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Abstract. We answer a question posed by Ilmanen on the integrality of varifolds

which appear as the singular perturbation limit of the Allen-Cahn equation. We show

that the density of the limit measure is integer multiple of the surface constant almost

everywhere at almost all time. This shows that limit measures obtained via the Allen-

Chan equation and those via Brakke’s construction share the same integrality property

as well as being weak solutions for the mean curvature flow equation.

1. Introduction

The Allen-Cahn equation was proposed to describe the macroscopic

motion of phase boundaries driven by surface tension [2]. It is

e
que

qt
¼ eDue � e�1W 0ðu eÞ;ð1:1Þ

where W is a bi-stable potential with two wells of equal depth at G1 and the

real-valued function u indicates the phase state at each point. Several authors

studied the equation to the conclusion that the zero level set of ue approaches

a hypersurface with its normal velocity determined by the mean curvature as

e ! 0. The phase boundaries should have the thickness of order e.

The formal derivation was given by Fife [14], Rubinstein, Sternberg and

Keller [20], and others. The rigorous proof for radially symmetric case was

given by Bronsard and Kohn [4]. With the assumption that the classical

solution for the mean curvature flow exists, the general case was proved by de

Mottoni and Schatzman [10], Chen [6], Chen and Elliott [8] and others.

Evans, Soner and Souganidis [11] showed that the limit of the level set of

the Allen-Cahn equation is contained in the viscosity solution for the mean

curvature flow studied by Evans and Spruck [13] and Chen, Giga and Goto

[9]. Ilmanen [17] showed with a technique from geometric measure theory that

the limit is a mean curvature flow in the sense of Brakke [3]. Subsequently,
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Soner [22] gave proofs that more general initial data may be admitted in

Ilmanen’s work. There are numerous articles related to the general subject

of various Allen-Cahn type equations with modifications and those coupled

with other field variables such as temperature. We cite only the most relevant

articles and refer the reader to, for example, Soner’s paper [22] for more

complete references.

The purpose of this paper is to answer one technical question posed by

Ilmanen [17, Section 13.2]. We show that the ðn� 1Þ-dimensional density of

the limit measure mt of the Allen-Cahn equation is an integer multiple of the

surface constant s ¼
Ð 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðsÞ=2

p
ds for a.e. t > 0 and Hn�1 a.e. x. Here,

Hn�1 is the ðn� 1Þ-dimensional Hausdor¤ measure in Rn. The more heuristic

interpretation is that there is no fractional interface appearing as e ! 0, and

the interface profiles for a.e. points are close to integer multiples of the 1-D

standing wave profile at worst. Higher multiplicities can occur in fact, indi-

cated in the existence results by Bronsard and Stoth [5]. Note that weak

varifold solutions for the mean curvature flow constructed by Brakke [3]

have such integrality property for a.e. t > 0. Accordingly, we conclude that

the solutions obtained as the limit of the Allen-Cahn equation have all the

measure-theoretic properties of Brakke’s solutions. As the byproducts, all of

the results on the weak varifold mean curvature flow due to Brakke hold for

the limit of the Allen-Cahn equation, such as his clearing-out lemma, per-

pendicularity of the mean curvature, etc.

Another interest of this paper is our remark that the results due to

Ilmanen, where the domain was Rn, may be localized to a bounded domain.

This is due to a local estimate of the so-called discrepancy measure, which

in turn yields the local monotonicity formula for the properly scaled energy

identity.

The proof of the stated results is accomplished through appropriate para-

bolic modification of the corresponding elliptic results due to Hutchinson and

the author [16, Section 5]. There, we showed that finite energy equilibrium

converges to a varifold with a locally constant mean curvature and an integer

density modulo division by s.

In Section 2, we state our assumptions and main results. In Section 3, we

discuss the derivation of the local monotonicity formula, and in the last Section

4, show the integrality of the limit measure. Even though many parts of the

proof in Section 4 are similar to those in [16, Section 5], we present the detail

for the reader’s convenience.

2. Assumptions and main results

2.1. Assumptions. Throughout this paper, we assume
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A: The function W : R ! ½0;yÞ is C3 and WðG1Þ ¼ W 0ðG1Þ ¼ 0. For

some g A ð�1; 1Þ, W 0 < 0 on ðg; 1Þ and W 0 > 0 on ð�1; gÞ. For some a A ð0; 1Þ
and k > 0, W 00ðxÞb k for all jxjb a.

B: U HRn is a bounded open set with Lipschitz boundary qU and

0 < T ay. A sequence of functions fuigyi¼1, with ui
txj
; ui

xjxkxl
A CðU � ð0;TÞÞ,

1a j; k; la n, satisfies

eiu
i
t ¼ eiDu

i � e�1
i W 0ðuiÞð2:1Þ

on U � ð0;TÞ. Here, limi!y ei ¼ 0, and we assume there exist c0 and E0 such

that supU�ð0;TÞjuija c0 andð
U�ftg

eij‘uij2

2
þWðuiÞ

ei
aE0ð2:2Þ

for all t A ð0;TÞ and i. Moreover,ð
U�ð0;TÞ

eijui
t j
2
aE0ð2:3Þ

for all i.

