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ABSTRACT. We deal with reaction-diffusion equations of bistable type in an inhomo-
geneous medium. When the reaction term is balanced in the sense that a bulk potential
energy attains the same global minimum at the two stable equilibria for each spatial
point, we derive a free-boundary problem whose solutions determine equilibirum in-
terfaces. We show that a non-degenerate solution of the free-boundary problem gives
rise to an equilibrium internal layer solution of the reaction-diffusion equation, and
moreover, the stability property of the latter is obtained from a linearization of the free
boundary problem.

1. Introduction

1.1. Background. Internal layers, which separate two stable bulk states by a
sharp transition near hypersurfaces (called interfaces), are often observed in
bistable reaction-diffusion equations when the reaction rate is stronger than the
diffusion effect. The motion of such interfaces is considered as the evolution of
spatio-temporal patterns generated by the reaction-diffusion equation. There-
fore, investigations of interfacial phenomena, such as internal transition layers
and interface motions, are of crucial importance in our understanding of
pattern-formation mechanisms in nature.
The Allen-Cahn equation with cubic nonlinearity

0
(A-C) a—lzzezAu—(u3—u) xeRY >0,

is a typical example in which internal layers spontaneously develop and evolve
when the diffusion coefficient is rather small, 0 < &> < 1. By rescaling time,
one can write (A-C) as follows:
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ou 1,
(A-C-s) i edu — R (u’ —u),
Ju 1
(A-C-SS) E = Au — {,‘_2 (u3 — 1/[)

It should be noted here that no spatial re-scaling has been performed to obtain
the latter two equations from (A-C). Slow dynamics in (A-C), say dynamics
of order O(e), is clearly captured by (A-C-s), while to describe much slower
dynamics of order O(e?) the third equation (A-C-ss) may be adequate. It is
therefore our advantage to employ three forms of the same equation inter-
changeably, according to the dynamical behavior of our attention.

The ordinary differntial equation (ODE), or the reaction kinetics, asso-
ciated with (A-C)

(ODE) —=u—u

is of bistable type, in the sense that u = +1 are its two stable equilibria. The
equilibrium u = 0 is located in between the two stable ones, and in fact, it is
precisely on the boundary of the basins of attraction for u = +1. Since the
reaction rate is much stronger than the diffusion rate in (A-C), it is naturally
expected that ODE-dynamics will dominate the behavior of solutions, at least
in the initial stage. In fact, it is rigorously proven by Chen [2] that the solution
of (A-C) with initial condition u(x,0) = uy(x) develops transition laryers near
{xeR" |up(x) = 0}. Namely, for 1~ 0

ux,t) ~ -1 {xeRY|uy(x) < 0} = 2((0),
u(x, 1)~ 1 {x e RY |ug(x) > 0} =: 29)(0).

In this sense, Iy = {x e R |up(x) =0} is called the initial interface.

When the transition layer becomes sharp enough, the diffusion effect &2 Au
also becomes comparble with the reaction term and can not be neglected anymore.
It is also shown by Chen [2] that at this stage the interface I'(z) = {x e R" |
u(x,t) =0} starts to move according to the mean curvature flow:

(MCF) V(x; T(¢) = —x(x; (1)) xel(r),t>0.

Here, the scale of time is that of (A-C-ss), and V(x;I°(¢)) is the speed of
I'(t), measured in the unit normal direction v(x,I'(¢)) on I'(f) pointing into
the interior of 27 (r), where 2% (1) = {x|+u(x,t) > 0}. The symbol r(x; I")
stands for the sum of principal curvatures of I" at xe I'. We agree to call it
simply the mean curvature of I'(f). The sign of x(x;I'(¢)) is chosen so that it
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is positive if the center of the curvature sphere is in 2(7)(r). More precisely,
we define it by

k(x; I'(¢)) = divy v(x; I'(2))

in which the unit normal vector v is smoothly extended to a neighborhood of
I(y.

The Allen-Cahn equation above is a special case of the following reaction-
diffusion equation
(RD) % = 2 Au— W'(u),

in which W(u) is a double-well potential and W'(u) = dVZLE") W (u) is called

a double-well potential when it has two local minima at, say, u =a_ and
u=a,; (a- <ay). When W(u)=u*/4—u?/2, (RD) is nothing but (A-C).
In the dynamics of (RD) driven by the double-well potential, the difference of
potential values at the two wells u = a4 plays an important role. The differ-
ence is measured as

(PD) Wia,) - W)= J W w)du = [
a_

Note that for a double-well potential, the nonlinearity —W'(u) is of bistable

type. When the difference [W]" is zero, the corresponding nonlinearity

—W/'(u) is called balanced. When the nonlinearity is bistable and balanced,
the description above for (A-C) is equally valid for (RD).

When the nonlinearity is bistable but not balanced, it is also shown by
Chen [2] that the motion of interface I'(¢) is described by

(CS) Vi I'())=c"  xel(), >0,

where the time scale is that of (A-C-s), and ¢" is a constant which is of the
same sign as [W]7. The motion law (CS) is in accord with our intuition. If,
for example, ¢" > 0, namely, [W]* > 0 (and hence the well at u = a_ is deeper
than that at u = ay, cf. (PD)), then (CS) says that the interface I'(¢) invades
') (1), the region occupied by u = a,. Therefore, eventually 27 (¢), which is
occupied by u =a_, will dominate the entire region.

For more detail of the interface dynamics of (RD), we refer to [2] by

Chen.

1.2. Statement of Problem. In the previous subsection, interfacial phenomena
have been described for a spatially homogeneous reaction-diffusion equation.
From a viewpoint of application, it is natural to consider spatially inhomo-
geneous equations, since environments in which reaction and diffusion take
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place is, realistically speaking, non-uniform. For reaction-diffusion equations,
there are at least two ways of introducing spatial inhomogeneity: one in the
diffusion rate; the other in the reaction term. In this paper, we restrict our
consideration strictly to the latter situation.

Let us consider a spatially inhomogeneous reaction-diffusion equation

0

T=ddu— fluxe), (xes cRY,1>0)
(1.1)

ou ‘

a—n—O, (xed2,t>0),

with the no-flux boundary conditions. In (1.1), 2 is a smooth bounded do-
main and n stands for the inward unit normal vector on 0%. The nonlinear
term f(u,x,¢) is assumed to be smooth and derived from a double-well poten-
tial W(u,x,¢):

OW (u,x,¢)

(1.2) flu,x,¢) = o

with u = ¢(J—r)(x, ¢) denoting the locations of two wells, satisfying
(1.2-a) d ) (x,e) < g M (xe) (xe D).

It is expected, from the discussion on the Allen-Cahn equation, that the
difference in the values of potential at the two wells will play an important role

in describing the dynamics of (1.1). Let us denote the difference at each x € ¥
by [W]Z(x):

(1'3) [W]J—r(x) = J:( f(ua X, O)du = W(¢(+)(X), Xy 0) - W(¢(_>(x)a X, 0)

where ¢*)(x) = ¢ (x,0) (cf. (1.2-a)).
Along with (1.1), it is convenient to also consider its (time) re-scaled
versions:

A

ou 1
1.1- e eAu— =
(1.1-s) 3 edu gf(u,x,e),

(1.1-ss)

In this paper, we are mainly concerned with interfacial phenomena for
(1.1), and in particular, with equilibrium internal transition layers and their
stability properties.

Before we go further, let us make precise the conditions to be imposed on
the nonlinearity f.
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(A1) The equation f(u,x,0) =0 has exactly three solutions u =
#)(x),¢" (x) with

P () <pOx) <gP(x)  xed
Moreover,
FEX) = fuldP(x),x,00>0  xed.

Under the assumption (Al), it is known that the following problem

) A ~
POy, 10,
(1.4) dz? dz

(Qvaao) =0 zeR,

tim. . 00(2) = $H(x), 00(0) = 5 (47 (x) + 4 (x)

has a unique solution (Qy(z; x), ¢(x)), where x € & is regarded as a parameter.

The solution pair (Qy(z; x), ¢(x)) satisfy the following properties: There exist
constants C > 0 and 0 > 0, independent of x, such that

(1.4-a) 100(z;x) — P (x)] < Ce 9 as z — +oo,

(14-b) aQOa(sz X) > 07 'aQOa(ZZ7 X) , azQaOZ(zz’ X) < Ce*()“l"
~ 2

(1.4-c) W] () zc(x)J “ (%) i-.

The solution u(x,?) of (1.1) starting from an initial function ug(x), similar to
the case of (RD), will develop internal transition layers near

{x € 7| uo(x) = %(aﬁ(”(x) + ¢<-><x))} = I,

and the interface I'(#) evolves according to
(1.5) V(x; I'(t)) = c(x) (xeI(t),t>0).

