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ABSTRACT. We answer a question posed by Ilmanen on the integrality of varifolds
which appear as the singular perturbation limit of the Allen-Cahn equation. We show
that the density of the limit measure is integer multiple of the surface constant almost
everywhere at almost all time. This shows that limit measures obtained via the Allen-
Chan equation and those via Brakke’s construction share the same integrality property
as well as being weak solutions for the mean curvature flow equation.

1. Introduction

The Allen-Cahn equation was proposed to describe the macroscopic
motion of phase boundaries driven by surface tension [2]. It is
(1.1) s%:sAu”—E’IW’(u”),

ot
where W is a bi-stable potential with two wells of equal depth at +1 and the
real-valued function u indicates the phase state at each point. Several authors
studied the equation to the conclusion that the zero level set of u® approaches
a hypersurface with its normal velocity determined by the mean curvature as
¢ — 0. The phase boundaries should have the thickness of order e.

The formal derivation was given by Fife [14], Rubinstein, Sternberg and
Keller [20], and others. The rigorous proof for radially symmetric case was
given by Bronsard and Kohn [4]. With the assumption that the classical
solution for the mean curvature flow exists, the general case was proved by de
Mottoni and Schatzman [10], Chen [6], Chen and Elliott [8] and others.
Evans, Soner and Souganidis [11] showed that the limit of the level set of
the Allen-Cahn equation is contained in the viscosity solution for the mean
curvature flow studied by Evans and Spruck [13] and Chen, Giga and Goto
[9]. Ilmanen [17] showed with a technique from geometric measure theory that
the limit is a mean curvature flow in the sense of Brakke [3]. Subsequently,
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Soner [22] gave proofs that more general initial data may be admitted in
Ilmanen’s work. There are numerous articles related to the general subject
of various Allen-Cahn type equations with modifications and those coupled
with other field variables such as temperature. We cite only the most relevant
articles and refer the reader to, for example, Soner’s paper [22] for more
complete references.

The purpose of this paper is to answer one technical question posed by
Ilmanen [17, Section 13.2]. We show that the (n — 1)-dimensional density of
the limit measure u, of the Allen-Cahn equation is an integer multiple of the
surface constant o = fll VW (s)/2ds for ae. t>0 and #" ' ae. x. Here,
#"1is the (n — 1)-dimensional Hausdorff measure in R”. The more heuristic
interpretation is that there is no fractional interface appearing as ¢ — 0, and
the interface profiles for a.e. points are close to integer multiples of the 1-D
standing wave profile at worst. Higher multiplicities can occur in fact, indi-
cated in the existence results by Bronsard and Stoth [5]. Note that weak
varifold solutions for the mean curvature flow constructed by Brakke [3]
have such integrality property for a.e. £ > 0. Accordingly, we conclude that
the solutions obtained as the limit of the Allen-Cahn equation have all the
measure-theoretic properties of Brakke’s solutions. As the byproducts, all of
the results on the weak varifold mean curvature flow due to Brakke hold for
the limit of the Allen-Cahn equation, such as his clearing-out lemma, per-
pendicularity of the mean curvature, etc.

Another interest of this paper is our remark that the results due to
Ilmanen, where the domain was R”, may be localized to a bounded domain.
This is due to a local estimate of the so-called discrepancy measure, which
in turn yields the local monotonicity formula for the properly scaled energy
identity.

The proof of the stated results is accomplished through appropriate para-
bolic modification of the corresponding elliptic results due to Hutchinson and
the author [16, Section 5]. There, we showed that finite energy equilibrium
converges to a varifold with a locally constant mean curvature and an integer
density modulo division by .

In Section 2, we state our assumptions and main results. In Section 3, we
discuss the derivation of the local monotonicity formula, and in the last Section
4, show the integrality of the limit measure. Even though many parts of the
proof in Section 4 are similar to those in [16, Section 5], we present the detail
for the reader’s convenience.

2. Assumptions and main results

2.1. Assumptions. Throughout this paper, we assume
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A: The function W :R — [0,0) is C* and W (+1) = W'(+1) =0. For
some y e (—1,1), W' <0on (y,1) and W' >0 on (—1,y). For some € (0,1)
and x >0, W’(x) >« for all |x| > a.

