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ABSTRACT. This paper is concerned with error bounds for asymptotic expansions of
the distribution of a multivariate scale mixture variate defined by X = SZ, where
Z= (Zl,...,Z,,)/, Zy,...,Z, are i.i.d. random variables, and § is a symmetric positive
definite random matrix independent of Z. Recently Fujikoshi, Ulyanov and Shimizu
(2005) obtained L;-norm error bounds for asymptotic expansions of the density function
of X when S = diag(Si,...,S,). In this paper, first we obtain uniform error bounds
for asymptotic expansions of the distribution function of X under the same diagonal
structure of §. Next we extend the L;-norm error bounds to tha case when S is a
symmetric positive definite random matrix provided Z; is distributed as the standard
normal distribution N(0,1).

1. Introduction

Let Z:(Zl,...,Zp)/ be a random vector, where Zi,...,Z, are i.i.d.
random variables, and G and g be the distribution function and the density
function of Zj, respectively. Further, let § be a symmetric positive definite
random matrix independent of Z. Our interest is to obtain error bounds for
asymptotic expansions of the distribution of

X=57 (1.1)

which is called a multivariate scale mixture of Z. Here it is tacitly assumed
that the scale factor § is close to I, in some sense. Some important appli-
cations appear in two cases when Z; is distributed as the standard normal
distribution N(0,1) or a gamma distribution. Having in mind statistical ap-
plications and a unified treatment of our results we consider a transformation
given by

S=Y”» or Y=8 (1.2)
where 0 = 1 or —1 and p is a positive constant. The notation ¢ is used for two
types of asymptotic expansions. In practical applications the positive constant
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p is chosen as p = 1/2 or 1 according to that Z; is distributed as the standard
normal distribution or a gamma distribution.

It may be noted that a relatively wide class of statistics can be expressed
as a mixture of the standard normal or a chi-square distribution and its
multivariate versions as in (1.1). On the other hand, a scale mixture appears
as a basic statistical distribution. Then one of the important problems in the
former case is to study asymptotic expansions of the distributions of such mixture
variates and theier error bounds. In the latter case we are interesting in the
distance of a mixture from its parent, see, example, Keilson and Steutel (1974).

In this paper we are interesting in asymptotic expansions of the distri-
bution of X in (1.1) and their error bounds. Asymptotic expansions have been
studied for a function of the sum of i.i.d. random vectors, see, for example,
Bhattacharya and Ghosh (1978). Our class of statistics may be not large in
the the class of statistics in Bhattacharya and Ghosh (1978). However, our
class is not a subset of the latter class. Furthermore, it may be noted that
our error estimate has been done by deriving error bounds in explicit and
computable forms.

Asymptotic expansions and their error bounds in the univariate case of
(1.1) have been extensively studied. For the results, see, e.g., Hall (1979),
Fujikoshi and Shimizu (1990), Fujikoshi (1993), Shimizu and Fujikoshi (1997),
Ulyanov, Fujikoshi and Shimizu (1999), etc. However, for multivariate scale
mixtures, some special cases have been studied. As for results on the dis-
tribution function, Fujikoshi and Shimizu (1989a) treated the case S =sl,.
Fujikoshi and Shimizu (1989b) treated the case S —1, > 0, G=®, 6 =1 and
p =1/2, where @ is the distribution function of N(0,1). As for results on the
density function, Shimizu (1995) obtained L;-error bound when G = @, 6 =1
and p =1/2. Recently Fujikoshi, Ulyanov and Shimizu (2005) obtained L,-
norm error bounds for asymptotic expansions of the density function of X
when S = diag(Si,...,S)).

In this paper, first we obtain uniform error bounds for asymptotic expan-
sions of the distribution function of X when S = diag(Si,...,S,). We note
that the results have improved error bounds in the comparison with the ones
derived from the L;-norm error bounds due to Fujikoshi, Ulyanov and Shimizu
(2005). Next we extend the L;-norm error bounds due to Fujikoshi, Ulyanov
and Shimizu (2005) to tha case when S is a symmetric positive definite random
matrix provided Z,; is distributed as the standard normal distribution N(0, ).

