor. Lemma 2.1 implies that K is the Hilbert-Schmidt. Thus K is
compact. []

LemMa 3.6. (c¢f. (B3) in Appendix B) Let P, and P_ be the positive
and negative spectral projections for the generator of dilation L(x%—i—%x),

2
respectively. Then we have

»
(3.1) L |Ke™ o (Ho) P || g gyt < o0,

o0
(3.2) jo K¢ 0 (Ho) P | g gt < 0,
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(3.3) |, gt gt < 0
(3.4) W- tlir+n "y (Hy)P_f;, =0

Sfor each e Cy((0,0)) and {fi},cg satisfying sup,eg || fill < oo, where
| lpw, #) is the operator norm for bounded operators in A .
ProOOF. In the proof we use the Mellin transforms estimates (Perry [19],

Lemma 1). First we show (3.1)—(3.3).
For f e #, we find by Lemma 2.1

|Ke oy (Ho) P £ = |Cal [<e™ 0 (Ho) P f, eV [V,
K&y (o) P f | = [Col (<™ oy (H) P f €T 7]
K€ oy (Ho) P f ]| =[Gl [<e ™0y (Ho) 1, T13] 7],
where C, = =L —«

2iVi 2ii-o”
Moreover noting that for some d > 0

[, [V = o) (x| — o0)

and using Perry [19], Lemma 1, we have

R _
WL |<e™ oy (Ho) Py f, eV y|dr < oo,

WL |<€_1[H°¢(H0)P+f,e'\ﬁ\~\>‘dl< 0,

mjo |<€’”H°W(H0)P,f7el\ﬂ|~\>|dt< .
Thus (3.1)—(3.3) hold.

Finally, (3.4) follows from Perry [19], Remark 2. []

ProposITION 3.7 (Generalized Fourier transform for H,). Assume that o
satisfies the same condition as in Proposition 3.1 and define

Fy = FoW(a).

Then the representation of F, is given by

(3.5) (Z.f)(k) = lim J r Vv, (x, k) f(x)dx  in A

R—+w

for any f € H, where
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U, (x k) = (2m)7'? (e"'x" + W“_a)eﬂx\ k).

Furthermore, we obtain
(3.6) (ZLHf) (k) = |K(Z.f) (k) for feD(H,).

ProoF. The above result follows from Kuroda [13], Chapter 5. First of
all, note that the standard argument in the stationary scattering theory implies

o0

W (@), 0> = lim ZJ (Ry (3 + i), Ro(A + irc)v>d )

—0o0

for u,ve #.
Moreover we find by Lemma 2.2

(3.7)  (W(a)u,v) = lim ij (Ro(A+ i) — Ro(A — irc))u, v)d A

xk—0 271 0
+ lim KJOO >
k=0T Jo 2iv/A+ ik — o

X J eV Ay p)dy(Ro (2 + i) Ro (4 — ix)v) (0)d A

Taking u,ve L>* (s > 1/2) and assuming that supp Z#ov does not contain 0
and is compact, we obtain by the standard calculation that
0

(the first term of RHS of (3.7)) :J Fou(k)Fov(k)dk

— o0

and

(the second term of RHS of (3.7))

" © o0 -1/27
hm X J % J VT () dyJ @n) " Folk) s
i —w

im —
=0T o 2iV+ i — o o (A—k2)? 4 K2
B o0 o o0 X i
= (2n) I/ZJ mj My y)dyF oo (k)dk.

The last equality is due to the property of Poisson integrals. Thus we have
(3.5).
Next we show (3.6). Note that

We*l’lHq _ e*itH() W

This implies that for f € D(H,),
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—itH,  _ —itkzil
(38) A R

where 1> 0. Thus ¢t — 0, we obtain (3.6) from (3.8). [

REMARK 3.8. In sections 4 and 5, in order to show a generalized Parseval
formula, we also deal with Z3(k) (o= oy +iop with o) <0, op <0). Espe-
cially, in section 5 we have to note that #_;, (k) has singular points (k = +%)
from resonance (cf. Remark 1.4(2) and Proposition 2.7).

4. Proof of Theorem 1.3 (i)

In this section we assume o; < 0. We prove the following lemma, which
is the generalized Parseval formula (cf. Pavlov [18], Theorem 2.1).