The time scale of (1.5) is the same as (1.1-s). Here and in what follows, we
always treat the cases where interfaces are staying uniformly away from the
boundary of doamin 0%.

From our standpoint of investigating the existence of equilibrium internal
layer solutions, it is natural to ask the next question:

If the interface equation (1.5) has a smooth equilibrium solution I,
then does (1.1) have a family of equilibrium solutions with transition
layers on I" for small ¢ > 0?7
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It turns out that the answer to this question is rather delicate. In [4], Fife
and Greenlee prove that the answer is affirmative if the condition

(F-G) Vie(x)|p-v(x, I') <0, xel

is fulfilled. Here I" is a smooth equilibrium solution of (1.5). Namely, I" =
{xeZ|c(x) =0} is a closed manifold of codimension 1. Moreover, the solu-
tion thus obtained is a stable equilibrium of (1.1). It is of crucial importance
to note that the normal vector v above is pointing into the region where the
solution u assumes values close to ¢*). Since ¢(x) =0 on I, the condition
above says that in the two regions away from the interface I” the solution takes
values close to the absolute minimum of the potential W (u, x,0).

On the other hand, it is also pointed out in [9], in the context of the same
question for a system of reaction-diffusion equations, that if the condition

(Reverse F-G) Vie(x)|p-v(x, ) >0 xel

is the case, then there may exist infinitely many internal laryer solutions which
exhibit sharp transitions near I". By examining the proof in [9] and inter-
preting it in our situation, we can state the following criterion on the existence
of equilibrium internal layer solutions.

THEOREM 1.1. Let I' be a smooth equilibrium solution of (1.5). If it is
non-degenerate in the sense that the spectrum of the linearized operator

(1.6) ed" + (Vee(x)|p - v(x, T)),

defined on I' (A' is the Laplace-Beltrami operator on I'), is bounded away from
zero uniformly in ¢ € (0,&] for some ¢y > 0, then (1.1) has a family of solutions
with sharp transitions along I.

Since 47 is a non-positive operator, it is evident that if Vie(x)|, -
v(x,I") <0, then the spectrum of the operator (1.6) is uniformly bounded away
from zero. Hence the criterion above is compatible with the result by Fife and
Greenlee [4]. On the other hand, if the sign is opposite, Vic(x)|, - v(x,I") > 0,
then the spectrum of (1.6) hits zero infinitely often as ¢ — 0.

The purpose of this paper is to investigate the existence and stability prop-
erties of internal layer solutions of (1.1) when the nonlinearity is of balanced
type at each point x € 4. Namely, we impose the following condition on f:

(A2) [W]'(x) =0 on Z, or equivalently, ¢(x) =0 on Z.

Under this condition, we may normalize W so that W(¢®(x),x,0) = 0.
If (A2) is the case, two kinds of degeneracies occur;
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any closed manifold I" =« & of codimension one is an equilibrium of
(1.5);
the corresponding linear operator (1.6) reduces to ¢4’ which has the
0-eigenvalue as well as infinitely many eigenvalues converging to 0 as
e — 0,

making Theorem 1.1 invalid. Therefore, we need to establish a selection prin-
ciple to identify possible equilibrium interfaces, and to develop a method to
study stability properties of corresponding transition layer solutions.

Under the conditions (A1) and (A2), one can show, along the line of
arguments employed in Nakamura et al. [7], that the interface equation for
(1.1-ss) is given by

(17)  V(aT(0) = —x(x T(2)) +J(2(§§I)), (xeI(1),1>0),
where
o0 2 . 2
(1.7-a) m(x) = J <%> & (xed)
(1.7-b) J(x;T) = f [2(Vf (1, X,0)] gy () - V(35 1))
(000,30 25 . (e
There is an important relation between m(x) and J(x;I):
(1.7-¢c) J(x;I) = —=Vum(x)-v(x,T')+ Jw £:(Qo(z; %), x, O)% dz

= Vam(x) 25 1)+ 2 ), %.0) = WO (0, 5,8 o

In terms of the potential W, the quantity m(x) is expressed as

(1.7-d)

(/5(+) x

(x)
V2W (u,x,0) du
(x)

m(x) = J

which may be interpreted as the unit energry neccessary for the system to make
transition in the v-direction from ¢7(x) to ¢*)(x). Therefore, when the
nonlinearity is independent of &, (1.7-c) implies that the interface equation (1.7)
is written as

V(x; (1) = —k(x; 1(1)) — Vy(log m(x)),  (xeI'(t),>0),
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which is a slight generalization of the interface equation (2.20) in Nakamura
et al. [7]. The latter equation shows that the interface tends to move in the
direction to decrease the interfacial energy mi(x) if the curvature-effect is
neglected.

The main objective of this paper is to answer the following question:

Under the conditions (A1) and (A2), if the interface equation (1.7) has
a smooth equilibrium solution I", then does (1.1) have an equilibrium
solution with internal transition layers on I"? If such a solution exists,
is it stable or unstable?

In order to state our problem succinctly, let us define a class & of
interfaces.

(1.8) F ={I'c2|TI is an (N — 1)-dimensional, smooth,
and closed manifold}.

For a given I' e # and in its sufficiently small neighborhood
(1.9) r'% = {xe|dist(x,I') <}
for some J > 0, we introduce a local coordinate system via

dist(x,y), if xe 2\,

1.10) 7' sx— y,r)el x (=0,0 with r =
( ) (1) ( ) —dist(x, y), ifxe@H,

where y € I' is such that dist(x, I') = dist(x, y), and EZ(ri> are sub-domains of &
divided by I". Later in this paper, Q}i are, respectively, the domains where
u(x) = ¢ (x) (cf. (2.1), (2.2) below). Denoting by v(y,I") the unit normal
vector of I at y € I' pointing into & F , one can write the coordinate system
in (1.10) as

(L.11) x=y+r(yI), (xeI'" yerl,|rl <9).
For an element I" e %, we also define its r-shift, I,, by
(1.12) L={x=y+m(y|yel}

for |r] < 9.
In accordance with the right-hand side of (1.7), let us define a function
Vi(x,I") for I'e & by

(1.13) (x, ) = —k(x, Nm(x) + J(x; T), xXeg.

As our selection principle for equilibrium interfaces, we now impose the
condition that (1.7) has a smooth equilibrium solution.
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(A3) There exists a I' € # such that
MxI)=0 onl[I.

It is not so easy to find such a I" € % as in (A3). It is a free-interface
problem to be investigated in its own right (cf. §2.2 below).

In order to answer the question above, we need an extra non-degeneracy
condition. Let us define an elliptic operator &/’ by

N-1
(1.14) /T R(x) := m(x) (AF + Z Kj(x)2> R(x) +Vrm(x) - VrR(x)

j=

—_

om(x)
ov(x; )

—x(x; 1) R(x) + J.(x; T)R(x) xel,

= div/(m(x)VrR(x)) + m(x) (NZI x,(x)2> R(x)
j=1
om(x)

—xsT) ov(x; T)

R(x) + J.(x; I R(x) xel

)

where 47 divy, and V stand, respectively, for the Laplace-Beltrami, divergence
and gradient operators on the manifold I” with respect to the metric induced
on I" from the Eulidean metric in &, and x;(x) (j=1,...,N — 1) are principal
curvatures of I" at x. The function J,(x;I") is defined by

(1.15) Jo(x; ) = %J(x-i—rv(x; I);1})],—-

The operator .o/ R in (1.14) is the linearization of Vi(x,I') in the direction of
{x+ R(x)v(x,I") |xeI}.

This follows from the identity
0
EJ(X + TR(x)v(x; I); Ier(x)) oo = Vrm(x) - Vi R(x) + J,(x; ') R(x),

which is verified via direct computations. The operator .7/ also emerges
naturally from C!-matching conditions in §4.2, below.
Let us consider an eigenvalue problem for .oz’

(1.16) ATO(x) = im(x)0(x), xel.

Since (1.16) is a self-adjoint eigenvalue problem, its eigenvalues are all real.
We denote them as
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(1.16") or = {/lj-r};io, Wil > ijr — —0o0,

where only distinct eigenvalues are listed. The multiplicity of )»jr is denoted by
mf > 1. The non-degeneracy condition on I is:

(A4) 0 is not an eigenvalue of (1.16), ie., 0 ¢ ar.

Let us now outline the contents of the paper.

In the next section, we will state our main theorem and present some
examples to which it applies. These examples naturally give rise to interesting
geometric variational problems. We then prove the main theorem in §3, while
§§4 and 5 are devoted to the proof of technical results used in §3.

2. Main results

2.1. Existence and Stability of Layers. The following is our main theorm.

THEOREM 2.1. Assume that the conditions (A1), (A2), (A3), and (A4) are
satisfied.
(1) There exist ¢g > 0 and a family of equilibrium solutions u(x,¢) of (1.1)
such that for each fixed dy > 0

-) SN o)
(2.1) lim u(x,e) = b, xe {Jr)\ ’
=0 ¢<+>(x)» XeYDr \r(do),

uniformly.