2. Uniform error bounds

The multivariate scale mixture variate X in (1.1) is written for p =1 as

X =57 (2.1)
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where S is a positive random variable, and Z and S are independent. Let F
and G be the distribution fuctions of X and Z, respectively. We assume that
for a given positive integer k,
Al. G is k times continuously differentiable on D,
where D ={xeR:g(x) >0}, and ¢ is the density function of Z. Consider
the transformation ¥ = S%7 as in (1.2). The distribution function of X = SZ
given Y = y is expressed as G(xy™”). For j=1,...,k, let ¢s ;(x) be defined
by
o7

P G(xy™) = yes i (xy)g(xy™%), (2.2)

for xe D, and c¢s j(x) =0 for x ¢ D, and write
1, if j=0,
= { (1/31) sup,les (x)lg(x), if j > 1.
Note that if p=1 we can take
os,0 = min{G(0),1 — G(0)}.
However, o050 =1 for all p >2. The functions ¢; ;(x) may be defined also by

a./ o -
WG(xy ) - = ¢ j(x)g(x).

For explicit expressions of ¢s ;(x) in normal or Gamma distribution, see, e.g.,
Fujikoshi and Shimizu (1990), Fujikoshi (1993), etc.

In this section we consider the distribution function of X = (X1,...,X,) in
(1.1) with § = diag(S1,...,S,). Then X; = S,Z; = Y’Z;, i=1,...,p, and the
distribution function of X can be written as

Fp(x) = P(Xl le,...,Xp < xp)
=E[G(x1Y[”)...G(x, Y, )],
where x = (x1,...,x,)". Let G,(x)=G(x))...G(x,) and g,(x)=g(x1)...

g(x,). We consider an approximation for F,(x),

vakﬁp(x) =E

V1 ¥y

k-1 PNy
Gp(x)—i—z_l:%{(ﬂ—l)ai+-~~+(Yp—1) ¢ }

X G(xlyl_(;p) . G(xpy;d/’)

yi==y,=1
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k—1
+ | C() Vil xl) C(Ssjp(xp)gp(x)
=R
x E[(Y1 — 1) ... (Y, — )7, (2.3)

where the sum Z( 7 is taken over all p-tupbs of non-negative integers such that
Jid gy =1

Now we give two types of error bounds for an asymptotic expansion (2.3)
of F,(x), which are given in Theorems 2.1 and 2.2. The results can be proved
by arguments similar to ones as in Fujikoshi, Ulyanov and Shimizu (2005) and
Shimizu (1995), respectively. In Section 4 we give an outline of the proofs.
Our error bounds are expressed as explicit functions of a5 ;, j=1,...,k. More
presicely, one of the error bounds depend on

-
Ws.jp = ZL,)'CX&JI . OC(;JF7 (24)

T i dy!
where the summation Z[ il is taken over all p-tupbs of non-negative integers
0<ji <---<j,such that ji +---+ j, = j, and the constants m, i, ..., i, are

positive integers such that

0<ji=-=Jiy <Ji+t1 == Jirti, < " < Jitotip_+1
= = Jigerin(= Jp) < J-

In particular, we have
Ws,1,p = 0,1,

1
W52, p = 05,2 +§(p - 1)0((2571,
1 3
ws,3,p = %53+ (p— Das 102 +8(p - D(p—2)as, (2.5)
1 2
Wo.4.p = 05,4 +2(p = Dos,+ (p— Dos 103

(p = 1)(p = 2053 1202+ (P~ (P —2(p— 31

N =

+

TueoreM 2.1.  Let X = SZ be a multivariate scale mixture in (1.1) with
S = diag(Sy,...,S,), and Y,-:S?/p, i=1,...,p, where 6 =1 or —1 and p > 0.
Suppose that the distribution function G of Z, satisfies Al and E(YF) < oo,
i=1,...,p for a given integer k. Then we have
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P
|Fp(%) = Gop (%) < Boacp y ElYi—1]"], (2.6)
i=1

where ﬂ&,l,p =1+4ws1, and for k>2

k-1 17k
1/k
Brkw = Walkp + (1 +pr¢s,j,p> : (2.7)
j=1

THEOREM 2.2. Suppose that the conditions of Theorem 2.1 are satisfied.
Then we have

p
|Fp(x) = Gk p(0)| < 750, BNV — 1], (2.8)
pa

where y; ., are defined recursively by the relation

k-1
Vokp = ! {ﬁo‘,k +((-1) Z y&.k—q,p—lué,q}a Jor k=2, (2.9)
q=0

with ysy , = Bs.1s V0 =0 and y5 41 = Py for all k > 1; here
e
Bi = Bor = {5 + (o0 + -+ 25 51) /F3E.

From the relation (2.9) the constants y; , for k =1,...,4 are determined
recursively as follows.