Lemma 4.1, For any f,ge #NL'(R') and for oe{o=a + io;
oy <0} =D we have

o 3l ol
(4.1) (Tuf s Fag) = <[ 29> +5<f,eTV2 2, g,
ProoF. We know the Parseval (Plancherel) formula

L, () "
(Fuf Fog> = (g +5f T, g

for w € (—o0,0). We can see that the second term on the right hand side is
analytic in D. In fact, putting

Hy(0) = tqpyemy Zat s 7397 = J Faf (k) Fzg(k)dk,

|k|<n

where x5, 18 the characteristic function on {k;[k| < n}, we see that H, is
analytic in D and that H, converges to {%,f, %3g> locally uniformly in D.
As a consequence of the above facts (by the identity theorem) we obtain

@4.1. O
ProoF oF THEOREM 1.3 (i). The conclusion follows from
(4.2) W(a)f =0 if and only if fi=0.

So we show (4.2).
Noting Corollary 3.2 we have

(4.3) W) f = W)
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Using (1.3) and Lemma 4.1 with a density arguement we find
(44) (W@ fo, WS> = {Fufes afs> = A
Thus (4.3) and (4.4) imply (4.2). I
ProOF OF COROLLARY 1.5. Note that Corollary 3.2 and f = f; + f4.

Therefore Corollary 1.5 also follows from (4.2). [

5. Proof of Theorem 1.3 (ii)

In this section, we prepare the generalized Parseval formula (Proposition
5.1) and several lemmas for oy =0, o, <0 to prove Theorem 1.3 (ii).

PROPOSITION 5.1.  For any f,ge #NL'(R"), we have

: 773 agE iO(z i) J 1 )
llrré {Frinf s e F—inn gy = <f, 9 + TJ 1 e(’“—m"“‘f(x)dxj 1 e(:az/z)mg(y)dy’
— R R

where x, is the characteristic function on {k e Rya < ||k|+ 02/2|} for a > 0.

Proor. For 0 <a<b, let y,, be the characteristic function on
{keRya = ||k +02/2 = b}.
Since

<=9:iozzf7 ngfiozzg>
R—

— lim j 2o 06) T £ (K) T g (Rl
R!

= <y0fa)(a¢0g>
. %2 —i(xk+| y| kl)
+em gim | ] xg,R<k>{—2| T

2
L (21 S I S (R BB 14 TN dxdvdk
T prEsl S (x)g(v)dxdy

and

) 1
4k2—oc§_2 2k —oay 2k+oy)’

we have by Fubini’s theorem
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(51) 1“141:% <%12f’713377[0(2g> = <g70f.7 9709>

14 . o2 —i(xk+|y| |k|)
+ (27) ?L% I;E&JJRZ JRI Xe,R(k){ 2/k| = o €

% ik %2 (L N ik
2|k‘+0€2 2 \2k—on 2k+oap

x f(x)g(y)dkdxdy.
Putting

[©%] i
I o, ) ik
,R(x,y) J\Rllfs,R( ){2|k|—062€

% ik %2 (L L s L g
T 2 \2k—o 2k +)¢ ’

we then find that

‘ — R r—mtR  pmopteN Li(lx]+H| vk
L. r(x, y) = %e”‘zﬂxmy\)/z <J . +J +J - J > eT dk

& R —ty—&

Indeed, we have for x, y > 0,

7&'7‘12/2 R*DCZ/2 oo .
Lr(x,y) = +J e ek
R(X, ) (L )2 >{2k—a2
X el itk _ *2 1 _ ! =k e
2k 4 oy 2 \2k—oy 2k+ o

—&+0/2 0
oo 1 1 —i(x—y)k
+= J +J ( — )e =0k e,
2 < —R+u/2 a+ot2/2> 2k =0y 2k+m

Changing k to —k we obtain

(The second term of RHS of the above equality)
0 —etan/2
_ J +J ol Le—i(xﬂ’)k dk
et /2 —R+0/2 2k — o

(The fourth term of RHS of the above equality)

