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Abstract. The classification of solutions for some dissipative systems by the infor-

mation of the spectrum is established. Its generator is non self-adjoint Schrödinger

operator with rank one singular perturbation. For the proof, a generalized Parseval

formula is constructed.

1. Introduction

Let H be a Hilbert space. We shall consider the relation between the

asymptotics of solutions for the equation

iqtu ¼ Hu; ujt¼0 ¼ f ; f A H;ð1:1Þ

where H is some maximal dissipative operators in H, and the spectral structure

of the operator H. By the analogy of the general theory of ordinary dif-

ferential equations with constant coe‰cients (cf. Coddington and Levinson [4]),

we especially expect that sðHÞVR brings non-decay, i.e. limt!y e�itHf 0 0 and

sðHÞVC� brings decay, i.e. limt!y e�itHf ¼ 0, where sðHÞ and C� denote the

spectrum for operators H and the complex lower half-plain, respectively. We

also know some examples which suggest the above situation. These are stated

in Appendix C below.

In order to define an operator with singular perturbation, we prepare some

notations. Let H0 ¼ �d 2=dx2 in H ¼ L2ðRÞ. Then H0 is a self-adjoint

operator with the domain DðH0Þ ¼ H2, where

Hs ¼ f j k f k2H s ¼
ð
R1
ð1þ jkj2ÞsjðF0 f ÞðkÞj2dk < y

� �
for s A R
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is the usual Sobolev space and F0 is the Fourier transform in the sense of

tempered distribution. h� ; �i is the inner product of H and we use the same

symbol for the dual coupling of Hs and H�s, (in the case s ¼ 0, i.e. H0 ¼ H,

its norm is denoted by k � k).
In this paper we shall deal with the Schrödinger equation (1.1) with

H ¼ L2ðR1Þ; H ¼ Ha ¼ � d 2

dx2
þ ah� ; did;

where dðA H�1Þ is the Dirac delta and a ¼ a1 þ ia2 with a1 e 0 and a2 e 0.

We define the domain of Ha, DðHaÞ as follows (see also section 2):

DðHaÞ ¼ fU ¼ uþ aH0ðH 2
0 þ 1Þ�1d j u A H2; a A C;

hu; di ¼ �aða�1 þ hd;H0ðH 2
0 þ 1Þ�1diÞg ða0 0Þ:

Then it follows from Appendix A that Ha with a2 < 0 is maximal dissipative

(the case a2 ¼ 0 is self-adjoint), i.e., Ha with a2 < 0 generates a contraction

semi-group fe�itHagtf0 (the case a2 ¼ 0 generates a unitary group fe�itHa1 gt AR).
Keeping

H0ðH 2
0 þ 1Þ�1d ¼ 1

2
ððH0 þ iÞ�1dþ ðH0 � iÞ�1dÞ

in mind, we can rewrite the domain of Ha as follows:

DðHaÞ ¼ fU A H1;U 0ð0þÞ �U 0ð0�Þ ¼ aUð0Þ; wð0;yÞU
00 þ wð�y;0ÞU

00 A Hg;

where wI is the characteristic function on I .

Our aim is to classify the asymtotics of the solutions of dissipative system

(1.1) (see Corollary 1.5).

To state our results, we prepare several definitions.

spðAÞ ¼ fz A sðAÞ j there exists f 0 0 such that Af ¼ zf g : the set of point

spectrum of A:

srðAÞ ¼ fz A sðAÞ j z B spðAÞ; the range space of ðA� zÞ is not dense in Xg

: the set of residual spectrum of A:

scðAÞ ¼ fz A sðAÞnðspðAÞU srðAÞÞg : the set of continuous spectrum of A:

sessðAÞ ¼ fz A sðAÞnsdðAÞg : the set of essential spectrum of A;

where sdðAÞ ¼ fz A sðAÞ j z is an isolated eigenvalue with finite multiplicityg

ðthe set of discrete spectrumÞ:

The first result is the following theorem:
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Theorem 1.1 (Spectral structure of Ha). Let a ¼ a1 þ ia2 with a1 e 0,

a2 e 0. Then the spectrum of Ha is given by

sðHaÞ ¼
½0;yÞU � a2

4

n o
ða1 < 0Þ;

½0;yÞ ða1 ¼ 0Þ:

8<
:

Exact classification of the spectrum sðHaÞ is

sessðHaÞ ¼ scðHaÞ ¼ ½0;yÞ; srðHaÞ ¼ q

and

spðHaÞ ¼
sdðHaÞ ¼ � a2

4

n o
ða1 < 0Þ;

q ða1 ¼ 0Þ:

(

Moreover the projection with respect to � a2

4 ða1 0 0Þ is given by

P�a2=4 f ¼ �a=2h f ; eðaj�jÞ=2ieðajxjÞ=2:

Remark 1.2. The condition a1 < 0 and a2 < 0 is necessary and su‰cient

for the existence of a point spectrum in the complex lower half-plane (cf.

section 2).

To state main theorem (Theorem 1.3) we note that

Ker P�a2=4 þRange P�a2=4 ¼ H

and

Ker P�a2=4 VRange P�a2=4 ¼ f0g

(cf. Reed-Simon [21], Theorem XII.5), where

Ker A ¼ f f A DðAÞ jAf ¼ 0g; Range A ¼ fAf j f A DðAÞg

for an operator A. Thus for each f A H, we obtain a unique decomposition:

f ¼ fs þ fd ;ð1:2Þ

where

fs 1 f � P�a2=4 f A Ker P�a2=4

and

fd 1P�a2=4 f A Range P�a2=4:

Note that f A Ker P�a2=4 if and only if

h f ; eðaj�jÞ=2i ¼ 0:ð1:3Þ
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As is explained later, we can define the wave operator WðaÞ

WðaÞ ¼ s- lim
t!þy

eitH0e�itHa

as a non-trivial operator from H to H (see Proposition 3.1), where a1 e 0 and

a2 < 0.

The existence of WðaÞ implies that the asymptotics of solutions for (1.1)

with a1 e 0 and a2 < 0 is scattering (asymptotic free, non-decay) or decay.

We have the following main theorem:

Theorem 1.3.

(i) Assume that a1 < 0 and a2 < 0. Then

Ker WðaÞ ¼ Range P�a2=4:

(ii) Assume that a1 ¼ 0 and a2 < 0. Then

Ker Wðia2Þ ¼ f0g:

Remark 1.4.

(1) For the case a1 < 0 and a2 < 0, it is easy to show that fs ¼ 0 is a

su‰cient condition for limt!yke�itHa f k ¼ 0 (see Corollary 3.2). However it is

not clear that fs ¼ 0 is a necessary condition for limt!yke�itHa f k ¼ 0. In

order to show the necessity, we require a generalized Parseval formula (see

Lemma 4.1).