(i) If lor < 0, then the solution u(x,é&) is asymptotically stable. If there
exists k=0 such that 2} >0>/1{+1, then the solution u(x,e) is
unstable with instability index equal to Z]{;o m;.

Nakashima [8] established results similar to Theorem 2.1. She proves the
existence of stable internal transition layers in one-dimensional situation. Her
method, however, is based on comparison principles and hence unable to prove
unstable solutions. Our theorem is a generalization of the results in [8] to
multi-dimensional domains, including unstable situations.

Theorem 2.1 justifies the interface equation (1.7), in the context of equi-
librium solutions. A dynamic version of such a justification may be estab-
lished by the method similar to the one presented below (cf. §§3, 4, and 5).

2.2. Examples. In this subsection, we deal with simple examples to which
Theorem 2.1 applies.

ExampLE 2.1. Let us consider the situation where the nonlinearity f in
(1.1) is given by
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(2.2) fu,x,e) = (u—ea(x))(u? = 1).
In this case, the corresponding QO of (1.4) is easily found to be
(2.3) 0o(t; x) = 0y(7) := tanh (\%)

In the sequel, the function Q,(7) will be used frequently. The functions m(x)

and J(x;I') of (1.7-a) and (1.7-b), respectively, are easily computed:

2V2 _ 4
3

(xe2), Jx;I) = sa(x) (xel).

(2.4) m(x) = 3

Therefore the condition (A3) demands that there should exist a I” € & such that
(2.5) k(x;T) =V2a(x), xel.

This is a problem of highly geometric nature. Such a hypersurface is called a
surface with prescribed mean curvature in differential geometry literature. One
can verify that (2.5) is the first variational equation for the functional F,(I")
defined by

(2.6) F,(I') ::J A —J w(x)dx  (I'e F),

5
r 9

where dS!" is the surface element of I

Let us assume that (2.5) does have a smooth solution I', or equivalently,
that (2.6) has a critical point I” which is regular enough (we will later treat a
special case where we can easily find a solution). The linear operator ./ in
(1.14) is given by

(2.7) isz/FR(x): AF+§K~(x)2 R(x)—l—L(x)R(x) xel
YV = ov(x; ) '

The first two terms on the right-hand side of (2.7), 47 + Zj]i 1 i(x)?, s called
the Jacobi operator on I", which describes the first variation of —x(x;I"). In

fact —2372&/ TR(x) is the second variation of F, at I' in the direction of R.

ExaMpLE 2.2. In this example, we consider the case where the non-
linearity f is of the form

(2.8) flu,x,6) = h(x)? (W — u).

The function A(x) is smooth and strictly positive on &. One can easily identify
Qo(t;x),m(x) and J(x;I') as
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(2.9) 0o(7;x) = Qo(h(x)7),  m(x) = %ﬁh(ﬂ,
S 2V2 an(x)
J(x’r)__Tﬁv(x;F) erl.

Therefore the free-interface problem in the present case is given by

Oh(x)

(2.10) h(x)k(x; T) + Bv(x; T

=0, xel.
This is the first variational equation for the functional Ej(I") defined by
(2.11) Ey(I) :ZJ h(x)dS!.

r

The free-interface problem (2.10) may look similar to (2.5), but it is sub-
stantially different, since in (2.10) the value of mean curvature at x € I" depends
not only on the the prescribed value /(x), but also on the normal direction
v(x;I') of the free interface. To the best of our knowledge, there seems to
be no general condition on / that ensures the existence of solutions to (2.10),
except for a special case to be treated in §2.3 below. It is a natural strategy to
find minimizers (or critical points) of Ej in order to obtain solutions of (2.10).
This problem deserves a separate treatment.

Assuming that (2.10) has a smooth solution I, the linear operator in (1.14)
is given by

N—1
(2.12) %E,Q/fzz(x) = h(x) <AF +>° Kj(x)2> R(x) + Vrh(x) - VrR(x)
j=1
_ Ohx) o *h(x) N
ov(x; T) (i DR() 6v(x;F)2R( )

which is the second variation of (2.11) at I

ExampPLE 2.3. Let the nonlinearity f in (1.1) be given by

(2.13) S (,x,8) = ul? = $(x)°),
in which ¢(x) >0 is a smooth function defined on &. Then we have
214) Oufeix) = 400, mix) = 2L g(x)”

2 0¢(x)
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where

C = ZJ 0, (1) deOT(T) tdt=2V2.
R

The free-interface problem is therefore written as

_ og(x)
(2.15) Kk(x; T)p(x)* + 3¢(x)? e T 0 «xel.

This is almost identical to (2.10). In fact, (2.15) is the first variational equation
of the functional E,(I') defined by

(2.16) Ey(I) EJ () s
r
Assuming that (2.15) has a smooth solution I, the operator ./’ is given
by
3 r s 2 3
217) ——=A " R(x)=¢(x)" [ 4" + Ki(x)" | R(x) +Vr(é(x)") - VrR(x
(2.17) Wi ()¢()< ;«;())() r($(x)") - VrR(x)

2 x 3
e(x: T)R(x) — mR(x).

ap(x)’
ov(x; I)

In the examples above, we have been naturally lead to geometric vari-
ational problems associated with the functionals F,, Ej; and E¢, defined respec-
tively by (2.6), (2.11) and (2.16). Critical points of these functionals corre-
spond to the solutions of the free-interface problems (2.5), (2.10) and (2.15),
respectively. The solutions of the latter problems in turn give rise to stationary
solutions of (1.1) with internal transition layers on the free-interface. Also, the
stability of the transition layer solutions is read off from the index of the critical
points.

2.3. Analysis of Examples. In this subsection, the examples above will be
analyzed when the inhomogeneity is radially symmetric. Let & contain the
origin of RY and o,/ and ¢ depend only on r=|x|. We do not, however,
assume that & is radially symmetric. In this situation, we look for the free-
interface I among spheres with center at the origin. For the sake of defi-
niteness, we assume that interiors of free surfaces correspond to @5:). The
other case where @Ej’) corresponds to the interior of I” can be treated similarly.

The free-interface problem is nothing but the equilibrium problem of the
interface equation (1.7). It is therefore more illuminating to cast it in a
dynamic version. When the initial interface is a sphere with center at the
origin, the solution of (1.7) remains to be a concentric sphere, since the spatial
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inhomogeneity is radially symmetric. Therefore, the dynamic versions of the
free-interface problems (2.5), (2.10) and (2.15) are respectively written as:

_odr d N1 r
(2.18) (Example 2.1): T (log r Jo oc(s)ds),
d d
(Example 2.2): j}; = log(r¥1h(r)),
d d
(Example 2.3): j: = log(rV"1g(r)?).

Therefore radial dynamics of (1.7) in these examples are determined by the
profile of the corresponding potentials.

Let r =1y be an equilibrium point of (2.18). The stability of the cor-
responding interface I” with respect to radial pertubations is determined by the
sign of the second derivative of the potintials at » = ry. The stability property
with respect to non-radial perturbations is encoded in the eigenvalues of the
linear operator in (2.7), (2.12), or (2.17).

One can easily verify that eigenfunctions of the operator are all spherical
harmonics. The eigenvalue )f corresponding to spherical harmonics of degree
j >0 is given by

)
r=ro

.. ) 2 r
(2.19) (Example 2.1): /ljr = —% - % (log AL Jo oc(s)ds)
0

Cr_ _JUHN-2) &

_a N—1
(Example 2.2):  J; 2 g log(r™ =" h(r)) )
i(j+N-2) d? -
(Example 2.3): /ljf = —%—W log(r" "¢ (r)%)
0 r=roy

Based upon the information provided by (2.19), Theorems 2.1 and 2.2 now
apply to produce the existence and stability properties of the corresponding
stationary solutions of (1.1) with internal transition layers.

REMARK 2.2. Our theorem naturally applies to one-dimensional cases,
where we can reproduce the results in [8].
Let 2 =(0,1) = R. The interface equation for Example 2.1 is given by

dr
E = OC(V).

A simple zero ry € (0,1) of a(r) therefore gives rise to an equilibrium solution
of (1.1) for small ¢ > 0, which is asymptotically stable if o’(ry) < 0 and unstable
if o'(rg) > 0.
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On the other hand, the interface equation for Example 2.4 is given by

dr  h'(r)
At h(r)”

Therefore, a nondegenerate critical point ry e (0,1) of the function A(r);
h'(ro) =0, h"(ry) # 0, gives rise to a family of internal transition layer solutions
of (1.1) near r =ry. The solutions are asymptotically stable (resp. unstable) if
h(r) attains a local minimum (resp. local maximum).