Assumption B is satisfied, for example, when we consider the following

initial value problem

eut ¼ eDu� e�1W 0ðuÞ on U � ð0;yÞ;
uðx; 0Þ ¼ feðxÞ on U ;
qu
qn
¼ 0 on qU � ð0;yÞ;

8><
>:

where the initial data have the sup norm and energy bounded uniformly with

respect to e as e ! 0. Since the equation is a gradient flow of the energy

in (2.2), assumptions (2.2) and (2.3) are satisfied with E0 being the bound of

the energy for the initial data. The sup norm bound of u follows from the

standard maximum principle. The boundary Neumann condition may be also

replaced by Dirichlet data u ¼ fe on qU � ½0;yÞ, where we also obtain (2.2)

and (2.3). Our results are local in nature, so we take above assumptions as

our starting point in this paper.

With this setting, for t A ½0;TÞ, define the Radon measures by

m i
tðfÞ ¼

ð
U

fðxÞei
j‘uiðx; tÞj2

2
dxð2:4Þ

for f A CcðUÞ.
We also recall the notion of rectifiability for Radon measure.

Definition ([17, 1.7]). We call a Radon measure m ðn� 1Þ-rectifiable if

either of the following equivalent conditions is met:
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(a) m ¼ Hn�1bXby, where X is an ðn� 1Þ-rectifiable Hn�1-measurable

set and y A L1
locðHn�1bX ; ð0;yÞÞ. Here, we denote the restriction of measure

to X by bX . In particular, mðAÞ ¼
Ð
AVX y dHn�1 for Borel set A.

(b) The measure-theoretic approximate tangent plane Txm exists m-a.e.

(see also [1, 3, 21]).

In [17], Ilmanen proved, among other things (with U ¼ Rn),

Theorem 2.1 ([17]). There is a subsequence of feig and Radon measures mt
on U for all t A ½0;yÞ such that

(i) m i
t ! mt for all t > 0 as Radon measures on U.

(ii) For a.e. t > 0, mt is ðn� 1Þ-rectifiable.
(iii) mt satisfies the mean curvature flow equation in the sense of Brakke,

namely, for any f A C2
c ðUÞ, fb 0,

Dt

ð
f dmt a

ð
�fjHj2 þ ‘f � ðTxmtÞ

? �H dmtð2:5Þ

for each t A ½0;yÞ. Here, Dt is the upper derivative, and H is the generalized

mean curvature vector of mt. The right-hand side is understood to be �y
whenever mt is not ðn� 1Þ-rectifiable, the first variation of mt is not absolutely

continuous with respect to mt, or jHj2 is not mt integrable. Txm denotes the weak

tangent space (and the corresponding projection) of mt, and ðTxmÞ? denotes the

normal subspace of Txm (and the corresponding projection).

Note that the first variation is defined usually for varifolds ([1, 3, 21]),

while it is understood here that one may define the unique varifold from a

given rectifiable Radon measure and the first variation is defined through this

identification. In these regards, we follow Ilmanen’s notations in [17].

Define the ðn� 1Þ-dimensional density yðxÞ by

yðxÞ ¼ lim
r!0

1

on�1rn�1
mtðBrðxÞÞ

whenever the limit exists. Here, on�1 is the volume of the unit ball in Rn�1.

What we prove is the following:

Theorem 2.2. For a.e. t > 0 and mt a.e. x A U, yðxÞ ¼ Ns for some

positive N A N, where s ¼
Ð 1
�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðsÞ=2

p
ds.

Thus, for a.e. t > 0, mt ¼ Hn�1bXtbsNðx; tÞ, where Xt is an ðn� 1Þ-
rectifiable set and Nðx; tÞ is integer-valued Hn�1-measurable function.

Due to the perpendicularity of the mean curvature vector for integral

varifolds [3], we conclude that Hðx; tÞ?Txmt holds for a.e. t > 0 and mt a.e.

x A U . Hence, we show that the mean curvature equation (2.5) is satisfied in

the following form as well:
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Dt

ð
f dmt a

ð
�fjHj2 þ ‘f �H dmt:ð2:5Þ0

We note that if Nðx; tÞ ¼ 1 for a.e. t > 0 and Hn�1-a.e. on Xt, then Brakke’s

partial regularity results apply to the measure mt and one may obtain the

smoothness of the flow for a.e. sense.

3. Local monotonicity formula

In this section we assume that the function u : U ! R satisfies assumption

B with ui and ei there replaced by u and e respectively. We assume ~UU HHU

and 0 < ~tt < T .

Here, we show the local monotonicity formula in Proposition 3.3, which

is the local version of [17, Section 4.1]. The key point for the extension is

the local upper bound of the discrepancy function for all su‰ciently small e

(Lemma 3.2).

For any ðy; sÞ A ~UU � ð~tt;TÞ and ðx; tÞ A U � ð0;TÞ with t < s, denote

r ¼ ry; sðx; tÞ ¼
1

ð4pðs� tÞÞðn�1Þ=2 e
�jx�yj2=4ðs�tÞ:

For f A C2
c ðU ;RþÞ, the computation (see [17, Section 3.2]) shows

Lemma 3.1.

d

dt

ð
f dme

t ¼
ð
�ef �DuþW 0ðuÞ

e2
� n � ‘f

f

� �2
dxð3:1Þ

þ ðn � ‘fÞ2

f
þ fxixi � ninjfxixj þ ft

 !
dme

t

þ �ninjfxixj þ
ðn � ‘fÞ2

f

 !
dxe

t :

Here, n ¼ ‘u
j‘uj (where it is understood that n ¼ 0 on j‘uj ¼ 0) and dxe

t ¼
ej‘uj2

2 � W ðuÞ
e

� �
dx. The summantion of the indices is also customary. To lo-

calize the monotonicity formula, we fix ÛU with ~UU HH ÛU HHU and j A Cy
c ðUÞ

such that j1 1 on ÛU . Insert f ¼ jr in (3.1). Direct calculations show that

(see [17])