(2) For the case a1 ¼ 0 and a2 < 0, the situation changes, i.e., the point

a22=4 is not an eigenvalue. According to Reed-Simon [21], XII.6, we may call

this point resonance. Therefore we must analyze this e¤ect to construct the

generalized Parseval formula (see Proposition 5.1).

(3) For the case a1 > 0 and a2 < 0, there are no eigenvalues and no

resonance. So we can obtain Ker WðaÞ ¼ f0g. Since the proof is done

similarly with Theorem 1.3 (i), we omit the proof.

Corollary 1.5 (The classification of asymptotics by the initial data).

(i) Assume that a is the same as in Theorem 1.3 (i). Then for each f A H

decomposed as in (1.2), we have the following characterization:

fs 0 0 if and only if
lim
t!y

ke�itHa f � e�itH0WðaÞ f k ¼ 0;

WðaÞ f 0 0

(
ðSÞ

and

fs ¼ 0 if and only if lim
t!y

ke�itHa f k ¼ 0 ðe�itHa f ¼ eiða
2=4ÞtfdÞ:ðDÞ
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(ii) Assume that a is the same as in Theorem 1.3 (ii). Then we have

f A H and f 0 0 if and only if
lim
t!y

ke�itHia2 f � e�itH0Wðia2Þ f k ¼ 0;

Wðia2Þ f 0 0:

(

In the case a2 ¼ 0, the asymptotics of the solutions of (1.1) is well-known

since Ha1 is self-adjoint operators (cf. Enss [6], Kuroda [13] and Reed-Simon

[21]). Indeed, let Ea1ðlÞ be the spectral family of Ha1 . Then we have by

Theorem 1.1 and spectral theory

Range Ea1ðð0;yÞÞlRange Ea1 � a21
4

� �� �
¼ H:

Furthermore scattering theory implies that

f A Range Ea1ðð0;yÞÞ if and only if

lim
t!Gy

ke�itHa1 f � e�itH0 ~WWGða1Þ f k ¼ 0

and

f A Range Ea1 � a21
4

� �� �
if and only if e�itHa f ¼ eiða

2
1
=4Þtf ;

where

~WWGða1Þ ¼ s- lim
t!Gy

eitH0e�itHa1Ea1ðð0;yÞÞ:

Remark 1.6. It is well-known that the existence of ~WWGða1Þ is equivalent

to the asymptotic completeness for

~WWGða1Þ ¼ s- lim
t!Gy

eitHa1 e�itH0 :

Corollary 1.5 asserts that it is possible to construct a formulation for

dissipative systems (1.1) which is similar to the self-adjoint case. There are

many works studying the asymptotics of solutions for dissipative systems.

However it seems that there are no works dealing with a classification like

Corollary 1.5.

We mention related works. Schrödinger operators with rank one per-

turbation are known as point interaction (Albeverio, Gesztesy, Høegh-Krohn

and Holden [2], Albeverio and Kurasov [3]). Self-adjoint realizations are

considered by Watanabe [23], Kurasov and Watanabe [11], [12]. Kato [10]

deals with scattering theory for a perturbation of rank one. Non self-adjoint

scattering theory was investigated by Kato [9], in which he developed the
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smooth perturbation theory. Pavlov [18] studied the spectral properties for the

one-dimensional non self-adjoint Schrödinger operator, in which he derived

‘‘generalized ’’ Parseval formula. Using Kato’s theory, scattering theory for

wave equations with dissipative terms is considered by Mochizuki [14], [15],

Nakazawa [17] and Kadowaki [7]. Kadowaki [8] used the Enss method to

prove the existence of the wave operators for some dissipative systems.

Adamyan and Neidhardt [1] treated the non self-adjoint Friedrichs model and

studied the absolute continuity of the spectrum for it.

The present paper is organized as follows.

In section 2, we prove Theorem 1.1. The existence of the wave operator

is shown in section 3. In section 4 and 5, we prove Theorem 1.3 (i) and

Theorem 1.3 (ii), respectively. In their proof, we construct a generalized

Parseval formula (Lemma 4.1 and Proposition 5.1, respectively). In Appendix

A, we show that Ha with a2 < 0 is maximal dissipative (Ha1 is self-adjoint). In

Appendix B, we mention Kadowaki’s results [8] which supplement subject in

section 3. In Appendix C, we state two examples by which our work is

motivated.

Acknowledgements

We are grateful to Professor M. Kawashita for his valuable comments for

Lemma 4.1 and Proposition 5.1.

2. Proof of Theorem 1.1

We consider the operator

~HHa ¼ H0 þ ah� ; jij

with the domain

Dð ~HHaÞ ¼
fU ¼ uþ aH0ðH 2

0 þ 1Þ�1j j u A H2; a A C;

hu; ji ¼ �aða�1 þ hj;H0ðH 2
0 þ 1Þ�1jiÞg ða0 0Þ;

H2 ða ¼ 0Þ;

8><
>:

where a A C, j A H�1nH.

For a0 0, U A Dð ~HHaÞ means ~HHaU A H for any U A Dð ~HHaÞ since

~HHaU ¼ H0u� aðH 2
0 þ 1Þ�1j:ð2:1Þ

Put a ¼ a1 þ ia2 with a1 e 0 and a2 e 0. Then ~HHa is dissipative, i.e.,

Imh ~HHaU ;Uie 0 for U A Dð ~HHaÞ, and ~HHa is accretive, i.e., Imh ~HHaV ;Vif 0 for

V A Dð ~HHaÞ. Moreover we have the following properties:
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( i ) ~HHa is a maximal dissipative operator,

( ii ) ~HHa is a maximal accretive operator,

(iii) ~HH �
a ¼ ~HHa.

These will be proven in Appendix A.

Especially, Ha denotes the operator ~HHa defined by choosing j ¼ d (Dirac

delta) A Hs ðs < �1=2Þ. We also denote by ~RRaðzÞ (resp. RaðzÞ) the resolvent

ð ~HHa � zÞ�1 (resp. ðHa � zÞ�1) of ~HHa (resp. Ha) for z A rð ~HHaÞ (resp. z A rðHaÞ),
where rðAÞ is the resolvent set of a closed operator A in H.

The proof of Theorem 1.1 can be divided into several steps. First of all,

consider the representation of the resolvent of Ha.

Lemma 2.1. Assume that a ¼ a1 þ ia2 with a1 e 0 and a2 e 0. Then we

have for any f A H,

~RRaðzÞ f ¼ R0ðzÞ f � af1þ ahR0ðzÞj; jig�1hR0ðzÞ f ; jiR0ðzÞj

for any z A rðH0ÞV fz A C j 1þ ahR0ðzÞj; ji0 0g.