3. Proof of Theorem 2.1

We will prove Theorem 2.1 in this section. Since our proof is rather
lengthy, we will delegate the computational details to §§4 and 5.

Let u(x,¢) be the desired solution of Theorem 2.1. We define the equili-
brium interface I, by

I, = {x € |u(x,e) = %((/ﬁw(x) + ¢<)(x))}~

Without loss of generality, we may assume that ¢ (x) 4+ ¢7)(x) =0 on 2.

For, if not, we change the unknown u by u — u — (¢ (x) + ¢7(x)). Then

2
the new unknown satisfies
e du = f(ux,e),

where
2
Flwxeo) = f (w+ 36900 + 6700 ) +5 268900 + 670

For this new nonlinearity f, the conditions (A1) and (A2) are fulfilled. We
therefore define the interface I, by

(3.1) I ={xeZ|u(x,e) =0} e 7,

which is unknown a priori. The condition (A3) demands that lim, .o I exists.
Therefore we expect that I, is expressed as the graph of a function R*(y) over
I' :==lim, o I, in terms of the local coordinate system (y,r) in (1.10) and
(1.11):

(3.2) I={xeZ|x=y+eR(y)v(y),yel}.

We will first establish the existence of approximate solutions with an ar-
bitrarily high accuracy.
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ProposITION 3.1.  For any integer k > 2, one can choose a smooth function
Ri(y) (yeTI) for which there exists a family of smooth approximate solutions
ui(x) of the problem

edu— f(u,x,e) =0 (xe2),

(33) My (x€09),

such that
{xeZ|ui(x) =0} ={xeZ|x=y+eR(y)v(y),yel}
and

ouj, B
on

0 (ved?), e duf— f(uf,%8) oz = OG1)

Jor 0 <o <1l and 0 <o’ <1. Here CX2) is the usual Holder space C*(2)
with the weighted norm

[p(x) — p(X)[

xXe9g xX#x'e9

We give here some comments on Proposition 3.1, although it will be
proven in §4.
The function R;(y) is given by a finite sum

Ri(y) = Ri(y) +eRo(y) + -+ & Re1 (),

in which the functions R;(y) (0 < j <k — 1) are determined by solving linear
elliptic equations on I

(3.4) /"Ry = hi(y) (a known function) (j=1),
(35) ,52/er :hj(y,Rl,...,ijl)
(a function determined by Ry,...,Rj_1) (j =2).

Thanks to the condition (A4), the operator ./ is invertible and hence (3.4)
and (3.5) are uniquely solvable. The elliptic equations (3.4) and (3.5) will
appear as C'-mathching conditions in the asymptotic expansions in §4.

We now linearize (3.3) around the approximate solution uj:

Lli(ﬂ = Szd(p - fu(uliv X, 8)%

and consider the associated eigenvalue problem:
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Lip=ip (xe9),
(3.6) P
Fz —0 (xed2).
DerFINITION 3.2, An eigenvalue A° of (3.6) is called a non-critical
eigenvalue if there exist constants ¢ > 0, ¢, > 0 such that

25| =0  (Vee (0,e]).
An eigenvalue of (3.6) is called a critical eigenvalue if it is not non-critical.
The following result plays a decisive role in our proof of Theorem 2.1.

PropoSITION 3.3. (i) There exists 6, >0 and ¢, >0 so that non-critical
eigenvalues 2° of (3.6) satisfy

AP < =0, Ve € (0, &.].

(ii) Let A* be a critical eigenvalue of (3.6) with k > 2. Then

Iim A*=0 and lim — = Meor.
e—0 e—0 &
We will prove this proposition in §5.
From this proposition and the condition (A4), we immediately conclude
that the linear operator Lj is invertible. This also allows us to establish the
following.

ProrosITION 3.4. There exist constants C >0 and e, >0 so that the
estimate

C

e\—1
1) N err@)-cire) < gwama Sor e€(0,2]

is valid, where [%] stands for the integer-part of one-quater of the dimension N.

ProoF. Proposition 3.3 and the condition (A4) imply that
Li: W*(2) — L*(92)
is invertible for &€ (0,¢.] (where &, > 0 is adequately small), and that there
exists C > 0 such that

C
(3.7) lellz2 < Sllollzes &€ (0,24,

where ve CY%(Z) and u = (L{) v,
In the sequel, we simply use the same symbol C to denote positive con-
stants, independent of ¢ which may differ from line to line.
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By using the L”-estimates for the Laplacian in the equation
| R
Au = 8—2{fu(uk,x, e)u—+ v},
we have

(el o +M0llr) (1 <Vp < o0).

C
(3.8) lellwana <

Our strategy of proof is to use (3.8), combined with the Sobolev em-
beddings

!
N .
(3.9) Il < Cllullyp, 1<p< Np_ i N =2
and
3.10 ul| 0 < Cllul| o, with o« = min I,Z—E , if 2p > N.
c w » P

1. For N =1,2,3, we first use (3.10) with p =2. Taking « =1/2, and
using (3.8) (with p =2) and (3.7), we have

|

el 2 < Null e < Cllullyaz < S5 (lull 2 + [loll2)

)

c/C C
< 5 (Gallells + lellos ) < ol

This completes the proof for N =1,2,3.
2. For N >4, we argue as follows. The estimate

C
(3.11) lullye: < Slollz, YN 21

has been already established above by using (3.8) and (3.7). For each integer
j >0, we will establish the esimate

C .
(3.12) lellyezmins < g loll v, YN 24

Let us prove (3.12) by induction. For j =0, (3.12) reduces to (3.11). Assume
now that (3.12) is true for some j>0. By using (3.9) with p’ =%, we
obtain, for N >4(j+ 1), '

2N

r < Cllull yaoviv-4) s <V < N—4(j+1)

[
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Using this with p =

2N 7 in (3.8), and then using (3.12) in the resulting
estimate, we obtain

N—-4(j+1

C .
||Ll|| W22N/(N-4(j+1) < 2004 ||U||L2N/(J\u4(/-1)), VN > 4(] +1).

Therefore, we have established (3.12) for all nonnegative integer j.
On the other hand, if N = 4;,4j+ 1,4j + 2,4/ + 3, then 2 x N%, > N, and
hence (3.10) applies with o = 1/2, giving rise to

||uHC1/z < Clul| W2, 2N/ (N—4)) -

Since ||ul| .12 < [lullc12 and [[v]|,, < Cl[v|| .12 for any p > 1, the last estimate
and (3.12) establish for each j >0 that

H”HCE‘“ < for N =4j,4j+1,4j + 2,45 + 3.

WHUHC;/%
This completes the proof. O

We are now ready to prove Theorem 2.1.

Proor oF THEOREM 2.1. The method of proof presented below is a gen-
eralization of an idea first employed in [5].
We look for a true solution u(x,¢) of (3.3) near the approximate solution
ug:
u(x, &) = up(x) + o(x).
Problem (3.3) is now recast, in terms of ¢, as
Lip = N*(p)+2#° inZ,

o9
=0

(3.13)
on 09,

where

/VE((D) = f(uli + ?, X, 8) - f(uli7x> 8) - fu(u1i7x7 8)(pa
R = —e*Muf + f(uf,x,¢).

Replacing ¢ by &'¢ with [ = 2[%] +4, we rewrite (3.13) as follows:
(3.14) ¢ == (LE) {N*('p) + A%}
Applying Proposition 3.1 with k =2/, we have
”%S”CJ”(@) _ 0(821+1/2)‘
Since |.47%(p)| = O(|p|*), Proposition 3.4 yields
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_ -1 - ~ ~ -
e (L) D) 5y = Ol o 16 )

e (L) RN e 5, = O
These allow us to show that &%: C}/*(Z) — C}/*(Z) is a contraction on a
small ball of radius O(¢!/2) around zero in C;/*(Z). Therefore, the fixed-point
equation (3.14) has a unique solution ¢ = ¢° with [|g°]| .2 ) = 0(c'/?). The
desired solution is then given by '

u(x,e) = up(x) +¢°(x)  with [°[| 1z ) = o(e"172).
This completes the proof of the existence-part of Theorem 2.1.

In order to prove the stability-part of the theorem, we consider the critical
eigenvalues of

Lt =&4— f,(u(x,e), x,¢).
However, we have

L= L — [fulu(x, &), x,8) — fu(u(x),x, )]

and
fulu(- &), 8) = fuluf, €)= O(EH).

Therefore, the critical eigenvalues of L¢ are at most O(e'*'/?) away (I > 4)
from those of L;. In other words, Proposition 3.3 is also valid for the critical
eigenvalues of L¢. This fact establishes the stability properties in Theorem 2.1.

4. Asymptotic expansion of approximate solutions

In this section, we will prove Proposition 3.1.