ð‘r � nÞ2

r
þ rxixi � ninjrxixj þ rt 1 0;

�ninjrxixj þ
ðn � ‘rÞ2

r
¼ r

2ðs� tÞ :
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Thus, dropping the first term, (3.1) with this choice gives

d

dt

ð
jry; s dm

e
t a cðjÞE0 sup

x AUnÛU
jry; sðx; tÞj þ

ð
jry; s

2ðs� tÞ dx
e
t :

The first term arises from the di¤erentiations of j in (3.1). It is exponentially

small when sA t. To control the second term, we need

Lemma 3.2. There exist constants c2 and e2 which depend only on c0,

distð ~UU � ð~tt;TÞ; q0ðU � ð0;TÞÞÞ and W such that

sup
~UU�ð~tt;TÞ

ej‘uj2

2
�WðuÞ

e

 !
a c2ð3:2Þ

for all e < e2. Here, q0� denotes the usual parabolic bounday.

The proof is a straightfoward modification of the elliptic case discussed in

[16, Proposition 3.3], so we omit the proof. Then, (3.1) and (3.2) combined

with
Ð
R n r dx ¼ ð4pðs� tÞÞ1=2 give

d

dt

ð
jry; s dm

e
t a cðjÞE0 sup

x AUnÛU
jry; sðx; tÞj þ c2p

1=2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðs� tÞ

p
:

By integrating above over t and choosing an appropriate constant, we obtain

Proposition 3.3. There exist constants c3 and e3 depending only on j; c0;
~tt;T ;E0 and W such that, for 0 < ~tt < t1 < t2 < s < T and y A ~UU,ð

jry; s dm
e
t2
a

ð
jry; s dm

e
t1
þ c3ð

ffiffiffiffiffiffiffiffiffiffiffiffi
s� t1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffi
s� t2

p
Þð3:3Þ

for all e < e3.

Note that the last term may be made as small as we like by choosing s� t1
small. Once we have (3.3), we may localize Ilmanen’s argument in [17] which

shows the rectifiability of the limit measure and the Brakke’s flow equation

under the assumption A and B on a bounded domain. This requires a careful

re-evaluation of his proof, but we only point out that no part of Ilmanen’s

argument requires global properties and the estimates there go through with

minor modifications coming from the small error term in (3.3). Since our

main objective in this paper is the proof of the integrality, we omit the detail in

this paper.

4. The proof of integrality

Here, we prove that the limit measure has the integral density prop-

erty for a.e. point for a.e. time. The proof is similar to the time inde-
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pendent case, even though one needs to control the time derivative term.

This is achieved, roughly speaking, by analyzing the measure at generic

times when there is no sudden jump of mass. Also, one does not have a

uniform density ratio lower bound on the support of the limit measure, which

is di¤erent from the corresponding time-independent situation discussed in

[16].

We describe the outline of the proof. Proposition 4.1 shows that there

is only a little amount of energy on the region fjujb 1� bg, where b > 0 is a

small fixed number, uniformly in t. This is intuitively clear, while one heavily

depends on the monotonicity formula for this result. Two lemmas are used.

Lemma 4.2 relates the value of u (being 1� jujAeb) and the distance to the

interface (being Abejln ej). Lemma 4.3 shows that the r-neighborhood of the

interface has volume of OðrÞ. Using these two lemmas, Proposition 4.1 is

proved.

Next, while we look at generic points where blow-up limits are flat

hypersurfaces, it is possible that several sheets of interfaces are piling up.

Lemma 4.4 deals with separating these sheets into two groups, each having the

‘‘right’’ amount of energy. Though it is only analogous, the similar technical

lemma has appeared in the compactness proof of integral varifolds ([1]) as

well as integrality proof of Brakke’s varifold mean curvature flow ([3]). Note

that the term
Ð
ð1� ðnnÞ2Þej‘uj2 corresponds roughly to the ‘‘tilt-excess energy’’

for the corresponding sharp interface situation. It has inductive structure,

so Proposition 4.5 follows from Lemma 4.4 by repeatedly separating sheets

until all are separated. Proposition 4.5 deals with the e-scale. With the con-

trol of the correct quantities, the solution is shown to be very close to the 1-D

standing wave solution of the ODE in e-scale. We use above three propo-

sitions to prove the integrality. Ilmanen has proved that the limit Radon

measure is rectifiable for generic time. He also demonstrated that generic

points satisfy the conditions (1)–(7) in the proof of integrality. Namely,

condition (2) indicates that we look at time where there is no serious jump

of mass, condition (3) is satisfied by the equi-partition of the energy and (4)

follows from the monotonicity formula. A measure-theoretic argument shows

that one may generically look at points where the term involving ut in Prop-

osition 4.5 may be controlled by the energy. This leads to the situation where

Proposition 4.5 is applicable for most of the interface region, resulting a

conclusion that the density has to be integer valued modulo division by s.

Proposition 4.1. Assume that Assumptions A and B are true with ui; ei
and U � ð0;TÞ replaced by u; e and B3ð0Þ � ð0; 2Þ respectively and suppose

s > 0 is given. Then there exist positive constants b and e4 depending only on

c0;E0;W and s such that
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ð
ðB1ð0Þ�ftgÞVfjujb1�bg

WðuÞ
e

a s

for all t A ð1; 2Þ whenever ea e4.

To prove this, we need the following two lemmas.

