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An optimal discriminant rule in the class of linear and quadratic
discriminant functions for large dimension and samples
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ABSTRACT. For the classification problem between two normal populations with a
common covariance matrix, we consider a class of discriminant rules based on a general
discriminant function 7. The class includes the one based on Fisher’s linear dis-
criminant function and the likelihood ratio rule. Our main purpose is to derive an
optimal discriminant rule by using an asymptotic expansion of misclassification
probability when both the dimension and the sample sizes are large. We also derive an
asymptotically unbiased estimator of the misclassification probability of 7" in our class.

1. Introduction

Consider the problem of classifying an observation vector x into one of
two normal populations I7; : N,(p;,2) and II, : N,(u,,2), where the mean
vector u; and the common covariance matrix 2 are unknown. Suppose that
we have a training sample of xy,...,x;y, from I7; and another independent
training sample of xyj,...,x2y, from I7,. Let X; and S be the sample mean
and the pooled sample covariance matrix given by

N;

R 1 _ _
X :Ni;xij» S= ;ZZ(X‘/ — %) (x — %),

i=1 j=1

respectively, where n= Ny + N, — 2.
We define a general discriminant function by

T=T(x)
:%{(1 +a)(x—5)'S (x—®)

— (1 —a)(x —%)'S ™ (x— %)} — b, (L.1)

which leads to the discriminant rule: classify x to I7; if 7'(x) < 0 and otherwise
to IT,, where a and b are constants. Note that the discriminant function 7'
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induces a class of discriminant rules by considering various ¢ and b, where
a= O(m™') and b = O(1) when m — co. Here, m may be the dimension p or
the sample size N;. In this paper we use the notation 7" as both a general
discriminant function and a class of discriminant rules. The sample linear
discriminant rule (called the W-rule) and the maximum likelihood ratio rule
(called the Z-rule) are included in this class. In fact, when ¢ =0 and
b= —logec, T becomes

1 /
{x —E(fl + XQ)}Sl(xz — .fl) + log c,
and we have the W-rule, where c is the ratio of error costs of misclassifications
and the prior probabilities. When
a:(al—az)/(al—i—az), a1:N1/(N1+1), a2:N2/(N2+1)
and » =0, T becomes

Ny
Ny +1

N>
Ny, +1

(x—fl)/S’l(x—fl) (x—.fg),Sil(x—fg),
and we have the Z-rule (see Anderson (1984)). In this paper, we are interested
in finding an optimal one in the class of discriminant rules.

Let ¢; be the product of the prior probability and the cost of mis-
classification for x coming from I7;. Then, the risk of a classification rule is
defined as the expected cost of misclassification

01P(2‘1)+02P(1‘2). (1.2)

Generally, if (1.2) is smaller, we consider the classification rule is better. Note
that the constant ¢ in the W-rule is given by ¢ = ¢;/¢;.

In order to make (1.2) smaller, we use some approximated misclassification
probability since the exact distribution function of 7 is too complicated to
handle. Fujikoshi (1987) considered to select the variables minimizing a risk
of classification for the W-rule and the Z-rule when ¢; = ¢ and ¢; =1 — ¢ and
derived an asymptotically unbiased estimator of the risk by using an asymptotic
expansion of misclassification probability when only the sample sizes are
large. Wakaki and Aoshima (2004) derived an asymptotic expansion for the
cut-off point which satisfies some conditions on misclassification probability and
derived an optimal rule in the class (1.1) of discriminant rules, using the
asymptotic approximated distributions of discriminant functions when only the
sample sizes are large. They noted that the Z-rule is optimal when
¢; = ¢3.  Our purpose of this paper is to derive an optimal discriminant rule by
finding out the coeflicients a and » which minimize (1.2) in the class given by
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(1.1), using an asymptotic approximation of misclassification probability when
both the dimension and the sample sizes are large.

In section 2 we give an asymptotic approximation of misclassification
probability for large dimension and sample sizes. In section 3 we derive the
coefficients ¢ and » which minimize (1.2) when both the dimension and the
sample sizes are large. In section 4, some numerical experiments are carried
out to examine the performance of the derived classification rule.

2. Asymptotic approximation of misclassification probability
2.1. Introduction

Since the exact distributions of discriminant functions are too complicated
to handle, we often use asymptotic approximations instead of the exact dis-
tributions. In this section we give new results as well as the previous results
for asymptotic approximations of misclassification probability.