B: UcR” is a bounded open set with Lipschitz boundary dU and
0< T <oo. A sequence of functions {u'}”;, with u;,,u; . € C(U x (0,T)),
1 < j,k,I < n, satisfies

(2.1) gul = g Au' — 8,71 w'(u')

on U x (0,T). Here, lim,;,, ¢ =0, and we assume there exist ¢y and Ey such
that supy, o, 7 |u'| < co and

) i12 Wi
(22) J M + ﬂ < EO
Ux{t} 2 &i

for all e (0,7) and i. Moreover,

(23) J ei|uf\2 < E()
Ux(0,T)

for all i.
Assumption B is satisfied, for example, when we consider the following
initial value problem

eu, = edu— e 'W'(u) on U x (0, 0),
u(x,0) = ¢,(x) on U,
w—0 on oU x (0, ),
where the initial data have the sup norm and energy bounded uniformly with
respect to ¢ as ¢ — 0. Since the equation is a gradient flow of the energy
in (2.2), assumptions (2.2) and (2.3) are satisfied with E; being the bound of
the energy for the initial data. The sup norm bound of u follows from the
standard maximum principle. The boundary Neumann condition may be also
replaced by Dirichlet data u = ¢, on 0U x [0, c0), where we also obtain (2.2)
and (2.3). Our results are local in nature, so we take above assumptions as
our starting point in this paper.

With this setting, for ¢ € [0, T), define the Radon measures by

iy 2
(2.4) w) = | #0e VI g

for ¢ € C.(U).
We also recall the notion of rectifiability for Radon measure.

DermniTION ([17, 1.7]). We call a Radon measure u (n — 1)-rectifiable if
either of the following equivalent conditions is met:
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(a) u=#""'|X|0, where X is an (n— l)-rectifiable #"'-measurable
set and 0 e L} (#"'|X,(0,00)). Here, we denote the restriction of measure
to X by |X. In particular, u(4) = fAﬂXOdC#”‘I for Borel set A.

(b) The measure-theoretic approximate tangent plane T,u exists u-a.e.
(see also [1, 3, 21]).

In [17], Ilmanen proved, among other things (with U = R"),

THEOREM 2.1 ([17]). There is a subsequence of {¢;} and Radon measures i,
on U for all te0,00) such that

(i) wl — w, for all t>0 as Radon measures on U.

(i) For ae t>0, u, is (n— 1)-rectifiable.

(i) u, satisfies the mean curvature flow equation in the sense of Brakke,
namely, for any ¢ e C2(U), ¢ >0,

(2.5) D, b duy < [ ~9lHP 4V (Tuu) - H dn

for each te[0,00). Here, D, is the upper derivative, and H is the generalized
mean curvature vector of p,. The right-hand side is understood to be —oo
whenever u, is not (n— 1)-rectifiable, the first variation of p, is not absolutely
continuous with respect to u,, or |H |2 is not u, integrable.  Txu denotes the weak
tangent space (and the corresponding projection) of u,, and (T, Yu)l denotes the
normal subspace of Ty (and the corresponding projection).

Note that the first variation is defined usually for varifolds ([1, 3, 21]),
while it is understood here that one may define the unique varifold from a
given rectifiable Radon measure and the first variation is defined through this
identification. In these regards, we follow Ilmanen’s notations in [17].

Define the (n — 1)-dimensional density 6(x) by

0x) = lim —— 4 (B,(3)

r—0 wy
whenever the limit exists. Here, w,_; is the volume of the unit ball in R""!.
What we prove is the following:

THEOREM 2.2. For ae. t>0 and u, ae xeU, O(x)=No for some
positive N € N, where o = ﬁl VW (s)/2 ds.

Thus, for ae. t>0, g, = #""|X,|oN(x,t), where X, is an (n—1)-
rectifiable set and N(x,?) is integer-valued #"~!-measurable function.

Due to the perpendicularity of the mean curvature vector for integral
varifolds [3], we conclude that H(x,¢)LTyu, holds for a.e. >0 and g, a..
x e U. Hence, we show that the mean curvature equation (2.5) is satisfied in
the following form as well:
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2.5) D, |, < | <ot + V- H d,

We note that if N(x,7) =1 for a.e. >0 and #" '-a.e. on X,, then Brakke’s
partial regularity results apply to the measure g, and one may obtain the
smoothness of the flow for a.e. sense.

3. Local monotonicity formula

In this section we assume that the function u : U — R satisfies assumption
B with u and & there replaced by u and ¢ respectively. We assume U cc U
and 0<7<T.

Here, we show the local monotonicity formula in Proposition 3.3, which
is the local version of [17, Section 4.1]. The key point for the extension is
the local upper bound of the discrepancy function for all sufficiently small ¢
(Lemma 3.2).