Lemma 4.2. Under the assumptions of Proposition 4.1, there exists a con-

stant c4 depending only on k such that if ðx0; t0Þ A B1ð0Þ � ð1; 2Þ, 0 < e < 1 and

uðx0; t0Þ < 1� eb (or uðx0; t0Þ > �1þ eb), where b satisfies 1a~rr1 c4bjln eja
e�1, then

inf
Be~rrðx0Þ�ðt0�e2~rr2; t0Þ

u < a resp: sup
Be~rrðx0Þ�ðt0�e2~rr2; t0Þ

u > �a

 !
:

Proof. Rescale the domain by x 7! x�x0
e

and t 7! t�t0
e2

. For the com-

parison arugment, we need a function cb 1 with the following properties:

ct ¼ Dc� k
4c on Rn � ð�y; 0Þ;

cðx; tÞb eðjxjþjtjÞ=c4 on Rn � ð�y; 0ÞnBnþ1
1 ð0; 0Þ;

cð0; 0Þ ¼ 1

8><
>:

for some c4 ¼ cðkÞ. Such function is obtained by first defining ~cc on Rn as

the entire radial solution of D ~cc ¼ k
8
~cc, ~ccð0Þ ¼ 1, which grows exponentially as

jxj ! y, and then by defining cðx; tÞ ¼ ~ccðxÞe�kt=8. Fix such c and c4. Let

~rr ¼ c4bjln ej. Note 1� ebe~rr=c4 ¼ 0. For a contradiction, assume that uð0; 0Þ <
1� eb and infB~rrð0;0Þ�ð�~rr2;0Þ u > a. Define f ¼ 1� ebc. Then f satisfies ft ¼
Dfþ k

4 ð1� fÞ, f < 1� ebe~rr=c4 < a < u on q0ðB~rrð0; 0Þ � ð�~rr2; 0ÞÞ and fð0; 0Þ >
uð0; 0Þ. Thus u� f achieves a negative minimum away from the parabolic

boundary. There, ðu� fÞt � Dðu� fÞa 0 and thus with the equation,

0b�W 0ðuÞ þ k

4
ðf� 1Þb�W 0ðfÞ þ k

4
ðf� 1Þb k

2
ebc� k

4
ebc > 0;

which is a contradiction. This proves the desired estimate after rescaling back.

The supremum estimate is similar. r

For t A ð1; 2Þ and 0 < r < 1, define

Zr; t ¼ x A B1ð0Þ j inf
BrðxÞ�ðt�r2; tÞ

juj < a

� �
:

Lemma 4.3. Under the assumptions of Proposition 4.1, there exist con-

stants c5 and e5 depending only on c0;E0 and W such that if ea ra 1, then

LnðZr; tÞa c5r;

provided 0 < e < e5 and t A ð1; 2Þ.
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Proof. Let j A Cy
c ðB3ð0ÞÞ be as in Proposition 3.3 with j1 1 on

~UU ¼ B2ð0Þ, ~tt ¼ 1, T ¼ 2 and let c3 and e2 be the constants for the monotonicity

formula under these conditions. We claim that there exist some constants c6
and c7 such that ð

Bc6r
ðx0Þ�ft0�2r2g

ej‘uj2

2
þW

e
b c7r

n�1ð4:1Þ

whenever x0 A Zr; t0 and ea e3. To see this, let ðx1; t1Þ A Brðx0Þ � ðt0 � r2; t0Þ
with juðx1; t1Þj < a. The change of variables x 7! x�x1

e
, t 7! t�t1

e2
with ~uuðx; tÞ ¼

uðexþ x1; e
2tþ t1Þ showsð

jrx1; t1þe2ð� ; t1Þ
WðuÞ

e
b

ð
B
e�1 ð0Þ

r0;1ð� ; 0ÞWð~uuÞ:ð4:2Þ

Since j~uujC 1 a cðWÞ in this scale, j~uuð0; 0Þj < a implies Wð~uuÞb cðWÞ > 0 on

some neighborhood determined by W and c0. Thus (4.2) is bounded from

below by some definite constant, say, c8. By (3.3),ð
jrx1; t1þe2 dm

e
t1
a

ð
jrx1; t1þe2 dm

e
t0�2r2 þ c3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t1 þ e2 � t0 þ 2r2

p
when e < e3. Since jt0 � t1ja r2, by restricting r depending on c3 and c8, we

have

c8

2
a

ð
jrx1; t1þe2 dm

e
t0�2r2 :

Then, choosing an appropriate c6 depending only on c8 and E0, we have

c8

4
a

ð
Bc6r

ðxÞ
rx1; t1þe2 dm

e
t0�2r2 :

On Bc6rðxÞ, rx1; t1þe2ð� ; t0 � 2r2Þa cðc6Þrn�1. Thus we obtain (4.1) with an ap-

propriate choice of c7. Once this is done, the Besicovitch covering theorem

immediately yields the lemma. r

Proof of Proposition 4.1. With these two lemmas, the proof proceeds

similarly to that of [16, Proposition 5.1].