The construction of the approximate solution u} in Proposition 3.1 consists
of three parts; outer expansion, boundary correction, and inner expansion.
The outer expansion deals with the approximation in the bulk regions (Q}i)).
The outer approximation in general does not satisfy the boundary conditions in
(3.3). The boundary correction then modifies the outer approximation so as to
satisfy the boundary conditions. The inner expansion takes care of the sharp
transition behavior of u} near the interface I, where a stretched spatial scale is
to be introduced.

4.1. Outer Expansion. We substitute the formal expression

(4.1) u(x) =P (x) =Y a* (x)

j=0
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into the differential equation in (3.3). The superscripts “(4)” indicate that the
relevant functions are defined on the two subdomains QZ%), respectively. We
then expand the left hand side of the resulting equation in the e-power series.
Equating to zero the coefficient of each power of & we obtain an array of

equations. The lowest order equation is
(4.2) 0= f(#",x,0).

According to (A1), we choose

—(-) _ (=) (=)
iy (x) = ¢ (x), (xe ),
) { g (x), (xea).

S
—~
=
Nay
Il

The equations for '(i)(

;' (x) (j=1) are given by

@4) 0= ful¢D(x),x,0a (x) + f(#FP(x),x,0),  (xedF),

for j=1 and

(45)  ful¢®(x),x,0)a (x)

= A"](:—r;(x) + function depending on ﬁ(()i>(x), . ,L_l;_fi (x) (xe E.@(ri))
for j>2. Thanks to (Al), we have f,(¢*)(x),x,0) >0 on Z'¥ and hence
i)(x) is uniquely determined successively for j=1,2,....

(
J )

4.2. Inner Expansion. There is a jump between the outer expansions
ijosfa;_)(x) and ijoefﬁ,m(x) on I'. The inner expansion bridges the
jump by introducing sharp transition layers along I". In order to describe the
transiton layers, it is adequate to work with the local coordinate system (y,r)
near I, defined in (1.10). A function p(x) of xe I'” is also expressed as
p(r, y), with the relation x = y + rv(y) being understood. The symbol p,(r, y),
for example, means

PHr, ) = 5 plr, ) = V() ()

We now introduce a stretched spatial scale in the r-direction. However,
note that the set {r = 0} simply corresponds to the reduced interface I", while
our interface I, is given by (3.1), (3.2). Therefore, we define the stretched
variable z by

_ r—eR%(y)

(4.6) Z=—, or r=e&z+¢eR(y),
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with
= Ze-ij+1(y)
=0

We will substitute into (3.3) the formal expression

4.7)  u¥(x)=u(r,y):= Zs-/ﬁ](- (ez+eR%(y),y) + ZE’Q

Jj=0 j=0

=> gz y),

j=0

where
47-0) g7y =50, 0) + 0 (z, ) = $9(0, ) + 05 (2, »),
@7-1) ¢z ) = a0, 9) + (z + R (0, y) + 0z, »)

472) g7y =&0,y) + (. + R0, )

1

+ 5 (2 + RS (0, y) + Roitg? (0, ) + 057 (2, y)

k k—
1 k= .
@74 40 =00+ Y ( S (62 + eR”, y)

for general k > 2.

In order to write down equations for q,(cﬂ, we need to express the Laplacian

A in terms of the local coordinates (r,y) and (z,y).
The Laplacian 4 is expressed as

2
0 0
(43) A=kl )5+ 47 (),
in terms of the coordinate system (r,y) in (3.1) and (3.2), where
k(r,y):  the sum of principal curvatures (the mean curvature, for short)
of I'(r),

I'r)y={xeZ|x=y+r(y),yel}

at x=y+rv(y)el(r),
A" (r, y):  the Laplace-Beltrami operator on I'(r) acting on functions of y.

In order to obtain equations for qgci), we further need to express (4.8) in terms
of (z,¥).
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LemMA 4.1. The Laplacian in (4.8) is expressed as follows.

2

0
(4.9) &’ = P = +éex(0,y) +Z£/ M+ P;_],
j=2
where
4.10 ) M—(AFR)i—s—ZVR-V LA (0, )R d |\7R|2(32
(4.10)  (a 1= Dl rRy-Vr\ o) - YRy =— = VrRi[" .,
oy 0 0
(b) M; = (A" R) =+ 2V Ry Vi <
a ’\2
Kr(oay) 6 2VFR1 VFR/a 2 (]22)7

0
_ 4T
(C) Py=4 +ZK)‘(07.V) oz’

d) P;: dierential operator depending only on Ry,...,R;.
J i

Proor. Let us denote by (g;) = (9;(r,»)) (i,j=1,...,N —1) the cova-
riant metric tensor on I'(r), induced from the Euclidean metric in R", at x =
y+r(p). We also use the symbols g = det(g;) and (¢97) = (gl;,»)_l. Under
the change of variables in (4.6), we have

0 10 02 1 9
o 1o
or e 0z’ or? &2 022’

and

0 ¢ OR* O

S i — =
dyi  Oyi 0y Oz

Using (4.8), &24 is therefore written as
2 K. N
(4.8-¢) &4 = 2 +ex(ez +eR% ) — pe +&*45(z, y),

where

1 &0 or: 0 (0 OR® O
_ gl __ _ _
4= NG Z(ﬁy: dyi 5Z>{\/§g (ﬁyj dyj 52>}'

lj]

One can compute this explicitly as follows.
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(4.11) Jsr(z, y) = Ar(eereR‘S, y) — [Ar(aer eRg,y)R‘g]aﬁ

zZ
0 2
—2VrR?- Vr<a )+|VFR |
N—
& 1o OR®\ 0
- E — l/ _
\/— ] a \/~g r s7+sRF(ayi) ﬁyj

N-1

e 0 ; OR*\ (OR%\ 0

- E :7 i o h

Vi 5 or (V99 ””Z”Re(@yf) (%) 0z
Substituting R® =", ., e 'R, into (4.8-¢) and (4.11), and expanding the

resulting equation in the e-power series, we obtain (4.9) and (4.10). ]

We are now ready to write down the equations for qﬁf)(z, ). In the
sequel, partial differentiation with respect to z will be denoted by “dot”, 4.
We also use the short hand notation f(u,r, y,¢) in place of f(u,x, &) with the
relation x = y + rv(y) being understood.

The equations for q,:—r are given as follows.

(4.12) is” = f(g57,0,,0),
(4.12-1) — fulg$?,0, 2,004 = F{*)(z)
= =g + £(g5,0,2,0)(z + Ri) + fi(g, 0, ,0),

where x=x(0,y), f; :%f, and f; :%f. In the sequel, f(*) means
/(g57,0,»,0).

4122) G - fungs = ()
= —ig + Migl™ — Pogi™ + f:(+) R
S )2+ RO+ fue)af
)z R 3 )+ R 3 ),
(@412:k) G — ful+)g = FP ()
= —Kq5) + Micigs™ + fi(0) R
+ L)@ G + Furlo) Rergt™ + fue()ay

F L)z + ROGE, + Lol ) Ricy + fr(#) (2 + R Ry + F1
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The symbol f_,ii) in the last of (4.12-k) represents terms which depend only on
qf)i), . ,qfi)z and Ry,...,Ry_» (k>3). We consider the equations in (4.12),
(4.12-k) as defined on (—o0,0) (for superscript (—)) and (0, o0) (for superscript
(4)), respectively. These equations are supplemented by the following con-

ditions.
(4.13) q,ii)(o, »)=0 (interface condition),
(4.14) 0,z y) = 0 ™)
as |z| — oo for some f >0 (inner-outer matching),
(4.15) ¢7(0,5)=¢7(0,y)  (C'-mactching condition).

The conditions (4.13) come from the definition of the interface I, =
{x|u(x,e) =0}. The conditions (4.14) are called the inner-outer matching
conditions. The exponential decay in these conditions guarantees that the
inner corrections (Q,(Cﬂ(z, y)) do not disrupt the outer approximation in the
region away from the interface. The conditions (4.15) are the C!-matching
conditions. Once the conditions in (4.13) and (4.15) are satisfied, the solutions
47 (z,y) (ze(—0,0]) and ¢\"(z,y) (z€[0,0)) are joined smoothly across
z =0, giving rise to a smooth function ¢ (z, y) defined for z e R:

9x(, ) :{qU(Z, 2), (2 (=e0,0]);
a7z y), (z€[0,0)).

It will be shown that the C'-matching conditions are equivalent to (3.4) and
(3.5).

The equations (4.12) have trival solutions qéﬂ which also satisfy the con-
ditions (4.13), (4.14), and (4.15) with k = 0:

@) = 0(z:y) (ze(=0,0), g5’ =0y(zy) (ze0,00)),

where Q, is the function defined as the unique solution of (1.4). Note that we
have normalized Q, so that Q,(0; y) =0. From now on, we do not distinguish
q(()i) and simply denote them as qo. Note also that qq is defined for all x e &
via qo(z,x) := Qy(z;x). We therefore denote by qo(z,r,y) the extended function
Ou(z; v + ().