When the sample sizes are large, Okamoto (1963, 1968) derived an
asymptotic expansion formula for the W-rule up to O,(n), where O;(n) means
the j-th order terms with respect to (N;',N5!',n~!). Its asymptotic expansion
formula of misclassification probability is given as

. A al an az
P(2|1)—¢( 2)+N1+N2+n + 05 (n), (2.1)

where
ay = A7 dY +3pd),  ar = @A) - (p—4)dP},

1 2 i i
=5 (=Y, ) = POy (=2.9),

and 4 means the Mahalanobis distance, 4% = (x4, — ,)' 2" (u; — ). For the
Z-rule, Memon and Okamoto (1971) derived an asymptotic expansion formula
up to Ox(n). Its asymptotic expansion formula of misclassification probability
is given as

B A\ @ @ a
P(21)<15( 5>+F1+F2+7+02(n), (2.2)

where
ar = (24%) 7" (~dy? + (p — 4)d),

i =247 3BdY + (p+8)dyy, @ =
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Additionally, Siotani and Wang (1977) derived the asymptotic expansions of
misclassification probability up to Os;(n) for the W-rule and the Z-rule. It is
known that the accuracy of these formulas depends on the dimension and the
Mahalanobis distance between the two populations. When the dimension is
large, it is known that the approximations by these expansion formulas are
poor. Therefore, when both the dimension and the sample sizes are large, we
need other approximations.

When both the dimension and the sample sizes are large, Deev (1970) gave
an asymptotic expansion for the W-rule in the case Ny = N,. Wyman et al.
(1990) compared the accuracy of several approximations for the W-rule in the
case N = N,, and pointed that the approximation due to Raudys (1972) has
overall the best accuracy for the combinations of the parameters considered in
the study. Saranadasa (1993) obtained the limiting distribution function of
misclassification probability for the the Z-rule using the formal Edgeworth
expansion of the distribution of sum of random variables which are inde-
pendent but not distributed identically. The approximated misclassification
probability is given by

Pei = o(-5VT=5). (23)

where n=N;+ N, —2 and p/n— ye(0,1) when n— co. Fujikoshi and
Seo (1998) also derived the limiting distribution for a class of discriminant
rules which includes both the W-rule and the Z-rule. They considered the
statistic

T — %{(X -X))'STI (X =Xy) —d(X -X))'STI (X - X))} (2.4)

Note that 7 is obtained from 7 in (1.1) by putting a = —(d — 1)/(d + 1) and
b=10. They derived the approximated misclassification probability as

P2|1) ~ qs(— g) (2.5)

where

c=3 (s ) {2+ s 0 = w4 ol - 1+ N7

N Y pN

2 2
=(——) (4%+

’ <N—p>< N1N2>’

and N = N;+ N,. By numerical experiments they show that (2.5) gives a
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good approximation even for small dimension. Note that the (2.3) is not the
same as (2.5) for the Z-rule. Fujikoshi (2000) derived an error bound for the
approximation in the W-rule.

Recently, Tonda and Wakaki (2003) derived an asymptotic expansion of
misclassification probability for the W-rule which is given as

PQ21) = @(v) + ¢(v) /1(4) + O3, (2.6)
where
v=v(4)
_ ! <N _P>I/Z{Az L (=1 - Nz)} (Az LN 1>)1/2
- 2\WN -1 NiN, NiN, ’

f1(4) is the term of Oy, and O; means the term of the j-th order with respect to
(N{',N5', p~1). They also derived an unbiased estimator up to O; by using
(2.6).

For the sample quadratic discriminant function (SQDF, shortly), some
results have been obtained. Wakaki (1990) derived an asymptotic approxi-
mation of misclassification probability in the case of proportional covariance
matrices when only the sample sizes are large, under the assumption that

=i (i=1,2), Aty — Jopty =0, =l =1, Ni=N,=N.