First assume that 1� b > a and c4jln bjb 1, and choose an integer

J ¼ Jðe; bÞb 1 such that e1=2
Jþ1

A ðb;
ffiffiffi
b

p
�. We also assume that ea e5 and

c4jln eja e�1. Fix t A ð1; 2Þ. For j ¼ 1; . . . ; J, define

Aj ¼ fx A B1ð0Þ j 1� e1=2
jþ1

a juðx; tÞja 1� e1=2
jg:

Then Lemma 4.2 with b ¼ 1=2 j shows that

Aj HZc42�jejln ej; t;

Integrality of varifolds in the singular limit 331



and Lemma 4.3 shows

LnðAjÞa c5c42
�jejln ej for j ¼ 1; . . . ; J:

On Aj, using jujb 1� e1=2
jþ1
,

WðuÞ
e

a max
u A ½a;1�

W 00ðuÞ � e�1ðe1=2 jþ1Þ2=2a c9ðWÞe2�j�1:

Let Y ¼ B1ð0ÞV f1� ba juja 1�
ffiffi
e

p
gH6J

j¼1
Aj . Since e1=2

Jþ1
<

ffiffiffi
b

p
it

now follows with c10 ¼ c9c5c4 (depending only on E0 and W ) that

ð
Y

WðuÞ
e

a
XJ
j¼1

ð
Aj

WðuÞ
e

a c10jln ej
XJ
j¼1

2�je2
�j

a c10jln ej
ð Jþ1

0

2�te2
�t ¼ c10ðe2

�ðJþ1Þ � eÞ=ln 2a c10
ffiffiffi
b

p
=ln 2:

We restrict b so that the last term is less than s
2 .

To estimate the integral on f1�
ffiffi
e

p
a jujg let

A0 ¼ fx A B1ð0Þ j 1�
ffiffi
e

p
a juðxÞja 1� e2=3g

and similarly estimate ð
A0

WðuÞ
e

a c10
2

3
ejln ej:

Finally for fjujb 1� e2=3g, using juja 1þ e (which can be proved by the

parabolic maximum principle),ð
B1ð0ÞVf1�e2=3ajujg

WðuÞ
e

a c11ðc0;WÞe:

Restricting e again, we obtain the stated inequality. r

In the following, define

ee ¼
ej‘uj2

2
þWðuÞ

e
; xe ¼

ej‘uj2

2
�WðuÞ

e
:

Also define P : Rn ! Rn�1 by PðxÞ ¼ ðx1; . . . ; xn�1Þ, and P? : Rn ! R by

P?ðxÞ ¼ xn, where x ¼ ðx1; . . . ; xnÞ. Also define n ¼ ðn1; . . . ; nnÞ ¼ ‘u
j‘uj when-

ever j‘uj0 0 and n ¼ 0 when j‘uj ¼ 0.

A few pointers. We use the next lemma inductively in Proposition 4.5.

In the initial step, l1 ¼ �y and l2 ¼ y so there is no condition (5) for the

first step. For the following steps, condition (5) ensures that the monotonicity

formula restricted to fx j l1 < xn < l2g holds. In fact, it is an error term
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for ‘‘cutting’’ the solution along the two hypersurfaces in the computation

of the monotonicity identity. Also note that the quantity in condition (5) is

generically controlled by that of (6) (see the computation after (4.3)) and we

include (A) so that we may inductively continue the separation.

Lemma 4.4. Suppose

(1) Nb 1 is an interger, Y is a subset of Rn, 0 < R < y, 1 < M < y,

0 < a < y, 0 < e < 1, 0 < h < 1, 0 < E0 < y and �ya l1 < l2 ay.

(2) Y has no more than N þ 1 elements, PðyÞ ¼ 0 for all y A Y, Y H
fx j l1 þ a < xn < l2 � ag and jy� zj > 3a for any distinct y; z A Y .

(3) ðM þ 1Þ diameter Y < R, and put ~RR1M diameter Y .

(4) On fx A Rn j distðx;Y Þ < Rg, u satisfies (1.1) with juja 2 and xe a h.

(5) For each x ¼ ðx1; . . . ; xnÞ A Y ,ðR
0

dt

tn

ð
BtðxÞVf yn¼ljg

jeeðyn � xnÞ � euxnðy� xÞ � ‘ujdHn�1ya h

for j ¼ 1; 2.

(6) For each x A Y and aa raR,ð
BrðxÞ

ejutj j‘uj þ jxej þ ð1� ðnnÞ2Þej‘uj2 a hrn�1 and

ð
BrðxÞ

ej‘uj2 aE0r
n�1:

Then the following hold:

(A): There exists l3 A ðl1; l2Þ such that jxn � l3jb a and

ð ~RR

0

dt

tn

ð
BtðxÞVfyn¼l3g

jeeðyn � xnÞ � euxnðy� xÞ � ‘ujdHn�1y

a 3ðN þ 1ÞNMðhþ E
1=2
0 h1=2Þ

for each x A Y .

(B): Put

Y1 ¼ Y V fx j l1 < xn < l3g; Y2 ¼ Y V fx j l3 < xn < l2g;

S0 ¼ fx j l1 < xn < l2 and distðY ; xÞ < Rg;

S1 ¼ fx j l1 < xn < l3 and distðY1; xÞ < ~RRg;

S2 ¼ fx j l3 < xn < l2 and distðY2; xÞ < ~RRg:

Then Y1 and Y2 are non-empty and
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1

~RRn�1

ð
S1

ee þ
ð
S2

ee

� �
a 1þ 1

M

� �n�1 1

Rn�1

ð
S0

ee þ cðnÞhðRþ 1Þ

holds.

Proof. Note the condition on ejutj j‘uj in (6) has the e¤ect of keeping the

time derivative term small, so that we may derive the desired results just as in

the elliptic case.