Proof. The above equality can be obtained by using the arguments

similar to these used by S. Albeverio and P. Kurasov [3], Theorem 1.1.1. r

Lemma 2.2. Suppose j ¼ d in addition to the assumption of Lemma 2.1.

Then we obtain for any f A H,

ðRaðzÞ f ÞðxÞ ¼ ðR0ðzÞ f ÞðxÞ þ
ð
R1

Kðx; y; zÞ f ðyÞdy;ð2:2Þ

where Kðx; y; zÞ ¼ � a

2i
ffiffiffi
z

p
ð2i

ffiffiffi
z

p
� aÞ e

i
ffiffi
z

p
ðjxjþjyjÞ A L2ðR1

x � R1
yÞ

with Im
ffiffiffi
z

p
> 0, where

z A rðHaÞ ¼
Cnð½0;yÞU f�a2=4gÞ ða1 < 0Þ;
Cn½0;yÞ ða1 ¼ 0Þ:

�

Proof. The equality (2.2) is easily obtained by using the explicit for-

mula for the free resolvent R0ðzÞ. r

The equality (2.2) implies the following corollary.

Corollary 2.3. Under the same assumptions as in Lemma 2.2, we have

sessðHaÞ ¼ ½0;yÞ.

Next we shall show that �a2=4 ða1 < 0Þ is the eigenvalue of Ha.
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Lemma 2.4. Assume a1 < 0 and a2 e 0. Then �a2=4 is the eigenvalue of

Ha. Moreover the projection with respect to � a2

4 , P�a2=4, is given by

ðP�a2=4 f ÞðxÞ ¼ �a=2h f ; eðaj�jÞ=2ieðajxjÞ=2:ð2:3Þ

Proof. Since �a2=4 is an isolated point of sðHaÞ, Reed-Simon [21],

Theorem XII.5 and the equality (2.2) give for any f and g A H,

hP�a2=4 f ; gi ¼ �ð2piÞ�1

8<
:
ð
C

hR0ðzÞ f ; gidzð2:4Þ

þ
ð
C

a

2i
ffiffiffi
z

p
ð2i

ffiffiffi
z

p
� aÞ

ð
R1

x

ei
ffiffi
z

p
jxjf ðxÞdx

 ! ð
R1

y

ei
ffiffi
z

p
jyjgðyÞdy

 !
dz

9=
;;

where C is a closed curve enclosed �a2=4 in C� and Im
ffiffiffi
z

p
> 0. Firstly we

find ð
C

hR0ðzÞ f ; gidz ¼ 0:

On the other hand, since the point z ¼ �a2=4 is the simple pole, the residual

theorem givesð
C

a

2i
ffiffiffi
z

p
ð2i

ffiffiffi
z

p
� aÞ

ð
R1

x

ei
ffiffi
z

p
jxjf ðxÞdx

 ! ð
R1

y

ei
ffiffi
z

p
jyjgðyÞdy

 !
dzð2:5Þ

¼ �a

2

ð
R1

x

eðajxjÞ=2f ðxÞdx
 ! ð

R1
y

eðajyjÞ=2gðyÞdy
 !

¼ �a

2
h f ; eðaj�jÞ=2iheðaj�jÞ=2; gi:

Therefore we find �a2=4 A spðHaÞ and (2.3) from (2.4) and (2.5). r

Lemma 2.5. Under the same assumption as in Lemma 2.1, we have for

U ;V A Dð ~HHaÞ,

h ~HHaU ;Vi� hU ; ~HHaVi ¼ 2i Im a

jaj2
ab;ð2:6Þ

where

a ¼ � hu; ji

a�1 þ hj;H0ðH 2
0 þ 1Þ�1ji

and b ¼ � hv; ji

a�1 þ hj;H0ðH 2
0 þ 1Þ�1ji

for some u; v A H2.
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Proof. Using self-adjointness of H0 and (2.1), we find the left hand side

of (2.3) becomes

hu; bH 2
0 ðH 2

0 þ 1Þ�1ji� haðH 2
0 þ 1Þ�1j; viþ hu; bðH 2

0 þ 1Þ�1ji

� haH 2
0 ðH 2

0 þ 1Þ�1
j; vi:

Combining the first and the third terms, and the second and the fourth terms,

respectively, we have

bhu; ji� ahj; vi:

Noting the relation on hu; ji in Dð ~HHaÞ, we easily obtain the desired

results. r

Lemma 2.6. Assume a1 e 0 and a2 < 0. Then we find

spð ~HHaÞVR ¼ q;ð2:7Þ

spð ~HHaÞVR ¼ q;ð2:8Þ

srð ~HHaÞVR ¼ q:ð2:9Þ

Proof. Firstly we shall show (2.7). Assume that Ul is the eigen-

function of the operator Ha with respect to the l A spðHaÞVR. Taking

U ¼ V ¼ Ul in (2.6) of Lemma 2.5, we have

0 ¼ lkUk2 � lkUk2 ¼ hlU ;Ui� hU ; lUi ¼ 2i Im a

jaj2
jaj2:

Hence it follows a ¼ 0. Therefore, we have U ¼ u (see the definition of

Dð ~HHaÞ) and ~HHaU ¼ H0u by (2.1). It then follows that

H0u ¼ ~HHaU ¼ lU ¼ lu:

This means l A spðH0ÞVR, which is the contradiction.

The similar argument is applicable to show (2.8).

Finally, we shall show (2.9). Assume l A srð ~HHaÞVR. Then l ¼
l A spð ~HH �

a Þ ¼ spð ~HHaÞ and this contradicts with (2.8). r

Since the spectral theory for the self-adjoint operator implies srðHa1Þ ¼ q,

the proof of Theorem 1.1 is complete.

In the rest of this section, we give the principle of limiting absorption

which follows from (2.2). Let

L2; s ¼ f j k f k2L2; s ¼
ð
R1
ð1þ jxj2Þsj f ðxÞj2dx < y

� �
for s A R

be the weighted L2 space.
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Proposition 2.7 (The principle of limiting absorption for Ha). Let

s > 1=2. Then there exist the limits

lim
e#0

RaðlG ieÞ

in the uniform operator topology of BðL2; s;L2;�sÞ, i.e., we have

RaðlG i0Þ ¼ lim
e#0

RaðlG ieÞ ða1 < 0; a2 e 0Þ;

Ria2ðlþ i0Þ ¼ lim
e#0

Ria2ðlþ ieÞ ða2 < 0Þ

for every l A ð0;yÞ. In particular,

Ria2ðl� i0Þ ¼ lim
e#0

Ria2ðl� ieÞ ða2 < 0Þ

exists for every l A ð0;yÞ
/

a2
2

4

n o
.