—e—0 /2 R—uy/2
= J 2/ +J 2/ % ( 1 - 1 )ei(xy)k dk
0 e—0y/2 2 \2k — 2] 2k =+ o

and
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Thus it holds that

—&+o/2 —&—02/2 R—03/2 o )
I — 2 ix+y)k dk
. r(X, ¥) ( w2 + L+a;/2 + L_%z/z ) % — o e
—& —&—0 R—oy o
= <J + J _|_J ) 22 ilxty)(kta/2) g
—R & ) 2k
_ ( T JR + J“HR _ J “2+8> I Py
—R & R —t—& k 2

Since we can deal with the other cases by a similar calculation, we omit the
details.
Note that the following equality holds;

(52) (T fo 1T 1)

={f, 9>+ lot_zj e<iaz/2)\xf(x)de /2 g (3Vdy
4 )r! R!

n (27_[)—1 lim lim JJ {Ia,R(xv y) — iTE%2eiaz(\le)’D/z}f(x)mdxdy
R2

e¢—0 R—o0

by (5.1). Below we shall estimate I, g(x,y) — inZe™(F+/2,
By simple calculation we have

—ox+e L i(|x[+] y|)k
(5.3) U_“z_g % dk’ <log 2t 0 (- 0)
and
(5.4) JWRM dk’ <10 (R- )
X k =R

Moreover Cauchy’s integral theorem implies

—& RN\ pillxl+lyDk el(xl+y)z elxl+1yh)z
<J +J >7dk—in:—J 70’2—1'71—] <,
R e k cr z C; V4

where C; ={z=¢e? :0=n—0=0} and Cf ={z=Re"? :0=0— 0 =n}.
Thus we obtain

—6 R\ il )k
(5.5) KJ +J )dkin
r ) k

- Jn |ei(\x\+\y\)s(cos()+isin()) _ 1|d9 n J” |e,(|x\+|y\)Rsin0|d0
0 0

-0 (e—0,R — ).
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It follows from (5.3)—(5.5) that
IE,R(X7 y) - in%eilz(wﬂy”/z —0 (8 — 0, R — OO)

and

| {1rt.3) = in S =02 £ ()g(0)| = €I G 90

where C is a positive constant which is independent of x, y,¢ and R.
Therefore using Lebesgue’s theorem we have the conclusion from
(5.2). O

Define

6= {aennti@): [ Dl < o] =gy =of.

LemMmA 5.2. Let ge&. Then F_i,,g belongs to A .
Proor. The equality

[
VK _ gmimalyl/2 _ J i’ de
(/2

implies

eIkl _ p=ial2l/2) < ’|k| +%’|y|.

Thus noting

2 1/2
o
-l = VFogl =2 Tatlar [ e 2 ak
® R 2] 40l

|052|2 1/2
+J Iyllg(y)ldyg Ter™g dk) ,
R! R!

we have

Hg*i“zgn = 1%||ngfiazg“ < 0. D

LemMma 5.3. Let fe# and ge &. Then it holds that

<=%azfa *q;fifng> = <fag>
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Proor. Let he #NL'(R'). Then Proposition 5.1 and Lemma 5.2
imply
<=%a2h7377ing> = <hag>
Since # NL'(R') is dense in #, we have the conclusion. []

LEMMA 5.4. & is dense in A .

Proor. Define & = {ue #/NL'(R") : [p |x||u(x)|dx < 0,0 ¢ supp Fou}.
Since {ve P(R'): Fove C¥(R'\0)}(= &) is dense in #, & is also dense.
Therefore, for any f € # and any ¢ > 0 there exists u € & such that
(5.6) Ju— e ™ H2f || < g,

Put
g(x) = e™M/2y(x).
Then ge # NL'(R') and
J |x]|g(x)]dx < o0, J e M2 g(x)dx = J u(x)dx =0
R! R! R!
hold. Thus g belongs to &. Moreover it follows from (5.6) that
lg — fll <e.
The proof is complete. []
ProOF OF THEOREM 1.3 (ii). It suffices to show
W(in)f =0= f =0.

Since #, = ZoW(«), we assume Z,,f =0. Then Lemma 5.3 implies
{f,9>=0 for any ge & Thus we obtain f =0 by Lemma 5.4. []

Appendix A

In this appendix, we give a proof of the following properties for H, defined
in section 2.