Let z2ðyÞ : Rn ! R be a smooth approximation to the characteristic func-

tion of the set S1 fy A Rn j l1 < yn < l2g which depends only on yn. Let

x A Y (and change the coordinates so that x ¼ 0) and let z1ðyÞ be a smooth

approximation of the characteristic function wBrð0Þ, where 0 < r < R. Multiply

the equation (1.1) by ðy � ‘uÞz1ðyÞz2ðyÞ. After integration by parts twice and

letting z1 ! wBrð0Þ, we obtain

d

dr

1

rn�1

ð
Br

eez2

� �
þ 1

rn

ð
Br

ðze þ eutðy � ‘uÞÞz2

� e

rnþ1

ð
qBr

ðy � ‘uÞ2z2 �
1

rn

ð
Br

feeyn � euxnðy � ‘uÞgz 02 ¼ 0:

After integrating over ½r;R� and letting z2 ! wS, and then using (4), (5) and (6),

we obtain

1

Rn�1

ð
BRVS

ee b
1

rn�1

ð
BrVS

ee � cðnÞhðRþ 1Þð4:3Þ

where cðnÞ depends only on the dimension n.

Next, choose ~yy; ~zz A Y such that ~zzn � ~yyn b diameter Y=N and that there

is no element of Y in fx A Rn j ~yyn < xn < ~zzng. Let ~ll1 ¼ ~yyn þ
~zzn� ~yyn

3 and ~ll2 ¼
~zzn � ~zzn� ~yyn

3 . To choose an appropriate l A ½~ll1; ~ll2� which satisfies (A), we first

observe, for x A Y and y A BrðxÞ,

I 1 jeeðyn � xnÞ � euxnðy� xÞ � ‘uj

¼ jð�zeÞðyn � xnÞ þ ej‘uj2ððyn � xnÞ � nnðy� xÞ � nÞj

a jzejrþ ej‘uj2rð1� ðnnÞ2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðnnÞ2

q
Þ:

Using (6), we compute

ð~ll2
~ll1

dl

ð ~RR

0

dt

tn

ð
BtðxÞVf yn¼lg

I dHn�1y ¼
ð ~RR

0

dt

tn

ð
BtðxÞVf~ll1<yn<~ll2g

I dy

a j ~RRðhþ E
1=2
0 h1=2Þ:
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Thus, we may choose l3 A ½~ll1; ~ll2� such thatð ~RR

0

dt

tn

ð
BtðxÞVf yn¼l3g

I dHn�1ya
ðN þ 1Þ ~RRðhþ E

1=2
0 h1=2Þ

~ll2 � ~ll1

for all x A Y . Since ~ll2 � ~ll1 a diameter Y=3N, we have ~RR=ð~ll2 � ~ll1Þa 3MN,

and we obtain (A).

Define S1 and S2 as in (B). For any x A Y , we have S1 US2 H
Bð ~RRþdiamYÞðxÞVS, thus

1

~RRn�1

ð
S1

ee þ
ð
S2

ee

� �
a

1

~RRn�1

ð
Bð ~RRþdiamY ÞðxÞVS

ee

a 1þ 1

M

� �n�1 1

Rn�1

ð
BRðxÞVS

ee þ cðnÞhðRþ 1Þ
( )

:

We used (4.3) in the last inequality. Finally, noting that BRðxÞVSHS0, we

obtain (B). r

Once we have the previous lemma, we obtain the following proposition

by inductively using the lemma and separating each element of Y . We choose

M very large and then choose h very small, depending on N. Note that the

monotonicity formula restricted to the vertically separated region is available at

the end. Again, the time variable here is fixed:

Proposition 4.5. Corresponding to each R;E0; s and N such that 0 < R <

y, 0 < E0 < y, 0 < s < 1 and N is a positive integer, there exists h > 0 with the

following property:

Assume the following:

(1) Y HRn has no more than N þ 1 elements, PðyÞ ¼ 0 for all y A Y, a > 0,

jy� zj > 3a for all y; z A Y and diameter Y a hR.

(2) On fx A Rn j distðx;Y Þ < Rg, u satisfies (1.1) with juja 2 and xe a h.

(3) For each y A Y and aa raR,ð
BrðyÞ

ejutj j‘uj þ jxej þ ð1� ðnnÞ2Þej‘uj2dya hrn�1;

ð
Brð yÞ

ej‘uj2 aE0r
n�1:

Then we have

X
y AY

1

an�1

ð
BaðyÞ

ee a sþ 1þ s

Rn�1

ð
fx j distðY ;xÞ<Rg

ee:
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The next proposition is almost identical to [16, Proposition 5.6], which

deals with the ‘‘e-scale’’. Note that we do not have to include any condition

on the time derivative term.

Proposition 4.6. Given 0 < s < 1 and 0 < b < 1, there exist 0 < h < 1

and 1 < L < y (which also depend on W) with the following property:

Assume 0 < e < 1 and u satisfies (1.1) and xe a h on B1ð0Þ � ð�1; 1Þ,
juð0; 0Þja 1� b, andð

B4eLð0Þ�f0g
ðjxej þ ð1� ðnnÞ2Þej‘uj2Þa hð4eLÞn�1:ð4:4Þ

Then, we have P�1ð0ÞV fx A B3Leð0Þ j uðx; 0Þ ¼ uð0; 0Þg ¼ f0g and

1

on�1ðLeÞn�1

ð
BLeð0Þ�f0g

ee � 2s

�����
�����a s:ð4:5Þ

Proof. We rescale the domain by x 7! x=e and t 7! t=e2 for convenience.

The rescaled function is still denoted by u.

