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Abstract. Let AðC�Þ be the family of all OðC�Þ-convex compact sets of C� and BðC�Þ
the family of all compact sets of C� whose complements in C� are connected. Then

the family BðC�Þ is the maximal subfamily of AðC�Þ on which there exists a universal

function of OðC�Þ. We also prove the transcendence of the universal functions of

OðC�Þ on BðC�Þ.

1. Introduction and preliminaries

Let X be a complex manifold. We denote by OðX Þ the set of all

holomorphic functions on X. For any compact set K of X the set

K̂KX :¼ z A X j j f ðzÞja max
x AK

j f ðxÞj for every f A OðX Þ
� �

is said to be the holomorphically convex hull of K in X. A compact set K of

X is said to be OðXÞ-convex if K̂KX ¼ K . According to Zappa [8] we denote by

AðXÞ the family of all OðXÞ-convex compact sets of X.

Let G be a Stein group (see for example Grauert-Remmert [5, p. 136]) and

S a subfamily of AðGÞ. A function F A OðGÞ is said to be a universal function

of OðGÞ on S if for every f A OðGÞ, K A S and e > 0 there exists an element

c A G such that maxx AK jFðc � xÞ � f ðxÞj < e.

For the additive group Cn, nb 1, there exists a universal function of

OðCnÞ on AðCnÞ by Birkho¤ [4], Luh [6], Y. Abe [1] and Abe-Zappa [3]. For

the multiplicative group C� ¼ GLð1;CÞ ¼ C� f0g there exist no universal func-

tions of OðC�Þ on AðC�Þ by Remark 2 of Zappa [8, p. 350]. For the complex

general linear group GLðn;CÞ, nb 2, it is not known whether there does exist

a universal function of OðGLðn;CÞÞ on AðGLðn;CÞÞ or not (see Abe-Zappa

[3, p. 231]).

According to Zappa [8] let BðC�Þ be the family of all compact sets K

of C� such that C� � K is connected. Here we remark that BðC�Þ is a proper
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subfamily of AðC�Þ. By the theorem of Zappa [8] there exists a universal

function of OðC�Þ on BðC�Þ. Generalizations to the complex general linear

group GLðn;CÞ and to the complex special linear group SLðn;CÞ are also

known by Abe-Zappa [3] and Y. Abe [2].

It is of interest to determine the maximal subfamily of AðGÞ on which

there exists a universal function of OðGÞ when a Stein group G is spec-

ified. In this paper we prove that for the multiplicative group C� the family

BðC�Þ is the maximal subfamily of AðC�Þ on which there exists a universal

function of OðC�Þ, which is more precise than the theorem of Zappa [8].

We also prove the transcendence of the universal functions of OðC�Þ on

BðC�Þ.

2. Maximal subfamily of AðC�Þ

Theorem 1. The family BðC�Þ is the maximal subfamily of AðC�Þ on

which there exists a universal function of OðC�Þ.

Proof. Since there exists a universal function of OðC�Þ on BðC�Þ by the

theorem of Zappa [8], we have only to prove that there exist no universal

functions of OðC�Þ on any subfamily S of AðC�Þ such that SQBðC�Þ. We

take an arbitrary K A S� BðC�Þ. Let L0 and Ly be the connected com-

ponents containing 0 and y respectively of P1 � K, where P1 denotes the

Riemann sphere. Since C� � K has no relatively compact connected com-

ponent (see Remmert [7, p. 301]), the set P1 � K has no connected component

other than L0 and Ly. Since C� � K is not connected, we have that L0 0Ly.

It follows that L0 is relatively compact in C and that K̂KC ¼ K UL0 (see

Remmert [7, p. 301]). Assume that there exists a universal function F of

OðC�Þ on S. Take an arbitrary k A C. Since the constant function k on C�

is approximated on K by the functions of the form FðczÞ, c A C�, there exists a

sequence fcngyn¼1 HC� such that maxz AK jF ðcnzÞ � kj < 1=n for every n A N.