Then, the misclassification probability can be expressed as

P(2|1) = Py, +&, (2.7
N
where Py, and Py, are defined in terms of the parameter p, N; and A; and the
non-central y>-distribution. When both the dimension and the sample sizes are
large, Matsumoto and Wakaki (2003) derived an asymptotic expansion of
misclassification probability up to O(p~'). The method is based on the formal
Edgeworth expansion of the distribution of sum of random variables which are
independent but not distributed identically. In their paper, it is assumed that
nj=N;—1, vi=p/n;, liminf, ., p/n; >0 and n; > p. Then, the mis-
classification probability was given in the form

1 1
PQR2I1) =P +—Py+—Ps+o(p!), 2.8
(2[1) N (»™) (2.8)
where P, P, and P; are defined in terms of the standard normal distribution,

the parameter p,N;,u;,2; and the asymptotic mean, variance, 3rd and 4th
cumulants of the SQDF (for details, see Matsumoto and Wakaki (2003)).
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2.2. Asymptotic expansion of misclassification probability

In this section we derive an asymptotic expansion of misclassification
probability for the statistic (1.1). Our methods are as follows: First, we
represent the statistic 7 as a function of several random variables distributed as
normal and y2-distributions. Secondly, we expand the characteristic function
of T*, standardization of 7. Finally, we derive an asymptotic expansion of
distribution function by inverting an expanded characteristic function. From
the result we obtain an asymptotic expansion of misclassification probability.

Note that the results when the observation vector x comes from /7, can be
obtained from that for x € IT, by replacing (a, b, Ni, N,) with (—a, —b, N>, N}).
Therefore, we consider the case of x e I1;.

As in the paper of Fujikoshi and Seo (1998), we express 7' by using
random variables distributed as normal and y>-distributions as

T=0T +ouT>+ o375 — b, (29)
where
1 nN; N +1 2
= 1 _(1—
o1 2N1+1{( +a>( ]\/v1 ) ( Cl)},
_ n N+1 1 n(N +1)
%= (1 a)N1+1 N, ’ %= 2(1 Ll)(N]#’l)]VQ7

Ti =g1-95 + g3, T2=\/N1.¢]1'g2'.61i/2, T3 = g1 - g4,

1

g1 = —,
2

1/2
92=Z1+22{L52} 5 g3=E7 ga=(z3+&"+n,
ya(ye +z3)

ZiNN(Oal)v yINsz,v
Nh=fr=f=p—1, fr=n—p+1, Jo=n—-p+2 Je=p—2,

N> (N + 1)}1/2A A2

N1 = (1 — )" 2 (= 1),

e= e -
N:N|+N2, n=N-2.

Here, z;’s and y;’s are independent. We consider an asymptotic expansion of
T in the situation where Nj, N; and p are large. Assume that p and N; have
the same order. For a convenient notation of order, let

ﬁ:pi'm7 Ni:/li'm7 a:oc/m, é:\/r;C7
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where p;, A;, 0 and { = O(1) when m — co. Here, m may be the dimension p
or the sample size N;. Additionally, let

Then, u; is asymptotically distributed as N(0,1) when f; tends to infinity.
Using them, 7,7, and T3 are shown as

Tl_/’4+\/’7< P4 p3/2 )

1 (2 2,/ 22 2 2
+— %uﬁ— p3u3u4+—l+ pzz +p—z2 + O(m™?),
Py Pa Py P2 P2

1 {P\//h’?l ( 1 >
+ — —U3zy — —=U5Z) — 7”(,22
m\ V2p, \VPs \F \/" VPs
v/ 24 A v/ 24
+ Py, (z1 + pz2) + VA z3(z1 + pz2) — 3/12’71 ux(z1 +p22)}
2pay/M1 P2/ P>
1 [ py/21m ( 1 3, 1, 3, 2 3)
+— ——U3Zy) +—UxZy — —UsZr) +—UZy — —Z
m { 4py P3 3 Pyt ps > ps s’
2\/ VA, Vi,
1’71 u3(z1 + pz2) +71p]32§(21 +pz2) —71p]3u12(21 +P22)}
3 2pa/My 4pa/M
+0(m™?),
po_m L (V2P 2L Vo
3= u 3 32 W2
Py Vm P> P P
11 2P 22 2 _
+— —Z% — \3//;—1-1411/{2 — 32 Z3Upy + %u% + 0(1’}’1 3/2), (210)
m\ py P> P P2

where 7, = p; +¢* and p = \/psps/paps. Therefore, T in (2.9) can be ex-
pressed as

T=t+t+1, (2.11)

where
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to = foo + fo121 + f0222,

n f3 772(N+1)}
o= —b+—"—d(Na+ )2 LD
00 +N1+1{( 1a+ )f4 N,

n N+1 N
for = — YT RAEY
TToNsrm YT A (2.12)

n [N+l —ym
=——" LNV,
0 N +1 N, lfzp

_ |p-1 _ 0 2
p_V—pr’ m=hn+<,

and #; and 1, are terms of O(m~'/?) and O(m™"), respectively (calculated easily
from (2.10)). Using (2.12), T is standardized as

