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ABSTRACT. Our first aim in this paper is to generalize Bocher’s theorem for functions u
whose Riesz measure 4 = A4™u is nonnegative in the punctured unit ball By. In fact, if
u satisfies a certain integral condition and 4 = 4"u > 0 in By, then it is shown that u
can be written as the sum of a generalized potential of x# and a polyharmonic function
on B. This is nothing but the Laurent series expansion for u.

The next aim is to give a polyharmonic version of the recent results by Riihentaus
[11] concerning removability of sets for subharmonic functions.

1. Introduction and statement of results

Let R" be the n-dimensional Euclidean space with a point x =

(x1,Xx2,...,%,). For a multi-index A= (11,4,...,4,), we set
|/1| =M+l+ -+ Ay,
Al I

A J2
Xt =x{"x7 X,

o (NN (oY
— \ox; oxy) T \ox,)

We denote by B(x,r) the open ball centered at x with radius » > 0, whose
boundary is written as S(x,r) = dB(x,r). We also denote by B the unit ball
B(0,1) and by By the punctured unit ball B — {0}.

A real-valued function u on an open set G = R" is called polyharmonic
of order m on G if ue C*"(G) and A™u=0 on G, where m is a positive
integer, A denotes the Laplacian and A™u = A""'(du) (cf. [2], [10]). We
denote by H™(G) the space of polyharmonic functions of order m on G. In
particular, u is harmonic on G if ue H'(G).

The fundamental solution of A™ is written as R»,,, that is,

and

2m—n

% || if 2m — n is not an even nonnegative integer,

RZm(x) = dm—n . . . .
Oty | X| log(1/|x|) if 2m — n is an even nonnegative integer,
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where the constant o, is chosen so that 4™Ry,, is the Dirac measure ¢ at the
origin. We denote by R,, ; the remainder term of Taylor expansion of Ry:
é«l
RZm,L(C; )C) - R2m(§ - X) - Z T (DARZM)(_X)
for a nonnegative integer L.
We say that a locally integrable function u on an open set G = R" is sub-
polyharmonic of order m in G if 4™u >0 in G in the weak sense, that is,

J u(x)4™p(x)dx = 0 for all nonnegative ¢ € C;°(G).
G

Our first aim in this note is to establish Bdcher’s theorem for sub-
polyharmonic functions ue L} (2By), where 2By = B(0,2) — {0}; for poly-
harmonic functions, we refer the reader to the previous paper [3] as a gen-

eralization of Armitage [1].

1
loc

THEOREM 1. Suppose that ue L
measure on 2By. If u satisfies

(2By) and pu= A"u is a nonnegative

J [u(x)] |x]) dx < o0 (1)
2B,
Sfor some number s > max{—2m,—n}, then
u(x) = L Rop, 1.(&, x)du(8) + h(x) + Z C(2)D* Ry (x) (2)
0 /<L

for ae. xeBy, where L is the integer such that s+2m—1<L <s+2m,
he H"(B) and C(A) denote constants.

The above expression is called the Laurent series expansion for u.

To prove Theorem 1, we first show that the generalized potential
J"BO Ry, 1.(C, x)du({) satisfies condition (1) for s’ > s, and then apply Bocher’s
theorem for polyharmonic functions on By given in [3].

Next we discuss removability of sets for sub-polyharmonic functions in R”.

We say that a continuous function / on [0, c0) is a measure function if
h(0) =0, h is nondecreasing and

h(2r) < Mh(r) for all r> 0, (3)
where M is a positive constant. For ¢ >0 and E = R”", write
E,={xeR":d(x,E) < &},

where d(x,E) denotes the distance of x from E, that is, d(x,E)=
inf{|x —y|: ye E}. Then the upper Minkowski /-content of E is defined by
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. |E;|
M (E) = limsu ,
h( ) 1:~>0+p h(&)

where |F| denotes the n-dimensional Lebesgue measure of a set F. If
h(r)=r"""% 0 <o <n, then we write .#, for .
We introduce the result by Riihentaus [11] (see also Gardiner [4]).

THEOREM A (Riihentaus). Let o€ [0,n— 2] and let E be a closed set in
Q such that M,(E)=0. If f is subharmonic in Q\E and satisfies

f(x) <d(x,E)*™™  for all x e Q\E,
then f has a subharmonic extension to .
Now we state the following theorem.

THEOREM 2. Let h be a measure function. Suppose E is a closed set in 2
such that My(E) =0. Ifue L} (Q\E) is sub-polyharmonic of order m in Q\E
and satisfies

lu(x)| < d(x, E)*"h(d(x,E))""  for all xeQ\E, (4)
then u has a sub-polyharmonic extension to Q of order m.
Let & and k be two measure functions on [0,00) such that
i 13 =0
In Theorem 2, if .#,(E) < oo and
lu(x)| < d(x, E)*"h(d(x,E))™"  for all xeQ\E, (5)

then u is shown to have a sub-polyharmonic extension to Q2 (see also Rii-
hentaus [11, Theorem 2]).