Vs,1,p :ﬂé,la
1
Vo.op = Bsa T+ E(P — Das 1B 1,5
1
Vosp = Bsst E(P — D{as1B852 + Bs2Bs 1}

+—(p = D(p—2)as,185,1, (2.10)

[

1
Vo.ap = BsaTt 5 (P — V{01853 + 26,2852 + 25,3851}

+-(p—1)(p—2){05 1 Bs.2 + 2051052851}

N =

1
27 (P = D =2)(p = 3)%5 151

Combining Theorems 2.1 and 2.2 we have
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P
. k
|Fy(x) = Goiep(x)] <min(Bs 4, 754,) > ElYi — 1], (2.11)
i=1
Note that
Bsip=7s.1.ps Bsap = s,2.p (2.12)

In a special case 6 =1, p=1/2 and Z; ~ N(0,1) we have the following
property.
o/ )
——d(xy )| =27 Hya(0)4(x), (2.13)
ay‘l y:l
where H,(x) is Hermite polynomial of degree n defined by the equality

H,(3) = (1800} ).

It follows from (2.13) that

ﬁ@( -1/2 — *jdizj
oy xy %) - =2 T D(x). (2.14)
Therefore from (2.3) we can write Gy, in the form
k=1 ; ‘
Gikp(x) = E qﬁ,,(x)+;27ﬂ{a;(sé/ﬂ—1,,)ax}-/qs,,(x) ;o (215

where @,(x) = ®(x1)...®D(x,) and 0, = (8/0x1,...,0/0x,)". The approxima-
tion expressed by the right-hande side of (2.5) was considered by Fujikoshi and
Shimizu (1989b) in a special case when

3. L;-norm error bounds

Fujikoshi, Ulyanov and Shimizu (2005) obtained L;-norm error bounds
for asymptotic expansions of the density function of X in (I.1) with S =
diag(S1,...,S,). In this section we extend their results to the case when S is a
general symmetric positive definite random matrix provided Z; is distributed as
N(0,1). First we review their results with the help of a fundamental property
that the density function f,(x) of X can be expressed in term of the distribution
function as
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or
=—F—G,(x).
Sr() 0xX1 ... 0x, »(¥)
Put g,(x) = g(x1) ... g(x,), where ¢ is the density function of Z;. Assume that
A2. g is k times continuously differentiable on D,
where D ={xeR:g(x) >0}. For j=1,...,k, let b;;(x) be defined by

e (3)9(0) = by ()g(x). (3.1)

The function may alternatively be also defined for j > 1 and for xe D, by
formula

o/

57 7O =) (),

y=1
and b5 j(x) =0 for x¢ D. We define also for j >0

1

Cs.j :ﬁ bs j(x)g(x)||,, (3.2)
where for any integrable function A(x),
Il = | bl
It is natural ro approximate f,(x) by
or
o k,p(x) = o .. o, Gs,k,p(X)
k—1 1
= () + 3 S i bap(x1) b (3)p()
=0 Jii-. ']p'
x E[(Y1 — 1) ... (Y, = 1)7). (3.3)

One of our error bounds depends on the quantity 7; , , defined as follows. Put
Ms,1,p = 2+ Us,1,p and for k> 2

k—1 1/k g
1k
Ns,kep = {”o‘,/k,p + (2 +p Z UJ,.M) } ; (3.4)
=

where

- 1)
Us,jp = Z.(pi.)'éb‘,j] G, (3.5)

|
0l ...y



460 Y. FunkosHi, V. V. UrLyaNnov and R. SHmMIzu

Here the summation 37, is taken in the sense of (2.4). Note that v;;, is
expressed in the same form as the expression (2.5) for ws;,, i.e., the one
replaced os; by &;; in (2.5). Then we have the results corresponding to
Theorems 2.1 and 2.2, which were proved by Fujikoshi, Ulyanov and Shimizu
(2005).

THEOREM 3.1. Let X = 8SZ be a multivariate scale mixture in (1.1) with
S = diag(Sy,...,S,), and Y,~:Sf/”, i=1,....p, where 6 =1 or —1 and p > 0.
Suppose that the density function g of Z satisfies A2 and E(YF) < oo, i=
1,...,p for a given integer k. Then we have for any Borel set A = R?

‘P(X cA)— JA Go.k,p(X)dx

1 L :
< 3Msp ) ElYi— 11", (36)
i=1

THEOREM 3.2. Under the same condition as in Theorem 3.1 we have for any
Borel set A < R?

