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Abstract. Our first aim in this paper is to generalize Bôcher’s theorem for functions u

whose Riesz measure m ¼ Dmu is nonnegative in the punctured unit ball B0. In fact, if

u satisfies a certain integral condition and m ¼ Dmub 0 in B0, then it is shown that u

can be written as the sum of a generalized potential of m and a polyharmonic function

on B. This is nothing but the Laurent series expansion for u.

The next aim is to give a polyharmonic version of the recent results by Riihentaus

[11] concerning removability of sets for subharmonic functions.

1. Introduction and statement of results

Let Rn be the n-dimensional Euclidean space with a point x ¼
ðx1; x2; . . . ; xnÞ. For a multi-index l ¼ ðl1; l2; . . . ; lnÞ, we set

jlj ¼ l1 þ l2 þ � � � þ ln;

xl ¼ xl1
1 xl2

2 . . . xln
n

and

Dl ¼ q

qx1

� �l1 q

qx2

� �l2
. . .

q

qxn

� �ln
:

We denote by Bðx; rÞ the open ball centered at x with radius r > 0, whose

boundary is written as Sðx; rÞ ¼ qBðx; rÞ. We also denote by B the unit ball

Bð0; 1Þ and by B0 the punctured unit ball B� f0g.
A real-valued function u on an open set GHRn is called polyharmonic

of order m on G if u A C2mðGÞ and Dmu ¼ 0 on G, where m is a positive

integer, D denotes the Laplacian and Dmu ¼ Dm�1ðDuÞ (cf. [2], [10]). We

denote by HmðGÞ the space of polyharmonic functions of order m on G. In

particular, u is harmonic on G if u A H 1ðGÞ.
The fundamental solution of Dm is written as R2m, that is,

R2mðxÞ ¼
amjxj2m�n if 2m� n is not an even nonnegative integer,

amjxj2m�n logð1=jxjÞ if 2m� n is an even nonnegative integer,

(
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where the constant am is chosen so that DmR2m is the Dirac measure d at the

origin. We denote by R2m;L the remainder term of Taylor expansion of R2m:

R2m;Lðz; xÞ ¼ R2mðz� xÞ �
X
jljaL

zl

l!
ðDlR2mÞð�xÞ

for a nonnegative integer L.

We say that a locally integrable function u on an open set GHRn is sub-

polyharmonic of order m in G if Dmub 0 in G in the weak sense, that is,ð
G

uðxÞDmjðxÞdxb 0 for all nonnegative j A Cy
0 ðGÞ:

Our first aim in this note is to establish Bôcher’s theorem for sub-

polyharmonic functions u A L1
locð2B0Þ, where 2B0 ¼ Bð0; 2Þ � f0g; for poly-

harmonic functions, we refer the reader to the previous paper [3] as a gen-

eralization of Armitage [1].

Theorem 1. Suppose that u A L1
locð2B0Þ and m ¼ Dmu is a nonnegative

measure on 2B0. If u satisfiesð
2B0

juðxÞj jxjsdx <y ð1Þ

for some number sbmaxf�2m;�ng, then

uðxÞ ¼
ð
B0

R2m;Lðz; xÞdmðzÞ þ hðxÞ þ
X
jljaL

CðlÞDlR2mðxÞ ð2Þ

for a.e. x A B0, where L is the integer such that sþ 2m� 1 < La sþ 2m,

h A HmðBÞ and CðlÞ denote constants.

The above expression is called the Laurent series expansion for u.

To prove Theorem 1, we first show that the generalized potentialÐ
B0
R2m;Lðz; xÞdmðzÞ satisfies condition (1) for s 0 > s, and then apply Bôcher’s

theorem for polyharmonic functions on B0 given in [3].

Next we discuss removability of sets for sub-polyharmonic functions in Rn.