The equations (4.12-k) (k > 1) are inhomogeneous linear ordinary differ-
ential equations for qg:—r) with y e I’ being a parameter:

d2
(4.16) T2 Jl@0(=.0).0.0.0) g7 =FT (@) (k=)

It is easily shown that (4.16) have unique solutions qg:—r) (z,y) (£z€]0,00)) that

satisfy the conditions (4.13) and (4.14):
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!

q/(C )(27 ¥) = 4o(2) JH%J‘ qo(z", J’)F/Eﬁ(ZN)dZ"dZ’, +z€0,0).
0 [go(z")]" J£e0

From (4.17), one finds that the C'-matching condition (4.15) is equivalent to
(4.18) J Go(z, ¥)Fr(2)dz =0 (k>1),
R

where Fi(z) = F,Ei)(z) for +z €0, 00).

Let us apply (4.18) to (4.12-1). We need not distinguish Ffi), since they
constitute a smooth function Fi(z) defined on R, thanks to the C'-matching
condition for qéi). One can also see that two functions F,Eﬂ(z) give rise to the
smooth function F(z) defined on R as soon as the C'-matching conditions for

() (0<j<k—1) are satisfied.

J
The condition (4.18) for k=1 is

ozﬂjwwww+jmw@ﬂwm%@w
R R

+&Lﬁ%@ﬁw@%@ﬂ+LM%@&%®%@ﬂ

Recall that go(z, y) = Qy(z; y), and hence J"R[qo(z)}zdz =m(0,y). We also
have

#(0,)

. 0
J ﬁ~(q0(2),0, y,O)qO(Z)dZ = J ﬁ‘(ua(): y70)du = a_c(ra y)|r:0 = Oa
R #0.) r

because c(r,y) =0 according to (A2). Therefore the C'-matching condition
for q(li> is written as

(4.19) 0= —r(x)m(x) +J(x; I), xel.

The condition (A3) says that the reduced interface I satisfies this equation.
Note that the solutions q(li) depend on R, but the C'-matching condition on

them does not.

PROPOSITION 4.2.  The C'-matching condition (4.15) (or (4.18)) for k >2
is equivalent to

AR =h(y), yel (for k=2),

4.20 .
( ) {%FR/(I = hk—l(% R17"'5ka2)7 S r (fOV k> 2)7

where /" is the linear elliptic operator on I', defined in (1.14), and hj(y, Ry, . ..
R;_1) is a smooth function on I' which is determined by Ri,...,R;_i.

)
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Proor. We first note that the coefficient of R, in the C'-matching condi-
tion (4.18) is zero:

JR 40(2)3(0,0, 7,0)d= = 0,

thanks to the condition (A3); ¢(r,y) =0.
We divide the proof into two cases; case (1) k =2, and case (2) k > 2.
Case (1): The solution g¢;(z) is expressed as ¢i(z) = q,(z) + Ripo(z),
where

0
PE) = = 01(2) = 5 doz 7 g

0R1
is the unique solution of

{ Po— ful¥)po = fi(x) z€R,
po(0) =0,

which decays exponentially to zero as z — +oo, and g, is the unique solution
of

{él — ful#)@) = —KGo + i (¥) + fi(x), zeR,
QI(O) = Oa

which grows linearly in z as z — +oo0.
By using ¢; = ¢, + Ripo, one finds that in the C'-matching condition

(4.21) JR Go(2)Fa(2)dz = 0,

the terms involving R;(y) are expressed as

{Il(y) x| pods dz}m(y) + [ (Mg s+ BOIR O,
R R

where

Il(y) = R[ﬁm(*)qlpo + fur(*)%]qo dz

+ JR [fur(4)zp0 + 2f(%) + Jus (%) po + fre(*)]qo dz,

) = | [3 Ao+ )0 + 5 105 | 0

Recall here from (4.10) that M; is a differential operator involving R;.
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We will establish the following:
Claim 1: ©L(y)=0.

Claim 2: We have [ pogo dz =3m,(0, y), where m, = Sm
Claim 3: The integral involving the operator M; is reduced to

JR(Mlqo)% dz=m(y)4" Ry + VrRy - Vrm(y) — (0, y)m(y) R ()

where x, = pr;c(r y)|, 0-
Claim 4: [1(y) = —5m,(0,y) + J.(y; I).
Note that #,(0, y) = —Z}i}l i ( y)?.  Therefore, if the claims are proven, the
C'-matching condition for qéﬁ is shown to be the same as the elliptic equation
J?/rRl = hl(y) on [I.
PrOOF OF CLAIMS:

Claim 1. Integrating by parts and using the fact lim,_y, po(z) =
20, y), we have

¢(+)
1) = [ [ + a5 [ o0, .0

= 1fu(¢<+>, 0,7,0)(¢{")* — 1fu<¢<->, 0,,0)(4 )
+ 18,0, 2,006 — fu(¢7,0, y,0)4")

¢(+)

- | o+ a0 p a5 [ A0, 5.0
R ¢( )

4.22) = S U+ N =3 ) + 16
(+)

(4.23) %{ N = fG)g +J¢ (0, y,O)du}
¢(*)

(4.24) - | G+ £y e

in which

f(*i) = f(¢(i>(07y)707 y,O)

Since f(#F(r, y),r, ¥,0) = 0 implies

Ful@H (1, ),7, 37,0085 (r, ) + £(85 (1, ¥), 7, ,0) = 0,
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by setting r = 0, we find that (4.22) is identically equal to zero. Differentiating
the identity

¢ (r,y)
0 zj (s, v,0)du
$7) (r,y)

twice with respect to r and setting r = 0, we also find that (4.23) is zero. The
fact py(+o0) =0, together with the identity

| a0+ 1 b de = | oo d= =5 (l00)? = (o2,
R R

implies that (4.24) vanishes.
Claim 2. Since py(z) = %qo(z,r, Y)|,—g, We have

.. 10 . 2 1
|, podo d= =5 5 | lduteur Pzl g = 3mi0. ).

Claim 3. From the definition of the operator M; in (4.10) and m(x) =
Jrlgo(=: X)]2 z, we have

J MIQQ qO dz = (A RI)J (c']o)zdz +2VrR; - J (qu.())q.() dz
R R R

O R | (@) = | doio dz
R R
=m(y)4" Ry +VrRy -Vrm(y) — r:(y)m(p)R;.
Claim 4. We use the fact py = %qo. From the definition of J(x;I)
(1.7-b) I 1) = | {2hla0.0) + il .00}
R
we obtain

Je(y; I') = JR z{fur(q0, X,0) po + frr(q0, X,0)} g dz + JR 7/+(40,x,0) py dz

+ J a0, %,0)po + fioldo, x,0)}do d= + j 70, %, 0) py d=.
R R

By using the relation

= fu(¥)Po = [fuu(*) P0 + frr(¥)]40,

which is obtained by differentiating the equation for py, with respect to z, we
have
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L(y)=J(» 1) = R{fuu(*)]?o% + fur(*)40}q, dz — JR{Zfr(*) + fe(%)} Py dz
= | 1= Auopodar dz | (A0 + £}y

JR R
= . Poldy — fu(¥)@y — 2 (+) + fu(¥)}dz

= | po(—rqgy)dz  (via the equation for g,)
R

= —gmr(O7 y) (as in the proof of Claim 2).

This completes the proof of Claim 4.