For any (y,s) e U x ({,T) and (x,t)e U x (0,T) with ¢ < s, denote

1
(4n(s — )"V
For ¢ € C?(U,R"), the computation (see [17, Section 3.2]) shows

eyl /A1)

p=pys(x1) =

LemMma 3.1.
d . w' V>
(3.1) Ejﬁﬁdﬂt J8¢(Au+ 82(”)—V ¢¢) dx
2
+ (% + P, = ViVibrn, T qﬁt) du;
2

Here, v = ‘\Z—Z‘ (where it is understood that v =0 on |Vu| =0) and d¢&; =
W%'—@) dx. The summantion of the indices is also customary. To lo-
calize the monotonicity formula, we fix U with U cc U cc U and ¢ € C*(U)
such that g =1 on U. Insert ¢ = gp in (3.1). Direct calculations show that

(see [17])

Vp-v)?
(pp)—’_px,x,v - Vi"jpx,-x_, +pt = 07
N UL /) R,
1 _]px,-xj -

p 2s—1)
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Thus, dropping the first term, (3.1) with this choice gives

i | Prs e
a4 ¢ < E ' ‘-
o 20 e [0

The first term arises from the differentiations of ¢ in (3.1). It is exponentially
small when s~ To control the second term, we need

LemMmA 3.2. There exist constants ¢y and & which depend only on c,
dist(U x (£,T),0o(U x (0,T))) and W such that

2
(3.2) sup <8V2u| - Wg(u)) <o

Ux(t,T)

for all ¢ <é¢. Here, 0y denotes the usual parabolic bounday.

The proof is a straightfoward modification of the elliptic case discussed in
[16, Proposition 3.3], so we omit the proof. Then, (3.1) and (3.2) combined
with [p. p dx = (4n(s — 1))"/* give

d &
G o i < @B sup b, w0+ en 226,

xe U\U

By integrating above over ¢ and choosing an appropriate constant, we obtain

PrOPOSITION 3.3.  There exist constants c3 and & depending only on ¢, cy,
t,T,Ey and W such that, for 0 <t<ti <thb <s<T and ye U,

(3.3) J(opw du;, < J(ppy,s duj +c3(Vs—t — /s — 1)

for all ¢ < g;.

Note that the last term may be made as small as we like by choosing s — ¢
small. Once we have (3.3), we may localize I[lmanen’s argument in [17] which
shows the rectifiability of the limit measure and the Brakke’s flow equation
under the assumption A and B on a bounded domain. This requires a careful
re-evaluation of his proof, but we only point out that no part of Ilmanen’s
argument requires global properties and the estimates there go through with
minor modifications coming from the small error term in (3.3). Since our
main objective in this paper is the proof of the integrality, we omit the detail in
this paper.

4. The proof of integrality

Here, we prove that the limit measure has the integral density prop-
erty for a.e. point for a.e. time. The proof is similar to the time inde-
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pendent case, even though one needs to control the time derivative term.
This is achieved, roughly speaking, by analyzing the measure at generic
times when there is no sudden jump of mass. Also, one does not have a
uniform density ratio lower bound on the support of the limit measure, which
is different from the corresponding time-independent situation discussed in
[16].

We describe the outline of the proof. Proposition 4.1 shows that there
is only a little amount of energy on the region {|u| > 1 — b}, where b >0 is a
small fixed number, uniformly in 7. This is intuitively clear, while one heavily
depends on the monotonicity formula for this result. Two lemmas are used.
Lemma 4.2 relates the value of u (being 1 — |u| ~ ¢#) and the distance to the
interface (being ~f¢|ln ¢|). Lemma 4.3 shows that the r-neighborhood of the
interface has volume of O(r). Using these two lemmas, Proposition 4.1 is
proved.

Next, while we look at generic points where blow-up limits are flat
hypersurfaces, it is possible that several sheets of interfaces are piling up.
Lemma 4.4 deals with separating these sheets into two groups, each having the
“right” amount of energy. Though it is only analogous, the similar technical
lemma has appeared in the compactness proof of integral varifolds ([1]) as
well as integrality proof of Brakke’s varifold mean curvature flow ([3]). Note
that the term [(1 — (va)?)elVu|* corresponds roughly to the “tilt-excess energy”
for the corresponding sharp interface situation. It has inductive structure,
so Proposition 4.5 follows from Lemma 4.4 by repeatedly separating sheets
until all are separated. Proposition 4.5 deals with the e-scale. With the con-
trol of the correct quantities, the solution is shown to be very close to the 1-D
standing wave solution of the ODE in ¢-scale. We use above three propo-
sitions to prove the integrality. Ilmanen has proved that the limit Radon
measure is rectifiable for generic time. He also demonstrated that generic
points satisfy the conditions (1)—(7) in the proof of integrality. Namely,
condition (2) indicates that we look at time where there is no serious jump
of mass, condition (3) is satisfied by the equi-partition of the energy and (4)
follows from the monotonicity formula. A measure-theoretic argument shows
that one may generically look at points where the term involving u, in Prop-
osition 4.5 may be controlled by the energy. This leads to the situation where
Proposition 4.5 is applicable for most of the interface region, resulting a
conclusion that the density has to be integer valued modulo division by a.