Proof. It is well-known that for every l > 0, the existence of the limits

lim
e#0

R0ðlG ieÞð¼ R0ðlG i0ÞÞ

in the uniform operator topology of BðL2; s;L2;�sÞ. Moreover it is easy to see

that for every l > 0,

lim
Ge#0

ðy
�y

ð1þ jxj2Þ�sjei
ffiffiffiffiffiffiffi
lþie

p
jxj � eGi

ffiffi
l

p
jxjj2dx ¼ 0:

Therefore we find that the following limits exist in the uniform operator

topology of BðL2; s;L2;�sÞ,

lim
e#0

RaðlG ieÞ ¼ R0ðlG i0ÞH aeGi
ffiffi
l

p
j�j

2i
ffiffiffi
l

p
ðG2i

ffiffiffi
l

p
� aÞ

heGi
ffiffi
l

p
j�j;���i

for a and l as in the conclusion of Proposition 2.7. r

3. Existence of wave operators

In this section we show the existence of wave operator and construct a

generalized Fourier transform for Ha (Propositions 3.1 and 3.7).

Proposition 3.1 (Existence of the wave operator). Let a ¼ a1 þ ia2 with

a1 e 0, a2 < 0. Then there exists

WðaÞ ¼ s- lim
t!þy

eitH0e�itHa

as non-trivial operator from H to H.
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From Theorem 1.1 and Proposition 3.1, we find the following Corollary:

Corollary 3.2. Let a ¼ a1 þ ia2 with a1 < 0 and a2 < 0. Then we have

Range P�a2=4 HKer WðaÞ ¼ f j lim
t!þy

ke�itHa f k ¼ 0

� �
:

On the other hand, we can show the existence of the following wave

operators by Cook-Kuroda method;

W�ðaÞ ¼ s- lim
t!þy

e�itHaeitH0 ;

WþðaÞ ¼ s- lim
t!þy

eitHae�itH0

in H. So, we can define the scattering operator SðaÞ by

SðaÞ ¼ WðaÞW�ðaÞ:

We show Proposition 3.1 by the argument in Kadowaki [8] (see Appendix B)

which is due to Enss method (c.f. Enss [6], Simon [22], Kuroda [13] and Perry

[19], [20]).

Remark 3.3. To show Proposition 3.1 we may apply Simon [22],

Theorem 9.3 with simple modifications (compare our condition on perturbation

with that of [22], Theorem 9.3).

According to Theorem B in Appendix B, Proposition 3.1 follows from

lemmas below (Lemmas 3.4–3.6) and spðHaÞVR ¼ q (see Theorem 1.1).

The following lemma is well known.

Lemma 3.4. (cf. ðB1Þ in Appendix B) sðH0Þ ¼ sacðH0Þ ¼ ½0;yÞ.

Lemma 3.5. (cf. ðB2Þ in Appendix B) K ¼ ðHa � iÞ�1 � ðH0 � iÞ�1
is a

compact operator in H.

Proof. Lemma 2.1 implies that K is the Hilbert-Schmidt. Thus K is

compact. r

Lemma 3.6. (cf. ðB3Þ in Appendix B) Let Pþ and P� be the positive

and negative spectral projections for the generator of dilation 1
2i x d

dx
þ d

dx
x

� �
,

respectively. Then we haveðy
0

kKe�itH0cðH0ÞPþkBðH;HÞdt < y;ð3:1Þ

ðy
0

kK �e�itH0cðH0ÞPþkBðH;HÞdt < y;ð3:2Þ
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ðy
0

kK �eitH0cðH0ÞP�kBðH;HÞdt < y;ð3:3Þ

w- lim
t!þy

eitH0cðH0ÞP� ft ¼ 0ð3:4Þ

for each c A Cy
0 ðð0;yÞÞ and f ftgt AR satisfying supt AR k ftk < y, where

k � kBðH;HÞ is the operator norm for bounded operators in H.

Proof. In the proof we use the Mellin transforms estimates (Perry [19],

Lemma 1). First we show (3.1)–(3.3).

For f A H, we find by Lemma 2.1

kKe�itH0cðH0ÞPþ f k ¼ jCaj jhe�itH0cðH0ÞPþ f ; ei
ffi
i

p
j�jij kei

ffi
i

p
j�jk;

kK �e�itH0cðH0ÞPþ f k ¼ jCaj jhe�itH0cðH0ÞPþ f ; ei
ffi
i

p
j�jij kei

ffi
i

p
j�jk;

kK �eitH0cðH0ÞP� f k ¼ jCaj jheitH0cðH0ÞP� f ; ei
ffi
i

p
j�jij kei

ffi
i

p
j�jk;

where Ca ¼ �1

2i
ffi
i

p a

2i
ffi
i

p
�a

.

Moreover noting that for some d > 0

jei
ffi
i

p
jxjj; jei

ffi
i

p
jxjj ¼ Oðe�djxjÞ ðjxj ! yÞ

and using Perry [19], Lemma 1, we have

1

k f k

ðy
0

jheitH0cðH0ÞPþ f ; ei
ffi
i

p
j�jijdt < y;

1

k f k

ðy
0

jhe�itH0cðH0ÞPþ f ; ei
ffi
i

p
j�jijdt < y;

1

k f k

ðy
0

jheitH0cðH0ÞP� f ; ei
ffi
i

p
j�jijdt < y:

Thus (3.1)–(3.3) hold.

Finally, (3.4) follows from Perry [19], Remark 2. r

Proposition 3.7 (Generalized Fourier transform for Ha). Assume that a

satisfies the same condition as in Proposition 3.1 and define

Fa ¼ F0WðaÞ:

Then the representation of Fa is given by

ðFa f ÞðkÞ ¼ lim
R!þy

ð
jxj<R

caðx; kÞ f ðxÞdx in Hð3:5Þ

for any f A H, where
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caðx; kÞ ¼ ð2pÞ�1=2
e�ixk þ a

ð2ijkj � aÞ e
ijxj jkj

� �
:

Furthermore, we obtain

ðFaHa f ÞðkÞ ¼ jkj2ðFa f ÞðkÞ for f A DðHaÞ:ð3:6Þ

Proof. The above result follows from Kuroda [13], Chapter 5. First of

all, note that the standard argument in the stationary scattering theory implies

hWðaÞu; vi ¼ lim
k!0

k

p

ðy
�y

hRaðlþ ikÞu;R0ðlþ ikÞvidl

for u; v A H.