T =

T—1t0 to—to 4 b
o o 6 o

where 15 = (fo — too)/o and o = /13, + 13,. Then, the characteristic function
of T* can be expressed as

Cr(s) = E(e”T*)

t t
E[exp{is(ta‘ +2+ —2> H + O0(m™3?)
g o
. \2 2
e’ {istz + ) t—l}]
2 o

+ Oo(m™?). (2.13)

| o 1
= E(e"0) +—E(e"ist)) + —E
o o

We calculate the expectations in (2.13) using the density function of z; given
by

#(x) = exp(—x*/2) )V 2n
and the density function of u; which is expanded as

fu,<x>:¢<x>{1+i v2

NTEN

After much computation, it is shown that

(x* - 3x)} +0(m™).
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2 1 1 2
Cre(s) =e*/? {1 + {—rl(zs) +;T2(ls)

+$mmf+$ume+om3%, (2.14)
where
2f: 2 1
T1:OC11<4§+ % )+ 31<}Z2 ],)-1-061224-0632f2

\/N1772_|_ 11<f3 f3)+ 31(’72 2n, f1>

7 = an(tor + ptoz) + +

Iz R BRSO
VN Jﬁ
+ o {(101 + plo2) ( 72 4f ’713/21

+

VN, ( 13 1 3>}
pPloz

4, AR TR T

1+p2 <2N17’]2 N N]f]) pzi’]zN] (1 1 1 1)}
+a2{——— +5- +—= +=+—=+
A4 N S ) 87 \fs S S5 S

Nin, MWMm
fofa fof?

2VNu,” | 2y Ny ﬁ%ﬁ)
5 Vo NS

P\/Nl’72l3 L o2 (tor + pton)® <2N1f72+N1 lel)
2f2f6 02 21 4 f2 f2 2](‘22’72

PNy , (1 1 1 1>
* y2%4f+ﬂ 5T }

1
73 = oy — (fo1 +P102) + 06110621l02<

S

+ azi001 (fo1 + ptoz) (

T4 = —00]

Nin n n n

= + R = a—+ )
MEN A1 TN TN Y T 2N D
oy — n N+1 vy — n N+1a
TN+ N, 2N +1
n(N +1) n(N +1)
Bl = —5 v 10 032 =577 4
2N, (N, + 1) 2N,(Ny + 1)

Inverting (2.14), we obtain the following theorem.
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THEOREM 2.1. The distribution function of T* can be asymptotically
expanded as
1 1 1 1
Fr(x) = &(x) — ¢(x) pd —|—grzh1(x) + guhz(x) —|—F‘c4h3(x) + 033,

(2.15)
where h.(x) is the Hermite polynomial of degree r,

h(x) = x, h(x) =x*—1, hs(x) = x* = 3x,
and O; means the term of the j-th order with respect to (Ny',Ny!, p~1).

Theorem 2.1 implies the following theorem for the misclassification
probability.
THEOREM 2.2. The misclassification probability for discriminant function

(1.1) is asymptotically given by

1
P(2|1):P(T>0|er1):P<T* > -2 |er1)
g

I
g
t t
g g
1 1 t 1 t 1 I/
X {Tl + =12l (—00) +—=513h (—OO) +—5 a3 (—OO)}+ 03
ag ag ag ag ag ag ag

(2.16)

The first term of (2.16) with (a,b) = (—(d — 1)/(d 4+ 1),0) is the same as
(2.5), the result of Fujikoshi and Seo (1998), and it makes the same form at
(2.6), the result of Tonda and Wakaki (2003) for the W-rule. The validity of
our expansions follows from the results by Bhattacharya and Ghosh (1978).

2.3. Estimation of misclassification probability

The expansion (2.16) for P(2|1) in Theorem 2.2 includes the parameter 4
which dependes on population parameters x; and X. In many actual cases, 4
is unknown. Then, we usually use an estimator in place of 4. Since

E(D*) = E[(%] — %)'S 1z — %) = n _Z_ 1 {Az +1\€]]\\]72]’

we can estimate 4> by

—p-1 N
pr=1TPm pr P (2.17)
“ n N1N2
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which is consistent as well as unbiased in our framework. However, when we

substitute (2.17) to 4 in (2.16), the resultant estimator of misclassification

probability has the bias of order O;,. So, some correction is needed.
From Theorem 2.2,