Case (2): Since gx—1 = Re_1po+ Gr_; (k =2), with g,_, being indepen-
dent of Ri_i, in the C'-matching condition [y §y(z)Fi(z)dz = 0 for k > 2, the
terms involving Ry_; are expressed as (cf. (4.12-k))

(4.25) (_K |, 2o dz> Reot+ | (Mic10)iy =
([ o + el a2
[ A+ A0+ o)+ 0N ) R
([ e+ ey )RR,

The first line of (4.25) is computed as in the proof of Claims 2 and 3 with R,
being replaced by Rx_;. The second and third lines of (4.25) are the same as
I (y)Ri-1, except that ¢; is replacing g,. Therefore, we have

(4.26)  (the second and third lines of (4.25))
— T35 D) Rt + Re J boliis — fol¥)as — (%) — i)}z
— L D) + Rey j po(—rdo)dz + Ry Rey j S5 po d-.
R R

On the other hand, integrating the first integrand by parts, the fourth line of
(4.25) is computed as
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(4.27) (the fourth line of (4.25))
= BB | 768 = 6O + [ Aol ]
R

— Rle_l J f,(*)po dz = —Rle_l J f,(*)po dz.
R R

The third term in line (4.26) and the last term in (4.27) cancel. Therefore we

conclude that the C'-matching condition for q,((i) is

AT Ri_y = hi—1(p, Ry, Ria). O

4.3. Boundary Correction. The outer approximation ﬁgi) in (4.1) does not
necessarily satisfy the boundary conditions ‘p—z =0 on 0%. In order to modify
the outer approximation, we introduce a stretched coordinate system near 0Z.
Let us express a point x € & near 0% as

(4.28) x =5+ pn(s) (s€dP,p=0).
The Laplacian 4 in the coordinate system (p,s) is given by

2
(4.29) A= a

0 5
Zo4y0
“(p, gy T4 P9,
where x%(p,s) is the mean curvature of S(p),
S(p) :=={xeZ|x=s+pn(s),se iz},

at x =s+ pn(s), and 4%(p,s) is the Laplace-Beltrami operator on S(p).
The stretched variable in the n(s)-direction is introduced by

(4.30) z==, or p=ez

In terms of the stretched coordinate system (z,s), the Laplacian is expressed as

2

0 0
) 2
(4.29-¢) &4= e +ex(0,5) — o

k+1 ak+l 0

2 - r
+e¢ ];)g ——A pS)| = 0+(k+ 1 9pkiT ('D’S)|/;:OE

We denote by @#”(p,s) the outer approximation ﬁgﬂ(x) in the coordinate

(pss):
il(p,s) =" (s+pn(s))  (s€d2).
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In the boundary correction, we modify the outer approximation in the form

(4.31) W (x) = ul(p,s) = 3 eIl (6z,5) + 36/ By(2.9)
Jj=0 Jj=0
= elb(z,s),
j=0
where

(4.31-0) bo(z,s) = @(0,5) 4+ Bo(z,s)

k 1 ok
(4.31-k) bi(z,5) = Bi(z,5) +
Jj=0

(k _])' 68k_j Ij[f(gz, S)‘s:O (k = 1)

The boundary conditions in (3.3) now read
ouf(x) 0

1 .
== =Y "elbi(0,5) =0
on apur (,D,S)|p:() sjzog j( ,S) )

where we used dot to indicate the differentiation with respect to p. Therefore,
we require the conditions

(4.32) br(0,5) =0 (k>0),
and
(4.33) lim By(z,s) =0 exponentially (k > 0).

Z— 00

Substituting (4.31) into (3.3) and using (4.29-¢), we obtain an equation for
bi(z,s) (k=0). The equation for by is

(4.34) by — f(bo,5,0) =0, zel0,0)(sedP).

This has the trivial solution by(z,s) = #}(0,s) (i.e., By(z,s) = 0), which satisfies
the conditions (4.32) and (4.33) with k =0. The equation for b for k > 1 is
of the following form

(4.34-k) b — K(5)’be = gi(z,5),  z€0,00),

where K(s) =/ fu(ii5(0,5),5,0) > 0 (s€ 02) and g is a function depending
only on by,...,br_1. Solutions of (4.34-k) satisfying (4.33) are uniquely given
by

z

1 (7 - 1 (° -
(4.35) bi(z,s) = are ™ — ﬁj e K= g (2, 5)dz" + ﬁj XK= (2! 5)dz'
0 o0
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with K = K(s), where a; is an arbitrary constant. From (4.35), we find that
by satisfies the condition (4.32) if a; is given by

|
o —K(s)z
ay K0 Jw e gi(z,s)dz.

This completes the construction of the boundary correction.

Putting the above ingredients together, we obtain the desired approxi-
mation u;(x) in Proposition 3.1. We now choose smooth cut-off functions
0°(r),0" (r) and 6 (r) such that

0<0'(r)<1l (i=0,+-), OFH+0(N+6 () =1 (reR)
and
I, |r<l I, r=2 _ 0, r>-1
0 _ ) 9 -+ _ ) ) _ ) )
O(F)_{o, =2 0 (r)_{o, r<1, ! (r)_{l, r< 2.
We also use symbols d(x,I"),xr,d(x,02), and x; defined by

i ()
d(&r):{dlst'(x,l"), xe@_
—dist(x,I"), xe 2

and xp e I' is defined by |d(x,I")| = dist(x,xr) when |d(x,I')| <2d*, while
d(x,02) = dist(x,02), xXe9,

and x; € 02 is defined by d(x,02) = dist(x, x5) when d(x,02) < 2d*.
Let f > 0 be the same constants as in (4. 14) and K = min{K(s)|s € 0%}.
The desired approximation is defined for xe@r by

e — o [ PACT) SR
(4.36) u(x) =0 (W);g% (%)

k
+ ﬁd X, F / (+
+6 <k+l 6|10g6|>1208 Y
0 /)’dxF k ;o (d(x,I') — eRi(xr)
0 ( o) 2.0 .7
+6° Zk:ng dlx, 6@) X,
k 8\10g8| = / e
(x,092) k
i
(k 6|10g6|)26

J=0
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where we simply write ¢; in place of q/(i), since the latter (q}ﬂ) have been

smoothly joined by the C!-matching conditions. We can easily verify

a &
i (x) =0, X €09.
on
It is also routine computations to verify
e dui () = f@p (), )l ez = OEH7)  as &= 0.

This completes the proof of Proposition 3.1.

5. Asymptotic expansion of eigenvalue

In this section, we shall prove Proposition 3.3, by using the results in [3]
and [1].

We first use the estimate established in [3]: There exists a constant C > 0,
independent of small ¢ > 0, so that any eigenvalue A° of (3.6) satisfies

28 < Ce2.

This estimate, together with the definition of non-critical eigenvalues, proves
Proposition 3.3 (i).

We now proceed to the proof of Proposition 3.3 (ii). Let us denote by
(p®, A%) a critical eigenpair of (3.6):

(3.6) {L,ﬁ(pg =& Ap — fu(uf,x,8)p° = A°p°, xe 9,
' dp®/on = 0, x € 9.

The theory developed in [1] (cf. Lemmas 4.1 and 4.2, therein) says: In order
to approximate the critical eigenpair (¢ A%), it suffices to find asymptotic
expansions

(5.1) {¢8:¢o+w1+82¢2+---,
28:8114-82/12-1-"',

so that the right hand side of (5.1) satisfies (3.6) approximately, namely, for
some k > 1

Ene _ 188 k
{Lk(p Aot = 0", xe g, as £ 0.

0p°/dn = 0, X €09,

We therefore need to show:
1. The coefficient A; = 0, which essentially says that the interface evolves
according to the time scale of (1.1-ss);
2. The coefficient /1, is an element of or.
By using Lemma 2.1 in [1], one can prove that there exist constants C > 0,
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0 >0, and b > 0, indepedent of ¢ € (0,¢,], so that any critical eigenfunction of
(3.6) satisfies

(5.2) lp?(x)| < C exp{—i dist(x, F)}, dist(x, I') > ¢b.

It is appropriate, therefore, to consider (3.6) in terms of the coordinate system
(z,y) introduced in (4.6). We therefore express the critical eigenfucntion ¢° as
(5.3) 9'(x) = 9°(z,¥) = (2. ¥) +epr (2. 0) + (2, 9) + -

with respect to the stretched coordinate system near /.. We impose the
boundary conditions

(5.4) 9;(z,y) = 0(e "N as |z| — oo for some J >0 (j=0),

according to (5.2). The potential term of the differential equation in (3.6) is
expressed as

(5'5) fu(qg(zv y),ez, Vs 8) = fu(qo(zv y)vov Y 8) + Zgjfu(j)(z)v

j=1

where ¢°(z, p) = 37, 0¢/¢;(z, ») and

W=

—]*' @ﬁl(qg(zv J/)’SZ Vs 8)'3:0'

Let us substitute (5.3), (5.1) into (3.6). By using (4.9) and (5.5), and
equating like powers of ¢, we obtain equations of ¢; (j >0). They read as
follows.

(5.6) Go — Ju(*)py = 0,
(5.6-1) 4, — ful¥)p; = —rcgy + [V (2)ep + gy = 11 (2),
(5.6-2) ¢y — ful*)py = =K@ + Mipy — Pog,

+ L@+ 700+ hapo + ey = b(2),

k-1

(5.6-k) G — ful*)or = =K@y + Mipp_s — Pogr_p + Z(MJ = Pi1)piji
=

k
+ V@)oo + [P @ + qu(])(/’k_j
=

k-3
0+ Y iy + AP + gy = ().
=

We show the solvability of these equations.
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The equation (5.6) has a unique solution satisfying (5.4) with j =0:

(57) (pO(Zvy) :@O(y)q0<za y)7

where @ is an arbitrary smooth function defined on I". The function @y will
be determined as an eigenfucntion of (1.16).

The equations (5.6-k) with k > 1 are all linear inhomogeneous equations.
These equations have a family of solutions which satisfy the condition (5.4) if
and only if the solvability condition

(58) |, otz =o
R

is satisfied. It turns out that the solvability condition determines J; and ¢;_,
in terms of 4; and ¢, , with 2 < j<k—1.