Moreover we find by Lemma 2.2

ðWðaÞu; vÞ ¼ lim
k!0

1

2pi

ðy
0

hðR0ðlþ ikÞ � R0ðl� ikÞÞu; vidlð3:7Þ

þ lim
k!0

k

p

ðy
0

a

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ ik

p
� a

�
ðy
�y

ei
ffiffiffiffiffiffiffiffi
lþik

p
jyjuðyÞdyðR0ðlþ ikÞR0ðl� ikÞvÞð0Þdl:

Taking u; v A L2; s ðs > 1=2Þ and assuming that supp F0v does not contain 0

and is compact, we obtain by the standard calculation that

ðthe first term of RHS of ð3:7ÞÞ ¼
ðy
�y

F0uðkÞF0vðkÞdk

and

ðthe second term of RHS of ð3:7ÞÞ

¼ lim
k!0

k

p

ðy
0

a

2i
ffiffiffiffiffiffiffiffiffiffiffiffiffi
lþ ik

p
� a

ðy
�y

ei
ffiffiffiffiffiffiffiffi
lþik

p
jyjuðyÞdy

ðy
�y

ð2pÞ�1=2F0vðkÞ
ðl� k2Þ2 þ k2

dkdl

¼ ð2pÞ�1=2

ðy
�y

a

2ijkj � a

ðy
�y

eijkj jyjuðyÞdyF0vðkÞdk:

The last equality is due to the property of Poisson integrals. Thus we have

(3.5).

Next we show (3.6). Note that

We�itHa ¼ e�itH0W :

This implies that for f A DðHaÞ,
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Fa
e�itHa f � f

t
¼ e�itk 2 � 1

t
Fa f ;ð3:8Þ

where t > 0. Thus t ! 0, we obtain (3.6) from (3.8). r

Remark 3.8. In sections 4 and 5, in order to show a generalized Parseval

formula, we also deal with FaðkÞ (a ¼ a1 þ ia2 with a1 e 0, a2 < 0). Espe-

cially, in section 5 we have to note that F�ia2ðkÞ has singular points k ¼Ga2
2

� �
from resonance (cf. Remark 1.4(2) and Proposition 2.7).

4. Proof of Theorem 1.3 (i)

In this section we assume a1 < 0. We prove the following lemma, which

is the generalized Parseval formula (cf. Pavlov [18], Theorem 2.1).

Lemma 4.1. For any f ; g A HVL1ðR1Þ and for a A fa ¼ a1 þ ia2;

a1 < 0g1D we have

hFa f ;Fagi ¼ h f ; giþ a

2
h f ; eðaj�jÞ=2iheðaj�jÞ=2; gi:ð4:1Þ

Proof. We know the Parseval (Plancherel) formula

hFa f ;Fagi ¼ h f ; giþ a

2
h f ; eðaj�jÞ=2iheðaj�jÞ=2; gi

for a A ð�y; 0Þ. We can see that the second term on the right hand side is

analytic in D. In fact, putting

HnðaÞ ¼ hwfjkj<ngFa f ;Fagi ¼
ð
jkj<n

Fa f ðkÞFagðkÞdk;

where wfjkj<ng is the characteristic function on fk; jkj < ng, we see that Hn is

analytic in D and that Hn converges to hFa f ;Fagi locally uniformly in D.

As a consequence of the above facts (by the identity theorem) we obtain

(4.1). r

Proof of Theorem 1.3 (i). The conclusion follows from

WðaÞ f ¼ 0 if and only if fs ¼ 0:ð4:2Þ

So we show (4.2).

Noting Corollary 3.2 we have

WðaÞ f ¼ WðaÞ fs:ð4:3Þ
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Using (1.3) and Lemma 4.1 with a density arguement we find

hWðaÞ fs;WðaÞ fsi ¼ hFa fs;Fa fsi ¼ k fsk2:ð4:4Þ

Thus (4.3) and (4.4) imply (4.2). r

Proof of Corollary 1.5. Note that Corollary 3.2 and f ¼ fs þ fd .

Therefore Corollary 1.5 also follows from (4.2). r

5. Proof of Theorem 1.3 (ii)

In this section, we prepare the generalized Parseval formula (Proposition

5.1) and several lemmas for a1 ¼ 0, a2 < 0 to prove Theorem 1.3 (ii).

Proposition 5.1. For any f ; g A HVL1ðR1Þ, we have

lim
e!0

hFia2 f ; weF�ia2gi ¼ h f ; giþ ia2

4

ð
R1

eðia2=2Þjxj f ðxÞdx
ð
R1

eðia2=2ÞjyjgðyÞdy;

where wa is the characteristic function on fk A R; ae j jkj þ a2=2jg for a > 0.

Proof. For 0 < a < b, let wa;b be the characteristic function on

fk A R; ae j jkj þ a2=2je bg.
Since

hFia2 f ; weF�ia2gi

¼ lim
R!y

ð
R1

we;RðkÞFia2 f ðkÞF�ia2gðkÞdk

¼ hF0 f ; weF0gi

þ ð2pÞ�1 lim
R!y

ð
R1

ð ð
R2

we;RðkÞ
(

a2

2jkj � a2
e�iðxkþjyj jkjÞ

� a2

2jkj þ a2
eiðjxj jkjþykÞ � a22

4k2 � a22
eiðjxj�jyjÞjkj

)
f ðxÞgðyÞdxdydk

and

a22
4k2 � a22

¼ a2

2

1

2k � a2
� 1

2k þ a2

� �
;

we have by Fubini’s theorem
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lim
e!0

hFia2 f ; weF�ia2gi ¼ hF0 f ;F0gið5:1Þ

þ ð2pÞ�1 lim
e!0

lim
R!y

ð ð
R2

ð
R1

we;RðkÞ
�

a2

2jkj � a2
e�iðxkþjyj jkjÞ

� a2

2jkj þ a2
eiðjxj jkjþykÞ � a2

2

1

2k � a2
� 1

2k þ a2

� �
eiðjxj�j yjÞjkj

�

� f ðxÞgðyÞdkdxdy:

Putting

Ie;Rðx; yÞ ¼
ð
R1

we;RðkÞ
�

a2

2jkj � a2
e�iðxkþjyj jkjÞ

� a2

2jkj þ a2
eiðjxj jkjþykÞ � a2

2

1

2k � a2
� 1

2k þ a2

� �
eiðjxj�jyjÞjkj

�
dk;

we then find that

Ie;Rðx; yÞ ¼
a2

2
eia2ðjxjþjyjÞ=2

ð�e

�R

þ
ðR
e

þ
ð�a2þR

R

�
ð�a2þe

�a2�e

� �
eiðjxjþjyjÞk

k
dk:

Indeed, we have for x; y > 0,

Ie;Rðx; yÞ ¼
ð�e�a2=2

0

þ
ðR�a2=2

e�a2=2

 !(
a2

2k � a2
e�iðxþyÞk

� a2

2k þ a2
eiðxþyÞk � a2

2

1

2k � a2
� 1

2k þ a2

� �
eiðx�yÞk

)
dk

þ a2

2

ð�eþa2=2

�Rþa2=2

þ
ð0
eþa2=2

 !
1

2k � a2
� 1

2k þ a2

� �
e�iðx�yÞk dk:

Changing k to �k we obtain

ðThe second term of RHS of the above equalityÞ

¼
ð0
eþa2=2

þ
ð�eþa2=2

�Rþa2=2

 !
a2

2k � a2
e�iðxþyÞk dk

and

ðThe fourth term of RHS of the above equalityÞ

¼
ð�e�a2=2

0

þ
ðR�a2=2

e�a2=2

 !
a2

2

1

2k � a2
� 1

2k þ a2

� �
eiðx�yÞk dk:
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Thus it holds that

Ie;Rðx; yÞ ¼
ð�eþa2=2

�Rþa2=2

þ
ð�e�a2=2

eþa2=2

þ
ðR�a2=2

e�a2=2

 !
a2

2k � a2
eiðxþyÞk dk

¼
ð�e

�R

þ
ð�e�a2

e

þ
ðR�a2

e�a2

� �
a2

2k
eiðxþyÞðkþa2=2Þ dk

¼
ð�e

�R

þ
ðR
e

þ
ð�a2þR

R

�
ð�a2þe

�a2�e

� �
eiðxþyÞk

k
dk � a2

2
eia2ðxþyÞ=2:

Since we can deal with the other cases by a similar calculation, we omit the

details.

Note that the following equality holds;

lim
e!0

hFia2 f ; weF�ia2gið5:2Þ

¼ h f ; giþ ia2

4

ð
R1

eðia2=2Þjxjf ðxÞdx
ð
R1

eðia2=2ÞjyjgðyÞdy

þ ð2pÞ�1 lim
e!0

lim
R!y

ð ð
R2

Ie;Rðx; yÞ � ip
a2

2
eia2ðjxjþj yjÞ=2

n o
f ðxÞgðyÞdxdy

by (5.1). Below we shall estimate Ie;Rðx; yÞ � ip
a2
2 e

ia2ðjxjþjyjÞ=2.

By simple calculation we haveð�a2þe

�a2�e

eiðjxjþj yjÞk

k
dk

����
����e log

a2 � e

a2 þ e

����
����! 0 ðe ! 0Þð5:3Þ

and ð�a2þR

R

eiðjxjþjyjÞk

k
dk

����
����e 1

R
! 0 ðR ! yÞ:ð5:4Þ

Moreover Cauchy’s integral theorem impliesð�e

�R

þ
ðR
e

� �
eiðjxjþjyjÞk

k
dk � ip ¼ �

ð
C�

e

eiðjxjþj yjÞz

z
dz� ip�

ð
Cþ

R

eiðjxjþj yjÞz

z
dz;

where C�
e ¼ fz ¼ eeiy : y ¼ p ! y ¼ 0g and Cþ

R ¼ fz ¼ Reiy : y ¼ 0 ! y ¼ pg.
Thus we obtainð�e

�R

þ
ðR
e

� �
eiðjxjþj yjÞk

k
dk � ip

����
����ð5:5Þ

e

ð p
0

jeiðjxjþjyjÞeðcos yþi sin yÞ � 1jdyþ
ð p
0

je�ðjxjþj yjÞR sin yjdy

! 0 ðe ! 0;R ! yÞ:
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It follows from (5.3)–(5.5) that

Ie;Rðx; yÞ � ip
a2

2
eia2ðjxjþjyjÞ=2 ! 0 ðe ! 0;R ! yÞ

and

Ie;Rðx; yÞ � ip
a2

2
eia2ðjxjþjyjÞ=2

n o
f ðxÞgðyÞ

��� ���eCj f ðxÞj jgðyÞj;

where C is a positive constant which is independent of x; y; e and R.

Therefore using Lebesgue’s theorem we have the conclusion from

(5.2). r

Define

E ¼ g A HVL1ðR1Þ :
ð
R1

jyj jgðyÞjdy < y;

ð
R1

e�ðia2=2ÞjyjgðyÞdy ¼ 0

� �
:

Lemma 5.2. Let g A E. Then F�ia2g belongs to H.

Proof. The equality

eijyj jkj � e�ia2jyj=2 ¼
ðjyj jkj
�ða2=2Þjyj

ieit dt

implies

jeijyj jkj � e�ia2jyj=2je jkj þ a2

2

��� ���jyj:
Thus noting

kweF�ia2gke kF0gk þ 2

ð
R1

jgðyÞjdy
ð
R1

wR
ja2j2

j2jkj þ a2j2
dk

 !1=2

þ
ð
R1

jyj jgðyÞjdy
ð
R1

we;R
ja2j2

4
dk

 !1=2
;

we have

kF�ia2gk ¼ lim
e!0

kweF�ia2gk < y: r

Lemma 5.3. Let f A H and g A E. Then it holds that

hFia2 f ;F�ia2gi ¼ h f ; gi:
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Proof. Let h A HVL1ðR1Þ. Then Proposition 5.1 and Lemma 5.2

imply

hFia2h;F�ia2gi ¼ hh; gi:

Since HVL1ðR1Þ is dense in H, we have the conclusion. r

Lemma 5.4. E is dense in H.

Proof. Define ~EE ¼ fu A HVL1ðR1Þ :
Ð
R1 jxj juðxÞjdx < y; 0 B supp F0ug.

Since fv A SðR1Þ : F0v A Cy
0 ðR1n0ÞgðH ~EEÞ is dense in H, ~EE is also dense.

Therefore, for any f A H and any e > 0 there exists u A ~EE such that

ku� e�ia2j�j=2f k < e:ð5:6Þ

Put

gðxÞ ¼ eia2jxj=2uðxÞ:

Then g A HVL1ðR1Þ andð
R1

jxj jgðxÞjdx < y;

ð
R1

e�ia2jxj=2gðxÞdx ¼
ð
R1

uðxÞdx ¼ 0

hold. Thus g belongs to E. Moreover it follows from (5.6) that

kg� f k < e:

The proof is complete. r

Proof of Theorem 1.3 (ii). It su‰ces to show

Wðia2Þ f ¼ 0 ) f ¼ 0:

Since Fa ¼ F0WðaÞ, we assume Fia2 f ¼ 0. Then Lemma 5.3 implies

h f ; gi ¼ 0 for any g A E. Thus we obtain f ¼ 0 by Lemma 5.4. r

Appendix A

In this appendix, we give a proof of the following properties for ~HHa defined

in section 2.