Let q : R ! ð�1; 1Þ be the unique solution of the ODE

q 0ðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðqðtÞÞ

p
for t A R;

qð0Þ ¼ uð0; 0Þ:

(

We note thatðy
�y

1

2
jq 0ðtÞj2dt ¼

ðy
�y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðqðtÞÞ

2

r
q 0ðtÞdt ¼

ð1
�1

ffiffiffiffiffiffiffiffiffiffiffi
WðsÞ
2

r
ds ¼ s:

We also identify q on Rn by qðx1; . . . ; xnÞ ¼ qðxnÞ.
For given b and s, we fix a large enough L > 1 so that

1

on�1Ln�1

ð
BLð0Þ

1

2
j‘qj2 þWðqÞ

� �
� 2s

�����
�����a s

2
ð4:6Þ

whenever jqð0Þja 1� b. Next, using the pointwise assumption 1
2 j‘uj

2 �WðuÞ
a h on B4Lð0Þ � f0g and juð0; 0Þja 1� b, we restrict h so that juja 1� ~bb on

B4Lð0Þ � f0g for some ~bb ¼ ~bbðW ; b; sÞ > 0.

Define a function zðx; tÞ : B4Lð0Þ � ð�1; 1Þ ! R by setting

zðx; tÞ ¼ q�1ðuðx; tÞÞ;

where q�1 : ð�1; 1Þ ! R is the inverse function of q. Since juja 1� ~bb, z is

well-defined and q 0ðzðx; tÞÞbminjuja1�~bb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2WðuÞ

p
for x A B4Lð0Þ. Moreover,

since we may use the equation (1.1) to estimate kukC 2ðB3Lð0Þ�f0gÞ, kzkC 2ðB3Lð0Þ�f0gÞ
is uniformly bounded depending only on W ; b and s by the lower bound of q 0.

Thus, with
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1

2
j‘uj2 �WðuÞ ¼ 1

2
ðq 0ðzÞÞ2ðj‘zj2 � 1Þ;

j‘uj2ð1� ðnnÞ2Þ ¼ ðq 0ðzÞÞ2ðj‘zj2 � ðzxnÞ
2Þ

and the inequality (4.4), we may obtain (with either þ or �)

kzðxÞG xnkC 1ðB3Lð0Þ�f0gÞ a cðb; s;WÞh1=ðnþ1Þ:

This shows that uðxÞ is C1 close to qðxnÞ on B3Lð0Þ � f0g. Combined with

(4.6), by choosing h su‰ciently small, we obtain (4.5). Also, uxn ¼ q 0ðzÞzxn 0 0

on B3Lð0Þ � f0g implies the first assertion. r

Proof of integrality. By the argument in [17, Section 9.3, 9.5], for

any t ¼ t0 > 0 with DtmtðfÞ > �y, where f A C2
c ðU ;RþÞ is a fixed function,

we can choose a sequence ftigyi¼1 such that (after choosing a suitable sub-

sequence of fuigyi¼1 and translating t0 to 0)

(1) ti > 0, limi!y ti ¼ 0,

(2) lim supi!y

Ð
eifjui

t j
2jt¼ti

< y,

(3) limi!y

Ð
fjx ij jt¼ti

¼ 0, where x i ¼ ei j‘u i j2
2 � W ðu iÞ

ei

���
t¼ti

,

(4)
Ð
BrðxÞ dm

i
ti
aE0r

n�1 for all x A supp f and 0 < r < distðsupp f; qUÞ=2,
(5) m i

ti
! m0 as Radon maesure in U ,

(6) Hn�1ðsupp m0 V ff > 0gÞ < y,

(7)
ei j‘u i j2

2 � W ðu iÞ
ei

���
t¼ti

a c2 on ff > 0g (by Lemma 3.2).

Note that (4) follows from the monotonicity formula (see [17, Section 5.1(2)]).

Under these conditions, Ilmanen [17] proved the rectifiability of the limit m0

as well as the Brakke’s inequality of varifold mean curvature flow equation

(2.5) for mt. As a result, the convergence of m i
ti
to m0 is also in the sense of

varifold ([17, Section 9]). Here we show that s�1m0 is also integral. This is

achieved by showing that the ðn� 1Þ-dimensional density of s�1m0 is integer-

valued for Hn�1-a.e. for t ¼ 0, which is a generic time.

For any q A N, define

Ai;q ¼
�
x A supp f j

ð
BrðxÞ

eijui
t j j‘uijf

����
t¼ti

a q

ð
BrðxÞ

f dm i
ti

for all 0 < r < distðsupp f; qUÞ=2
�
:

Since

lim sup
i!y

ð
eijui

t j j‘uijfa lim sup
i!y

ð
eijui

t j
2
f

� �1=2 ð
eij‘uij2f

� �1=2
a:¼ c11 < y;
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the Besicovitch covering theorem shows thatð
Ac

i; q

f dm i
ti
a q�1cðnÞc11

for all large i. Here, we denote the complement of a set X by X c. Let Aq be

the set of points x A supp f such that there are xi A Ai;q for infinitely many i

with x ¼ limi!y xi. By the definition, Aq is closed. Define A ¼ 6y
q¼1

Aq.

We want to see that
Ð
Ac f dm0 ¼ 0. If not true, then, we would haveÐ

Ac
q
f dm0 > 0 for any q > 0. Let ~ff A CcðAc

qÞ be such that 0a ~ffa 1 andÐ
Ac

q
f ~ff dm0 >

1
2

Ð
Ac

q
f dm0. Since supp ~ff is compact, we may choose (by the

definition of Aq) NðqÞ A N such that supp ~ffHAc
i;q for all ibNðqÞ. Hence,

1

2

ð
Ac

q

f dm0 a lim sup
i!y

ð
Ac

i; q

f ~ff dm i
ti
a q�1cðnÞc11:

We then have, for any q A N,
Ð
Ac f dm0 a q�1cðnÞc11, so

Ð
Ac f dm0 ¼ 0.