'P(X €A)— JA 9o,k,p(x)dx

1 u k
< Evé,k,plz:l:EHYi — 117, (3.7)

where Vs, are determined recursively by the relation

k—1
Vokp =P {”&,k +p-1Y Va,kq,plfa‘,q} for k=2, (338)
q=0

with vs 1, =151, Vsk0 =0 and vs 1 =15 for all k> 1.

Note that v;; , is expressed in the same form as the expression (2.10) for
Vs.j.ps 1-€., the one replaced o5 ; and f; ; by &5 ; and 7 ;, respectively, in (2.10).
Combining Theorems 3.1 and 3.2 we have

p
min(#; . ,» Vs k.p) ZEH Y- 1. (3.9)

i=1

<

N —

‘P(X ed)— L 9o, k,p(x)dx

Further, it is known (Fujikoshi, Ulyanov and Shimizu (2005)) that

’7(571-,17 = V5, 1,p ’7(5,2,p = Vs, 2,p- (310)

In the following we extend the results (3.9) for the case when S is a
symmetric positive definite matrix, assuming that Z; is distributed as N (0, 1).
For 0 =1 and p = 1/2, we have an identity (2.15). Differentiating both sides
of (2.15) with respect to xi,...,x, we have
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91k, p(X) = ¢1,k,p(x)
Ll
= E|4,(x) Zz_ 1,)2:}4,(x) (3.11)

where ¢,(x) = ¢(x1)...¢(x,) and Y =diag(Yy,..., Y,). As it was shown in
Shimizu (1995) (see the proof of Theorem 2, p. 135) the alternative expression
of ¢, ;. , in the form (3.11) enables us to extend Theorem 3.2 to the general case
when the scale matrix § may not necessarily be diagonal. In the following we
give a more general extension as well as the result.

Fix any Borel set 4 =« R”. We have

P(X e A) = Eg[P(X € 4|S)],

where Eg denotes expectation with respect to §. It means we can construct
at first approximation for P(X € 4) for any given value of § and then taking
expectation with respect to S we get result for P(X € 4). Under the assump-
tion on S there exists an orthogonal matrix T such that S = TLT’, where
L =diag(Ly,...,L,). Then we have

P(SZeA)=P(LT'ZeT'A) =P(LZ € T'A), (3.12)

since T'Z has also the standard multivariate normal distribution in R”. Con-

sider the transformation
Y, =L, i=1,..p (3.13)

as in (1.2) or Theorems 3.1 and 3.2. Applying the result (3.9) to the right-
hand side of (3.12), we have

1 P

PO ) B[ ol Vs | = i i) S - 11,
T = (3.14)
where

=1 d o)’

) =40y (VD) (Y, - 1)

b5 V) =)+ {00 =D -0
< ) - i) (3.15)

n=-=yp=1

For the case 0 =1, p =1/2, we can simplify (3.14) as follows.
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THEOREM 3.3. Let X = 8SZ be a multivariate scale mixture in (1.1) with
Zy ~ N(0,1). Suppose that for a given integer k > 0, (S2 )k is positive
semi-definite and E[tr(S§* — ) ] < o0. Then we have for any Borel set A = R”

P(Xed) - J sz ” Ip)ax}f%(x)] dx
< % min(y; 4, vi,5.p)E[tr(S* — 1,)"]. (3.16)

Proor. Differentiating both sides of (2.14) with respect to x, we have

- dY

o _ _
) 1/2¢(xy 1/2) =2 "@ﬂx)-

oy’

=1

This implies that

J
{m - 1>ai;l+---+<yp—1>%} h(x, )

yi==y,=1

) () e

y==y,=1
x (Y= 1) (Y, - 1)"
= Y — 1) (), (317)
where A(x, y) = [T2, 3. ¢(xiy;°""). Note that
J ¢p(x)dx:J qﬁp(x)dx, (3.18)
T'A A

as the standard multivariate normal distribution is invariant with respect to
orthogonal transformations. Moreover, if we put v = Tx, then 70, = d, and
therefore we have

Y —1,)0, = 0.T(Y — I,)T'd, = 0.(S* — 1,,)0y.

Thus, we get for any j=1,2,....k—1

| tar - oy, max= [ @us* - 1) g @ (319)
T'A A
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Note that

I
M~
~

k=1

since (S° — Ip)k is positive semi-definite.
Combining (3.14) and (3.18)—(3.19) we get (3.16).