We say that a continuous function h on ½0;yÞ is a measure function if

hð0Þ ¼ 0, h is nondecreasing and

hð2rÞaMhðrÞ for all r > 0; ð3Þ

where M is a positive constant. For e > 0 and EHRn, write

Ee ¼ fx A Rn : dðx;EÞ < eg;

where dðx;EÞ denotes the distance of x from E, that is, dðx;EÞ ¼
inffjx� yj : y A Eg. Then the upper Minkowski h-content of E is defined by
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MhðEÞ ¼ lim sup
e!0þ

jEej
hðeÞ ;

where jF j denotes the n-dimensional Lebesgue measure of a set F. If

hðrÞ ¼ rn�a, 0a a < n, then we write Ma for Mh.

We introduce the result by Riihentaus [11] (see also Gardiner [4]).

Theorem A (Riihentaus). Let a A ½0; n� 2� and let E be a closed set in

W such that MaðEÞ ¼ 0. If f is subharmonic in WnE and satisfies

f ðxÞa dðx;EÞaþ2�n
for all x A WnE;

then f has a subharmonic extension to W.

Now we state the following theorem.

Theorem 2. Let h be a measure function. Suppose E is a closed set in W

such that MhðEÞ ¼ 0. If u A L1
locðWnEÞ is sub-polyharmonic of order m in WnE

and satisfies

juðxÞja dðx;EÞ2mhðdðx;EÞÞ�1
for all x A WnE; ð4Þ

then u has a sub-polyharmonic extension to W of order m.

Let h and k be two measure functions on ½0;yÞ such that

lim
r!0

kðrÞ
hðrÞ ¼ 0:

In Theorem 2, if MkðEÞ <y and

juðxÞja dðx;EÞ2mhðdðx;EÞÞ�1 for all x A WnE; ð5Þ

then u is shown to have a sub-polyharmonic extension to W (see also Rii-

hentaus [11, Theorem 2]).

2. Lemmas

Throughout this paper, let M denote various constants, not neccessarily

the same on any two occurrences.

We need several lemmas to prove Theorem 1.

Lemma 1. If u and m are as in Theorem 1, thenð
AðrÞ

dmðzÞaMr�2m

ð
CðrÞ

juðzÞjdz

whenever 0 < r < 1
2 , where AðrÞ ¼ fra jxj < 2rg and CðrÞ ¼ fr=2 < jxj < 4rg.
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Proof. Consider a function c A Cy
0 ðCð1ÞÞ such that cb 0 and

cðxÞ ¼ 1 if 1a jxja 2;

0 if jxja 1=2 or jxjb 4:

�

If we set crðxÞ ¼ c x
r

� �
for 0 < r < 1=2, thenð

AðrÞ
dmðzÞa

ð
CðrÞ

cr dmðzÞ

¼
ð
CðrÞ

ðDmcrÞu dz

a

ð
CðrÞ

jDmcrj jujdz

aMr�2m

ð
CðrÞ

jujdz:

This proves Lemma 1.

Lemma 2. If u and m are as above, thenð
B0

jzjldmðzÞ <y ð6Þ

whenever lb sþ 2m.

Proof. Let Aj ¼ Að2�jÞ and Cj ¼ Cð2�jÞ; then we have by Lemma 1ð
B0

jzjldmðzÞ ¼
Xy
j¼1

ð
Aj

jzjldmðzÞ

a
Xy
j¼1

2lð�jþ1Þ
ð
Aj

dmðzÞ

aM
Xy
j¼1

2lð�jþ1Þþ2mj

ð
Cj

juðzÞjdz

aM
Xy
j¼1

ð
Cj

juðzÞj jzjsdz

aM

ð
2B0

juðzÞj jzjsdz <y:

We put IðxÞ ¼
Ð
B0
jR2m;Lðz; xÞjdmðzÞ, where L is the integer such that

sþ 2m� 1 < La sþ 2m; note here that Lb 0 and Lb 2m� n because sb

maxf�2m;�ng. For x A B0, consider the sets
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E1 ¼ z A B0 : jzj <
jxj
2

� �
;