The sequence fcngyn¼1 has an accumulation point c A P1 ¼ CU fyg. Replacing

by a subsequence we may assume that limn!y cn ¼ c in P1. First we consider

the case where c A C�. Since maxz AK jFðcnzÞ � kj < 1=n, by letting n ! y we

have that FðwÞ ¼ k for every w A cK . Since C� � K is not connected, cK is

an infinite compact set. By the theorem of identity we have that F 1 k

on C�. Next we consider the case where c ¼ 0. Replacing by a subsequence

we may assume that cnþ1K̂KC H cnL0 for every n A N. Then we have

that cnþ1K̂KC H cnK̂KC and cnK̂KC � cnþ1K̂KC ¼ ðcnK U cnL0Þ � cnþ1K̂KC ¼ cnK UQn,

where Qn :¼ cnL0 � cnþ1K̂KC ¼ cnL0 V cnþ1Ly. We also have that qQn H
cnqL0 U cnþ1qLy H cnK U cnþ1K . If x A cnK , then jFðxÞ � kj < 1=n. If x A Qn,

then by the maximum modulus principle we have that
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jF ðxÞ � kja max
w A qQn

jF ðwÞ � kj

amax max
w A cnK

jFðwÞ � kj; max
w A cnþ1K

jFðwÞ � kj
� �

< maxf1=n; 1=ðnþ 1Þg ¼ 1=n:

Thus we have that jFðxÞ � kj < 1=n for every x A cnK̂KC � cnþ1K̂KC and n A N.

Since we can verify that cnK̂KC � f0g ¼ 6y
n¼n

ðcnK̂KC � cnþ1K̂KCÞ, it holds that

jF ðxÞ � kj < 1=n for every x A cnK̂KC � f0g and n A N. Since cnK̂KC, n A N, are

compact neighborhoods of 0 in C, we have that limz!0 F ðzÞ ¼ k. Finally we

consider the case where c ¼ y. Applying the argument above to the func-

tion z 7! Fð1=zÞ and the compact set K�1 ¼ fz A C j 1=z A Kg, we obtain that

limz!y FðzÞ ¼ k. Thus we proved that one of the conditions F ðzÞ1 k on

C�, limz!0 FðzÞ ¼ k or limz!y F ðzÞ ¼ k are satisfied for any k A C. But these

three conditions are satisfied for at most di¤erent two constants k ¼ k1; k2. It

is a contradiction. r

3. Transcendence of universal functions

We have the following fact on the transcendence of the universal functions

of OðC�Þ on BðC�Þ. We denote by z the coordinate of C.

Theorem 2. Let S be a subfamily of AðC�Þ. Assume that there exists a

compact set K A S such that #K b 2. Then every function F of the form

F ðzÞ ¼
P l

n¼�k anz
n A C½z; 1=z� cannot be a universal function of OðC�Þ on S.

Proof. Assume that F ðzÞ ¼
P l

n¼�k anz
n is a universal function of OðC�Þ.

We take two points p; q A K , p0 q. Let Mn :¼ max1=najcjanjF ðcpÞj for every

n A N. Since the function z 7! ðMn þ nÞðz� qÞ=ðp� qÞ is approximated on K

by the functions of the form F ðczÞ, c A C�, there exists a sequence fcngyn¼1 HC�

such that jFðcnpÞ � ðMn þ nÞj < 1=n and jFðcnqÞj < 1=n for every n A N. If

1=na jcja n, then we have that jFðcpÞ � ðMn þ nÞjb ðMn þ nÞ �Mn ¼ nb

1=n. Therefore we have that jcnj < 1=n or jcnj > n for every n A N. It follows

that there exists a subsequence fcaðnÞgyn¼1 of fcngyn¼1 such that limn!y caðnÞ ¼ 0

or limn!y caðnÞ ¼ y in P1. Since jFðcaðnÞpÞj > ðMaðnÞ þ aðnÞÞ � 1=aðnÞb
aðnÞ � 1 for every n A N, we have that limn!y FðcaðnÞ pÞ ¼ y. Since

jF ðcaðnÞqÞj < 1=aðnÞ for every n A N, we have that limn!y FðcaðnÞqÞ ¼ 0. It

follows that either F ð0Þ ¼ limz!0 F ðzÞ or FðyÞ ¼ limz!y FðzÞ is indetermi-

nate. It is a contradiction. r

Corollary 3. Every universal function of OðC�Þ on BðC�Þ has at least one
essential singularity at 0 or y.
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