PROPOSITION 4.1. Assume that Assumptions A and B are true with u', e
and U x (0,T) replaced by u,e and Bz(0) x (0,2) respectively and suppose
s> 0 is given. Then there exist positive constants b and &4 depending only on
co, Eo, W and s such that
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0]

| .
(BIO)x{N)Nflul=1-b} €

for all te(1,2) whenever ¢ < ¢.
To prove this, we need the following two lemmas.

LeMMmA 4.2.  Under the assumptions of Proposition 4.1, there exists a con-
stant c4 depending only on x such that if (xo,%) € B1(0) x (1,2), 0 <e< 1 and
u(xo, t0) < 1 —&P (or u(xo,t0) > —1+¢P), where p satisfies 1 <7 = cyff|ln ¢ <

-1
&g, then

inf u<o resp. sup u>—o .
Bui(x0) % (to—&F, 19) B (xo) x (tg—2272, 1)

PROOF. Rescale the domain by x+—** and 7+— . For the com-

parison arugment, we need a function y > 1 with the following properties:

Y, =AY =3¢ on R" x (—00,0),
Y(x, 1) = el¥Hl/es on R” x (—o0,0)\BI1(0,0),
¥(0,0) =1

for some ¢4 = c(x). Such function is obtained by first defining Y on R” as
the entire radial solution of Ay =gy, ‘P(Q) =1, which grows exponentially as
|x| — oo, and then by defining y(x,7) = y(x)e /%, Fix such y and c;. Let
7=cyfllnel. Note 1 —efe/ =0. For a contradiction, assume that u(0,0) <
I —¢ and infp (0 u>o Define ¢ =1—¢/yy. Then ¢ satisfies ¢, =
Ap+5(1—¢), ¢ <1—ePe’/ <o <u on dy(B:(0,0) x (—7*,0)) and ¢(0,0) >
#(0,0). Thus u — ¢ achieves a negative minimum away from the parabolic
boundary. There, (1 —¢), — A(u —¢) <0 and thus with the equation,

0> —W'(u) +§(¢— 1) > —W'(¢)+§(¢— 1) > gg/&p—gg/ﬂp >0,
which is a contradiction. This proves the desired estimate after rescaling back.
The supremum estimate is similar. O

For te(1,2) and 0 <r < 1, define
Ly = {x eB(0)] inf Ju < rx}

B, (x)x(t—r2,1)

LemMma 4.3.  Under the assumptions of Proposition 4.1, there exist con-
stants ¢s and ¢s depending only on cy, Ey and W such that if ¢ <r <1, then

L"(Z1) < s,

provided 0 < ¢ < ¢s and te(1,2).
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Proor. Let g e CX(B3(0)) be as in Proposition 3.3 with ¢ =1 on
U= B(0),i=1, T =2 and let c; and ¢, be the constants for the monotonicity
formula under these conditions. We claim that there exist some constants cg
and ¢; such that

2
&|Vu| n w el

(4.1) J >
B (xo)x{t-22} 2 é

whenever xg € Z,;,, and ¢ <e¢3. To see this, let (xi,#) € By(xo) x (to — 2, to)

with |u(x1,#)] <« The change of variables x — *—=1, 11— ’;—2" with #(x, ) =

u(ex + x1,&°t + t;) shows

W (u)
&

(42) j¢p< PRLACES j ol W@,

Since || < (W) in this scale, [#(0,0)| < o implies W (i) = c¢(W) >0 on
some neighborhood determined by W and ¢y. Thus (4.2) is bounded from
below by some definite constant, say, cs. By (3.3),

Jgppx],tﬁ»gz dﬂfl < J¢px],tl+gz dﬂ;72r2 + 03\/t1 +£2 — Iy +2"2

when ¢ < ¢e3. Since |t — 4| < r?, by restricting r depending on c3 and cg, we
have

(&
E < prxl,tl+62 d,uranfzrz'

Then, choosing an appropriate ¢g depending only on ¢g and E;, we have

- =< Pxi,t1+e2 d,ue_rz.
4 JB%,.(x) X1, 4+ to—2

On B (x), pyy. i ie2(-1f0 — 2r) < ¢(cg)r"'. Thus we obtain (4.1) with an ap-
propriate choice of ¢;. Once this is done, the Besicovitch covering theorem
immediately yields the lemma. [

PrOOF OF PropoSITION 4.1. With these two lemmas, the proof proceeds
similarly to that of [16, Proposition 5.1].