E2 ¼ z A B0 : jz� xj < jzj
2

� �
;

E3 ¼ B0 � ðE1 UE2Þ:

If 2mb n, then we see from [6, Lemma 4.2] and [9, Lemmas 6, 8, 9] that

IðxÞaM

ð
E1

jzjLþ1jxj2m�n�L�1
dmðzÞ

þM

ð
E2

jzj2m�n þ jz� xj2m�n log
jzj

jz� xj

� �
dmðzÞ

þM

ð
E3

jzjLjxj2m�n�L log
4jzj
jxj dmðzÞ

¼ MfI1ðxÞ þ I2ðxÞ þ I3ðxÞg;

if 2m < n, then I2ðxÞ is replaced by

I2ðxÞ ¼
ð
E2

jz� xj2m�n
dmðzÞ:

We prove the following lemma.

Lemma 3. If m is a nonnegative measure on B0 satisfying (6) and s 0 >

sbmaxf�2m;�ng, then ð
B

IðxÞjxjs
0
dx <y:

Proof. We have only to treat s 0 satisfying s 0 > s and

s 0 � 1 < L� 2m < s 0:

First, since ð2m� n� L� 1þ s 0Þ þ n ¼ s 0 � ðL� 2mþ 1Þ < 0, we haveð
B

I1ðxÞjxjs
0
dx ¼

ð
B

ð
E1

jzjLþ1jxj2m�n�L�1
dmðzÞ

� �
jxjs

0
dx

a

ð
B0

jzjLþ1

ð
fx:jxjb2jzjg

jxj2m�n�L�1þs 0
dx

 !
dmðzÞ

¼ M

ð
B0

jzj2mþs 0
dmðzÞ <y

with the aid of (6).
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Next, noting that jzj=2 < jxj < 2jzj when z A E2, we haveð
B

I2ðxÞjxjs
0
dx ¼

ð
B

ð
E2

jzj2m�n þ jz� xj2m�n log
jzj

jz� xj

� �
dmðzÞ

� �
jxjs

0
dx

a

ð
B0

jzj2m�n

ð
fx:jzj=2<jxj<2jzjg

jxjs
0
dx

 !
dmðzÞ

þ
ð
B0

ð
fx:jz�xjajzj=2g

jz� xj2m�n log
jzj

jz� xj jxj
s 0
dx

 !
dmðzÞ

aM

ð
B0

jzj2mþs 0
dmðzÞ

þM

ð
B0

jzjs
0
ð
fx:jz�xjajzj=2g

jz� xj2m�n log
jzj

jz� xj dx
 !

dmðzÞ

aM

ð
B0

jzj2mþs 0
dmðzÞ <y:

Finally, since ð2m� n� Lþ s 0Þ þ n ¼ s 0 � ðL� 2mÞ > 0, we establishð
B

I3ðxÞjxjs
0
dx ¼

ð
B

ð
E3

jzjLjxj2m�n�L log
4jzj
jxj dmðzÞ

� �
jxjs

0
dx

a

ð
B0

jzjL
ð
fx:jxja2jzjg

jxj2m�n�Lþs 0 log
4jzj
jxj dx

 !
dmðzÞ

aM

ð
B0

jzj2mþs 0
dmðzÞ <y:

Thus we have obtained ð
B

IðxÞjxjs
0
dx <y;

as required.

Lemma 4. If u and m are as above, then

vðxÞ1 uðxÞ �
ð
B0

R2m;Lðz; xÞdmðzÞ A HmðB0Þ

with L as before.