ProroSITION A.l. Assume that o= oq +ioy # 0 with a1 £0 and o, £ 0.
Then we have

(i) H, is a maximal dissipative operator,

(ii) Hjy is a maximal accretive operator,

(i) H = H;.

First we show the following Lemma:

LEMMA A2. Let a e C\{0}. Then H, is a closed operator.
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Proor. Suppose U, € D(H,), (n=1,2,3,...) and
lim |U, — U|| = lim ||H,U, — W| = 0.
=0 n—o0
Noting that
U, :un+a”H0(H()2+l)_lgo and H,U, :Houn—an(HOz+ 1)_1¢
for some u, € #* and a, € C satisfying
Ctny @) = —an(o”" + <o, Ho(HG + 1))
(see the definition of H,), we have
1Un = Unll? + | Hx Uy — Hy Un|?
= |lun — ”m||2 + || Ho(un — ”m)||2

2 “1 02 12
+Jay — an|*(|(Hg + 1) oll” + | Ho(Hg + 1) 9|1"),

where m=1,2,3,....
Since the above equality means that {u,}, N, {Hots},cn and {a,},cn
satisfy the Cauchy condition, there exist uy € D(Hy) and ag € C such that

lim ||u, — uo|| 2 =0, lim a, = aop
n—oo n—oo
and
ap = <u03 §0>

ol g, Ho(HE + 1) gy

Therefore we have U = ug + conO(HO2 + 1)_1¢ € D(PL) and W = H,U.
Now the proof is complete. [

PrOOF OF ProOPOSITION A.l. First we consider the proof of (i) and (ii).

Note that H, and Hj are dissipative and accretive, respectively. Then it
follows from Lemma A.2 that Range(H, — i) and Range(Hj + i) are closed.
Thus
(A.1) Range(H, — i)" = {0} (& Range(H, — i) = #)
and

Range(H; +i)" = {0} (< Range(H; + i) = #)

in the cases of (i) and (ii), respectively (see e.g. Kato [10]). Here we prove
(A.1) only. The other is proved in the similar way.

Suppose W e Range(H, —i)", ie.,
(A2) (H, = U, Wy =0
for any U € D(H,).
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Noting the definition of D(H,), we find that the above U has the following
form: for any ue #2,

U =u+aHy(H + 'y,
where

u, )
at 4, Ho(H3 + 1) p)
Then it follows from (2.1) and (A.2) that

(A.3) a=—

(A.4) (Hoy = iyu, Wy — ali(Ho + i)', W) = 0.
Especially, taking U = @ satistying {#,¢> =0 (< a=0) we find by (A.4)
(A.5) {(Hy—iu, Wy=0.
Consider the operator H{ defined by
D(HY) = {ue A7 |<a 9> =0},

{ H(? = HO‘D(H(?)'
Then (A.5) implies W e D((H)*). Therefore it follows from Albeverio and
Kurasov [3], section 1.2.4 that
(A.6) W =w+bHy(H; + 1) "¢

for some we #? and b e C.
Putting (A.6) into (A.5) and noting that H) < Hy and {i,¢) =0, we
obtain

(A7) Cit, (Ho + i)w) + <a, bi(Ho — i) ' p> = 0.
Then note that the following fact: Let ve # 2. If v satisfies that
i,y =0  for any iie D(HY)),

then v = cp holds, where ¢ is a constant.
Thus it follows from (A.7) that

(Ho + i)w + bi(Hy — i) "¢ = co.

Since the LHS of the above equality belongs to # and ¢ belongs to #~'\#,
we find ¢ =0, ie.,

(A.8) w=—bi(H}+1)"p.
Thus (A.6) and (A.8) imply
(A.9) W =b(Hy+i) 'p.

Finally we have b =0, ie., W =0. Indeed, putting (A.9) into (A.4) and
noting (A.3), we find
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o + || Hy* (Ho + i) ol|* + il (Ho + 1) ol> _

0.
o+ | Hy P (Ho + i) ol

(A.10)  b<u,p)

Note that <u,¢p) #% 0 and
ot [ Hy P (Ho + ) ol|* + il (Ho + 1) gl|> # 0

since o < 0. Thus (A.10) implies b = 0. Now the proof of (A.1) is complete.
Finally we prove (iii). Let take U e ®(H,) and V € D(H;). Then we
have

This means Hy = H. Thus (i) implies H; = H'. [

REMARK A.3. It follows from the above argument that H,, is self-adjoint.

