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ABSTRACT. Let A(C*) be the family of all @®(C*)-convex compact sets of C* and B(C*)
the family of all compact sets of C* whose complements in C* are connected. Then
the family B(C”*) is the maximal subfamily of 4(C*) on which there exists a universal
function of O(C*). We also prove the transcendence of the universal functions of
O(C*) on B(C").

1. Introduction and preliminaries

Let X be a complex manifold. We denote by O(X) the set of all
holomorphic functions on X. For any compact set K of X the set

Ky = {zeX| lf(2) < gieal?|f(x)| for every f e (Q(X)}

is said to be the holomorphically convex hull of K in X. A compact set K of
X is said to be O(X)-convex if Ky = K. According to Zappa [8] we denote by
A(X) the family of all O(X)-convex compact sets of X.

Let G be a Stein group (see for example Grauert-Remmert [5, p. 136]) and
& a subfamily of A(G). A function F € O(G) is said to be a universal function
of O(G) on & if for every f € O(G), K € & and ¢ > 0 there exists an element
¢ € G such that max,cx|F(c-x) —f(x)] <e.

For the additive group C", n>1, there exists a universal function of
O(C") on A(C") by Birkhoff [4], Luh [6], Y. Abe [1] and Abe-Zappa [3]. For
the multiplicative group C* = GL(1,C) = C — {0} there exist no universal func-
tions of O(C*) on A(C*) by Remark 2 of Zappa [8, p. 350]. For the complex
general linear group GL(n,C), n > 2, it is not known whether there does exist
a universal function of O(GL(n,C)) on A(GL(n,C)) or not (see Abe-Zappa
(3, p. 231]).

According to Zappa [8] let B(C*) be the family of all compact sets K
of C* such that C* — K is connected. Here we remark that B(C*) is a proper
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subfamily of A(C*). By the theorem of Zappa [8] there exists a universal
function of (O(C*) on B(C*). Generalizations to the complex general linear
group GL(n,C) and to the complex special linear group SL(n,C) are also
known by Abe-Zappa [3] and Y. Abe [2].

It is of interest to determine the maximal subfamily of A(G) on which
there exists a universal function of ((G) when a Stein group G is spec-
ified. In this paper we prove that for the multiplicative group C* the family
B(C*) is the maximal subfamily of 4(C*) on which there exists a universal
function of ((C*), which is more precise than the theorem of Zappa [8].
We also prove the transcendence of the universal functions of @(C*) on
B(C™).

2. Maximal subfamily of A4(C”)

THEOREM 1. The family B(C*) is the maximal subfamily of A(C*) on
which there exists a universal function of O(C™).

Proor. Since there exists a universal function of ¢(C*) on B(C*) by the
theorem of Zappa [8], we have only to prove that there exist no universal
functions of O(C*) on any subfamily . of 4(C*) such that & ¢ B(C*). We
take an arbitrary K€% — B(C*). Let Ly and L, be the connected com-
ponents containing 0 and oo respectively of P' — K, where P! denotes the
Riemann sphere. Since C* — K has no relatively compact connected com-
ponent (see Remmert [7, p. 301]), the set P! — K has no connected component
other than Ly and L,,. Since C* — K is not connected, we have that Lo # L.
It follows that L is relatively compact in C and that Kc = KUL (see
Remmert [7, p. 301]). Assume that there exists a universal function F of
O(C*) on &. Take an arbitrary k € C. Since the constant function k on C*
is approximated on K by the functions of the form F(cz), ¢ € C*, there exists a
sequence {¢,},—; = C* such that max.cx|F(c,z) — k| < 1/n for every ne N.
The sequence {c,}” | has an accumulation point c € P' = CU{o0}. Replacing
by a subsequence we may assume that lim,_.., ¢, = ¢ in P'. First we consider
the case where ¢ € C*. Since max..k|F(cy,z) — k| < 1/n, by letting n — oo we
have that F(w) =k for every we ¢cK. Since C* — K is not connected, cK is
an infinite compact set. By the theorem of identity we have that F =k
on C*. Next we consider the case where ¢ = 0. Replacing by a subsequence
we may assume that ¢, Kc = ¢,Ly for every neN. Then we have
that Cn+1f{c c Cnf(c and Cnf(c - Cn+1f<c = (CnK U C,,Lo) - C,1+1KC =c,KUQ,,
where Q, :=c¢,Lo — cn+1Kc =c¢,LoNecyy1 L. We also have that 00, <
cn0LoUcy110Ly, < cuKUcp1 K. If x € ¢,K, then |F(x) — k| < 1/n. If xe Q,,
then by the maximum modulus principle we have that
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|F(x) — k| < max |F(w) — k|

wedQ,

< max{ max |[F(w) — k|, max |F(w)— k|}

wec, K wece K
<max{l/n,1/(n+1)} =1/n.

Thus we have that |F(x) — k| < 1/n for every x e ¢,Kc — ¢,y 1Kc and neN.
Since we can verify that coKc — {0} = Uf:n(cvli'c _CV+1KAC), it holds that
|F(x) — k| < 1/n for every x e c,Kc — {0} and neN. Since ¢,Kc, neN, are
compact neighborhoods of 0 in C, we have that lim, o F(z) = k. Finally we
consider the case where ¢ = co. Applying the argument above to the func-
tion {+ F(1/{) and the compact set K~! = {{ e C|1/{ € K}, we obtain that
lim,,,, F(z) =k. Thus we proved that one of the conditions F(z) =k on
C*, lim,_y F(z) =k or lim,_,., F(z) = k are satisfied for any k € C. But these
three conditions are satisfied for at most different two constants k = k1, k,. It
is a contradiction. [

3. Transcendence of universal functions

We have the following fact on the transcendence of the universal functions
of O(C*) on B(C*). We denote by z the coordinate of C.

THEOREM 2. Let & be a subfamily of A(C*). Assume that there exists a
compact set K e such that #K > 2. Then every function F of the form
F(z) = E‘{}k ayz' € Clz,1/z] cannot be a universal function of O(C*) on &.

PrROOF. Assume that F(z) = Zi:_k a,z’ is a universal function of O(C”).
We take two points p,q€ K, p #q. Let M, :=max,,<|<a|F(cp)| for every
neN. Since the function z — (M, +n)(z — q)/(p — ¢) is approximated on K
by the functions of the form F(cz), ¢ € C*, there exists a sequence {c,},-, = C*
such that |F(c,p) — (M, +n)| < 1/n and |F(cu,q)| < 1/n for every neN. If
I/n <|c| <n, then we have that |F(cp) — (M, +n)|>(M,+n)—M,=n>
1/n.  Therefore we have that |¢,| < 1/n or |¢,| > n for every n e N. It follows
that there exists a subsequence {c,(},—; of {c,},—, such that lim,_. ¢, =0
or lim, ., ¢y =00 in P'. Since |F(cymp)| > (M) + a(n)) — 1/a(n) >
a(n) —1 for every meN, we have that lim, ., F(c,,)p)= co. Since
|F(cymyq)| < 1/a(n) for every neN, we have that lim, .., F(cymq) =0. It
follows that either F(0) = lim,_o F(z) or F(o0) =lim., F(z) is indetermi-
nate. It is a contradiction. O

COROLLARY 3.  Every universal function of O(C*) on B(C*) has at least one
essential singularity at 0 or oo.
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