2. Lemmas

Throughout this paper, let M denote various constants, not neccessarily
the same on any two occurrences.
We need several lemmas to prove Theorem 1.

LemMA 1. If u and u are as in Theorem 1, then

j du(g“)stz'“j u(O)lde
A(r)

C)

whenever 0 <r <1, where A(r) ={r < |x| <2r} and C(r) = {r/2 < |x| < 4r}.
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Proor. Consider a function y € C;°(C(1)) such that >0 and

() = 1 if 1 <x <2,
Y70 i v < 1/2 0r x| > 4.

If we set ¥,(x) = (%) for 0 <r<1/2, then

j wmsj b, du(0)
A(r) C(r)
—|
C(r)
< j 47| uld?
C(r)

< Mr*2”7J |u|dC.
C(r)
This proves Lemma 1.

LEmMMA 2. If u and u are as above, then

L 1 du() < o0 )

whenever { > s+ 2m.

ProoF. Let 4; = A(27) and C; = C(27/); then we have by Lemma 1

|, eraua = | arau

j=174;

<> 20 | au)
=1 4

IA

Y2 | g
=

q
°d
SM;LMMMC

<M [ O] ¢ e < o
2B,

We put I(x) = [ [Rom ({,x)|du((), where L is the integer such that
s+2m—1< L < s+ 2m; note here that L >0 and L > 2m —n because s >
max{—2m,—n}. For x e By, consider the sets
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X
Bi={cem <),
_ -l
E, = CEBOK x|<2 s
Es =By — (E,UE;).
If 2m > n, then we see from [6, Lemma 4.2] and [9, Lemmas 6, 8, 9] that

I(x) < MjE G5 P (g

<]
= x|

+ MJE (|C|2mn + |C_x‘2mfn log )d,u(()

e 4
o [t tog T auo
E; |x|

= M{L(x) + hL(x) + (x)};

if 2m < n, then L(x) is replaced by

B0 = | 1= (o).

E,

We prove the following lemma.

LemMmA 3. If u is a nonnegative measure on By satisfying (6) and s’ >
s > max{—2m, —n}, then

J 1(x)|x]* dx < 0.
B

Proor. We have only to treat s’ satisfying s’ > s and
s —1<L-2m<ys'.

First, since 2m—n—L—1+s)Y+n=s"—(L—-2m+1) <0, we have

J, mst = | (] 10 ) )t s
B B \JE,

J |£|L+l J |x|2m—n—L—l+s’dx du(C)
By {x:fx =2}

:MJ |C|2m+s’dﬂ(c) <o
By

IA

with the aid of (6).
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Next, noting that |{|/2 < |x| < 2|{| when { € E», we have

s’ g 2m—n _|2m—n |C| s
J reomst?as = [ ] (1210 = w7 tor oL Yauo b
< | |4|2“<j x|S’dx>dﬂ<c>
By {x:(¢1/2<x]<21¢]}

" log Ly ax |
+JB°<LMIMI<|</2}|C : o8 IC—xl‘x| x| 4nd)

< MjB P ()

M s’ N 2mfnl |C| d d
i JBO “ (Lx:cxsc/z} e A x) "

< MJ 112" dpu() < o0.

By

Finally, since (2m —n—L+s')+n=s"— (L —2m) >0, we establish

(] vt tog Y duy )t a

x|

JB L(x)|x|* dx = J

B

m—n—L+s’ 4
< | (] 22+ tog 2ol ) ey
By {x:|x| <2l¢} |x]

<M | P <

Thus we have obtained
J 1(x)|x]* dx < oo,
B

as required.

LemMMa 4. If u and u are as above, then

v(x) = u(x) — JB Rom, (¢, x)du(C) € H™ (By)

with L as before.

Proor. It is sufficient to show that A™v =0 in By in the weak sense.
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Let p e C;°(By). In view of Lemma 3, we can apply Fubini’s theorem
to obtain

<“ -0 Am(ﬂ> = JB (RZM(C - x) - Z i' (D RZm)( )) d.u(é)v Am(ﬂ

N ~B0{JBO (RZm(C - X) - Z i_(D Rz’”)( )> A"’fﬂ(X)dX}du(C)

= <u, 4"y,
since ¢ vanishes in a neighborhood of the origin. This proves
(v, 4"p) =0,

as required.

3. Proof of Theorem 1

From Lemmas 3 and 4, we see that ve H”(By) and

J o(x)] |x]* dx < o0
By

for all s’ > 5. In view of [3], we can find 2 e H"(B) and constants C(4) for
which

+ Y C(A)D* Ry (x)
[A|<L

holds a.e. on By, where L is the integer such that s+2m—1< L < s+ 2m.
This implies that u is of the form

) = | R 1600 +h03)+ 30 D Ran(x)
’ <L

for a.e. x € By, as required.
In case m =1, our theorem gives the following simple result.
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COROLLARY. [If u is a subharmonic function on 2By satisfying
J ut (x)|x]2dx < oo, (7)
2B,

then u can be extended to a subharmonic function on B, where u*(x)=
max{u(x),0}.