First assume that 1 —b >a and ¢4|lnb| >1, and choose an integer
J=J(e,b) >1 such that /2" € (b,\/b. We also assume that & <eés and
csllnegl <e'. Fix te(1,2). For j=1,...,J, define

Ay ={xe B (0)[1—&"" <|u(x, )] <1—e"}.
Then Lemma 4.2 with = 1/2/ shows that

Aj < ZC42’-f£\ln g,
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and Lemma 4.3 shows
PM(A4j) < csea27Vellne]  for j=1,...,J.
On 4, using |u] > 1 — ¢!/,

W)

& uelo,1]

< max W"(u)-e'(/*") )2 < co(W)e> .

Let Y =B (0)N{l —b<u <1-&} <) 4. Since e!?" < Vb it
now follows with ¢j9 = ¢gcscs (depending only on Ey and W) that

J
J ZJ <C10|lnc|z2162l

J+1
< ¢jolln ¢ J 2762 = 102" — &) /In 2 < ¢1v/b/In 2.
0

We restrict b so that the last term is less than J.
To estimate the integral on {1 — /e < |u|} let
={xeBi(0)|1— e <|ux)| <1}

and similarly estimate

2
<cpo §6|ln gl.

J W(u)

Finally for {|u| > 1 — &*?}, using |u| < 1 + ¢ (which can be proved by the
parabolic maximum principle),

w
J (Ll < C]](Co, W)E.
B (0ON{1-e23<ul}y €
Restricting ¢ again, we obtain the stated inequality. O
In the following, define
eVul>  W(u) eVul>  W(u)
=0 T g 2 T
2 & 2 &

Also define P:R" — R"' by P(x)=(x1,...,x,1), and P:R" =R by
PL(x) = x,, where x = (x1,...,x,). Also define v=(vi,...,v,) = I\Z_ZI when-
ever |Vu|#0 and v=0 when |Vu| =0.

A few pointers. We use the next lemma inductively in Proposition 4.5.
In the initial step, /; = —oo and /, = o0 so there is no condition (5) for the
first step. For the following steps, condition (5) ensures that the monotonicity
formula restricted to {x|l, < x, <h} holds. In fact, it is an error term
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for “cutting” the solution along the two hypersurfaces in the computation
of the monotonicity identity. Also note that the quantity in condition (5) is
generically controlled by that of (6) (see the computation after (4.3)) and we
include (A) so that we may inductively continue the separation.

LemMma 4.4.  Suppose

(1) N=1 is an interger, Y is a subset of R", 0 < R< o0, 1 <M < 0,
0<a<oo,0<e<],0<y<],0<Ey< o0 and —o0 <} <h < 0.

(2) Y has no more than N + 1 elements, P(y)=0 for all yeY, Y c
{x|h +a<x,<h—a} and |y —z| > 3a for any distinct y,z€ Y.

(3) (M +1) diameter Y < R, and put R = M diameter Y.

(4) On {xeR"|dist(x,Y) < R}, u satisfies (1.1) with |u| <2 and &, <.

(5) For each x = (x1,...,x,) €Y,

Rz el
—n le:(vn — xu) — ety (y — x) - Vuld A"y <n
07 Br(x>m{yn:1j}

for j=1,2.

(6) For each xeY and a <r <R,

J elug |Vu| + &)+ (1 — (\/,1)2).3|Vu|2 <! and
B (x)

J eVul* < Egr" .
B:(x)

Then the following hold:
(A):  There exists Iy € (I1,h) such that |x, — 3| > a and

Rar 1
J _nJ |ee(yn — xn) — ety (y — x) - Vuld A"y
07 Br(x)ﬂ{J/n:IB}

< 3(N + 1)NM(n+ E)/*n'?)

for each xe'Y.
(B):  Put

Yi=Y0{x|h <x, <Hh}, Yo=YN{x|h < x, <h},
So={x|l <x,<bh and dist(Y,x) < R},
S1 = {x|li <x, <k and dist(Y},x) < R},
S, ={x|5 < x, <L and dist(Y,x) < R}.