Proof. It is su‰cient to show that Dmv ¼ 0 in B0 in the weak sense.
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Let j A Cy
0 ðB0Þ. In view of Lemma 3, we can apply Fubini’s theorem

to obtain

hu� v;Dmji ¼
ð
B0

R2mðz� xÞ �
X
jljaL

zl

l!
ðDlR2mÞð�xÞ

0
@

1
AdmðzÞ;Dmj

¼
ð
B0

ð
B0

R2mðz� xÞ �
X
jljaL

zl

l!
ðDlR2mÞð�xÞ

0
@

1
ADmjðxÞdx

8<
:

9=
;dmðzÞ

¼
ð
B0

jðzÞ �
X
jljaL

zl

l!
Dljð0Þ

0
@

1
AdmðzÞ

¼
ð
B0

jðzÞdmðzÞ

¼ hu;Dmji;

* +

since j vanishes in a neighborhood of the origin. This proves

hv;Dmji ¼ 0;

as required.

3. Proof of Theorem 1

From Lemmas 3 and 4, we see that v A HmðB0Þ andð
B0

jvðxÞj jxjs
0
dx <y

for all s 0 > s. In view of [3], we can find h A HmðBÞ and constants CðlÞ for

which

vðxÞ ¼ hðxÞ þ
X
jljaL

CðlÞDlR2mðxÞ

holds a.e. on B0, where L is the integer such that sþ 2m� 1 < La sþ 2m.

This implies that u is of the form

uðxÞ ¼
ð
B0

R2m;Lðz; xÞdmðzÞ þ hðxÞ þ
X
jljaL

CðlÞDlR2mðxÞ

for a.e. x A B0, as required.

In case m ¼ 1, our theorem gives the following simple result.
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Corollary. If u is a subharmonic function on 2B0 satisfyingð
2B0

uþðxÞjxj�2
dx <y; ð7Þ

then u can be extended to a subharmonic function on B, where uþðxÞ ¼
maxfuðxÞ; 0g.

Proof. Since uþ is subharmonic on 2B0 and satisfies (1) with s ¼ �2, we

can take L ¼ 0 in Theorem 1, and show that uþ is of the form

uþðxÞ ¼
ð
B0

R2ðz� xÞdmðzÞ þ hðxÞ þ CR2ðxÞ

for x A B0, where m ¼ Duþ b 0, mðB0Þ <y, h is harmonic in B and C is a

constant. In view of (7),

lim inf
r!0

r�1

ð
Sð0; rÞ

uþðxÞdSðxÞ ¼ 0:

Moreover, by [8, Theorem 4.3.1] we see easily that

lim
r!0

½rkðrÞ��1

ð
Sð0; rÞ

ð
B0

R2ðz� xÞdmðzÞ
� �

dSðxÞ ¼ 0;

where kðrÞ ¼ 1 for nb 3 and kðrÞ ¼ logð1=rÞ for n ¼ 2, which shows that

C ¼ 0. Thus uþ is extended to a subharmonic function on B. Since ua uþ,

u is bounded above near the origin, so that u is extended to a subharmonic

function on B by [6, Theorem 5.18].

4. Removability of sets

To prove Theorem 2, we need the following lemma, which is a version of

partition of unity (cf. [7]).

Lemma 5. Let fBi : i ¼ 1; . . . ;Ng, Bi ¼ Bðxi; riÞ, be a finite collection of

balls such that f5�1Big is mutually disjoint. Then there is a family of nonnega-

tive functions ji A Cy
0 ðRnÞ with support supp ji H 2Bi such that

PN
i¼1 jiðxÞ ¼ 1

for x A 6N

i¼1
Bi. Furthermore, for each multi-index l, there is a constant Cl

such that

jDljiðxÞjaClr
�jlj
i for all x A Rn and i ¼ 1; . . . ;N: ð8Þ

Proof of Theorem 2. By our assumption that MhðEÞ ¼ 0, for e > 0,

there is r0, 0 < r0 < 1, such that

jErja ehðrÞ whenever 0a ra r0: ð9Þ
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We first show that ð
ErnE

dðx;EÞ2mhðdðx;EÞÞ�1
dxaMr2me: ð10Þ

If we put Kj ¼ fx A Rn j dðx;EÞ < r2�jg, then

ErnE ¼ 6
y

j¼0

ðKjnKjþ1Þ:

Hence we have by (9)

ð
ErnE

dðx;EÞ2mhðdðx;EÞÞ�1
dx ¼

Xy
j¼0

ð
KjnKjþ1

dðx;EÞ2mhðdðx;EÞÞ�1
dx

a
Xy
j¼0

ðr2�jÞ2mhðr2�ð jþ1ÞÞ�1jKjj

aMr2me
Xy
j¼0

2�2mj

¼ Mr2me: ð11Þ

From (4) and (11) it follows thatð
ErnE

jujdxaMr2me: ð12Þ

If we set u ¼ 0 on E, then we see that u A L1
locðWÞ.