1. We will show 4, =0. Let us apply the solvability condition (5.8) to
(5.6-1). It is given by
(5.9) 0= ﬂblaoj (Go)°dz — K@()J Godo dz + @OJ £D(2)(go) dz.

R R R

Note that fR Gogo dz =0 and fR fr(¥)gy dz = 0. Integrating by parts and using
the equation (4.12-1) for ¢;, we have

JRfJ‘><z><qo>2dz - L{ﬁm<*>q1 Sz R+ o)} (d)

= JR{(fu(*))qu + ()2 + Ri) + (fe%)) 3o d=

R{fu(*)ql + /() (z 4+ Ri) + fe(*) } o dz
- R{fu(*)él + /r()}qo dz

R dz—J dod: dz—J 1i(¥)do d=
R R R

=—1| G1do dZ+J Gogy dz = 0.
R R

Therefore (5.9) implies 0 = m(y)410p. On the other hand, the normalization
J"@(gox(x))zdle gives rise to 1= [.(»)O(y)dS], and hence to Oy(y) # 0.
We conclude that

(5.10) J =0
and that ¢,(z, y) is given by
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(5.11) 01(2, ) = 01(¥)40(2, y) + #1(2, »)O0(),
where @) is an arbitrary smooth function and @, is the unique solution of
(5.12) {6731 — 1oy = —wiig + £y, zE€R,

(Zl (07 y) = 07

decaying to zero as z — +oo. Comparing (5.12) and the equation for ¢,
which is obtained by differentiating (4.12-1) with respect to z, we find that
. _ ql (Oa y) .

5.13 01(z,9) =1z, p) == q0(z, ) + po(z, y),
( ) 1 ) 1( ) qo(o’ y) 0( ) (
where pg is the same as appeared in §4; po = dqo/0r|,_.

2. Let us now apply the solvability condition (5.8) to (5.6-2). By using
(5.7), we have

(5.14) 0="Zm(y)0) + J {—Kp, + M9y — Popy }q, dz
R

+j SO @)prdo dz + J £ () pody dz.
R R

Thanks to (5.11) and the fact [, fu(l)(z)(q'o)zdz = 0, we find that the second line
of (5.14) is expressed as

(5.15) (the second line of (5.14))

—ou([ 10 e+ | AP @ ).
We first establish some identities.

PrOPOSITION 5.1. We have the following relations:

O | K@y b | 120

1 . .
= L em () —n D) + j (=i, + Migo — Pogo}io d=:
R

2
(i) B0 | (Mig0)g, dz + J (M19y)q, dz = 0;
R R

(iii) @ | (—Kq1Go)dz + J (—K1Go)dz = E’Cmr@m
Jr R

) 0| (Pogo)iy dz + j (Pogo)do d=
JR R

= m(y)AF@o +Vrm(y) -Vr®y — k.m(y)0Oy.
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By using the proposition and employing the relation x, = — S~ ]1 i ( y)%

j
we arrive at:

THEOREM 5.2. (i) The solvability condition for (5.6-2), namely, (5.14) is
rewritten as

0 = Aam(y)0y — /1 6y,

ie, Ay is an eigenvalue of (1.16).
(i) For k > 2, the solvability condition for (5.6-k) is written as

(5.16) (ﬂyzm(y) - JZ/F)@kfz + ﬂkWZ(y)@o = Hk(y, /12, - ,;»kfl; @07 ey @k73),
where the right hand side is a known function of the variables indicated.

Theorem 5.2 (i) and (5.10) establish the proof of Proposition 3.3 (ii).

As for proof, Theorem 5.2 (i) follows immediately from Proposition 5.1.

The proof of Theorem 5.2 (ii) is reduced to that of (i) as follows. In the
solvability condition

J Ik(2)go(2)dz =0
R

for (5.6-k), we leave on the left side those terms involving ¢, _;,¢,_,, and A,
and move the rest to the right hand side. Since we have shown A; = 0, the left
hand side is written as

(5.17) JR{—K([’/CA + Migg_> — Popy_»

+ D) gy + D)0 + My + 2202} do.

Note that ¢,_; and ¢,_, are expressed as

Pr2(2,¥) = Or2(¥)qo(2, ¥) + #r_2(2, 1),
Pr—1(2,¥) = Or1(3)qo(2, ¥) + 71 (2, ¥)Or—2(y) + Pr_1 (2, »),

where @, is as defined in (5.12), and the functions ¢,_; and ¢,_, are indepenent
of Ar, 0>, and @;_;. Moving the terms involving these latter functions from
(5.17) to the right hand side of the above solvability condition, (5.17) is similar
to the solvability condition for ¢,. The only differences are; @ is replaced by
Ok_2; and the extra term A4m(y)@ is added. Therefore, applying Proposition
5.1, the statement (ii) of Theorem 5.2 follows.
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Theorem 5.2 (ii) may be used to show that the critical eigenvalues of (3.6)
are approximated as accurate as one wishes, in the e-power series.

ProOF OF PropPosITION 5.1.  The proof is computational and integration by
parts will be used frequently.
(i) We first integrate by parts to obtain

J 19(2)(d0) = = j (Ual))atz + (fi(5)).Ra} o d
R R

+ JR { % (Fu()).(1)7 + (fur(®)).(z + R
+ (fue®)).q1 + (fro(5)).(z + Ry)

3 U+ RO+ (6. b

N —

(5.18) == | a2 + SRy o~ | fiiod dz
R R
= [ A + Sl Ry + o+ £) e+ R)
F 3 A+ RO 3 A0 L o
(5.19) —J S0 dz —J Jur($)q1q dz —J {frs(x) + frr () (2 + R1) }qo dz.
R R R
By using the identity
| Alsdiots bz == | iy dz = | i
R R R
in the second term of line (5.18), and using (5.13) together with the relation

| 7@ @0 =0
R

in the first term of line (5.19), we continue the computation above as follows.
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| 720 a:
R
= [ {902~ AR = 3 @) = ) + R
M )G R~ )G+ R = 310 b
- L{fur(*)ql + £ (0 + 7)o dz
- L{ﬁ.&m T Sul¥)(z + Ri)Yy d
Thanks to the equation (4.12-2) for ¢,, we have
(5200 | AP @ [ A Gy d:
R R
= L{—’“]l + Miq0 — Poqo}4y
- L{f;51><z>po L)+ Fiol#) + r(#)(z + Ri) Yo
= JR{—KCL + Miqo — Poqo}dy — 11 (y) — 2R 12( )

= J {=xq, + M1qo — Poqo}go — J» +§mr
R

(cf. Claims 1 and 4 in §4).

This completes the proof of (i).
(i) From the definition (4.10-(a)) of M,;, we have

J (Miq0)§, dz = A Ry) J 4ogo dz + 2V Ry J Vir(4o)go dz
R R R
*KrRlJ dodo — |VrRi]| J (%)zdz
R
=R | Vel d= - VR | ()
R R

On the other hand, by using (5.7) and (4.10-(a)), we have
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j (Migy)dy dz = (4" Ry) J diody dz00 + VIR, - J Vr(do)do d=00
R R R
ViR - vr@o)J dodo dz — |er1|2J todo 40
R R

= —2V/R, - L Vr(do)do dz00 + Vi Ry | Jk(c'jo)zdz@o.
Therefore we get
00 | (M0 d=+ | (g d= = .
(iii) Since —[§,gy dz = [ § 4o dz, by using (5.11) and (5.13), we have
00 | i dz+ | o dz = [ (3,00 gy

¢:(0)
q0(0)

(iv) Recall the definition (4.10-(c)) of Py. We have

L . 1
:K@()J DPodo dz—l—( @0—@1>KJ dodo dz:ifcm,.@o.
R R

J (Pogo)iiy dz = j (47 qo)io d= + 5y j Ziodiy dz
R R R

- 1
=- J (4" g0)do dz = 5 rrm(p).
R
On the other hand, we also have,
|| (Poroyan dz = | 47001y dz 43 | zindy dz6
R R R
= @oJ (4" 40)qy dz + 2V 6, - J (Vrgo)go dz
R R
. 1
(a7 00) | (0)dz ~ Sm()6y
R
1
=ma’ 0y +VrOy-Vrm — 5 1mO + O J (47 ¢0) gy d=.
R
Therefore, we finally obtain
@oj (Poqo)o dz + J (Popo)o dz = mA" @y + Vrm - Vr O — 1,m0,.
R R

This concludes the proof of Proposition 5.1. O
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REMARK 5.3. By using Theorem 5.2 (ii), it is possible to obtain higher

order approximations of the critical eigenvalues. Although, this is of interest
in its own right, we do not exhibit the details in this paper.
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