Next, since m0 is rectifiable, m0-a.e. point x (which we translate to the origin

subsequently) has a weak tangent plane. Namely, let V be the rectifiable

varifold with kVk ¼ m0. Then, at such point (after rotation), limi!yðFriÞ#V ¼
yvðPÞ, where ri ! 0, ðFriÞ# is the usual push-forward with FriðxÞ ¼ x

ri
, vðPÞ

corresponds to the varifold associated with the ðn� 1Þ-dimensional plane

P ¼ fxn ¼ 0g, and y is the density at the point. For m0 a.e., we may also

assume that the point is in Aq for some q A N and thus there exists a sequence

xi A Ai;q with 0 ¼ limi!y xi. Let V i be the varifold associated with m i
ti
. After

choosing a subsequence, we may assume that ðFriÞ#V i converge to yvðPÞ,
limi!y

xi
ri
¼ 0 and limi!y

ti
r2
i

¼ 0. Rescale the coordinates by ~xx ¼ x
ri
, ~tt ¼ t

r2
i

and

~eei ¼ ei
ri
(and subsequently drop ~��). We preserve the form of the equation (1.1)

under the scaling, and by the definition of Ai;q and (4), we haveð
B3ð0Þ

eijui
t j j‘uij

����
t¼ti

a riq ! 0ð4:7Þ

as i ! y. The condition (7) is, under the scaling,

eij‘uij2

2
�WðuiÞ

ei

����
t¼ti

a c2ri ! 0ð4:8Þ

on ff > 0g as i ! y. Since ðFriÞ#V i converges to yvðPÞ in the varifold sense,

we also have

lim
i!y

ð
B3ð0Þ

ð1� ðnnÞ2Þeij‘uij2
����
t¼ti

¼ 0:ð4:9Þ

Suppose N is the smallest positive integer greater than s�1y. Fix an
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arbitrary small s > 0. Use Proposition 4.1 to choose b > 0, and then with

(4.8) we have ð
B3ð0ÞVfju i jb1�bg

eij‘uij2

2
þWðuiÞ

ei

 !�����
t¼ti

a sð4:10Þ

for all su‰ciently large i. With these chioces of s; b and R ¼ 1, we choose h

and L via Proposition 4.5 and 4.6 (the smaller h should be chosen). For all

large i, we define

Gi ¼ B2ð0Þ � ftigV fjuija 1� bg

V

(
x j
ð
BrðxÞ

eijui
t j j‘uij þ jx ij þ ð1� ðnnÞ2Þeij‘uij2

����
t¼ti

a hE�1
0 m i

ti
ðBrðxÞÞ if 4eiLa ra 1

)
:

By repeating the argument leading to (4.3), one may prove that there exist

constants c12 and c13 depending only on n; ~UU and W such that

1

rn�1
m i
ti
ðBrðxÞÞb c12 for all ei a ra c13 and x A Gi:ð4:11Þ

By the Besicovitch covering theorem, one shows that

m i
ti
ðB2ð0ÞV fjuja 1� bgnGiÞð4:12Þ

a cðnÞh�1E0

ð
B3ð0Þ

eijui
t j j‘uij þ jx ij þ ð1� n2nÞeij‘uij2

����
t¼ti

;

which goes to 0 as i ! y by (3), (4.7) and (4.9). Also distðP;GiÞ ! 0 as

i ! y, since m i
ti
! ykvðTÞk and by (4.11).

For any x A Bn�1
1 ð0Þ :¼ ðRn�1 � f0gÞVB1ð0Þ and jlja 1� b, we let Y ¼

P�1ðxÞVGi V fui ¼ lg and apply Proposition 4.5, where we set a ¼ Lei. By

Proposition 4.6, each element of Y is separated by at least 3Lei, and all the

assumptions are satisfied for su‰ciently large i. We prove that Y does not

contain more than N � 1 elements for any x A Bn�1
1 ð0Þ as follows. Since

sup
x ABn�1

1
ð0Þ

1

on�1

ð
B1ðxÞ

ei

2
j‘uij2 þWðuiÞ

ei

� �
a 2yþ s

for large i;Y having more than N � 1 elements would imply, by Proposition

4.5, that

2sNa ðN þ 1Þsþ ð1þ sÞð2yþ sÞ:
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This would be a contradiction to ys�1 < N for su‰ciently small s depending

only on N.

Finally, since jx ij ! 0 as i ! y, we have
ei j‘ui j2

2 � j‘uij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðuiÞ=2

p
ei

��� ���! 0

in L1
loc. As the result and by (4.10) and (4.12), for t ¼ ti,

on�1y ¼ lim
i!y

ð
B1ð0Þ

eij‘uij2

2
a lim

i!y

ð
B1ð0ÞVfju i ja1�bgVGi

j‘uij
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðuiÞ=2

p
þ s:

By the co-area formula, limi!ykP#V
ik ¼ yvðPÞ and the above discussion then

implies

on�1ya lim
i!y

ð1�b

�1þb

kP#ðvðfui ¼ tgVGiÞÞkðBn�1
1 ð0ÞÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðtÞ=2

p
dtþ s

aon�1ðN � 1Þ
ð 1�b

�1þb

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðtÞ=2

p
dtþ saon�1ðN � 1Þsþ s:

Since s is arbitrary, we have y ¼ ðN � 1Þs. r
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