LemMmAa 3.1. Let

) -0
Hyl /p¢ (xiy; //7

Then it holds that

)4

(1) Y= 1) hx,y)

i=1 i

=0p0y (Y — 1,)0x4,(x),

yi=-=y,

{Z ay,} h(x, y)

= [0p)*{0L(Y — 1,)0:}” +0p(29p — 1)0L(Y — I,,)70,]¢, (x),

P 3
{Z ay,} h(x, y)
= [(0p) {0u(Y = 1,)0}

+3(0p)°(20p — D{0L(Y = I,)* 0 H{ou(¥ — 1,)0,}

+20p(20p — 1)(6p — D{0L(Y — 1,)* 0314, (x).

Vi==yp

Vi==pp

Proor. The results follow by using that for 6 = —1 or +1 and for any
positive p

= OpH>(x)$(x),

y=1

(1) %{y%(xyap)}

2

2) %{yﬂsﬂqs(xﬁp)} = {(0)* Ha(x)$(x) + 3p(20p — 1) Ha ()},

y=1

= {(0p)” Ho(x)$(x) + 3(dp)*(20p — 1) Ha(x)

y=1

63
O {y " p(xy~)}

+20p(20p — 1)(0p — 1) Ha(x)}.
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THEOREM 3.4. Let k=1,2,3 or 4 and X = SZ be a multivariate scale
mixture (1.1) with Z; ~ N(0,1) and S be a symmetric positive definite matrix
such that (8°/ —Ip)k is symmetric positive semi-definite and Eltr(S°” — Ip)k]
< o0, where 0 =1 or —1 and p > 0. Then for any Borel set A = R? we have

(i) k=1
1

< 5vs.1,Eltr(S77 — 1),
A 27"

‘P(X €A)— J ¢,(x)dx

(i) k=2

POX ) = [ Bl () + @) (005”7 ~ 1)), (o)l

(i) k= 3:

5 ,
P(XeA) - JA E lgﬁp(x) +Y (5;)'), {0L(S°7" — I,)o,} ¢ ,(x)
=t 7

- éép@ap — 1){a(8° - 1p>2ax}¢p<x>] dx

< 3 min{, 3,005 LS ~ 1)),
(iv) k=4
3 7 ) .
Px ) - | Elg 0+ 3 LU - a4,
=)

3020 — DIZUS" — 1,0, ()

+5(0p)7(20p — {0L(S? — 1,)°60, H{OL(S" — 1,)0,}4,(x)

N —

+ %5/)(2@ —1)(0p — 1){0,(8" - IP)Sax}¢p(x)] dx

| ) 4
= B min{7; 4 ,, V6.4,p}E[tr(Sé/p —1I,)7].

Proor. Note that we show Lemma 2.1 (1)~(3) for § = —1 or +1 and for
any positive p. Therefore the arguments simillar to ones in the proof of
Theorem 3.3 imply the parts (i)~(iv).



Error bounds for asymptotic expansions 465
The parts (ii) and (iv) in Theorem 3.4 hold without the assumption that
(89 — I,) is positive definite matrix. Moreover if (89 — I,) is not positive

definite, then in Theorem 3.4 (i) and (iii) we can replace E[tr(S°”” —1,)] and
E[tr(S°? — 1,)’] by E[>.7,|Y: —1|] and E[X”,|Y;— 1. Further, we can
P
E|Y |vi—1]
i1

use inequalities
< pl/ 2 <E
and

P
E[Z|Y,~— 1|3] §p1/4<E
i=1

provided that Etr(S°” — ) ] < oo and E[tr(S%7 — ) ] < oo, respectively.
The inequlities follow from Hoélder’s inequality.

» 1/2
dolyi- 12D = p'P(E[tr(S° — 1,)*))'?,
i=1

» 3/4
> 1vi- 1|4D = p"* (Bl (S —1,)*)*",
i=1

4. Proofs of Theorems 2.1 and 2.2

ProoF oF THEOREMS 2.1. We see that the result can be proved in the same
line as in Fujikoshi, Ulyanov and Shimizu (2005). Note that

Fy(x) = E[Q(x, Y)],

where Q(x,Y) = G(x) Yl_‘s’]) .. G(x, Yp"sf’). Here Y is used for a vector nota-
tion such that ¥ = (Y),...,Y,)’. We use a Taylor formula for a function
O(y) = G(xy=) with k > 1 continuous derivatives

k—1

00) = ) + Y5O = 1) + 5 QM (1 +e( = D)= 1 (1)