Next we show that ð
W

uðxÞDmjðxÞdxb 0 ð13Þ

for nonnegative j A Cy
0 ðWÞ. We may assume that 0a ja 1 and jDljja 1

for every multi-index jlja 2m. We put K ¼ supp j and take r0 > 0 such that

Kr0 HW.

Let 0 < 4r < r0. By a covering lemma, we can find a finite collection of

balls Bi ¼ Bðxi; rÞ such that f5�1Big is mutually disjoint and

6
N

i¼1

Bi IK :

By re-indexing if necessary, we can find N � such that
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2Bi VE0q for i ¼ 1; . . . ;N �;

2Bi VE ¼ q for i ¼ N � þ 1; . . . ;N:

�

Let ji be as in Lemma 5. Since u is sub-polyharmonic of order m in WnE, we
see that ð

2Bi

uDmðjjiÞdxb 0

for i ¼ N � þ 1; . . . ;N, so that

ð
W

uDmj dx ¼
ð
W

uDm j
XN
i¼1

ji

 !( )
dx

¼
XN
i¼1

ð
2Bi

uDmðjjiÞdx

b
XN �

i¼1

ð
2Bi

uDmðjjiÞdx

b� M

r2m

XN �

i¼1

ð
2Bi

jujdx

with the aid of (8). Thus by (12) we have

ð
uDmj dxb�Me;

which gives (13). Consequently, u is sub-polyharmonic of order m in W.

For a measure function h and f A L1
locðWÞ, define

Af ;hðxÞ ¼ sup
B

r�2mhðrÞ�1 inf
v

ð
B

j f ðyÞ � vðyÞjdy;

where the supremum is taken over all balls B ¼ Bðx; rÞHW and the infimum is

taken over all v A L1
locðWÞ such that Dmvb 0 on B. Further consider the set Sf

of all x A W such that

lim sup
r!0

r�n�2m

ð
Bðx; rÞ

j f ðyÞ � vðyÞjdy > 0

for all functions v A L1
locðWÞ satisfying Dmvb 0 on a neighborhood of x.

As in [7] we can prove the following theorem, which gives an extension of

a theorem in Gardiner [4].
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Theorem 3. If Au;h A LyðWÞ and HhðSuÞ ¼ 0, then u has a sub-

polyharmonic extension to W, where Hh denotes the Hausdor¤ measure with a

measure function h.

5. Remarks on Theorem 1

Suppose that u A L1
locð2B0Þ and m ¼ Dmu is a nonnegative measure on 2B0.

Then, as in the book of Hayman-Kennedy [6], u can be represented as

uðxÞ ¼
ð
B0

R2m;LðjzjÞðz; xÞdmðzÞ þ hðxÞ þ
X
l

CðlÞDlR2mðxÞ ð14Þ

for a.e. x A B0, where LðrÞ is a nonincreasing positive function on ð0; 1�,
h A HmðBÞ and CðlÞ denote constants. To prove this, we use the estimate

jR2m;lðz; xÞjaMljzjlþ1jxj2m�n�l�1

whenever 2jzja jxj and 2m� n < lþ 1, where M is a positive constant

depending only on m and n.

Thus our theorem gives a condition which assures that L is bounded and

the above sum contains only finite terms.

Remark. We do not know whether u has a similar Laurent expansion or

not, if we replace condition (1) byð
2B0

uþðxÞjxjsdx <y:
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