PQ2I1) = @(v) + ¢(v).f (1),

where v =v(4?) =tpo/. As in Tonda and Wakaki (2003), we consider an
estimator

Ouw = @(V) + 01,

where ﬁzv(Dﬁ) and Q; is the term of O;. To construct an asymptotic
unbiased estimator up to the term of O;, we define Q; such that the bias of
Omw is O3). The bias of Qyw can be expressed as

Bias(Quw) = Ez, 3, s[P%,5,s(2]1) — Ouw]
= P(21) — Ez, 5, s[®(V) — Q1] (2.18)

where Pg 3, s(2|1) means the exact misclassification probability. Using the
same way for expanding the characteristic function of 7 in Section 2.2, we
obtain the following lemma.

LEmMA 2.1. It holds that
E3 5,5[P(V)] = @(v) + ¢(v)g(4) + O, (2.19)

where
9(4) = V'(4%)ga( A7) + T (4%) v () ()],

2
01(47) = (N+ 1) {2(p— D +4¢2+2ﬂ} +(4(N7“)n (14 ),

NN, 5 Ni+ 12N, 2
2 LN (2.20)
N+1 2772} n f3 N
E) I Y R I3 :
92(47) (N1+1)N2{ 5 NN+ 1) fi NN,
d d?
/Az _ - " Az - )
vi(4%) = o) 2 vi(47) =25 v(x) .

From Theorem 2.2 and Lemma 2.1, it follows that

Bias(Quw) = ¢(){f (4) — g(4)} — E[Q1] + O3)s.

If E[Q1] = ¢(v){f(4) — g(4)}, the bias of Oy becomes O3/,. Therefore, the
estimator defined by
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Ouw = D() + 0, 0, = ¢(M{f(Du) — g(Du)} (2.21)

is asymptotically unbiased up to the term of Oj.

3. Coefficients to minimize the risk

In this section we derive the coefficients ¢ and » which make an optimal
discriminant rule in the class of (1.1).

The asymptotic expansion formula of misclassification probability derived
from (2.16) is expressed as the function of coefficients a and b as follows:

P(2\1) = @(—Slb +S2a+S31) + ¢(—S1b + sHa +S31)

1 1
X {O_(‘L']() + ‘L']]Ll) +¥(120 + 12140 + Tzzaz)hl(slb — S$Ha — S31)

1
+t3 (T30 + T310)h2 (516 — $20 — 531)

1
+FT4h3(Slb—S2a—S31)} —|—03/2, (31)

G2 ()
G2

(N 172 oo PN 172 424 PN = No) (3.2)
BT 3\N P NN NN ’
e LY 2NV e pN Ny
32 2\N—p p NN, NN ’

7=/ 0+ 1525 A= (m —mw)'Z (- m).

By changing the role of N; for N, in (3.1), we obtain
P(1|2) = @(Slb — Sa + S32) =+ ¢(Slb — $ha + S32)

1 1
X { E (Tio — ‘L’11a) + ; (‘520 — réla + Tzzaz)hl(—slb + sha — S32)
1,
+ p (130 — T31@)2 (=516 + $20 — $32)

1
+ gT4h3(—S1b + sha — S32)} + 03/2. (33)
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Note that 7; is composed of N{,N,,p and 4 and r,-’j is obtained from 7; by
changing the role of N; and N,. (see (2.16)). Using (3.1) and (3.3), we
consider to derive the coefficients ¢ and b with which the risk (1.2) is
asymptotically smaller.

However, it is very difficult to obtain the coefficients ¢ and b actually,
based on the formulas (3.1) and (3.3). So, at first, we consider to minimize
only the leading term of (1.2),

1 D(—s1b + s2a + s31) + Cz@(slb — $2a + 532). (3.4)
This leads to consider the coefficients ¢ and b such that

$31 — 8§32
Sa — s1b +—F=

_ c
3 = (531 +532) ! log c—; (3.5)

Under the condition (3.5), we can obtain the coefficient ¢« and b which makes
an optimal discriminant rule in the class of (1.1) with neglecting the terms of
03/2.