Proposition A.1. Assume that a ¼ a1 þ ia2 0 0 with a1 e 0 and a2 e 0.

Then we have

( i ) ~HHa is a maximal dissipative operator,

( ii ) ~HHa is a maximal accretive operator,

(iii) ~HH �
a ¼ ~HHa.

First we show the following Lemma:

Lemma A.2. Let a A Cnf0g. Then ~HHa is a closed operator.
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Proof. Suppose Un A Dð ~HHaÞ, ðn ¼ 1; 2; 3; . . .Þ and

lim
n!y

kUn �Uk ¼ lim
n!y

k ~HHaUn �Wk ¼ 0:

Noting that

Un ¼ un þ anH0ðH 2
0 þ 1Þ�1j and ~HHaUn ¼ H0un � anðH 2

0 þ 1Þ�1j

for some un A H2 and an A C satisfying

hun; ji ¼ �anða�1 þ hj;H0ðH 2
0 þ 1Þ�1

jiÞ

(see the definition of ~HHa), we have

kUn �Umk2 þ k ~HHaUn � ~HHaUmk2

¼ kun � umk2 þ kH0ðun � umÞk2

þ jan � amj2ðkðH 2
0 þ 1Þ�1

jk2 þ kH0ðH 2
0 þ 1Þ�1

jk2Þ;

where m ¼ 1; 2; 3; . . . :

Since the above equality means that fungn AN; fH0ungn AN and fangn AN
satisfy the Cauchy condition, there exist u0 A DðH0Þ and a0 A C such that

lim
n!y

kun � u0kH2 ¼ 0; lim
n!y

an ¼ a0

and

a0 ¼ � hu0; ji

a�1 þ hj;H0ðH 2
0 þ 1Þ�1ji

:

Therefore we have U ¼ u0 þ a0H0ðH 2
0 þ 1Þ�1

j A Dð ~HHaÞ and W ¼ ~HHaU .

Now the proof is complete. r

Proof of Proposition A.1. First we consider the proof of (i) and (ii).

Note that ~HHa and ~HHa are dissipative and accretive, respectively. Then it

follows from Lemma A.2 that Rangeð ~HHa � iÞ and Rangeð ~HHa þ iÞ are closed.

Thus

Rangeð ~HHa � iÞ? ¼ f0g ð, Rangeð ~HHa � iÞ ¼ HÞðA:1Þ

and

Rangeð ~HHa þ iÞ? ¼ f0g ð, Rangeð ~HHa þ iÞ ¼ HÞ

in the cases of (i) and (ii), respectively (see e.g. Kato [10]). Here we prove

(A.1) only. The other is proved in the similar way.

Suppose W A Rangeð ~HHa � iÞ?, i.e.,

hð ~HHa � iÞU ;Wi ¼ 0ðA:2Þ

for any U A DðHaÞ.
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Noting the definition of DðHaÞ, we find that the above U has the following

form: for any u A H2,

U ¼ uþ aH0ðH 2
0 þ 1Þ�1

j;

where

a ¼ � hu; ji

a�1 þ hj;H0ðH 2
0 þ 1Þ�1

ji
:ðA:3Þ

Then it follows from (2.1) and (A.2) that

hðH0 � iÞu;Wi� ahiðH0 þ iÞ�1j;Wi ¼ 0:ðA:4Þ

Especially, taking U ¼ ~uu satisfying h~uu; ji ¼ 0 ð, a ¼ 0Þ we find by (A.4)

hðH0 � iÞ~uu;Wi ¼ 0:ðA:5Þ

Consider the operator H 0
0 defined by

DðH 0
0 Þ ¼ f~uu A H2 j h~uu; ji ¼ 0g;

H 0
0 ¼ H0jDðH 0

0
Þ:

(

Then (A.5) implies W A DððH 0
0 Þ

�Þ. Therefore it follows from Albeverio and

Kurasov [3], section 1.2.4 that

W ¼ wþ bH0ðH 2
0 þ 1Þ�1

jðA:6Þ

for some w A H2 and b A C.

Putting (A.6) into (A.5) and noting that H 0
0 HH0 and h~uu; ji ¼ 0, we

obtain

h~uu; ðH0 þ iÞwiþ h~uu; biðH0 � iÞ�1
ji ¼ 0:ðA:7Þ

Then note that the following fact: Let v A H�2. If v satisfies that

h~uu; vi ¼ 0 for any ~uu A DðH 0
0 Þ;

then v ¼ cj holds, where c is a constant.

Thus it follows from (A.7) that

ðH0 þ iÞwþ biðH0 � iÞ�1
j ¼ cj:

Since the LHS of the above equality belongs to H and j belongs to H�1nH,

we find c ¼ 0, i.e.,

w ¼ �biðH 2
0 þ 1Þ�1j:ðA:8Þ

Thus (A.6) and (A.8) imply

W ¼ bðH0 þ iÞ�1
j:ðA:9Þ

Finally we have b ¼ 0, i.e., W ¼ 0. Indeed, putting (A.9) into (A.4) and

noting (A.3), we find
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bhu; ji
a�1 þ kH 1=2

0 ðH0 þ iÞ�1
jk2 þ ikðH0 þ iÞ�1

jk2

a�1 þ kH 1=2
0 ðH0 þ iÞ�1

jk2
¼ 0:ðA:10Þ

Note that hu; jiD 0 and

a�1 þ kH 1=2
0 ðH0 þ iÞ�1

jk2 þ ikðH0 þ iÞ�1
jk2 0 0

since a2 e 0. Thus (A.10) implies b ¼ 0. Now the proof of (A.1) is complete.

Finally we prove (iii). Let take U A Dð ~HHaÞ and V A Dð ~HHaÞ. Then we

have

h ~HHaU ;Vi ¼ hU ; ~HHaVi:

This means ~HHa H ~HH �
a . Thus (ii) implies ~HHa ¼ ~HH �

a . r

Remark A.3. It follows from the above argument that Ha1 is self-adjoint.

Appendix B

We state an abstract result in Kadowaki [8] without a proof (see [8] for the

proof ).

Let H be a separable Hilbert space with inner product h� ; �iH. The

norm is denoted by k � kH. Let fVðtÞgtf0 and fU0ðtÞgt AR be a contraction

semi-group in H and a unitary group in H0, respectively. We denote by A

and A0 the generator of VðtÞ and U0ðtÞ, respectively (VðtÞ ¼ e�itA and

U0ðtÞ ¼ e�itA0 ). We assume the following conditions on A and A0.