Then Y| and Y, are non-empty and
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1 1 n—1 1
—-— <|1+— — R+1
R’171 {JSI e: + JSZ ee} = ( + M) R JSO e+ C(n)”]( + )

holds.

Proor. Note the condition on &|u,| [Vu| in (6) has the effect of keeping the
time derivative term small, so that we may derive the desired results just as in
the elliptic case.

Let {,(y) : R" — R be a smooth approximation to the characteristic func-
tion of the set S={yeR"|/; < y, <h} which depends only on y,. Let
x e Y (and change the coordinates so that x =0) and let {;(y) be a smooth
approximation of the characteristic function yg ), where 0 <r < R.  Multiply
the equation (1.1) by (y-Vu){;(»){(y). After integration by parts twice and
letting {; — xp,(0), We obtain

d (1 1
E {W JB ef.é:Z} + V—”JB (Cz; + 81,{[(_)/ : Vu))£2

& 2 1 I
| 0= e -ty v =0

After integrating over [r, R] and letting {, — xg, and then using (4), (5) and (6),
we obtain

1 1
4.3 —J €, > J e. —c(mn(R+1
(43) el R IR OUCER

where ¢(n) depends only on the dimension n.

Next, choose y,Z€ Y such that Z, — J, > diameter Y/N and that there
is no element of ¥ in {xeR"[J, <x, <Z,}. Let h=7,+>3 and I =
z, =25 To choose an appropriate /€ [[;,/] which satisfies (A), we first

observe, for xe Y and y € B,(x),

I=le,(yn—xy) —euy,(y —x) - Vu|

= (=8 (7n = %) + eV (90 = Xn) = va(y = X) - V)|

< \C£|r+8|Vu|2r(1 - (Vn)z Y, 1 - (Vn)z)-

Using (6), we compute

h R R

J le @J Id.%"*ly:J @J Idy
~ n n ~ -
A 0 T JB.(x)N{y.=l} 0 U7 JB.(x)N{li<yn<h}

= 1/2
<|R(n+ E,*n').
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Thus, we may choose /5 € [/}, 5] such that

R DR E1/2 1/2
J @J Fawrty < W DRO B
0 T JB.()N{ =t} bL—1

for all xe Y. Since h — I < diameter Y/3N, we have R/(L —1I}) <3MN,
and we obtain (A).

Define S; and S, as in (B). For any xe€Y, we have S;US; <
B(R+diam Y)(x)msv thus

il ety = 7
_ e+ | e < = ¢
Rn71 { Si ) S ’ Rnil B¢ diam Y)(x)ﬂS s

(H_%)n1{%J3R(X>nses+C(n)n(R+1)}.

We used (4.3) in the last inequality. Finally, noting that Bgr(x) NS < S, we
obtain (B). O

IA

Once we have the previous lemma, we obtain the following proposition
by inductively using the lemma and separating each element of Y. We choose
M very large and then choose # very small, depending on N. Note that the
monotonicity formula restricted to the vertically separated region is available at
the end. Again, the time variable here is fixed:

ProposITION 4.5.  Corresponding to each R, Ey,s and N such that 0 < R <
0,0 < Ey < 00,0<s<1and N is a positive integer, there exists n > 0 with the
following property:
Assume the following:
(1) Y < R" has no more than N + 1 elements, P(y) =0 for all ye Y, a >0,
|y —z| > 3a for all y,z€ Y and diameter Y < yR.
(2) On {xeR"|dist(x,Y) < R}, u satisfies (1.1) with |u| <2 and &, <n.
(3) For each ye Y and a <r <R,

j el Vel I (1 ()l <7
B.(y

J eVu|* < Egr"!.
B.(y)

Then we have

1 1+s
Z pr € < S+ e,.
a B,(y) R {x|dist(Y,x)<R}
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The next proposition is almost identical to [16, Proposition 5.6], which
deals with the “e-scale””. Note that we do not have to include any condition
on the time derivative term.

ProPOSITION 4.6. Given 0 <s<1 and 0<b <1, there exist 0 <n <1
and 1 < L < oo (which also depend on W) with the following property:

Assume 0<e<1 and u satisfies (1.1) and &, <n on B(0) x (—1,1),
[(0,0)| <1 — b, and

(4.4) (1€l + (1= (m))elVul®) < n(4eL)"".

JBM_(O)X{O}
Then, we have P~'(0)N{x € B31,(0)|u(x,0) = u(0,0)} = {0} and

1

(4.5) 74]
wn—1(Le) B1.(0)x{0}

e, — 20| <.