THEOREM 3.1. In the class of (1.1) with (3.5), an optimal discriminant rule
is made from the coefficients (a,b) = (ap(4%),bo(4%)), where

2 ad(y)tn  ad(y)tn (), | ad(y)tan
aO(A)l olr  plir 021 - 0

L ()T (=1 + 1) adl)ei(=1+97)
PEE PHE
" [_ 262¢(V;)T22V2 B 2C1¢(V61)T22V1} 717 (3.6)

8] 25 s1(s31 + 532)

a
) = 831 + 532 log Py
| =
2 531 + 532

¢
vy = s3+sp  logg
y = _
2 $31 + 530

) (N—1>3/2<A2+ Np )‘/2
N—p N1N2 ’

and ¢(x) is the density function of the standard normal distribution.
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In the above theorem, the quantiles ao(4°?) and by(4?) include the un-
known parameter 4 which is made from population parameters g#; and 2. So,
we estimate 4> by (2.17).

4. Simulation

In this section we carry out numerical experiments for three purposes.
The first purpose is to examine the accuracy of the asymptotic expansion
formula given by Theorem 2.2, the second is for the accuracy of the asymptotic
unbiased estimator given by (2.21), and the third is to compare the performance
of the W-rule, the Z-rule and our new rule derived in section 3.

4.1. Methods

Without loss of generality we assume that u; = —u, = (4/2,0,...,0) and
2 =1, =diag(l,...,1). The configurations of the values of N, N, p,4,c
and ¢, are all those possible combination of

pi 5,10, 15, 20,

(N1, N2);  (10,20), (10,30), (20,10), (20,20), (20,40), (30, 10), (40,20),
4; 105, 1.68, 2.56, 3.29,

(c1,¢2);  (1,1), (1,0.5), (0.75,0.25).

Here, (N;, N;) = (10,10) is eliminated in the case of p =15,20. For each of
the configurations, we calculate the approximated misclassification probability
by using the asymptotic expansion formula given by Theorem 2.2. By using
Monte-Carlo method, we calculate the risks of the W-rule, the Z-rule and our
new rule (referred as Min-rule). We also estimate the expectations of the
asymptotic unbiased estimators of the misclassification probabilities given by
(2.21) for the W-rule and the Z-rule.

4.2. Results and comments

Table 1 and Table 2 show the risks of the three classification rules
estimated by Monte-Carlo method in the case of 4 =1.05 and 4 = 1.68,
respectively. Table 4 shows that the accuracy of the approximations of P(2|1)
for the W-rule and the Z-rule in the case that p =10 and ¢; = ¢;, where



An optimal discriminant rule for large dimension 245

Table 1. Risks of the three classification rules in 4 = 1.05.

4 =1.05 p=10 p=20

(c1,¢2) | (N1,N2) | W-rule  Z-rule Min-rule | W-rule Z-rule Min-rule

(1,1) | (10,10) | 0.867 0850  0.718 — — —
(10,20) | 0.808  0.792  0.696 | 0900  0.890  0.701
(10,30) | 0792 0.779  0.699 | 0.881 0.858  0.703
(20,10) | 0797 0.783  0.693 | 0.890 0879  0.704
(20,20) | 0.769  0.763  0.719 | 0.853  0.844  0.738
(20,40) | 0.715 0710  0.694 | 0791  0.781  0.728
(30,10) | 0799 0.784  0.699 | 0881 0866  0.702
( )

0.714 0.708 0.691 0.792 0.786 0.746

(1,05) | (10,10) | 0612 0499  0.493 — — —
(10,20) | 0.580  0.500  0.463 | 0.690 0500  0.486
(10,30) | 0.573  0.500 0459 | 0.683 0500 0448
(20,10) | 0.538  0.500 0453 | 0.630 0501  0.496
(20,20) | 0.523  0.500 0467 | 0.615 0500 0462
(20,40) | 0486 0500 0461 | 0571 0500  0.467
(30,10) | 0512 0500 0446 | 0592 0500 0433
( )

0.470 0.500 0.458 0.534 0.500 0.472

Table 2. Risks of the three classification rules in 4 = 1.68.

4 =1.68 p=10 p=20

(c1,¢2) | (N1,Nz) | Werule Z-rule Min-rule | W-rule Z-rule Min-rule

(10,10) | 0.676  0.663  0.634 — —
(10,20) | 0.603 0592 0580 | 0766 0.756  0.704
(10,30) | 0573 0561 0558 | 0.708  0.690  0.666
(20,10) | 0592 0586 0578 | 0758  0.744  0.697
(20,20) | 0.544 0541 0541 | 0.681 0674  0.667
( )
( )
( )

(11)

0.499 0.496 0.496 0.589 0.583 0.582
0.569 0.554 0.551 0.716 0.691 0.663
0.496 0.494 0.494 0.595 0.586 0.586