PrOOF. Since u* is subharmonic on 2By and satisfies (1) with s = —2, we
can take L =0 in Theorem 1, and show that u" is of the form

i (x) = J Ra(¢ — x)du(?) + h(x) + CRa(x)
By

for x € By, where u= Au™ >0, u(By) < oo, h is harmonic in B and C is a

constant. In view of (7),

r—0

liminf 7! J ut (x)dS(x) = 0.
5(0,7)
Moreover, by [8, Theorem 4.3.1] we see easily that

tim{rc(r)]”" J (J Ra(C — x)du(C))dS(x) o,
r— 5(0,r) \JBy
where x(r) =1 for n>3 and x(r) =log(1/r) for n =2, which shows that
C =0. Thus u" is extended to a subharmonic function on B. Since u < u*,
u is bounded above near the origin, so that u is extended to a subharmonic
function on B by [6, Theorem 5.18].

4. Removability of sets

To prove Theorem 2, we need the following lemma, which is a version of
partition of unity (cf. [7]).

LemMmA 5. Let {B;:i=1,...,N}, B; = B(x;,r;), be a finite collection of
balls such that {57'B;} is mutually disjoint. Then there is a family of nonnega-
tive functions ¢; € C;°(R") with support supp ¢; < 2B; such that Y pix) =1
for xe UZIB[. Furthermore, for each multi-index 1, there is a constant C,
such that

|D*p;(x)| < Co7 ™ for all xeR" and i=1,...,N. (8)

- 1

PrOOF OF THEOREM 2. By our assumption that .#,(E) =0, for ¢ >0,
there is rg, 0 < ryg < 1, such that

|E:| < eh(r) whenever 0 < r < r. 9)
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We first show that
J d(x, E)"h(d(x,E)) "dx < Mr*"e. (10)
E\E

If we put K; = {xeR"|d(x,E) <27}, then

EAE = U(K)\Ka)

Hence we have by (9)

8

J d(x,E)"h(d(x,E)) 'dx = J d(x, E)*"h(d(x, E)) "dx
E\E Kj\Kj11

Jj=0

(27" n(r2” ) K|

-

j=0
S .
< M}"2m8 Z 272}11]
=0
= Mr*"e. (11)
From (4) and (11) it follows that
J |u|dx < Mr*"e. (12)
EN\E

If we set u=0 on E, then we see that ue L} ().
Next we show that

J u(x)4™p(x)dx = 0 (13)
Q

for nonnegative g € C°(2). We may assume that 0 < ¢ <1 and |D%p| <1
for every multi-index |A| < 2m. We put K = supp ¢ and take ry > 0 such that
K, Q.

Let 0 < 4r <rp. By a covering lemma, we can find a finite collection of
balls B; = B(x;,r) such that {57'B;} is mutually disjoint and

Bi > K.

=

Il
—

1

By re-indexing if necessary, we can find N* such that
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2B,NE # & fori=1,...,N%;
2BNE= fori=N*+1,...,N.

Let ¢; be as in Lemma 5. Since u is sub-polyharmonic of order m in Q\E, we
see that

J ud"(pp;)dx > 0
2B;

for i=N*+1,...,N, so that

N*

M
> — mz J;Bi |M|dX

i=1

with the aid of (8). Thus by (12) we have
JuA’”(p dx > —Me,

which gives (13). Consequently, u is sub-polyharmonic of order m in Q.

For a measure function / and f e L} (Q), define

Ay (x) = sup ()" infj () — o(3)ldy,
B v B

where the supremum is taken over all balls B = B(x,r) = 2 and the infimum is
taken over all ve L} .(Q) such that 4”v >0 on B. Further consider the set Sy
of all x e Q such that

lmsup 7 [ 1/() ~ )l > 0

r—0

for all functions ve L} () satisfying 4”v >0 on a neighborhood of x.
As in [7] we can prove the following theorem, which gives an extension of
a theorem in Gardiner [4].
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THEOREM 3. If A,,€L*(Q) and Hp(S,) =0, then u has a sub-
polyharmonic extension to Q, where Hy, denotes the Hausdorff measure with a
measure function h.

5. Remarks on Theorem 1

Suppose that u e L} (2By) and u = A™u is a nonnegative measure on 2B,.
Then, as in the book of Hayman-Kennedy [6], u can be represented as

u(x) = JB RZ”LL(KD((’ x)d,u(() + h(x) + Z C(/AL)D/IRZM()C) (14)
0 A

for a.e. xe By, where L(r) is a nonincreasing positive function on (0, 1],
he H"(B) and C(4) denote constants. To prove this, we use the estimate

|R2m,((C7 x)| < M/|§|/+1|x|2m7n471

whenever 2|{| <[x| and 2m —n </ +1, where M is a positive constant
depending only on m and n.

Thus our theorem gives a condition which assures that L is bounded and
the above sum contains only finite terms.

REMARK. We do not know whether u has a similar Laurent expansion or
not, if we replace condition (1) by

J u' (x)|x|"dx < 0.
2B,
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