Appendix B

We state an abstract result in Kadowaki [8] without a proof (see [8] for the
proof).

Let # be a separable Hilbert space with inner product <-,->,. The
norm is denoted by | -|,. Let {V(#)},~, and {Uy(?)},.gx be a contraction
semi-group in # and a unitary group in #,, respectively. We denote by 4
and Ay the generator of V() and Upy(r), respectively (V(f)=e ™ and

Up(t) = e~™0),  We assume the following conditions on A and Aj.
(Bl) G(AO) = Gac(AO) =R or [0, OO)
(B2) (A—i)"—(49—i)"" defined as a form is extended to a compact

operator K in 7.
(B3) There exist non-zero projection operators in #, P, and P_, such
that P, + P_ =1; and

(B3.1) || G0 A0 Pyt < 2,

(832) |, I G000 40Pt < 0,
(B3.3) [, 1 o0 o) - g <
(B3.4) we lim Up(~)p(Ao)Pf; =0

for each y e Cy?(R\{0}) and {f},.g satisfying sup,.gllfil|, < o, where
| - [, ) 1s the operator norm of bounded operators in .
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Let #, be the space generated by the eigenvectors of A with real
eigenvalues. Then we have the following theorem:

THEOREM B. Assume that (B1)-(B3). Then for any f e #;-, the wave
operator

Wy = lim Uy(~0)V(0)f

exists. Moreover W is not zero as an operator from ,}f,f‘ to H.

Appendix C

In the last section, we state some examples by which the present work is
motivated.

ExampLE C.1 (Wave or Klein-Gordon equations with constant dissipation).
Let

H=Hm)={f=N,r)] Hf”,?/f(m) < oo}
with

1B = [ LA+ VAP + 3P

o =i(,°,, )

with m =0 (wave) or m =1 (Klein-Gordon). Then we obtain
o(H(1)) = 0c(H(1)) = 0ey(H(1)) = {z = 0 —i/2 € C_ | |o| = V3/2},
a(H(0)) = ac(H(0)) = gess(H(0))

and

={z=0+iteC_UR|oceR and t1=-1/2 or 6=0 and —1 <7 <0}

and as t — +o0,
e #f || oy = 0(1)
for any f e #(m).

Proor. Conclusions are well known. Here we give a brief sketch of the
proof.

For (H-z)f=g¢g with f=(fi,/) and ¢g=1(g1,92), we obtain
—Afy — (22 + iz —m) f, = (id — im)gy + zg».

(the case m=1) 22 +iz—1€[0,0) < |g| = V3/2 and 7= —1/2, where
we put z=o0+it (g,7€R).

(the case m=0) z>+ize[0,0) < oeR and 1=-1/2 or 6 =0 and
-157<50.

The last assertion follows from Engel-Nagel [5], 2.22 Corollary. []
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ExampLE C.2 (Wave equation with variable dissipation). Let # = #(0)
and consider the following operators:

H“"G é) H”"(g —b1<x>>

with 0 < b(x) £ bo(1+|x|)""° in RY for some positive constants by and
J. Assuming by is sufficiently small and N # 2, we find o(Hy) = 0.(Hp) =
oess(Hp) = R (Nakazawa [16]). In the case of N =2 the spectral structure is
not clear even if by is small. However, without the assumption N # 2 and
with the smallness of by, Mochizuki [15] and Nakazawa [17] showed that for
any f(# 0)e #(0), there exists f (5 0) e #(0) such that

(C.1) lim (le=™ef — e~ Mf, || i =0

t—+ow

and that the wave operator and the scattering operator exist. These are
proved by smooth perturbation theory developed by Kato [9].

Remark C.3. Without the smallness on by, Mochizuki [14] and Naka-
zawa [17] showed that there exists f(# 0), fi(# 0) € #(0) such that (C.1), i.e.,
the existence of scattering states, holds.
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