Proor. We rescale the domain by x — x/¢ and ¢ — t/¢* for convenience.
The rescaled function is still denoted by u.
Let ¢g: R — (—1,1) be the unique solution of the ODE

{q’(t) = /2W(q(1)) for teR,

q(0) = u(0,0).
We note that

0 o0 ! N
L@ R LO W) g yar - L W) 4= o

We also identify ¢ on R" by ¢(x1,...,x,) = q(x,).
For given b and s, we fix a large enough L > 1 so that

| 1 >
I “WVal + W) - 20
— LL@ (2| aF + W(g)

whenever |¢(0)| < 1 —b. Next, using the pointwise assumption %|Vu\2 — W(u)
<7 on By (0) x {0} and |u(0,0)] <1 — b, we restrict # so that [ul <1—b on
By1(0) x {0} for some b= b(W,b,s) > 0.

Define a function z(x,?) : B4(0) x (—1,1) — R by setting

Z(X, t) = qil(u(x’ t))v

where ¢! : (=1,1) — R is the inverse function of ¢. Since |u| <1—b, z is
well-defined and ¢'(z(x,)) > min, _,_; /2W(u) for x e By (0). Moreover,
since we may use the equation (1.1) to estimate |ul|c2(g,, (0)x 03> 117l c2(8y, (0)x {0}
is uniformly bounded depending only on W, b and s by the lower bound of ¢’.
Thus, with

(4.6) <

NI
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(') (V= = 1),

N =

1
§|V“|2 - W) =

Vul*(1 = (v)*) = (¢'(2))* (V=) = (,,)%)
and the inequality (4.4), we may obtain (with either + or —)
||Z(X) t X”HCI(BM(O)X{O}) < C(b,s, W)nl/(n+l)

This shows that u(x) is C' close to ¢(x,) on B3z (0) x {0}. Combined with
(4.6), by choosing # sufficiently small, we obtain (4.5). Also, u,, = ¢'(z)zy, #0
on B;;(0) x {0} implies the first assertion. O

PROOF OF INTEGRALITY. By the argument in [17, Section 9.3, 9.5], for
any 7 =1y >0 with D,u,(#) > —oo, where ¢ e C2(U;R") is a fixed function,
we can choose a sequence {7}, such that (after choosing a suitable sub-
sequence of {u'}”, and translating 7y to 0)

(1) >0, lim_, =0,

(2) hmsule%J‘gl¢‘ ’| |[ t; < 0, v W

(3) limi_o [@E]],_, =0, where &' = = Vel "‘ - (")

@) Jp o du < Egr™ ! for all x e supp ¢ and 0 < r< d1st(supp $,0U)/2,
(5) —> 1o as Radon maesure in U,

(6) " (supp ug N {¢ > 0}) < o0,

(7) IIVZuI @ <c¢; on {¢ >0} (by Lemma 3.2).

Note that (4) follows from the monotonicity formula (see [17, Section 5.1(2)]).
Under these conditions, Ilmanen [17] proved the rectifiability of the limit g,
as well as the Brakke’s inequality of varifold mean curvature flow equation
(2.5) for g,. As a result, the convergence of ,u,i to p is also in the sense of
varifold ([17, Section 9]). Here we show that ¢!y, is also integral. This is
achieved by showing that the (n — 1)-dimensional density of o~ !y, is integer-
valued for #" '-a.e. for =0, which is a generic time.
For any g e N, define

Ai,q={xesupp¢|j sl |Vl

B, (3

< qJ ¢ du,
=t (x)

for all 0 < r < dist(supp ¢,6U)/2}.

Since

A _ L \I2 12
limsupje,-|u;\ Vu'|¢ < lim Sup<J8i|u;2¢> <Jg,-|Vul|2¢> <i=c¢p < 0,

1— 00 1— 0
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the Besicovitch covering theorem shows that

LU ¢ du < q 'c(n)er
iq

for all large i. Here, we denote the complement of a set X by X¢. Let 4, be
the set of points x € supp ¢ such that there are x; € 4; , for infinitely many i
with x =lim;_, x;. By the definition, 4, is closed. Define 4 = U;il Aq.
We want to see that [, ¢ duy=0. If not true, then, we would have
IA‘«(/ffiﬂo >0 for any ¢ > 0. Let qie Cc(A4g) be such that 0< ¢<1 and
| A‘f. ¢ duy > 1] 4 ¢ dug. Since supp ¢ is compact, we may choose (by the
definition of Aq)[ N(g) €N such that supp ¢ < Af, for all i > N(gq). Hence,

1 .
—J ¢ duy < lim supJ ¢p du; < q e(n)ey.
Ag A

2 i— o0
iq

We then have, for any ¢eN, [, ¢ duy < g 'c(n)en, so [,. ¢ duy=0.