(1,0.5) | (10,10) | 0490 0487  0.547 —

(10,20) | 0439 0500 0433 | 0.588 0494  0.568
(10,30) | 0419 0500 0404 | 0.550  0.500  0.481
(20,10) | 0409 0499 0435 | 0539 0496 0575
(20,20) | 0.380 0500 0393 | 0493  0.500 0478
(20,40) | 0.346 0500 0350 | 0428  0.500  0.409
(30,10) | 0.383 0500 0403 | 0482 0.500 0472
( )

0.337 0.500 0.349 0.405 0.500 0.410
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Table 3. The values of coefficients (ag(4%),bo(4%)) and Z-rule’s a.
4=1.05 4=1.68

(c1,¢2) | (N1, N;) | Z-rule p=10 p=20 p=10 p=20

(1,1) (10,10) 0.00 0.00 0.00 — — 0.00 0.00 — —
(10,20) | —0.02 | —0.03 —0.05 | —0.03 —0.18 | —0.03 —0.09 | —0.03 —0.27
(10,30) | —0.03 | —0.04 —0.06 | —0.04 —0.15 | —0.04 —0.11 | —0.04 —0.22
(20, 10) 0.02 0.03 0.01 0.03 0.04 0.03 0.05 0.03 0.12
(20,20) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
(20,40) | —0.01 | —0.01 -0.01 | —0.01 —0.02 | —0.01 —0.03 | —0.01 —0.04
(30, 10) 0.03 0.03 0.01 0.03  —0.02 0.04 0.05 0.03 0.04
(40,20) 0.01 0.01 0.01 0.01 0.00 0.01 0.02 0.01 0.02

(1,0.5) | (10,10) 0.00 | —0.28 1.78 — — 0.44 12.54 — —
(10,20) | —0.02 | —0.07 2.81 | —0.80 —23.14 0.20 5.53 0.18  24.02
(10,30) | —0.03 | —0.04 244 | —0.26 0.21 0.13 3.87 0.14  11.88
(20,10) 0.02 | —0.01 296 | —0.77 —24.42 0.26 5.70 023 24.19
(20,20) 0.00 0.03 2.59 | -0.14 1.77 0.17 3.79 0.18 11.54
(20,40) | —0.01 0.03 2.11 | —0.04 2.74 0.12 2.75 0.09 5.34
(30, 10) 0.03 0.04 2.67 | —-0.19 0.30 0.22 4.10 022 1236
(40,20) 0.01 0.06 2.19 | —-0.01 2.90 0.15 2.82 0.12 5.50

((Sim.”, (3 W079’ “ZMO”, 3 W4E”, “ZAE”’ X3 WESt”, (SZES[77’ (3 WBiaA.” and “ZBl‘aS,’

mean as follows:

“Sim.”: the misclassification probability estimated by Monte-Carlo
methods,

“Wpy’: the asymptotic approximation given by Okamoto (1963, 1968),
“Zyo”: the asymptotic approximation given by Memon and Okamoto
(1971),

“Wye” and “Z,g”: an asymptotic expansion given by (2.16) for the W-
rule and the Z-rule,

“Wgy” and “Zg,”: the expectations of estimators given by (2.16) in
which 4 is replaced with (2.17),

“Whias” and “Zpi,s": the expectation of asymptotic unbiased esti-
mator.

Figure 1 shows the difference between the values of P(2|1) (by Monte-Carlo
Method) and approximated or estimated values of P(2|1) in Table 3. (For the
results corresponding to the W-rule, see also Tonda and Wakaki (2003).)
Here, all standard deviations of the estimated values given by Monte-Carlo
method are not over 0.01.

In Table 1 and Table 2, we find that the risks of Min-rule are the smallest
among the three classification rules for all parameters when 4 = 1.05. While
in the case of 4 =1.68 and p = 10, some risks of Min-rule are larger than
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Fig. 1. Comparison of the difference of the simulation results P(2|1) in the case of p =10 and
¢ =1 for the Z-rule.

those of the W-rule or the Z-rule. The performance of Min-rule looks poor
for large 4. In the case that ¢; # ¢; we find similar tendency to the case that
¢; = ¢;.  We think one reason of the poor performance of Min-rule for large 4
and small p is the poor accuracy of the approximation formula given by the
asymptotic expansion. We show the values of (ag(4?),bo(4%)) and the co-
efficient a for the Z-rule in Table 3 (for the W-rule, always a = 0).