=1

where 7 is a number on (0,1). We construct an expansion for Q(x, Y) using
(4.1) sequentially. Namely, at first we apply (4.1) to G(xlyl_‘)” ). We get

k—
1
O(x, G(x1) Z]— 5., (g0 (1 = 1Y+ Ri(yr = D Qa(x,y), (42)
where
R — 1 6 G —dp d _ u G —op
I—Eﬁ( (xly )) 9 an Q2<x7y>_H (xlyz )
-0y y=l+t(y-1) i=2
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;%) so that for a summand

Now we apply (4.1) for a function G(x»y,

Lo (g (1 — 1)/ 0a(x, y)

!
) with k replaced by k£ — j. At last we obtain the following

we apply (4.1
expansion
k—1 P 1
_ Ji
Q(xvy) - G(xl) s G(xp) + H]_ 9, ji xl Xi ( Yi— 1) + Ré,k‘p: (43)
j=1 (j) =17

where Rj i, is a sum of terms each of which can be written in the form
=DM = DMy, (1) - M, (3) (4.4)
with k; >0 for i=1,2,...,p and k; +---+k, = k. Each factor M; in (4.4)
has one of the following form:

k
M) = o SCEN)

(4.5)

b

n=l+t(y=1)

G(xy™) and when 1< j<k—1, we have for

Mo(y) = G(x) or Mo(y) =
M;(y) one of the two representations:

1 1 ¢/ s
<6 (X)g(x) or = — (Gl ™)) (4.6)
7 7oy 1 n=l+e(y-1)
Put
¢ = (Wé,k,p/'l(s,k,p)l/k- (4.7)

Assume that y,

At first we consider the case when 0 < min(y,
is such that 0 < y; < ¢,. We have for any j (1

[ =gl

11—
SW(U—y1|k+|1—yl|k_j|1—y2|]+ A (L= [ = )
-9
p k k
< W(U—yﬂ + 1= 7). (4.8)
-9

Therefore, using Lemma 5.2 in Fujikoshi, Ulyanov and Shimizu (2005) and

(4.3) we get
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k—1

Rokpl <24 (1=l + -+ 1= 3l )wsjp
=
1 k k k*l
< ——— =yl + =0l 24D s
(1-¢) j=1
k k
=05 plll = 21"+ 1= ppl"]. (4.9)

If min(yi,...,»,) > ¢, then using Lemma 5.2 in Fujikoshi, Ulyanov
and Shimizu (2005) and representations for summands contained in Ry,
we get

k
Ry p| < 2202 p: L1 =" 4+ 1= gl
1

= Msseplll = 31"+ 1= 3] (4.10)
Combining (4.9) and (4.10) we finish the proof of Theorem 2.1.

PrOOF OF THEOREMS 2.2. The result can be proved by using arguments
similar to the proof of Lemma 2 in Shimizu (1995). In order to prove (2.8) it
is enough as usual to show that

p

P
H G(Xiy;ép) = Gy ep(X)| < Vo, k,p Z |yi = 1|k’ (4.11)
i=1

i=1

where Gj k., is defined by (2.3) but Y;, i=1,..., p, are considered as positive
real numbers ;.

We prove (4.11) by mathematical induction with respect to p. In the
case p =1 the inequality (4.11) was proved in Theorem 2.1 of Shimizu and
Fujikoshi (1997). Therefore, we can write for p > 2

P k— 1 p—1

[[6Gar") = Z]— = D/e j(0)g(x) + Rop | [T G ™),
I = i~ (4.12)

where |R5‘p|£/35_k\yp—l\k Assume that (4.11) holds for p—1. Then
we apply (4.11) to []7, -l (xlyl ”) with p replaced by p—1 and k replaced
by k — j when Hf’:_ll ( Xiy; ) is a factor by (yp — 1)’ in (4.12). Thus, we
get
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P

[ 6™ = Gokp(x)| < Bsalyp — 11
i=1

k—1 )4
+ ZO(&,quP - 1|qy(5,k—q,p—l Z |yl - 1|k_q' (413)
=0 i=1

We got (4.13) from (4.12) applying induction hypothesis to Hf’;ll G(xy,™). Tt
is clear we could use the same arguments to the function [}, ,; G(xy; ™)
with any j=1,...,p. Then we could get (4.13) with |y, — 1] replaced by
|y —1|. Since in all these inequalities the left-hand sides will coincide, sum-

ming up the inequalities for j=1,...,p and using

4 P
Sl 1y 1< (p - DY w115,
i=1

i#j

(cf. the proof of Lemma 2 in Shimizu (1995)) we come to (4.11) and recurrence
formula for y;, , stated in Theorem 2.2.
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