Next, since y is rectifiable, u,-a.e. point x (which we translate to the origin
subsequently) has a weak tangent plane. Namely, let V' be the rectifiable
varifold with || V|| = uo. Then, at such point (after rotation), lim; .., (®;,),V =
Ov(P), where r; — 0, (®y,)y is the usual push-forward with &, (x) =3, v(P)
corresponds to the varifold associated with the (n — 1)-dimensional plane
P ={x,=0}, and 0 is the density at the point. For y, a.e., we may also
assume that the point is in A4, for some ¢ € N and thus there exists a sequence
xi € Aj g with 0 =lim;_., x;. Let V" be the varifold associated with x,. After
choosing a subsequence, we may assume that (&,),V’ converge to Ov(P),
lim;_, o ,1 =0 and lim;_ )’—2 =0. Rescale the coordinates by ¥ = ot = ’iz and
& :‘;—j (and subsequently drop 7). We preserve the form of the equation (1.1)
under the scaling, and by the definition of 4;, and (4), we have

@) | aluitwat] <rg—o
B5(0) 1=t
as i — oco. The condition (7) is, under the scaling,
ilvd i12 W(ut
(4.8) alVu'l”  W(u') < — 0
2 & =t;

on {¢ >0} as i — oo. Since (@,,), V" converges to Gv(P) in the varifold sense,
we also have

=0.

1=t;

(4.9) lim JB (O)(l — (va))ei| V|

i— o0

Suppose N is the smallest positive integer greater than ¢ '6. Fix an
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arbitrary small s > 0. Use Proposition 4.1 to choose b > 0, and then with
(4.8) we have

. .
i 1 W 1
(4.10) J alvul” | W)
Bs(0)N{Ju| > 1-b} 2 &

for all sufficiently large i. With these chioces of 5,6 and R =1, we choose %
and L via Proposition 4.5 and 4.6 (the smaller # should be chosen). For all
large i, we define

<s

1=t

Gi = B)(0) x {t;} N{|u'| <1 —b}

n {XIJ ( )SiIMZI Vil + 1€ + (1 = () D)alVu'|?
B, (x

t=t;
< ﬂEal/zl",(Br(x)) if 4L <r< 1}.

By repeating the argument leading to (4.3), one may prove that there exist
constants c;; and c¢;3 depending only on n, U and W such that

1 .
(4.11) o ty, (Br(x)) = ci2 for all ¢ <r<c¢p;3 and x e G;.

By the Besicovitch covering theorem, one shows that

(4.12)  p(B2(0)N{Jul <1 -b}\G;)

<cn B | alull W] + 1]+ (1= alvall]
B3(0 t=t;
which goes to 0 as i — oo by (3), (4.7) and (4.9). Also dist(P,G;) — 0 as
i— oo, since yu; — Of|o(T)|| and by (4.11).
For any x e B/~'(0) := (R"' x {0})NB;(0) and |I| <15, we let ¥ =
P '(x)NG;N{u’ =1} and apply Proposition 4.5, where we set a = Lg;. By
Proposition 4.6, each element of Y is separated by at least 3L¢g;, and all the
assumptions are satisfied for sufficiently large i. We prove that Y does not
contain more than N — 1 elements for any x e B! 1(0) as follows. Since

1 i ; W (u!
sup J (ﬁ|Vu’|2+ﬂ) <20+s
xEBl”fl(O) Wy—1 B[(X) 2 &

for large i, Y having more than N — 1 elements would imply, by Proposition
4.5, that

20N < (N + 1)s+ (1 +5)(20 + 3).
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This would be a contradiction to fo~' < N for sufficiently small s depending
only on N.

in L!

. i|2
wy_10 = limJ M < lim
B1(0)

Finally, since |¢| — 0 as i — oo, we have ‘@— \Vul|\/ W (u')/2¢e;| — 0

As the result and by (4.10) and (4.12), for t =1,

\Vu'|[\/ W (ui)/2 +s.

loc*

i— o0

2 = Jsl ON{Ju| <1-b}0G;

By the co-area formula, lim;_..||P#V || = Ov(P) and the above discussion then
implies

1-b
w10 < lim J IR = 10 GO)I(B )y W2 e -5

1— 00

1-b
ga)n,l(Nfl)J VW(@)/2dt+ s < wu—1(N —1)g +s.
~1+b
Since s is arbitrary, we have 8 = (N — 1)a. O
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