In Table 4 and Figure 1 we can see that our approximation formula and
asymptotically unbiased estimator work better than the classical method such
as Wy and Zo for large dimension and samples. For small 4, we can see
that the expectation of asymptotic unbiased estimator has good approxi-
mation.
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Table 4. Results of P(2|1) in the simulation with p =10 and ¢ =1.

p=10, c=1 W-rule Z-rule

(N1, M) 4 Sim. Wo Wie  Wee  Waias | Sim.  Zyo  Zyg Zess  ZBias

(10,10)  1.05 | 0.425 0.598 0.422 0.442 0429 | 0425 0499 0422 0.442 0429
1.68 | 0.338 0.390 0.337 0.360 0.303 | 0.338 0.340 0.337 0.360 0.303
256 | 0.229 0.214 0.222  0.252  0.198 | 0.229 0.193 0.222 0.252 0.198
329 | 0.159 0.120 0.144 0.171 0.123 | 0.159 0.111 0.144 0.171 0.123

(10,20)  1.05 | 0.448 0.568 0.441 0.464 0441 | 0.399 0.442 0394 0412 0.391
1.68 | 0.348 0362 0327 0.352 0.299 | 0.297 0.296 0.292 0.322 0.238
256 | 0.210 0.190 0.192 0.213 0.153 | 0.179 0.161 0.170 0.191 0.133
329 | 0.124 0.103 0.111 0.133 0.076 | 0.110 0.089 0.097 0.117 0.069

(10,30)  1.05 | 0.463 0.556 0.452 0479 0.454 | 0.393 0421 0.381 0.402 0.380
1.68 | 0.335 0349 0324 0.344 0.240 | 0.285 0.278 0.274 0.290 0.200
256 | 0.181 0.179 0.180 0.202 0.139 | 0.152 0.148 0.151 0.169 0.109
329 | 0.111 0.094 0.099 0.102 0.068 | 0.093 0.080 0.082 0.085 0.051

(20,10)  1.05 | 0.350 0.469 0.350 0.362 0.342 | 0.396 0.447 0.397 0.413 0.392
1.68 | 0.263 0312 0.262 0.277 0.199 | 0297 0.302 0.297 0.313 0.229
256 | 0.181 0.169 0.155 0.191 0.138 | 0.201 0.167 0.176 0.215 0.155
3.29 | 0.100 0.093 0.090 0.106 0.057 | 0.112 0.093 0.103 0.115 0.063

(20,20) 1.05 | 0.380 0.448 0.374 0.394 0.380 | 0.380 0.398 0.374 0.394 0.380
1.68 | 0.274 0.294 0.267 0.288 0.197 | 0.274 0.269 0.267 0.288  0.197
2.56 | 0.156 0.156 0.149 0.149 0.103 | 0.156 0.145 0.149 0.149 0.103
329 | 0.091 0.084 0.082 0.084 0.046 | 0.091 0.079 0.082 0.084 0.046

(20,40) 1.05 | 0.389 0.434 0.387 0.399 0.381 | 0.358 0.370 0.357 0.366 0.349
1.68 | 0.267 0.280 0.266 0.276 0.199 | 0.247 0.248 0.247 0.255 0.186
2.56 | 0.144 0.144 0.141 0.141 0.098 | 0.133 0.130 0.131 0.130 0.087
3.29 | 0.080 0.076 0.074 0.075 0.032 | 0.075 0.069 0.068 0.069 0.026

(30,10) 1.05 | 0.321 0424 0.319 0.335 0.311 | 0.391 0427 0.386 0.409 0.384
1.68 | 0.238 0282 0.234 0.252 0.173 | 0.285 0.286 0.281 0.303 0.213
2.56 | 0.139 0.151 0.132  0.133 0.071 | 0.165 0.155 0.159 0.160 0.101
3.29 | 0.083 0.082 0.073 0.075 0.032 | 0.098 0.085 0.089 0.092 0.040

(40,20) 1.05 | 0.326 0.384 0.329 0.338 0.320 | 0.356 0.373 0.359 0.369 0.353
1.68 | 0.230 0.255 0.230 0.238 0.136 | 0.249 0.251 0.250 0.259 0.148
256 | 0.128 0.134 0.124 0.124 0.077 | 0.137 0.133 0.134 0.134 0.088
3.29 | 0.070 0.071 0.065 0.067 0.019 | 0.075 0.071 0.071 0.073  0.025
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