(B1) sðA0Þ ¼ sacðA0Þ ¼ R or ½0;yÞ.
(B2) ðA� iÞ�1 � ðA0 � iÞ�1 defined as a form is extended to a compact

operator K in H.

(B3) There exist non-zero projection operators in H;Pþ and P�, such

that Pþ þ P� ¼ Id andðy
0

kKU0ðtÞcðA0ÞPþkBðH;HÞdt < y;ðB3:1Þ

ðy
0

kK �U0ðtÞcðA0ÞPþkBðH;HÞdt < y;ðB3:2Þ

ðy
0

kK �U0ð�tÞcðA0ÞP�kBðH;HÞdt < y;ðB3:3Þ

w- lim
t!þy

U0ð�tÞcðA0ÞP� ft ¼ 0ðB3:4Þ

for each c A Cy
0 ðRnf0gÞ and f ftgt AR satisfying supt ARk ftkH < y, where

k � kBðH;HÞ is the operator norm of bounded operators in H.
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Let Hb be the space generated by the eigenvectors of A with real

eigenvalues. Then we have the following theorem:

Theorem B. Assume that (B1)–(B3). Then for any f A H?
b , the wave

operator

Wf ¼ lim
t!y

U0ð�tÞVðtÞ f

exists. Moreover W is not zero as an operator from H?
b to H.

Appendix C

In the last section, we state some examples by which the present work is

motivated.

Example C.1 (Wave or Klein-Gordon equations with constant dissipation).

Let

H ¼ HðmÞ1 f f ¼ ð f1; f2Þ j k f k2HðmÞ < yg
with

k f k2HðmÞ ¼
ð
RN

ðm2j f1j2 þ j‘f1j2 þ j f2j2Þdx

and

HðmÞ ¼ i
0 1

D�m �1

� �

with m ¼ 0 (wave) or m ¼ 1 (Klein-Gordon). Then we obtain

sðHð1ÞÞ ¼ scðHð1ÞÞ ¼ sessðHð1ÞÞ ¼ fz ¼ s� i=2 A C� j jsjf
ffiffiffi
3

p
=2g;

sðHð0ÞÞ ¼ scðHð0ÞÞ ¼ sessðHð0ÞÞ

¼ fz ¼ sþ it A C� UR j s A R and t ¼ �1=2 or s ¼ 0 and �1e te 0g

and as t ! þy,

ke�itHðmÞf kHðmÞ ¼ oð1Þ
for any f A HðmÞ.

Proof. Conclusions are well known. Here we give a brief sketch of the

proof.

For ðH � zÞ f ¼ g with f ¼ ð f1; f2Þ and g ¼ ðg1; g2Þ, we obtain

�Df2 � ðz2 þ iz�mÞ f2 ¼ ðiD� imÞg1 þ zg2.

(the case m ¼ 1) z2 þ iz� 1 A ½0;yÞ , jsjf
ffiffiffi
3

p
=2 and t ¼ �1=2, where

we put z ¼ sþ it ðs; t A RÞ.
(the case m ¼ 0) z2 þ iz A ½0;yÞ , s A R and t ¼ �1=2 or s ¼ 0 and

�1e te 0.

The last assertion follows from Engel-Nagel [5], 2.22 Corollary. r
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Example C.2 (Wave equation with variable dissipation). Let H ¼ Hð0Þ
and consider the following operators:

H0 ¼ i
0 1

D 0

� �
; Hb ¼ i

0 1

D �bðxÞ

� �

with 0e bðxÞe b0ð1þ jxjÞ�1�d in RN for some positive constants b0 and

d. Assuming b0 is su‰ciently small and N0 2, we find sðHbÞ ¼ scðHbÞ ¼
sessðHbÞ ¼ R (Nakazawa [16]). In the case of N ¼ 2 the spectral structure is

not clear even if b0 is small. However, without the assumption N0 2 and

with the smallness of b0, Mochizuki [15] and Nakazawa [17] showed that for

any f ð0 0Þ A Hð0Þ, there exists fGð0 0Þ A Hð0Þ such that

lim
t!Gy

ke�itHb f � e�itH0 fGkHð0Þ ¼ 0ðC:1Þ

and that the wave operator and the scattering operator exist. These are

proved by smooth perturbation theory developed by Kato [9].

Remark C.3. Without the smallness on b0, Mochizuki [14] and Naka-

zawa [17] showed that there exists f ð0 0Þ; fþð0 0Þ A Hð0Þ such that (C.1), i.e.,

the existence of scattering states, holds.

References

[ 1 ] V. M. Adamyan and H. Neidhardt, On the absolutely continuous subspace for non-

selfadjoint operators, Math. Nachr. 210 (2000), 5–42.

[ 2 ] S. Albeverio, F. Gesztesy, R. Høegh-Krohn and H. Holden, Solvable Models in Quantum

Mechanics, Springer, 1988.

[ 3 ] S. Albeverio and P. Kurasov, Singular Perturbations of Di¤erential Operators, London

Math. Soc. Lect. Note Ser. No. 271, Cambridge Univ. Press, 2000.

[ 4 ] E. A. Coddington and N. Levinson, Theory of Ordinary Di¤erential Equations,

International series in pure and applied math, McGRAW-HILL, 1955.

[ 5 ] K. J. Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations,

Springer-Verlag, New-York, Berlin, Heidelberg, 1999.

[ 6 ] V. Enss, Asymptotic completeness for quantum mechanical potential scattering, Comm.

Math. Phys. 61 (1978), 285–291.

[ 7 ] M. Kadowaki, Resolvent estimates and scattering states for dissipative systems, Publ.

RIMS Kyoto Univ. 38 (2002), 191–209.

[ 8 ] M. Kadowaki, On a framework of scattering for dissipative systems, Osaka. J. Math. 40

(2003), 245–270.

[ 9 ] T. Kato, Wave operators and similarity for some non-self adjoint operators, Math. Ann.

162 (1966), 258–279.

[10] T. Kato, Perturbation Theory for Linear Operators, 2-nd edition, Springer-Verlag, 1976.

[11] P. Kurasov and K. Watanabe, On rank one H�3-perturbations of positive self-adjoint

operators, in Stochastic process, physics and geometry: new interplays, II (Leipzig, 1999),

CNS Conf. Proc., 29 (2000), Amer. Math. Soc., Providence, RI, 413–422.

Mitsuteru Kadowaki et al.368



[12] P. Kurasov and K. Watanabe, On rank one H�4-perturbations of self-adjoint operators,

Operator Theory: Advances and Applications 12 (2001), Birkhäuser, 179–196.
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